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Abstract 4 

Operational objectives and/or constraints of a reservoir system may need to be shifted at certain 5 

periods (i.e. transition periods) due to seasonal considerations of human interest and ecological 6 

benefits. Despite the fact that operational schemes in the transition periods are critical and of great 7 

interest to reservoir operation practice, the problem has received little attention in the literature. 8 

This paper presents a study on cluster analysis for identifying patterns of operational schemes 9 

during a transition period. The test case corresponds to ten major reservoirs of the Federal 10 

Columbia River Power System (FCRPS) in the United States. The operation horizon consists of 11 

two weeks during which the objectives of the reservoir system are shifted based on seasonal 12 

consideration for fish migration and survival. An optimization model based on evolutionary 13 

algorithm is used to derive the optimal operational schemes under various inflow scenarios. A K-14 

Spectral Centroid algorithm (K-SC) is applied on the resulting operational schemes to find clusters 15 

of the schemes based on similarities of their temporal shapes. By investigating the relations 16 

between the clusters and the inflow scenarios, general patterns of operational schemes are 17 
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identified. Our analyses offer insights into the operational schemes during the transition period 18 

and broaden the understanding of short-term reservoir operation with shifting operational 19 

objectives.  20 

Author keywords: Cluster analysis; Multi-reservoir system; Operational patterns;; Shifting 21 

objectives;   22 

Introduction 23 

Reservoir operation normally provides multiple benefits to human interests including flood control, 24 

hydropower generation, irrigation, etc. Recently, restoration of river ecosystems are being 25 

considered in reservoir operation to address growing concerns on ecological and environmental 26 

protection. Flow requirements for the biota in the river i.e., fish community (Cardwell et al. 1996; 27 

Chen et al. 2013), riparian vegetation (Morrison and Stone 2015; Richter and Richter 2000), and 28 

macro-invertebrate community (Maynard and Lane 2012) are considered for adapting reservoir 29 

operation. However, some of the requirements regarding the river ecosystem are seasonal, e.g., 30 

fish migration, and they are normally emphasized only during specific time periods. As a result, 31 

the operational considerations (either the objectives or constraints or both) are shifted at specific 32 

times (i.e., transition periods). Reservoir operation schemes during a transition period are expected 33 

to achieve an optimal trade-off between the operational objectives both before and after the 34 

transition.   35 

Shifting operational objectives have been frequently discussed in the context of long-term 36 

planning studies (Lund 1996; Wurbs 1991). The shifts occur mostly because the original objectives 37 

and/or constraints are replaced with others that can better serve the new requirements for the 38 

reservoir system. These changes of the operational considerations are due to regional economic 39 

development or climate impacts (Jager and Smith 2008; Li et al. 2009; Loucks 1992; Raje and 40 



Mujumdar 2010), which typically happen during a relatively long time frame such as decades. The 41 

shift of objectives and/or constraints in this long time frame context may have influence on the 42 

short-term reservoir operation due to the connection between long-term water control plans and 43 

the prescribed rules for short-term operation. However, the influence is mostly significant for a 44 

long time scale such as years. For a short term operation, the shift of operational objectives and/or 45 

constraints within the long-term planning are not considered.  46 

In the context of short-term reservoir operation (i.e., within a year), many studies considering 47 

ecological interests have been made. However, most of these studies highlight the implementation 48 

of ecological interests in reservoir operations (Chen et al. 2015; Homa et al. 2005) and focus on 49 

achieving an optimal trade-off between the original human interests, e.g., power generation, and 50 

the added ecological interests e.g., ecological flow (Olivares 2008; Suen and Wang 2010). Very 51 

few studies have been conducted on reservoir operation in a transition period during which the 52 

objectives and/or constraints are shifted from one set to another due to seasonal requirements of 53 

the river ecosystem. Eschenbach et al., (2001) emphasized the need of reservoir managers to adapt 54 

quickly to changing objectives. Smith et al. (2007) argued that shifting operational objectives and 55 

constraints on ecological interests is a future challenge of reservoir operation for meeting dynamic 56 

and changing requirements. These discussions show the need for investigating optimal schemes 57 

for reservoir operations during a transition period.  58 

Optimal schemes for reservoir operation are typically obtained by intensive simulation or, 59 

alternatively, by optimization algorithms. In addition to traditional optimization approaches such 60 

as Newton methods, evolutionary algorithms, e.g., Genetic Algorithms, have been receiving 61 

