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Abstract

This paper focuses on the formulation and assessment of a second-order accurate Finite

Volume (FV) shock-capturing scheme for simulating one and two-phase water hammer

flows. The two-phase flow model is based on the single-equivalent fluid concept. The pro-

posed scheme for one and two-phase flows is the same, except the Riemann solvers used
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to evaluate fluxes between computational cells. For one-phase flows, the accuracy and nu-

merical efficiency of the proposed scheme is contrasted against the fixed-grid Method of

Characteristics (MOC) and a recently proposed FV scheme. For two-phase flows, the accu-

racy and numerical efficiency of the proposed scheme is compared to the fixed-grid MOC

scheme. The results for one-phase flows show that, when a Courant number (Cr) very close

to 1.0 (around 0.99 or higher) is used, the MOC scheme is more efficient than the proposed

scheme and the other FV scheme. In this case, the latter two schemes have similar numer-

ical efficiency. When Cr drops below about 0.95, the proposed scheme is more efficient

than the MOC scheme and the other FV scheme, especially for smooth transient flows (no

discontinuities). For two-phase water hammer flows, all the simulations were carried out

using a maximum Courant number of 0.95 to avoid numerical instability problems. The

results for two-phase flows show that the proposed scheme is much more efficient than the

fixed-grid MOC scheme. The fixed-grid MOC and the proposed scheme are also used to

reproduce a set of two-phase flow experiments reported in the literature. Good agreement

between simulated and experimental data is found.

Keywords: Pressurized flow; Real-time control; Transients; Two-phase flow; Water ham-

mer.

Introduction

The study of one and two-phase water hammer flows has great significance in a wide range

of industrial and municipal applications including power plants, petroleum industries, water

distribution systems, sewage pipelines, etc. For Real-Time Control (RTC) of these systems,

the numerical efficiency of transient flow models is a critical factor, since several simula-

tions are required within a control loop in order to optimize the control strategy, and small
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simulation time steps are needed to reproduce the rapidly varying hydraulics (e.g., León

et al. 2005, León et al. 2006). RTC is becoming increasingly indispensable for industrial

and municipal applications in general. For instance, in the case of water distribution sys-

tems, RTC facilitates delivery of safe, clean and high-quality water in the most expedient

and economical manner. Current methods available for modeling one and two-phase water

hammer flows are briefly described next.

Methods for one-phase water hammer flows

Among the approaches proposed to solve the one-phase (pure liquid) water hammer equa-

tions are the Method of Characteristics (MOC), Finite Differences (FD), Wave Characteris-

tic Method (WCM), Finite Elements (FE), and Finite Volume (FV). In-depth discussions of

these methods can be found in Chaudhry and Hussaini 1985, Ghidaoui and Karney 1994,

Szymkiewicz and Mitosek 2004, Zhao and Ghidaoui 2004, and Wood et al. 2005. Among

these methods, MOC-based schemes are most popular because these schemes provide the

desirable attributes of accuracy, numerical efficiency and programming simplicity (e.g.,

Wylie and Streeter 1983, Zhao and Ghidaoui 2004, Ghidaoui et al. 2005). In fact, in a

review of commercially available water hammer software packages, it is found that eleven

out of fourteen software packages examined use MOC schemes (Ghidaoui et al. 2005).

Recently, FV Godunov-Type Schemes (GTS) that belong to the family of shock-

capturing schemes have been applied to one-phase water hammer problems with good

success. The underlying idea of GTS is the Riemann problem that must be solved to

provide fluxes between computational cells. The first application of GTS to one-phase

water hammer problems is due to Guinot (2000), who presented first and second-order

schemes based on Taylor series expansions of the Riemann invariants. He showed that his
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second-order scheme is largely superior to his first-order scheme, although the Taylor se-

ries development introduces inaccuracies in the estimated pressure, especially in the case

of low pressure-wave celerities. A second application is due to Hwang and Chung (2002),

whose second-order accuracy scheme is based on the conservative form of the compressible

flow equations. Although this scheme requires an iterative process to solve the Riemann

problem, these authors state that their scheme requires a little more arithmetic operation

and CPU time than the so-called Roe’s scheme, but is able to get more accurate computa-

tional results than the latter scheme. Later, Zhao and Ghidaoui (2004) presented first and

second-order schemes for solution of the non-conservative water hammer equations. These

authors show that, for a given level of accuracy, their second-order GTS requires much less

memory storage and execution time than either their first-order GTS or the fixed-grid MOC

scheme with space-line interpolation. It is pointed out that the numerical tests carried out

by these authors were for low Courant numbers. When a Courant number very close to 1.0

(around 0.99 or higher) is used, as shown in the present paper, the MOC scheme can be

more efficient than the scheme of Zhao and Ghidaoui.

Methods for two-phase water hammer flows (single-equivalent fluid

approximation)

The partial differential equations that describe two-phase flows in closed conduits can be

simplified to a great extent when the amount of gas in the conduit is small. In this case,

the gas-liquid mixture can be treated as a single-equivalent fluid (e.g., Wylie and Streeter

1983, Chaudhry et al. 1990, Martin 1993, Guinot 2001a). The governing equations when

using the single-equivalent fluid approximation are identical to those for a one-phase flow.

Due to this fact, similar techniques to those for a one-phase flow are used to solve the
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two-phase flow governing equations that are based on the single-equivalent fluid concept.

However, since shocks may be produced during transient conditions in two-phase flows

(e.g., Padmanabhan and Martin 1978), only those methods that can handle shocks without

special treatment are suitable for these applications.

In the literature, numerical schemes that have been proposed for modeling one-

dimensional two-phase flows using the single-equivalent fluid approximation include MOC

schemes, Lax-Wendroff schemes, a plethora of explicit schemes, and implicit methods

(e.g., Chaudhry et al. 1990, Martin 1993). The MOC scheme requires isolation of shocks.

The Lax-Wendroff scheme has the advantage that shock waves can be handled without spe-

cial treatment (e.g., Martin 1993). However, the solution produces an overshooting of the

shock front, followed by damped oscillations. These oscillations can be eliminated by in-

troducing pseudo-viscosity. Artificial damping may be also necessary when using explicit

schemes (e.g., Martin 1993). When using implicit methods, biasing or weighting problems

may be encountered (e.g., Martin 1993). Recently, Guinot (2001a, 2001b) has applied GTS

schemes to two-phase flows with good success. The first-order GTS presented by Guinot

(2001a) showed that numerical diffusion leads to a very fast degradation of the solution

quality after a few oscillation periods. The second-order scheme by Guinot (2001b) is

largely superior to his first-order scheme, although an iterative process is required to solve

the Riemann problem.