increasing attention on reservoir operation (Atiquzzaman et al. 2006; Prasad and Park 2004; Reed 62 

et al. 2013; Yandamuri et al. 2006; Yin and Yang 2011) due to their ability to find global (and not 63 



just local) optima. Data mining techniques are also applied frequently for identifying operational 64 

schemes of reservoir operation (Bessler et al. 2003; Wei and Hsu 2008). Among them, cluster 65 

analysis has been found to have many applications in reservoir operation due to its advantage for 66 

identifying patterns from massive data (Ponnambalam et al. 2002; Suen 2011). 67 

The main purpose of this study is to use a cluster analysis approach to identify operational 68 

scheme patterns for reservoir operation during a transition period. A case study of ten reservoirs 69 

in the Columbia River, United States is considered. Fifty-one different inflow hydrograph 70 

scenarios based on historical records from 1965 to 2015 are used. For each inflow scenario, the 71 

optimal operational scheme is derived using a Genetic Algorithm and then a clustering method is 72 

used to group and identify patterns of operational schemes.  73 

The remainder of the paper is organized as follows. In the section on Optimization Model Setup, 74 

the study case i.e., the Big-ten reservoir system of the Federal Columbia River Power System 75 

(FCRPS), is briefly introduced. The objective and the constraints of the optimization model during 76 

a transition period, as well as modelling of the reservoir system, are described. The inflow 77 

scenarios used for the optimization model are introduced and their statistics are briefly discussed. 78 

The Cluster Analysis Method section introduces the K-Spectral Centroid algorithm (K-SC), which 79 

is an efficient clustering technique recently developed (Yang and Leskovec 2011). By comparing 80 

to the K-means method, which is widely used for cluster analysis, advantages of applying the K-81 

SC on reservoir operational schemes are discussed. The index for determining the number of 82 

clusters in the K-SC is also described. In the Results and Discussions section, the optimal 83 

operational schemes and the identified patterns are presented. The practical benefits of the 84 

identified operational patterns are also discussed. Finally, the main results are summarized in the 85 

Conclusions section. 86 
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Optimization Model Setup 87 

Study case 88 

The Big-ten reservoir system, i.e., ten large reservoirs of the Federal Columbia River Power 89 

System (FCRPS) in the United States is considered as a study case. Grand Coulee reservoir (GCL), 90 

located in upper Columbia River, is of storage type and dominates the system by accounting for 91 

nearly 80% of the storage. Other reservoirs are mostly run-of-river type, characterized for having 92 

relatively small storage. The river-reservoir network and some of the reservoir characteristics are 93 

presented in Fig.1. 94 

(Fig.1. is here) 95 

  The Big-ten reservoir system provides multiple benefits, e.g., power generation, flood control 96 

and fish migration. However, some of the reservoirs have seasonal requirements and the 97 

operational objectives are only required during specific periods (Chen et al. 2016; Schwanenberg 98 

et al. 2014). From April to August, the reservoir system is operated to help migration of juvenile 99 

anadromous fish by maintaining specific operation pool levels (SOPs) and spilling a certain 100 

amount of flow (called fish flow). The reservoir system no longer has the fish flow nor the SOP 101 

requirements during September. Therefore, the objectives of reservoir operation are shifted after 102 

August 31st (called the shift date). 103 

Objectives  104 

An hourly optimization model is used for finding the optimal operational schemes during the 105 

transition period. The time horizon for operating the reservoir system as short-term is normally 106 

two weeks (Chen et al. 2016). In order to investigate the overall performance of the reservoir 107 

system during the transition period, the optimization period in the study is set to two weeks with 108 
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one week before and after the shift date. The decision variables in the model are the total outflows 109 

at each reservoir and at each time interval (i.e., hour). The Non-dominated Sorting Genetic 110 

Algorithm (NSGA-II, (Deb et al. 2002)), one of the most widely-used Evolutionary Algorithms, 111 

is selected as the optimization method. The population (i.e., candidate solutions) of the NSGA-II 112 

is set to 50 and the generation (i.e., iteration times) is set to a relatively large number (10,000) to 113 

ensure convergence.  114 

    An important objective of the reservoir system is to meet power load in the region, as well as 115 

gain maximum revenue from power generation. Power generated that exceeds the load can be sold 116 

in the power market. On the other hand, energy needs to be purchased if a load deficit occurs. Net 117 

electricity is defined as hydropower generated minus the load. The revenue is then quantified by 118 

multiplying the net electricity by real-time prices from the power market. The revenue objective 119 

is expressed as: 120 

                                   (1) 121 

where PG is hydropower generated in the system (MWh), PL is the power (MWh) that is needed 122 

for meeting the load (MW) in the region, and PR is the market price for hydropower (dollar/ MWh). 123 

The variable t is time, e.g., in hours; T denotes the optimization period, i.e., 3,360 hours (14 124 

days), the index i indicates individual reservoirs in the system, and Nr is the total number of 125 

reservoirs. The price of hydropower for the two weeks period was pre-determined by an economic 126 

model (Chen et al. 2014) and is treated as a deterministic parameter in this study. It should be 127 

noted that the formulation of the objective is mainly for demonstrating the effect of objective 128 

shifting on the reservoir operation. The operating agency, i.e., the Bonneville Power 129 

Administration primarily aims to reduce the total operational cost rather than to make a profit, as 130 

1 1
max (( ) ) )

T Nr
i
t t t

t i
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is true of other non-profit federal agencies. An alternative objective can be formulated for reducing 131 

the operational cost.  132 

Other constraints of reservoir operation, such as maintaining the SOP and the fish flow are 133 

described below. 134 

Constraints 135 

In order to assist juvenile salmon and steelhead species in surface passage past the dams, most of 136 

the reservoirs in the system are required to spill a certain amount of flow through non-turbine 137 

structures such as sluices or gates (Schwanenberg et al. 2014). These flow requirements are 138 

expressed as either a fixed flow rate or a percentage of the total outflow of a reservoir (NOAA 139 

Fisheries 2014), as follows:  140 

    (for i =5,7,8,9)                                                                                              (3) 141 

 (for i =3,4,6,10)                                                                                       (4)                                                142 

where Qs is the spill flow, Qsr is the fixed fish flow requirement, qs is the flow rate and Qout  is 143 

the total outflow from reservoir. According to the Biological Opinion issued by the National 144 

Oceanic and Atmospheric Administration (NOAA), the Grand Coulee (i=1) and Chief Joseph (i=2) 145 

reservoirs are not required to satisfy any fish flow requirement.  146 

     Also with the purpose of assisting fish migration, the forebay elevations of reservoirs in the 147 

system are required to be kept within specific ranges, i.e., the SOP. The SOP requirements are 148 

expressed as follows: 149 

                                                                                                  (5)  150 

where Hr is forebay elevation, and SOPlower and SOPupper are lower and upper boundaries for 151 

the SOP requirement, respectively.  152 
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     Other operational constraints considered in the model include lower and upper limits on forebay 153 

elevations, on turbine flows, on power outputs and ramping limits on reservoir outflows, on 154 

forebay elevations, and on tail water elevations. These constraints are considered as common 155 

practice for reservoir operation and therefore are not listed for brevity.  156 

      The short-term operation of reservoirs is known to be greatly dependent on initial and ending 157 

conditions (Lund 1996) such as reservoir forebay elevations (FB). Different initial and ending FB 158 

conditions often lead to various operational schemes that are too different to compare. To exclude 159 

the effects of initial and ending conditions, a fixed initial FB and a restriction on ending FB are 160 

considered. In the study, the historical FB elevation of a normal year (the year of 1986) at the end 161 

of August 24th (the day before beginning date of optimization) is used as initial condition. On the 162 

other hand, the reservoir FBs at the end of optimization period are expected to stay within a target 163 

range in order to fulfill their future obligations. These target ranges are commonly decided by 164 

middle-term or long-term optimization models (Lund 1996), which are not included in this study. 165 

Instead, the historical FB elevation of 1986 at the end of September 7th (end date of optimization) 166 

is used as a reference ending condition. In order to avoid equality constraints, a small deviation is 167 

allowed for the FB elevation at the end-of-period, to approximate the reference ending condition: 168 

                                                                                    (6) 169 

where Htar is the reference FB at the end-of-period; is deviation percentage; Dw is maximum 170 

water depth at reservoir i. The deviation percentage for Grand Coulee reservoir is set to 0.25%, 171 

due to its large storage, corresponding to only 0.04 m in water depth. For the other reservoirs the 172 

deviation percentage is set to 10%.  173 

Reservoir System Modelling  174 

The reservoir storages at each time step are modelled through the following equation (i.e., 175 

, , , , ,
t

tar i w i r i tar i w iH D H H D−∆ ⋅ ≤ ≤ + ∆ ⋅





continuity equation) in order to conserve the mass: 176 

                                                   (7) 177 

where V is reservoir storage; Qin and Qout are inflow to and outflow from reservoirs, respectively; 178 