The present paper focuses on the formulation and numerical efficiency assessment of a

second-order accurate FV shock-capturing scheme for simulating one and two-phase water

hammer flows. In the proposed approach, no iteration is required for the solution of the Rie-

mann problem for both types of flow. This paper is organized as follows: (1) the governing
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equations are presented in conservation-law form; (2) the corresponding FV discretization

is described; (3) a brief description of the proposed second-order scheme for the internal

cells is presented; (4) Riemann solvers for the flux computation at the cell interfaces are

provided; (5) a brief description for the formulation of second-order boundary conditions

is presented; (6) stability constraints are provided; and (7) results from testing the proposed

model under one and two-phase flow conditions are presented.

Governing Equations

The governing equations that describe two-phase flows in closed conduits can be simplified

to a great extent when the amount of gas in the conduit is small. In this case, it can be

assumed that there is no relative motion or slip between the gas and the liquid and both

phases can be treated as a “single-equivalent fluid” with average properties (e.g., Martin

1993, Wylie and Streeter 1983). Furthermore, the characteristic time scale of the transients

is so small that adsorption/desorption of gas can be considered negligibly small (Zielke

et al. 1989). The mass and momentum conservation equations for the “single-equivalent

fluid” assumptions are identical to those for a liquid-phase flow and can be written in their

vector conservative form as follows (e.g., Chaudhry 1987, Martin 1993):

∂U
∂ t

+
∂F
∂x

= S (1)

where the vector variable U, the flux vector F and the source term vector S may be written

as:

U =
[ Ω

Qm

]
, F =

[ Qm

Q2
m

Ω +A f p

]
and S =

[ 0

(S0−S f )ρ f gA f

]
(2)

where ρ f is the fluid density, A f is the full cross-sectional area of the conduit, Ω = ρ f A f

is the mass of fluid per unit length of conduit, Qm = Ωu is the mass discharge, u is the
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water velocity, p is the pressure acting on the center of gravity of A f , g is the gravitational

acceleration, S0 is the slope of the conduit, and S f is the slope of the energy line.

The vector Eq. 1 does not form a closed system in that the flow state is described using

three variables: Ω, p and Qm. However, it is possible to eliminate the pressure variable

by introducing the general definition of the celerity of the pressure wave (ag) [e.g., Guinot

2003], which relates p and Ω:

ag =
[

d(A f p)
dΩ

]1/2

(3)

The pressure-wave celerity for the gas-liquid mixture (am) can be estimated as (Guinot

2001a):

am =
a√√√√1+ψre f ρ f re f a2 p

1
β
re f

p
1+β

β

(4)

where a is the pressure-wave celerity in presence of liquid only, pre f is a reference pres-

sure for which the density is known (ρ f re f ), β is a coefficient equal to 1.0 for isothermal

processes and 1.4 for adiabatic conditions, and ψre f is the volume fraction of gas at the ref-

erence pressure. The water density measured at a temperature of 4 degrees Celsius under

atmospheric pressure conditions is 1000 kg/m3. Thus, the reference density and pressure

when the liquid is water can be taken as 1000 kg/m3 and 101325 Pa, respectively.

The relationship between the volume fraction of gas ψ and pressure for the “single-

equivalent fluid” assumptions can be expressed as (e.g., Guinot 2001a):

pψβ = pre f ψ
β
re f

(5)

The pressure-wave celerity in presence of liquid only depends upon the elastic properties of

the conduit, the bulk modulus of elasticity of the fluid, as well as on the external constraints.
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The general expression of the pressure-wave celerity is given by (e.g., Chaudhry 1987):

a =
[

k f /ρ f

1+ k f
Y χ

]1/2

(6)

where k f is the bulk modulus of elasticity of the fluid, Y is Young’s modulus of elasticity of

the pipe material, and χ is a non-dimensional parameter that depends upon the geometric

properties of the conduit and pipe restraints. Substituting Eq. 4 into Eq. 3 and integrating

the differentials dΩ and d p (A f is assumed to be constant) leads to the following equation

that relates p and Ω:

Ω = Ωre f +
A f

a2

[
p− pre f +(p

−1
β

re f − p
−1
β )βψre f ρ f re f a2 p

1
β
re f

]
(7)

where Ωre f = ρ f re f A f . The pressure p in Eq. 7 can be determined by an iterative scheme

such as the Newton Raphson method and typically between three and five iterations are

needed to ensure convergence. In one-phase liquid flows, the pressure-wave celerity is

constant and no iteration is required to determine p. In this case, the following relation

between p and Ω is obtained:

p = pre f +
a2

A f
(Ω−Ωre f ) (8)

The flow variables used in this paper are Ω and Qm. However, the engineering community

prefers to use the piezometric head h and flow discharge Q. The latter variables can be

determined from Ω and Qm as follows:

Q =
Qm

Ω
A f (9)

h =
p− pre f

ρ f re f g
+

d
2

(10)

where d is the pipe diameter and h is measured over the conduit bottom. The absolute

pressure head (H) in meters of water can be obtained as H = h+10.33.
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Formulation of Finite Volume Godunov-type schemes

This method is based on writing the governing equations in integral form over an ele-

mentary control volume or cell, hence the general term of Finite Volume (FV) method. The

computational grid or cell involves discretization of the spatial domain x into cells of length

∆xi and the temporal domain t into intervals of duration ∆t. The ith cell is centered at node

i and extends from i−1/2 to i+1/2. The flow variables (Ω and Qm) are defined at the cell

centers i and represent their average value within each cell. Fluxes, on the other hand are

evaluated at the interfaces between cells (i−1/2 and i+1/2). For the ith cell, the updating

FV formula for the left side of Eq. (1) is given by (e.g., Toro 2001, LeVeque 2002)

Un+1
i = Un

i −
∆t
∆xi

(Fn+1/2
i+1/2 −Fn+1/2

i−1/2 ) (11)

where the superscripts n, n + 1/2, and n + 1 reflect the t, t + ∆t/2, and t + ∆t time levels,

respectively. To introduce the source terms (right side of Eq. 1) into the solution, a time

splitting method using a second-order Runge-Kutta discretization is used (e.g., Zhao and

Ghidaoui 2004, León et al. 2006). In the Godunov approach, the flux Fn+1/2
i+1/2 is obtained

by solving the Riemann problem with constant states Un
i and Un

i+1. This way of computing

the flux leads to a first-order accuracy of the numerical solution. To achieve second-order

accuracy in space and time, the Monotone Upstream-centred Scheme for Conservation

Laws (MUSCL)-Hancock method is used in this paper, which is described in the next

section.