∆t is time step. The inflows are input to the model and the outflows are the decision variables. 179 

Water losses due to evaporation are not considered in the model due to the short time frame under 180 

consideration.  181 

    The forebay elevations are obtained from the established forebay-storage curves. The tail waters 182 

are obtained using a regression equation involving the reservoir outflow and the forebay elevation 183 

of the downstream reservoir. The turbine flow is modelled by relating the outflow with the fish 184 

flow requirement through the following procedures: 185 

                                       (8) 186 

 where Qtb is turbine flow, Qtb_min and Qtb_max are allowed minimum and maximum turbine flows, 187 

respectively;  188 

   The power generation is computed based on the turbine flow and the water head (a function of 189 

forebay elevation and tail water elevation) with project-aggregated coefficients: 190 

                                                                                                                         (9) 191 

where Nd is power output, TW is the tail water elevation and K is the coefficient to express the 192 

overall efficiency of turbine which is aggregated as one value for each project (reservoir). 193 

    The flow propagation within the reservoir-river network is modelled using the Muskingum-194 

Cunge routing method with calibrated coefficients. Most of the propagation times in the river 195 

1 1 1
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between two reservoirs are 1-3 hours except the river reach between CHJ reservoir and MCN 196 

reservoir with an average propagation time of 21 hours.  197 

Inflow Scenarios  198 

There are two inflows to the reservoir system, one is the inflow from upstream of the GCL reservoir 199 

(GCL inflow), and another is the inflow from upstream of the LWG reservoir (LWG inflow). Other 200 

inflows, mostly side inflows from small tributaries, provide relatively small water volumes, and 201 

hence are omitted in this study. Historical records on the two inflows with six-hour interval from 202 

1965 to 2015 (Fig. 2) are used as the multiple inflow scenarios. The period considered in the study 203 

is two weeks ranging from August 25th to September 7th. Since the optimization model is hourly 204 

time step, we linearly interpolated the inflow data. 205 

(Fig.2. is here) 206 

     To better characterize the inflow scenarios, two indexes are proposed in the study. The total 207 

inflow volume of the two weeks period is certainly important for fulfilling objectives/constraints 208 

of reservoir operation. Inflow volumes of week one and that of week two are also important 209 

because shifting of reservoir operation involves temporal water usage competition. The first index 210 

is the total volume ratio (TVR), which is defined as the ratio of total inflow volume in a given year 211 

for the two week period to that of a benchmark year for the same period. The year of 1986, the 212 

normal water year, is used as the benchmark year. If the TVR value of one inflow is larger than 213 

one, the total inflow volume for the two week period is larger than the benchmark year, implying 214 

relative water abundance, and vice versa. Another index, termed as weekly volume ratio (WVR), 215 

is defined as the ratio of inflow volume of week one to that of week two. The WVR index aims to 216 

represent temporal distribution of the inflow between week one and week two. 217 



       The histograms of the indexes from the 51 inflow scenarios are shown in Fig. 3. For the GCL 218 

inflow, the observed mean and standard deviation of the TVR index are 1.00 and 0.18, respectively. 219 

It follows that, on average, the total inflow volume of the two weeks is equal to that of the 220 

benchmark year, although large variability was observed among the different scenarios. On the 221 

other hand, the observed mean and standard deviations of the WVR index for GCL inflow are 1.10 222 

and 0.14, respectively. This suggests that, on average, the inflow volume of week one is 223 

significantly larger than week two, showing a important variability of inflows during the two 224 

weeks period. For LWG inflow, the observed means of the TVR and the WVR indexes are 0.99 225 

and 1.0, respectively. These values suggest that the total inflow volume of the two weeks for the 226 