The MUSCL-Hancock method

The first step of the MUSCL-Hancock method (e.g., Toro 2001) is the reconstruction of

piece-wise constant data Un
i into a piecewise linear distribution of the data

(
e.g., Un

i (x) =
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Un
i +(x− xi)∆i/∆x, where xi = (i−1/2)∆x is the center of the computing cells and ∆i is a

vector difference [∆i = (Un
i+1−Un

i−1)/2]
)
, and then extrapolation of the data to the edges of

each cell, yielding the extrapolated values UL and UR. To avoid spurious oscillations near

shock waves and other sharp flow features, a Total Variation Diminishing (TVD) constraint

is enforced in the data reconstruction step by limiting ∆i. The MINMOD pre-processing

slope limiter is used in this paper to enforce the TVD constraint. This limiter is found to

be the most stable especially in two-phase flows conditions when Courant numbers very

close to 1.0 are used. The reader is referred to Toro (2001) for a detailed description of the

available limiters.

The second step consists in evolving the extrapolated values through a half time step

according to

ŨL,R = UL,R− 1
2

∆t
∆x

[
F(UR)−F(UL)

]
. (12)

where F(U) indicates the flux of U.

In the third step, a Riemann problem with initial data consisting of evolved boundary

extrapolated values is solved. In what follows, approximate Riemann solvers for one and

two-phase water hammer flows that do not require iterations are proposed.

Riemann solver for one-phase water hammer flows

In this type of flows, the pressure-wave celerity is constant and the order of magnitude

of u is much smaller than a, so the convective term in the governing equations can be

neglected. Since u is much smaller than am, the characteristics travel in opposite directions

and the star region (?), which is an intermediate region between the left and right states,

contains the location of the initial discontinuity. Hence, the flow variables in the star region
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are used to compute the flux. The solution of the Riemann problem for the linearized

hyperbolic system ∂U/∂ t + A∂U/∂x = 0 provides the following estimates for Ω? and

Qm? (The derivation details of Ω? and Qm? for one-phase water hammer flows are similar

to those for two-phase water hammer flows. Due to space limitations, only the derivation

details of Ω? and Qm? for two-phase water hammer flows are presented in Appendix A)

Ω? =
ΩL +ΩR

2
+

QmL−QmR

2a
(13)

Qm? =
QmL +QmR

2
+a

ΩL−ΩR

2
(14)

which are used to compute the flux by using Eq. 2.

Riemann solver for two-phase water hammer flows

In contrast with one-phase water hammer flows, in two-phase flows the pressure-wave

celerity may be reduced to very low values, in which case u is not necessarily negligible

compared to am. However, u is still smaller than am and consequently the characteristics

travel in opposite directions and the star region contains the location of the initial discon-

tinuity. Hence, the flow variables in the star region are used to compute the flux. Simple

estimates for Ω? and Qm? that do not require iterations can be obtained by solving the Rie-

mann problem for the linearized hyperbolic system ∂U/∂ t +A∂U/∂x = 0 that yields (see

Appendix A for derivation details):

Ω? =
(ΩL +ΩR

2
)(

1+
uL−uR

2ām

)
(15)

Qm? = QmL +(ū− ām)(Ω?−ΩL
)

(16)

where ām = (amL +amR)/2 and ū = (uL +uR)/2. By using the estimated values of Ω? and

Qm?, the flux is obtained from Eq. 2.
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Second-order accurate boundary conditions

Since Eq. 11 is to be used for all the cells of the computational domain, it is necessary to

compute the fluxes Fn+1/2
1/2 (left-hand boundary) and Fn+1/2

Nx+1/2 (right-hand boundary) in order

to update the flow variables in the first and last cells. For the quality of the numerical solu-

tion to be preserved, it is necessary to use the same order of reconstruction in all the cells

of the computational domain (e.g., LeVeque 2002, Guinot 2003). The MUSCL-Hancock

scheme uses one cell on each side of the cell in which the profile is to be reconstructed.

Therefore, one cell is missing when the profile is to be reconstructed within the first and

last cells of the computational domain. The missing information at the boundaries is re-

stored by adding one virtual cell at each end of the computational domain. The virtual cell

on the left-hand side is numbered 0, while the cell on the right-hand side of the domain is

numbered Nx+1 (Fig. 1). The algorithm consists of the following steps: (1) determination

of the flow variables at the boundaries 1/2 and Nx+1/2, and (2) determination of the flow

variables in the virtual cells.

Determination of the flow variables at the boundaries

It is assumed that the average flow variables in the cells 0 to Nx + 1 are known from the

previous time step and that a second-order reconstruction has been carried out in the cells

1 and Nx (Fig. 1). The unknown boundary flow variables (Ub) are determined using the

theory of Riemann invariants. The reader is referred to the book of Leveque (2002) for a

deeper discussion on the theory of Riemann invariants. The generalized Riemann invariants

for two-phase water hammer flows are given by (e.g., Guinot 2003):
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



(am/Ω)dΩ+du = 0 along dx/dt = u+am

(am/Ω)dΩ−du = 0 along dx/dt = u−am

(17)

Due to space limitations, only the procedure to compute the flux at the left-hand bound-

ary is provided in this section. However, the algorithm is very similar for the right-hand

boundary. The left-hand boundary (b) is connected to the left of the first cell (1,L) along

the characteristic dx/dt = u− am (Fig. 2). Thus, for the left-hand boundary, the second

relationship of Eq. 17 is integrated between b and (1,L), which integration can be approx-

imated according to the trapezoidal rule as follows:

an
m1,L +an+1/2

mb

2
(Ωn+1/2

b −Ωn
1,L)−

Ωn
1,L +Ωn+1/2

b

2
(un+1/2

b −un
1,L) = 0 (18)

Another relationship is available from prescribing one flow variable or an equation that

relates the two flow variables at the boundary. This relationship (ζb) may be expressed as:

ζb(Ω
n+1/2
b ,Qn+1/2

mb ) = 0 (19)

Depending on the type of boundary condition imposed, it may or may not be necessary

to use an iterative technique to solve the system of Eqs. 18 and 19. Determined the flow

variables at the boundaries (Un+1/2
b ), the boundary fluxes can be computed by using the

flux relation in Eq. 2.

For instance, let’s consider that the pressure is prescribed at the left-hand boundary

(pn+1/2
b ). This is equivalent to prescribing a mass per unit length Ωn+1/2

b , computed from

Eq. 7.

Ωb = Ωre f +
A f

a2

[
pb− pre f +(p

−1
β

re f − p
−1
β

b )βψre f ρ f re f a2 p
1
β
re f

]
(20)
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The value of un+1/2
b is obtained from Eq. 18. This yields:

un+1/2
b = un

1,L +
(an

m1,L
+an+1/2

mb )(Ωn+1/2
b −Ωn

1,L)

Ωn+1/2
b +Ωn

1,L

(21)

Since the pressure is prescribed at the boundary, an+1/2
mb is known from Eq. 4. Thus un+1/2

b

is the only unknown in Eq. 21. Once un+1/2
b is determined, Qn+1/2

mb can be calculated

(Qn+1/2
mb = Ωn+1/2

b un+1/2
b ). Once Ωn+1/2

b , Qn+1/2
mb , and A f pn+1/2

b are known, the flux at the

left-hand boundary Fn+1/2
b = Fn+1/2

1/2 can be computed by using the flux relation in Eq. 2.