LWG inflow is (on average) a little less than that of the benchmark year, but the inflow volumes 227 

of the first and second week are (on average) nearly the same.  228 

(Fig.3. is here) 229 

  The study considers multiple inflow scenarios in order to identify general patterns of reservoir 230 

operation during the transition period. Each optimization for a given inflow scenario is called an 231 

experiment. Each experiment results in a set of outflows and associated forebay elevation 232 

trajectories. The trajectory of the forebay elevation is one of the primary means to represent 233 

operation of reservoirs and each of these trajectories is an operational scheme for reservoir 234 

operation. For a given reservoir system, the forebay elevation trajectory is influenced by the initial 235 

and ending conditions of the forebay elevation, as well as the inflow. Since the initial and ending 236 

forebay elevation of the optimization model are almost invariant in each experiment (described in 237 

the Constraints section), the study solely focuses on the relationships between forebay elevation 238 

trajectories and reservoir inflows.  239 

Cluster Analysis Method  240 



Cluster Analysis (CA) refers to the group of techniques that are designed to separate a set of objects 241 

or observations into different groups or clusters according to their similarities or proximities. Due 242 

to its generality, the problem has been extensively studied and a number of solutions and 243 

methodologies have been proposed in the literature going back to Hartigan’s Rule (see Fuentes 244 

and Casella 2009; John A. Hartigan 1975; Sugar and James 2011; Tibshirani et al. 2001 for a few 245 

examples). Among different techniques, the K-means clustering algorithm (Dhillon and Modha 246 

2001; Hartigan and Wong 1979) has been a widely-used method for CA. More recently, with the 247 

advances in genetics, image processing and machine learning, new variations of the problem have 248 

become increasingly popular, including clustering and classification of curves, with the obvious 249 

implications in pattern recognition, as discussed in (Zhang et al. 2015). The operational schemes 250 

of reservoir operation are time-series data (i.e., curve) which may have similar patterns even under 251 

different inflow conditions. Identifying patterns of operational schemes helps to gain a generalized 252 

understanding on reservoir operation during the transition period. 253 

K-Spectral Centroid (K-SC) algorithm 254 

The K-SC algorithm (Yang and Leskovec 2011) is a recently developed method for finding distinct 255 

temporal patterns of time-series data. For a given N set of time series and the number of clusters 256 

K, the goal of the K-SC is to find an assignment of each time series, and the centroid of each 257 

cluster, so that a function of a distance metric is minimized. In a similar way to the K-means 258 

clustering algorithm, the K-SC iterates a two-step procedure: assignment step and refinement step. 259 

The K-SC algorithm starts with a random initialization of the cluster centers. In the assignment 260 

step, each data time series is assigned to the closest cluster, and in the refinement step the cluster 261 

centroids are updated. By alternating the two steps, the sum of the distances between the members 262 

of the same cluster is minimized, and the assignment of N sets of time series into K clusters is 263 



completed. The MATLAB code of the K-SC algorithm can be found at the Stanford large network 264 

dataset collection (SNAP Datasets) that is provided by (Leskovec and Krevl 2015). 265 

K-SC algorithm VS K-means 266 

The two clustering methods are compared based on their applications to reservoir operational 267 

schemes. In our study, the operational schemes are time series, each representing specific actions 268 

or decisions over time. Similar shapes of these operational schemes suggest similar decisions on 269 

reservoir operation that can be grouped on the same cluster.  Therefore, it is essential to have a 270 

metric that can appropriately measure the shape similarity of two time series. For K-means, a 271 

simple distance metric, i.e., Euclidean, is adopted.  The Euclidean metric measures the overall 272 

distance between two curves and tends to focus on only the global peaks of the curves. Under this 273 

metric, two time series may have a large distance due to a scale (in volume) or shifting (in position) 274 

effect, even if their temporal shapes are similar. On the contrary, the K-SC uses a distance metric 275 

D(xj , xk) that is invariant to scaling and shifting (Yang and Leskovec 2011), defined as:   276 

                                                                                                                           (10) 277 

where || · || is the l2 norm,   is the scaling coefficient, q is the shifting coefficient measured by 278 

q time units that are used to shift xk. The metric works by finding the optimal value of the alignment 279 

q and the scaling coefficient for matching the shapes of the two time series.  280 

To compare the K-means and K-SC, we designed 6 artificial operational schemes, in some of 281 

them with similar shapes (Fig. 4). However, the volume (i.e., scale) within those with similar 282 

shapes are different. For example, Scheme 1 and Scheme 2 have a difference of 20% in terms of 283 

scale. Also some shapes are very close in terms of scale such as Scheme 5 and Scheme 6 with only 284 

3% difference. For reservoir operation, we define two operational schemes to be similar if their 285 
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temporal shapes are similar despite their scales and shift. The rationale for the definition is 286 

discussed in relation to the clusters that are found by K-means and K-SC which are shown in Fig.4.  287 