Now, let’s consider that the discharge is prescribed at the left-hand boundary (Qn+1/2
b ).

Prescribing Qn+1/2
b is equivalent to prescribing a velocity un+1/2

b = Qn+1/2
b /A f . Eq. 18 can

be solved for Ωn+1/2
b as

Ωn+1/2
b =

[
1+2

un+1/2
b −un

1,L

an
m1,L

+an+1/2
mb −un+1/2

b +un
1,L

]
Ωn

1,L (22)

in which Ωn+1/2
b and an+1/2

mb are the unknowns. The solution is found iteratively. A first

guess is made for Ωn+1/2
b (for instance Ωn+1/2

b = Ωn
1,L) and this first guess is inserted into

Eq. 20 to compute pn+1/2
b . The computed value of pn+1/2

b in turn is inserted into Eq. 4 to

compute an+1/2
mb . This value is used in Eq. 22 to update Ωn+1/2

b , the new value of which is

used to compute an+1/2
mb . The procedure is repeated until convergence is achieved. Once

Ωn+1/2
b is determined, pn+1/2

b can be calculated from Eq. 20. Once Ωn+1/2
b , A f pn+1/2

b , and

Qn+1/2
mb (= Ωn+1/2

b un+1/2
b ) are known, Fn+1/2

1/2 can be computed as in the previous case.

For one-phase flows, the fluxes at the boundaries can be also obtained from the gen-

eralized Riemann invariants. Since in one-phase water hammer flows the flow velocity is

much smaller than the pressure-wave celerity, the convective term (Q2
m/Ω) in the flux vec-

tor in Eq. 2 is neglected. In this case, if a pressure is prescribed at the left-hand boundary
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(pn+1/2
b ), the following relations are obtained for Ωn+1/2

b and Qn+1/2
mb :

Ωn+1/2
b = Ωre f +

A f

a2 (pn+1/2
b − pre f ) (23)

Qn+1/2
mb = Qn

m1,L
+a(Ωn+1/2

b −Ωn
1,L) (24)

Because the convective term was neglected, only A f pn+1/2
b , and Qn+1/2

mb , are substituted

into the flux vector Fn+1/2
1/2 in Eq. 2.

Likewise, if a discharge is prescribed at the left-hand boundary (Qn+1/2
b ), the following

relations are obtained for Ωn+1/2
b and Qn+1/2

mb :

Ωn+1/2
b =

Qn
m1,L

−aΩn
1,L

Qn+1/2
b /A f −a

(25)

Qn+1/2
mb =

Qn+1/2
b
A f

Ωn+1/2
b (26)

The value of Ωn+1/2
b can be substituted in Eq. 8 to determine pn+1/2

b . Once A f pn+1/2
b , and

Qn+1/2
mb are known, Fn+1/2

1/2 can be computed as in the previous case.

Determination of the flow variables in the virtual cells

Virtual cells are used only to achieve second-order accuracy in the first and last cells of

the computational domain. Therefore, they should advect the same outflowing information

as that at the boundaries and they should maintain the conservation property of the shock

capturing scheme. The latter means that no unphysical perturbations into the computational

domain may be introduced by the virtual cells. These constraints may be satisfied: (1) by

assuming that the outflowing wave strengths in the virtual cells are the same as those at the

boundaries, and (2) by adjusting the inflowing wave strengths in the virtual cells in such a

way that the fluxes in these cells are the same as those at the respective boundaries. For the
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left hand boundary, a simple formulation that satisfies these two conditions is given by:

Ωn+1
0 = Ωn+1/2

1/2 = Ωn+1/2
b

Qn+1
m0

= Qn+1/2
m1/2 = Qn+1/2

mb

(27)

Note in Eq. 27 that the flow variables at the left-hand boundary (Un+1/2
1/2 ) at time level

“n+1/2” are adopted by the virtual cell “0” at time level “n+1”. The flow variables in the

virtual cell “0” at time level “n+1” are used for the reconstruction of the flow variables in

cell “1” at this time level, unless monotonicity needs to be preserved in this cell.

Stability constraints

In a similar way to Zhao and Ghidaoui (2004), in this paper the source terms S are intro-

duced into the solution through time splitting using a second-order Runge-Kutta discretiza-

tion. Since this discretization is explicit, the stability constraint must include not only the

Courant-Friedrichs-Lewy (CFL) criterion for the convective part, but also the constraint for

the source terms. The CFL constraint is given by:

∆tmax, CFL = Min i=1,2,...Nx

[
∆xi

|un
i |+ |an

mi
|
]

(28)

and the constraint due to the explicit second-order Runge-Kutta discretization is given by

(León et al. 2006)

∆tmax,S = Min i=1,2,...Nx

[
−4

Un+1
i

S(Un+1
i )

,−2
Un+1

i

S(Un+1
i )

]
(29)

where S(U) indicates that U is used to evaluate the source term S. The evaluation of S

requires the definition of the grid bottom slope (S0)i given by

(S0)i =− zi+1/2− zi−1/2

xi+1/2− xi−1/2
=−∆zi

∆xi
(30)

and the grid energy line slope (S f )i which may be expressed as (S f )i = f ui|ui|/(2gd),

where f is the Darcy-Weisbach friction factor.
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Since the same time step ∆t must be used for the convective part and the source term,

Un
i must be used instead of Un+1

i . Finally, the maximum permissible time step including

the convective part and the source term will be given by:

∆tmax = Min i=1,2,...Nx

[
∆tmax,S, ∆tmax, CFL

]
(31)

Evaluation of the model

The purpose of this section is to asses the accuracy and numerical efficiency of the proposed

scheme for modeling one and two-phase water hammer flows. For one-phase flows, the

accuracy and numerical efficiency of the proposed scheme is compared against those of

the fixed-grid MOC scheme with space-line interpolation and the second-order scheme of

Zhao and Ghidaoui (ZG). For two phase flows, the accuracy and numerical efficiency of the

proposed scheme is compared against that of the fixed-grid MOC scheme with space-line

interpolation. The proposed approach and the MOC scheme are also used to reproduce a

set of two-phase flow experiments reported in the literature. Four tests cases are considered

in this section. These are:

(1) Instantaneous downstream valve closure in a frictionless horizontal pipe (one-phase

flow)

(2) Gradual downstream valve closure in a frictionless horizontal pipe (one-phase flow)

(3) Instantaneous downstream valve closure in a frictionless horizontal pipe (two-phase

flow)

(4) Comparison with two-phase flow experiments of Chaudhry et al. (1990)

The proposed approach is valid for pipes with and without friction. In the three first

tests, frictionless pipes are used only because in such cases the physical dissipation is zero,
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so any dissipation or amplification in the results is solely due to the numerical scheme. In

the following sections, the number of grids, grid size and Courant number used in each

example are indicated in the relevant figures and thus will not be repeated in the text.