     The six artificial operational schemes should be easily classified into four clusters by direct 288 

observation. The members in each cluster are {○1E

A, A○2E

A}, {A○3E

A, A○4E

A}, {A○5E

A}, {A○6E

A}. The scheme A○1E

A and 289 

scheme A○2E

A are different in scale but are very similar in terms of temporal shape. From the reservoir 290 

operator’s perspective, these two share a similar operational pattern which decreases (either water 291 

level or outflow) along with time, hits a valley point, and then increases after that. In the same 292 

manner scheme A○3E

A and scheme A○4E

A are similar. Scheme A○5E

A and scheme A○6E

A should be considered 293 

different operational patterns even though they are very close in magnitude. As shown in Fig.4, K-294 

means clusters the six operational schemes as { A○1E

A, A○2E

A}, {A○3E

A}, {A○4E

A,A○6E

A}, {A○5E

A}. It turns out that K-295 

means fails to recognize the relation between schemes A○3E

A and A○4E

A, producing incorrect clusters. On 296 

the other hand, the K-SC method is able to find the desirable clusters.  297 

(Fig.4. is here) 298 

    Another advantage of K-SC is the robustness in presence of outliers. K-means is more sensitive 299 

to outliers, because it considers the average of time series for a cluster center. Instead, K-SC scales 300 

each time series differently to find a cluster center, and therefore the influence of outliers is largely 301 

decreased. 302 

Number of Clusters 303 

Similar to most clustering methods,K-SC also needs to be specify the number of clusters in 304 

advance. The Silhouette (Kaufman and Rousseeuw 2009), an index to measure how well each 305 

object lies within its cluster, is used for determining the number of clusters. The Silhouette index 306 

for the iRthR point, SRiR, is defined as SRiR = (xRiR-yRiR)/ max(xRiR,yRiR) , where xRiR is the average distance from 307 



the iRthR point to the other points in the same cluster, and yRiR is the minimum average distance from 308 

the iRthR point to points in a different cluster, minimized over clusters. The index is within the range 309 

of [-1, 1], and the higher the value the better the clustering. For the case study, we measure how 310 

the Silhouette index (on average) varies with the number of clusters for the operational schemes 311 

of each reservoir and determine the number of the clusters with the highest Silhouette index. Fig.5 312 

shows the relations between the Silhouette index and different number of clusters for three 313 

reservoirs in the Big-ten system, as an example. From these relations, the optimal number of 314 

clusters for GCL reservoir, LWG reservoir and MCN reservoir can be determined as 2, 2 and 3, 315 

respectively.   316 

(Fig.5. is here) 317 

Results and Discussion 318 

Optimal operational schemes and clusters 319 

Among the ten reservoirs, the GCL and the LWG are the two most upstream reservoirs and their 320 

operation certainly influences the downstream reservoirs. The MCN, which is located immediately 321 

downstream of the confluence of the Snake River and the Upper Columbia River (see Fig. 1), also 322 

plays an important role in the system. Therefore, these three reservoirs are selected to demonstrate 323 

the operation of the ten reservoirs. Most of the other reservoirs except the three selected ones are 324 

run-of-river reservoirs, which pass inflow from the upstream reservoir. For simplicity, the 325 

operation of these reservoirs are not discussed herein although all ten reservoirs are considered in 326 

the modeling. The optimal forebay elevation of the selected reservoirs under multiple inflow 327 

scenarios is obtained from the optimization model and is shown in Fig.6.  328 



The groups of the forebay elevation that are clustered by the K-SC algorithm are also shown in 329 

Fig.6. The centroid of each group, which demonstrates a mean result of the corresponding cluster, 330 

is illustrated as well.  331 

 (Fig.6. is here) 332 

Two distinctive clusters or groups (Fig. 6a) are found in the collection of forebay elevations of 333 

GCL reservoir. For Group 1, the forebay elevation gradually decreased (with oscillation) in week 334 

one and increased in week two. In contrast, the forebay scenarios in Group 2 show that the forebay 335 

elevation increases (with oscillation) in week one achieving a maximum elevation at the end of 336 

week one or at the beginning of week two. After the maximum forebay elevation is attained, the 337 

forebay elevation decreases until the end of week two.  338 

The forebay elevations of the LWG reservoir are also clustered into two groups (Fig. 6b). Even 339 

though the forebay elevations in week one are all restrained in certain range because of the SOP 340 

requirement, the trajectories have clear patterns. For Group 1, the forebay elevations initially 341 

decreased and then increased in week one. The forebay elevations are maintained at a high level 342 

in week two. For group 2, during the first week, the forebay elevation is initially increased and 343 

then decreased until the end of week two, resulting in an opposite operational strategy to that of 344 