The CPU times that are reported in this paper were averaged over three realizations and

computed using a HP AMD Athlon (tm) 64 processor 3200 + 997 MHz, 512 MB of Ram

notebook.

Test 1: Instantaneous downstream valve closure in a frictionless horizontal pipe

(one-phase flow)

This test is used to compare the accuracy and numerical efficiency of the proposed scheme

against the Zhao and Ghidaoui (2004) approach and the MOC scheme with space-line

interpolation for one-phase flows under strong transient conditions. As an aside, a strong

transient refers to a transient phenomena in which the resulting flow presents discontinuities

(sharp fronts). This type of transient is generated for instance after an instantaneous valve

closure. On the other hand, a smooth transient refers to a transient phenomena in which

the resulting flow doesn’t present discontinuities. This transient is produced for instance

after a gradual valve closure. The test considers one horizontal frictionless pipe connected

to an upstream reservoir and a downstream valve. The length of the pipe is 10000 m and its

diameter is 1.0 m, the pressure-wave celerity is 1000 m/s, the upstream reservoir constant

head h0 is 200 m, and the initial steady-state discharge is 2.0 m3/s.

The transient flow is obtained after an instantaneous closure of the downstream valve.

To investigate the performance of the schemes under consideration when using low Courant

numbers, these schemes are used to reproduce the resulting transient using a coarse grid

(to illustrate their performance better) and two low Courant numbers (Cr = 0.5 and Cr =
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0.1). A portion of the simulated pressure traces are shown in Figs. 3(a) and 3(b). Additional

simulations were performed using a Cr = 1.0. As expected, all schemes under consideration

have reproduced the exact solution when Cr = 1.0 (results not shown). It is clear from

Figs. 3(a) and 3(b) that the MOC is more dissipative than either the second-order scheme of

Zhao and Ghidaoui or the proposed scheme for low Courant numbers. The results also show

that the proposed scheme is less dissipative than the scheme of Zhao and Ghidaoui. The

basic difference between the second-order scheme of Zhao and Ghidaoui and the proposed

approach for one-phase flows is that only a first-order boundary condition is used in the

former approach, and a second-order one in the latter.

In the previous simulations, the reader may question the low Courant numbers used. Al-

though in real large-scale systems, whose pipes have different lengths and water hammer

wavespeeds, it is impossible to achieve a Courant number of 1.0 when a coarse computa-

tional grid is chosen, it can be shown that by increasing the number of cells, a Cr close to

1.0 can be achieved. In the latter condition, a good performance of all schemes is expected.

A realistic assessment of accuracy and numerical efficiency of the schemes has to take into

account the variation of the Courant number with the number of grids (Nx). The variation

of Cr versus Nx is not the same for different pipe systems. However, the trend of Cr vs

Nx is similar for several scenarios tested (results not shown). The trend of Cr versus Nx

adopted in this test case is presented in Fig. 4. This trend was obtained using the pipe sys-

tem presented in Ghidaoui et al. (1998). This system consisted of two pipes in series where

the length of the upstream pipe was 800 m and the length of the downstream one was 300

m. The pressure wave celerity for both pipes was 1000 m/s. The discretization strategy

was based on the pipe that has the minimum wave travel time (Karney and Ghidaoui 1997).
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The approach of using at least one reach in the pipe that has the minimum wave travel time

guarantees that the Courant number in the remaining pipes of the system is bounded by 0.5

and 1.0.

To obtain a quantitative measure of numerical dissipation, the energy equation of Kar-

ney (1990) can be used (Ghidaoui et al. 1998). The energy equation of Karney states that

the total energy (sum of internal and kinetic) can only change as work is done on the con-

duit or as energy is dissipated from it. In this test the friction is set to zero, so the rate of

total energy dissipation is zero. Moreover, because the downstream valve is closed instanta-

neously, no fluid is exchanged with the environment across a pressure difference; therefore

the work produced at the downstream end of the pipe is also equal to zero (Ghidaoui et al.

1998). As an aside, the rate of change of internal energy (δU) given in Karney (1990) in

our notation is given by δU = d[(ρ f LA f g2(hs−h)2)/(2a2)], where hs is the head after the

transient flow has reached steady state measured over the conduit bottom. By integrating

this relation considering that U = 0 at h = hs, the expression for the internal energy at any

time can be written as: U = (ρ f A f g2)/(2a2)
∫
(hs−h)2dx. Notice in this test that hs is the

same as the head at the reservoir and thus, no work is produced at the reservoir. Therefore,

the total energy (sum of kinetic and internal) in the pipe E is invariant with time (i.e., E/E0

= 1.0).

Figure 5 shows relative energy traces E/E0 produced by the schemes under considera-

tion for two coarse grids (Nx = 10 and 20 cells). The Courant number associated to each

number of cells is obtained from Fig. 4 (average trend) and its values are presented together

with the number of cells in Fig. 5 caption. Fig. 5 shows that, the numerical dissipation pro-

duced by the proposed scheme using 10 cells is smaller than that obtained by either the
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MOC scheme or the Zhao and Ghidaoui approach for the same number of cells. For in-

stance, after 400 s, 29% of the initial energy has been dissipated by the MOC scheme, 21%

by the scheme of Zhao and Ghidaoui and 18% by the proposed scheme. The numerical

dissipation results for all the schemes produced using 20 cells show a significant reduction

compared to those using 10 cells. This reduction is not only due to the increase of cell num-

bers (10 to 20) but mainly due to the associated increase of the Courant number (0.9829

to 0.9938). So far, it has been shown that, for coarse grids, the proposed scheme is more

accurate than either the MOC scheme or the approach of Zhao and Ghidaoui. However, an

objective comparison requires measuring the CPU time needed by each of the schemes to

achieve the same level of accuracy (e.g., Zhao and Ghidaoui 2004, León et al. 2006).

To compare the numerical efficiency of the schemes, the numerical dissipation (numer-

ical error) is plotted against the number of grids on log-log scale (Fig. 6). As shown in

Fig. 6, for coarse grids, the accuracy of the proposed scheme is almost the same as Zhao

and Ghidaoui and slightly superior than the MOC scheme. For relatively fine grids (Nx >

1000), the accuracy of the three schemes is almost the same. For comparison of CPU times,

five levels of numerical error were selected (0.1% - 10%). The number of grids needed by

each scheme to achieve the five numerical error levels were obtained from Fig. 6. These

number of grids in turn were used to determine their associated Courant numbers (Fig. 4)

and the CPU times. Fig. 7 shows the plot of the numerical error against the CPU time on

log-log scale. The CPU time results show that, to achieve the same degree of accuracy,

the proposed scheme has a similar numerical efficiency as the Zhao and Ghidaoui scheme.