Group 1.  345 

   Three clusters are identified for the forebay elevation of MCN reservoir (Fig. 6c). For Group 1, 346 

the forebay elevations mainly decreased in week one and then increased in the first half of week 347 

two.  After that, the forebay elevations decreased until the end of week two. Group 2 and Group 3 348 

are similar in terms of temporal shape for week two, during which the forebay elevations are 349 

mainly decreased (with oscillation). However, these two groups adopt different operational 350 



schemes for week one. The forebay elevations of Group 2 rapidly increase and then decrease while 351 

for Group 3 the forebay elevations maintain a constant level in the first half week and then decrease.   352 

Relations between inflow scenarios and clusters 353 

     Based on the forebay elevation clusters of each reservoir, the TVR and WVR indexes of the 354 

inflows, namely GCL inflow and LWG inflow, can be grouped accordingly. Note that each inflow 355 

has these two indexes. For instance, two groups are identified in the GCL forebay elevation (Fig. 356 

6a) with 38 solutions in Group 1 and 13 solutions in Group 2. Since each forebay elevation curve 357 

(one member in a group) is associated with one inflow scenario, we can then put the TVR index 358 

of all the 38 inflow scenarios that are associated with Group 1 in one group.  The other 13 inflow 359 

scenarios that are associated with Group 2 are classified as another group, shown in Fig. 7 (a). 360 

Similarly, the WVR index is classified into two groups shown in Fig. 7 (d). Correspondingly, the 361 

TVR and WVR index of the two inflows can also be classified based on the forebay elevation 362 

groups of the LWG reservoir and the MCN reservoir (shown in Fig. 7 (b&e) and Fig. 7 (c&f)). 363 

 (Fig.7. is here) 364 

The groups on the TVR index show no interesting results. However, clearly separated clusters 365 

(or regions) are found for the WVR index. As can be seen in Fig. 8(d), the WVR index of the GCL 366 

inflow in Group 1 mostly adopts values lower than 1.0 and in Group 2 these values are mostly 367 

higher than 1.0. Interesting results are also found for the WVR index of the LWG inflow (Fig. 7 368 

(e)). In Group 1, the WVR index of the LWG inflow adopts values lower than 1.0 and in Group 2 369 

these values are mostly higher than 1.0. Three groups are found for the WVR index based on the 370 

three groups of the forebay elevations for the MCN reservoir (Fig. 7(f)). Members of Group 1 are 371 

all in the upper-right region in which the WVR index of the GCL inflow and that of the LWG 372 

inflow are both higher than 1.0. Most of the scenarios of Group 2 are located in the lower-left 373 



region in which the WVR index of the GCL inflow is lower than 1.0 and the WVR index of the 374 

LWG inflow is mostly lower than a value of 1.05. Most of the members in Group 3 are in the 375 

lower-right region in which the WVR index of the GCL inflow is higher than 1.0 while the WVR 376 

index of the LWG inflow is lower than 1.0. 377 

Patterns of reservoir operation 378 

By linking the definition of WVR index with the two groups of the forebay elevation for GCL 379 

reservoir, it is clear that different operational schemes need to be adopted when the volume of 380 

GCL inflow in week one is smaller or greater than that of week two. When the volume of GCL 381 

inflow in week one is smaller than week two (i.e., WVR lower than 1.0), the operation would adopt 382 

the scheme of Group 1, which would use the storage of this reservoir (forebay elevation is 383 

decreased) during week one to increase its outflow. This would decrease the power generation 384 

(and power revenue) in this reservoir as flow is released when water level is relatively low. 385 

However, the outflow increases in the GCL reservoir during week one for meeting the fish flow 386 

requirement. This operational scheme tries to obtain a balanced solution between human interests 387 

and ecological benefits. Contrastingly, when the volume of GCL inflow in week one is larger than 388 

week two (i.e., WVR greater than one), the system would adopt the scheme of Group 2, which 389 

would store water in week one (forebay elevation is increased) when inflow is relatively high 390 

during this week. The high inflow from upstream of GCL ensures that fish flow requirements for 391 

the four reservoirs on the lower Columbia River (MCN, JDA, TDA and BON) are satisfied in 392 

week one. Continuing to release water from the GCL reservoir would no longer be needed for fish 393 

flow because the other four reservoirs with fish flow requirement (LWG, LGS, LMN and IHA) 394 

are on the Snake River. Therefore, the optimal operation of the system under this situation is to 395 



store the excess water (after satisfying fish flow requirements) during week one to produce more 396 

power during week two.  397 

Another pattern is identified for the operation of LWG reservoir. The association between 398 

forebay elevation groups with the WVR index shows that the LWG reservoir should adopt a 399 

different operational scheme when the volume of LWG inflow in week one is smaller or greater 400 

than that of week two. When the volume of LWG inflow in week one is smaller than week two 401 