The results also show that the MOC is more efficient numerically than the proposed scheme

and the Zhao and Ghidaoui approach despite the fact that, for a given level of accuracy, the
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MOC scheme requires a finer grid than the proposed scheme and the Zhao and Ghidaoui

approach. For the CPU time results presented in Fig. 7, it is found that the MOC scheme is

about 2 to 5 times faster to execute than the proposed scheme and the Zhao and Ghidaoui

approach.

Test 2: Gradual downstream valve closure in a frictionless horizontal pipe

(one-phase flow)

This test is used to compare the accuracy and numerical efficiency of the proposed scheme

against the Zhao and Ghidaoui (2004) approach and the MOC scheme with space-line

interpolation for one-phase flows under smooth transient conditions (no discontinuities).

The test rig used is adapted from Wylie and Streeter (1983). This test rig considers one

horizontal frictionless pipe connected to an upstream reservoir and a downstream valve.

The length of the pipe is 600 m and its diameter is 0.5 m, the pressure-wave celerity is

1200 m/s, the upstream reservoir constant head h0 is 150 m, and the initial steady-state

discharge is 0.4882 m3/s. The transient flow in this test is obtained after a gradual closure

of the downstream valve. The valve closure relationship is given by τ = (1− t/tc)1.5 where

tc is the time of valve closure, which has been assumed to be 2.1 s.

In test 1 (strong transients), it was shown that when Cr is very close to 1.0 (around 0.99

or higher), the MOC scheme is more efficient than the proposed scheme and the Zhao and

Ghidaoui approach. The same occurs in smooth (no discontinuities) transient conditions

for one-phase flows. Due to space limitations, the results for smooth transient conditions

are not shown. Courant number values of 0.99 and higher could potentially be achieved

in single-phase and single-regime flows. In sewerage flows, however, Cr varies widely

because (i) air entrapment and subsequent release and (ii) the interface between the pres-
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surized part and the open channel part changes with time (i.e., the length of the water

hammer column varies significantly in sewer surcharging problems.) Therefore, it is im-

portant that a scheme for transient flows in sewers remains efficient for a wide range of

Cr values. In addition, for consistency, it is desired that a single scheme be used to model

all various flow regimes. For open channel flows, which present a wide variation of Cr,

it was found that FV schemes are much more efficient than the fixed-grid MOC scheme

with space-line interpolation (León et al. 2006). The desire to use a single scheme for all

flow regimes combined with the wide variation of Cr makes it important that any scheme

adopted preserves both accuracy and efficiency throughout a wide range of Cr including

small values.

Furthermore, even in single-phase and single-regime flows, as is shown in Fig. 4, al-

though the Courant number trend approaches 1.0 when Nx is increased, the Courant num-

ber has a periodic variation with the number of grids. Thus, a Cr very close to 1.0 cannot

be guaranteed in all the pipes. To investigate the performance of the schemes for Courant

numbers slightly less than 1.0, a Cr = 0.95 is considered in this test. Fig. 8 shows simu-

lated pressure traces at the downstream valve using this Courant number and Nx = 40 cells.

The “Near exact” solution is also presented in this figure. The “Near exact” solution is

obtained by grid refinement until convergence is achieved. As is shown in this figure, the

MOC is more dissipative than either the second-order scheme of Zhao and Ghidaoui or the

proposed scheme. The results also show that the proposed scheme is less dissipative than

the scheme of Zhao and Ghidaoui.

To obtain a quantitative measure of numerical dissipation, the energy equation of Karney

(1990) is also used here. In this test, work is produced at the downstream boundary while
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fluid is exchanged with the environment across a pressure difference. Thus, the total energy

(sum of kinetic and internal) is not invariant with time while the valve is being closed. After

the valve is closed, no work is done or energy is dissipated on the conduit, and therefore

the total energy is invariant with time. Figure 9 shows relative energy traces produced by

the schemes under consideration for Cr = 0.95 and Nx = 40 cells. The relative energy is

expressed as E/Ec, where Ec is the total energy after the valve is totally closed, and E is

the total energy at time t. Figure 9 shows a reduction in the relative energy until the valve is

totally closed (t = 2.1s). For t > 2.1s, the relative energy is constant and equal to 1.0. Since

all numerical schemes are dissipative, the relative energy traces achieved by the schemes

(after the valve is closed) are smaller than 1.0 (Fig. 9).

Fig. 10 shows the plot of the numerical error against the number of grids on log-log

scale. As shown in this figure, to achieve a given level of accuracy, the MOC scheme

requires a much finer grid than the proposed scheme and the Zhao and Ghidaoui approach.

For comparison of CPU times, five levels of numerical error were selected (0.1% - 10%).

The number of grids needed by each of the schemes to achieve the five levels of numerical

error, were obtained from Fig. 10. These number of grids in turn were used to compute the

CPU times. The numerical error is plotted as a function of the CPU time in Fig. 11. This

figure shows that, to achieve the same degree of accuracy, the proposed scheme requires less

CPU time than either the MOC scheme or the Zhao and Ghidaoui approach. For instance,

for a numerical error of 1%, the CPU time required by the proposed scheme is about 0.04

and 0.71 times of those required by the MOC scheme and the Zhao and Ghidaoui approach,

respectively. For the CPU time results presented in Fig. 11, it is found that, the proposed

scheme is about 7 to 249 times faster to execute than the MOC scheme, and 34% to 67%
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faster than the scheme of Zhao and Ghidaoui.

Test 3: Instantaneous downstream valve closure in a frictionless horizontal pipe

(two-phase flow)

This test is used to compare the accuracy and numerical efficiency of the proposed scheme

against the fixed-grid MOC scheme for two-phase flows. The two-phase homogeneous

mathematical model presented in Martin (1993) is solved when using the MOC scheme.

In this case, if shocks are present, the Rankine-Hugoniot conditions are enforced across

the shock. The test rig is the same as test 1, except that the fluid is an air-water mixture.

The void ratio at the reference pressure (101325 Pa) is assumed to be 0.002 (0.2%). The

instantaneous closure of the downstream valve results in the appearance of a shock wave at

the downstream end of the pipe. This wave propagates upstream until on reflection against

the left boundary, it becomes a rarefaction wave. Fig. 12 shows the pressure profiles at

140 s computed using the MOC scheme and the proposed approach assuming isothermal

conditions (β = 1.0) for two different number of grids. The “Near exact” profile is also pre-

sented in this figure. In this test case, all the simulations were carried out using a maximum

Courant number of 0.95 to avoid numerical instability problems. It should be noted that

in two phase flows, the air content and pressure wave celerity are continuously changing

(Eqs. 4 and 5). When using an explicit scheme (as used here) for simulating these flows, it

is possible to exceed Cr = 1.0 if a Cr close to 1.0 is specified at the beginning of the time

step. As shown in Fig. 12, for the same number of grids and maximum Courant number,

the timing and magnitude of the shock wave simulated by the proposed scheme is in better

agreement with the “Near exact” solution than the MOC scheme.

Fig. 13 displays the simulated pressure traces at the middle of the pipe for two dif-
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ferent number of grids. As can be observed in this figure, the MOC is more dissipative

than the proposed scheme. The results presented in Figs. 12 and 13 show that, for the

same discretization, the proposed scheme is more accurate than the MOC scheme. A more

conclusive comparison requires measurement of the CPU time needed by each scheme to

achieve a given level of accuracy. The accuracy of a scheme can be measured using the

following error norm (e.g., Liang et al. 2007):

ABSERROR =
ΣNx

i=1|ei|
ΣNx

i=1|φ exact
i | (32)

where ei = φ numerical
i − φ exact

i = difference between the numerical and exact solution at

node i, φ = dependent variable such as the pressure head or flow velocity, ABSERROR =

absolute error, and Nx = number of grids. The absolute error is a measure of the difference

between the numerical and exact solution for either the pressure head or flow velocity.

Fig. 14 shows the plot of the absolute error for the pressure head against the number of

grids on log-log scale. As shown in this figure, to achieve a given level of accuracy, the

MOC scheme requires a finer grid than the proposed scheme, or, for the same number of

grids, the proposed scheme is more accurate than the MOC scheme. For comparison of

CPU times, four levels of absolute error were selected (0.4% - 10%). The number of grids

needed by each of the schemes to achieve the four absolute error levels, were obtained from

Fig. 14. These number of grids in turn were used to compute the CPU times, which results

are shown in Fig. 15. The CPU time results show that the proposed scheme is about 3 to 130

times faster to execute than the MOC scheme. The numerical efficiency of the proposed

scheme compared to the MOC approach increases as the absolute error decreases.
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Test 4: Comparison with two-phase flow experiments of Chaudhry et al. (1990)

In this test, the fixed-grid MOC and the proposed scheme are used to reproduce the second

set of experiments reported in Chaudhry et al. (1990). The writers are indebted to one

of the authors of this paper, namely Professor C. Samuel Martin, who kindly provided us

the data for this set of experiments. The schematic of the test facility is shown in Fig. 16.

The conditions for the second set of experiments reported in Chaudhry et al. (1990) are

presented in Table 1.

The test procedure was as follows: A steady state flow of an air-water mixture was

established in the test pipe by controlling the exit valves and the pressure of the injected

air at the inlet. The flow velocity of the air-water mixture was maintained at a high enough

rate so that slug flow could be avoided by limiting the rate of air injection. Transient

flow was created by a rapid valve closure at the downstream end of the pipe. Transient-

state pressures were monitored by high-frequency-response pressure transducers at three

locations (1, 2 and 3), as shown in Fig. 16. The three stations were located at x = 8 m, 21.1

m and 30.6 m, respectively, from the upstream end.

The upstream boundary was a constant-level reservoir while the downstream boundary

was the recorded pressure history at station 3 (x = 30.6 m). A flow discharge boundary

condition was not used at the downstream end because the rate of closure of the exit valve

was not reported in Chaudhry et al. (1990). They suggested instead to use the recorded

pressure history at station 3 as downstream boundary condition because the measurement

of the rate of closure of a valve and, consequently the measurement of velocity are very

difficult. The recorded pressure trace at station 3 is shown in Fig. 17.

The simulated pressure traces at stations 1 and 2, assuming isothermal (β = 1.0) and
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adiabatic (β = 1.4) conditions, are presented with the corresponding experimental observa-

tions in Figs. 18 - 21. As shown in these figures, the simulated pressure traces using the

MOC and the proposed scheme are very similar for isothermal and adiabatic conditions.

Figs. 18 - 21 also show that the simulated peak pressures (MOC and proposed) are higher

than those in the experiments for both conditions. In addition, the results show that the

simulated pressure traces agree with the experiments better when isothermal conditions

(Figs. 18 - 19) were assumed than when adiabatic conditions (Figs. 20 - 21) were assumed.

As an aside, a transient phenomena takes place in isothermal conditions when there is no

change of temperature during the transient. Likewise, a transient phenomena develops in

adiabatic conditions when no heat enters or leaves the system during the transient. In the

experiments reported in Chaudhry et al. (1990), neither isothermal nor adiabatic condi-

tions seem to have prevailed. This is believed because the time scale seems too fast for

isothermal conditions to prevail. Also, the conductivity of a stainless steel pipe, which is

the material of the pipe used in the experiments, is not very low for adiabatic conditions to

hold.

Since the thermodynamic conditions during the experiments reported in Chaudhry et

al. (1990) were neither isothermal nor adiabatic, several values of β between 1.0 and 1.4

were tested to find the value of β that produces the best fit with the experimental data.

This value is found to be 1.05. The simulated pressure traces at stations 1 and 2 using β

= 1.05 are presented with the corresponding experimental observations in Figs. 22 and 23,

respectively.

By comparing the simulated results achieved by the MOC and the proposed scheme

for β = 1.05, it can be seen that the pressure traces computed using the MOC are lower
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than the proposed scheme. This means that the MOC is more dissipative than the proposed

scheme. However, the MOC agrees with the experiments slightly better than the proposed

scheme. This may be confusing because one can conclude that the MOC is more accurate

than the proposed scheme. The apparent advantage of the MOC over the proposed scheme

is because, as usually is the case, the physical dissipation can not be estimated with good

accuracy and it is often underestimated. The last is especially true when the physical dis-

sipation is estimated using only a steady friction formulation (as used here). Even though

there are formulations to estimate unsteady friction (e.g., Pezzinga 2000), the physical dis-

sipation often cannot be determined with good accuracy, especially in complex flows such

as two-phase flows. As suggested by Cannizzaro and Pezzinga (2005), in two-phase flows,

the physical dissipation is not only associated to the wall shear stress but also to thermo-

dynamic processes (e.g., thermic exchange between the gaseous phase and the surrounding

liquid and gas release). In general, it is very difficult and it may be misleading to compare

the accuracy of numerical schemes using experiments. The discrepancies between simu-

lated and observed values may be attributed to experimental uncertainty and to neglecting

unsteady friction and thermodynamic processes when computing the physical dissipation.