(i.e., WVR index lower than one), the LWG reservoir should release more water in week one to 402 

fulfill the fish flow requirement. Thus its forebay elevation is decreased, as shown in Fig. 6b 403 

(Group 1). During week two, the forebay elevation maintains a high level for generating more 404 

power with the same outflow, which helps to compensate the power loss in week one. On the other 405 

hand, the LWG reservoir would store some water in week one when the volume of LWG inflow 406 

in week one is larger than week two (WVR index is higher than one), after the fish flow 407 

requirement is met.  Higher forebay elevations can be obtained in this way, as shown in Fig. 6b 408 

(Group 2). This resulting high forebay elevations and the increased outflow in week two help to 409 

produce more power.  410 

The operation of the MCN reservoir is influenced by the operation of reservoirs on the upper 411 

Columbia River (GCL and CHJ) and the operation of reservoirs on the Snake River (LWG and the 412 

other three reservoirs). Patterns for the MCN reservoir result from three combinations of the GCL 413 

reservoir operation and the LWG reservoir operation. For instance, the scheme of Group 3 needs 414 

to be adopted for the MCN reservoir when the GCL reservoir operation adopts its Group 2 scheme 415 

(when WVR index of GCL inflow is higher than one) and the LWG reservoir operation adopts its 416 

Group 1 scheme (when WVR index of LWG inflow is lower than one). In this case, as the fish 417 

flow requirement for downstream reservoirs can be fulfilled by the operation of upstream 418 



reservoirs, the scheme would only pass the inflow from GCL and LWG in week one. A relatively 419 

high forebay elevation can also be maintained in this way. More water would be released in week 420 

two for generating more power thus maximizing revenue. The rational of this scheme is to improve 421 

the power objective when fish flow requirements are met.  422 

      The identified patterns offered an insight to the various operational schemes during the 423 

transition period. Reservoir operators can benefit from these patterns as they could choose an 424 

operational scheme depending on a forecasted hydrological regime.  Noted that the accuracy of 425 

the forecast influences the selection of the patterns. These patterns can also be used as prior 426 

information for online optimization, which will diminish the effort for finding optimal solutions. 427 

The identified patterns provide a good initial starting point for the optimization model. Therefore, 428 

the efficiency of optimization models can be improved with the assistance of the patterns.  429 

Conclusions  430 

Different patterns of operational schemes are identified for the ten-reservoir system of the Federal 431 

Columbia River Power System (FCRPS) during a transition period. These patterns are found to be 432 

highly correlated with the index of weekly volume ratio (WVR) which represents a ratio between 433 

volume of water in week one and that of week two. Contrastingly, the patterns show nearly no 434 

correlation with the index of total volume ratio (TVR) which represents a ratio between total water 435 

volume for the two-week period of a specific year and that of a benchmark year. The comparison 436 

indicates that reservoir operation during objective shifting is more sensitive to temporal 437 

distribution of the inflow (i.e., WVR index) than to the total volume of the inflow (i.e., TVR index). 438 

Therefore, the WVR index is the main driver for adopting different operational schemes.  439 

http://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&ved=0CDYQFjAB&url=http%3A%2F%2Fwww.bpa.gov%2Fpower%2Fpg%2Ffcrps_brochure_17x11.pdf&ei=hmDXUs2iD5DeoATYoIKgBg&usg=AFQjCNFvCgytyCEhrXzkF-oS2j0VkCXgbg
http://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&ved=0CDYQFjAB&url=http%3A%2F%2Fwww.bpa.gov%2Fpower%2Fpg%2Ffcrps_brochure_17x11.pdf&ei=hmDXUs2iD5DeoATYoIKgBg&usg=AFQjCNFvCgytyCEhrXzkF-oS2j0VkCXgbg


 The identified patterns help to provide a general understanding for the operational schemes 440 

during the transition period, which can be used as prior knowledge for a better online optimization 441 

performance. The method of the K-SC is found to outperform the widely used K-means for 442 

clustering reservoir operational schemes with more informative patterns.  443 
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