Conclusions

This paper focuses on the formulation and assessment of a FV second-order accurate shock-

capturing scheme for modeling one and two-phase water hammer flows. The two-phase

flow model is based on the single-equivalent fluid concept. The accuracy and efficiency

of the proposed scheme is contrasted against the fixed-grid MOC scheme and another FV

scheme for one-phase flows, and the fixed-grid MOC scheme for two-phase flows. The

fixed-grid MOC and the proposed scheme are also used to reproduce a set of two-phase
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flow experiments reported in the literature. For a realistic assessment of the accuracy and

numerical efficiency of the schemes in one-phase flow conditions, a variation of the Courant

number with the number of grids is introduced. This is important because in pipe systems

for one-phase flows, by increasing the number of cells, the average trend of the Courant

number in all the pipes increases and approaches 1.0. The key results are as follows:

(1) The results for one-phase flows (pure liquid) show that, when a Courant number (Cr)

very close to 1.0 (around 0.99 or higher) is used, the MOC scheme is more efficient

than the proposed scheme and the other FV scheme. In this case, the latter two

schemes have similar numerical efficiency. When Cr drops below about 0.95, the

proposed scheme is more efficient than the MOC scheme and the other FV scheme,

especially for smooth transient flows (no discontinuities).

(2) The results for two-phase flows show that the proposed scheme is much more ef-

ficient than the fixed-grid MOC scheme. For two-phase water hammer flows, all

the simulations were carried out using a maximum Courant number of 0.95 to avoid

numerical instability problems.

(3) Good agreement between simulated results using the MOC and the proposed

scheme and the two-phase flow experiments is found.
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Appendix A

In this appendix, the Riemann solution for the linearized hyperbolic system ∂U/∂ t +

A∂U/∂x = 0 with A = A(U) and U ≡ (UL + UR)/2 will be derived. The two eigenval-

ues for the matrix A are given by: λ 1 = u− am and λ 2 = u + am. The application of the

Rankine-Hugoniot condition across the two waves [λ i (i = 1,2)] gives:

Qm?−QmL = (ū− ām)
(
Ω?−ΩL

)
(33)

QmR−Qm? = (ū+ ām)
(
ΩR−Ω?

)
(34)

From Equations 33 and 34 the following relations for Ω? and Qm? are obtained.

Ω? =
(ΩL +ΩR

2
)(

1+
uL−uR

2ām

)
(35)

Qm? = QmL +(ū− ām)
(
Ω?−ΩL

)
(36)

Notation

The following symbols are used in this paper:

A = Jacobian matrix of flux vector;

a = pressure-wave celerity in presence of liquid only;

A f = full cross-sectional area of the conduit;

ag = general notation for pressure-wave celerity;

am = pressure-wave celerity for the gas-liquid mixture;

c1, c2 = constants;



32

Cr = Courant number;

Crmax = maximum Courant number;

d = pipe diameter;

E = total energy;

ei = difference between the numerical and exact solution at node i;

E0 = initial total energy;

F = Flux vector;

f = Darcy-Weisbach friction factor;

Fn
i−1/2, Fn

i+1/2 = intercell flux;

g = acceleration due to gravity;

H = absolute pressure head in meters of water;

h = piezometric head measured over the conduit bottom;

h0 = reservoir head measured over the conduit bottom;

k f = bulk modulus of elasticity of the fluid;

L = length of pipe;

Nx = Number of grids;

p = pressure acting on the center of gravity of A f ;

Q = flow discharge;

Qm = mass flow discharge;

S = vector containing source terms;

S f = friction slope;

S0 = bed slope;

t = time;
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U = vector of flow variables;

Ũ = evolution of U by half time step using extrapolated values;

u = water velocity;

x = longitudinal coordinate;

Y = Young’s modulus of elasticity;

z = elevation;

β = coefficient equal to 1.0 for isothermal processes and 1.4 for adiabatic conditions;

χ = non-dimensional parameter;

∆i = vector difference;

∆t = time step;

∆x = spatial mesh size;

λ = eigenvalues;

Ω = mass of fluid per unit length of conduit;

φ = dependent variable such as the pressure head or flow velocity;

ψ = volume fraction of gas

ρ f = fluid density;

Superscripts

CFL = Courant-Friedrichs-Lewy criterion;

max = maximum;

n = computational time level;

Subscripts

b = boundary;
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i = mesh point location in x direction;

L = left state;

R = right state;

re f = reference;

? = star region;
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Fig. 1. Second-order boundary conditions by adding virtual cells
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Fig. 2. Path of integration at left-hand boundary
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Fig. 13. Pressure traces at the middle of the pipe for test No 3 (β = 1 and Crmax = 0.95).
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Fig. 16. Schematic of experiment Chaudhry et al. (1990) (schematic used with permission from ASME).
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Fig. 17. Experimental absolute pressure trace at downstream end (x = 30.6 m)(experimental data used with

permission from ASME).
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Fig. 18. Computed and experimental absolute pressure traces at x = 8 m (Nx = 100 cells and Crmax = 0.95).

The computed pressure traces were performed under isothermal conditions (β = 1)(experimental data used

with permission from ASME).
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Fig. 19. Computed and experimental absolute pressure traces at x = 21.1 m (Nx = 100 cells and Crmax =

0.95). The computed pressure traces were performed under isothermal conditions (β = 1)(experimental data

used with permission from ASME).
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Fig. 20. Computed and experimental absolute pressure traces at x = 8 m (Nx = 100 cells and Crmax = 0.95).

The computed pressure traces were performed under adiabatic conditions (β = 1.4) (experimental data used

with permission from ASME).
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Fig. 21. Computed and experimental absolute pressure traces at x = 21.1 m (Nx = 100 cells and Crmax =

0.95). The computed pressure traces were performed under adiabatic conditions (β = 1.4)(experimental data

used with permission from ASME).
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Fig. 22. Computed and experimental absolute pressure traces at x = 8 m (β = 1.05, Nx = 100 cells and

Crmax = 0.95)(experimental data used with permission from ASME).
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Fig. 23. Computed and experimental absolute pressure traces at x = 21.1 m (β = 1.05, Nx = 100 cells and

Crmax = 0.95)(experimental data used with permission from ASME).
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Table 1. Experimental conditions for second set of experi-

ments reported in Chaudhry et al. (1990)

Description Values

Length L (m) 30.600

Diameter d (m) 0.026

Bed slope S0 (m/m) 0.000

Upst. reserv. press. H0 (m of water absol.) 21.700

Steady flow velocity u0 (m/s) 2.940

Darcy-Weisbach friction factor fq 0.0195

Pressure-wave celerity a (m/s) 715.000

Steady air mass flow rate (kg/s) 1.15x10−5

Downstream void ratio ψre f 0.0053
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