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Abstract

The performance graph (PG) hydraulic routing method has been shown to be

accurate, numerically efficient, and robust for unsteady flow routing. However,

up to present, the performance graphs are constructed using one-dimensional

(1D) steady flow models only, which are often questioned when simulating flows

through complex bathymetries. This paper investigates whether the PG method

can still be used when utilizing two-dimensional (2D) models for the construction

of PGs. The test case is a stretch around an island in the Fraser River in

British Columbia. The results show that the PG method is still applicable

when utilizing a 2D steady flow model. The results also show that once the

PGs are constructed, the PG routing method (1D and 2D) is computationally

more efficient than the unsteady HEC-RAS model and can be several orders of

magnitude faster than TELEMAC-2D.

Keywords: Complex river bathymetry, Hydraulic routing, Numerical

modeling, Performance graph, Unsteady flow, Two-dimensional modeling

1. Introduction

Optimization problems involving short-term reservoir operation or real-time

flood control may require hundreds or thousands of simulations (e.g., hydraulic
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routing) for each operational strategy ([1], [2], [3], [4], [5], [6], [7]). Depending

on the operational time-scale, relevant hydraulic information throughout the5

system may be required at a time resolution of an hour, or less (i.e., short-term

operation) [8]. For these relatively short operational time-scales, robust and

computationally efficient hydraulic routing methods are necessary.

A standard method for modeling unsteady flows in rivers is the application

of the Saint-Venant equations. The Saint-Venant equations are a set of non-10

linear, partial differential equations that describe one-dimensional, unsteady

open-channel flows. The Saint-Venant equations consist of conservation of mass

and momentum equations and can be written as Equations (1) and (2), respec-

tively (e.g., [9]):

∂A

∂t
+
∂Q

∂x
= 0 (1)

1

g

∂V

∂t
+

∂

∂x

(
V 2

2g

)
+ cosθ

∂h

∂x
+ Sf − So = 0 (2)

where x = the distance along the channel; t = time, V = cross-sectional velocity;15

g = acceleration due to gravity; h = flow depth normal to x; A = cross-sectional

area; Q = discharge; θ = angle between the channel bed and horizontal plane;

So = bed slope; Sf = friction slope. The five terms in the momentum equation,

Eq. (2), [from left to right] represent the local and convective acceleration,

pressure force, friction force, and gravity force, respectively.20

Due to non-linear terms in the Saint-Venant equations (i.e. convective accel-

eration), no exact analytic solution exists, except for special cases. Numerical

methods used to solve the one-dimensional Saint-Venant equations include the

Method of Characteristics, finite-difference, finite-element, and finite-volume

schemes ([10] and [11]). Classic methods for solving the Saint-Venant equations25

are also presented in [12], [13], and others. Despite the wide array of numerical

methods available for solving the Saint-Venant equations, the computational

burden and lack of robustness (e.g., instabilities) still poses a problem ([14],

[15]).
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In an effort to address the issues of robustness and computational burden30

when solving the Saint-Venant equations, there have been several studies and ap-

plications determining suitability of simplified versions of the full Saint-Venant

equations, or also called the dynamic wave equation (e.g. [16], [17]). Common

approximations of the dynamic wave equation for use in unsteady flow rout-

ing include quasi-steady dynamic wave, noninertia wave, and kinematic wave35

models. Each of the aforementioned models exclude terms of the momentum

equation, Eq. (2), to reduce computational complexity. The quasi-steady dy-

namic wave approximation for example, includes all terms in the full dynamic

wave equation, Eq. (2), except for the local acceleration (i.e., ∂V
∂t ). Details for

selection criteria to determine applicability of each approximation to unsteady40

flow routing can be found in [18] and [17].

A relatively new method for hydraulic routing of unsteady, open-channel

flows utilizes the theory of hydraulic performance graphs (HPGs) ([19], [20],

[21], [9]). HPGs summarize the dynamic relationship between water depths, or

stages, at the upstream and downstream ends of a channel reach for a range45

of specified discharges. Volumetric performance graphs (VPGs) summarize the

corresponding channel reach volume for each HPG flow scenario ([22]). Each

of the HPG curves is known as a hydraulic performance curve (HPC) while as

each of the VPG curves is known as a volumetric performance curve (VPC).

In the remaining of the paper, HPGs and VPGs are denoted in general as PGs50

(performance graphs). Once the PGs are constructed, which is done only once,

the PGs can be used over and over again for hydraulic routing with different

initial and boundary conditions.

Even though the PG approach has been shown to be accurate, numerically

efficient and robust for unsteady flow routing, so far, the PG method has only55

utilized one-dimensional (1D) steady-flow models for the construction of HPCs

and VPCs (e.g., [19], [20], [21], [9]). One dimensional models are often ques-

tioned when simulating flows through complex bathymetries ([23]). This paper

investigates whether the PG hydraulic routing method can still be used when

utilizing two-dimensional (2D) models for the construction of the performance60

3



graphs. For the PG routing method to be applicable, the resulting family of

curves conforming the HPGs and VPGs need to be monotonic and they must

not cross each other. This paper also compares the accuracy and numerical

efficiency (CPU time) of the PG routing method and those of the unsteady

HEC-RAS model and the unsteady TELEMAC-2D model. The paper is orga-65

nized as follows: (1) the suitability of two-dimensional hydrodynamics models

for the construction of PGs is assessed; (2) a brief overview of the PG hydraulic

routing method is presented; (3) a brief overview of the HEC-RAS ([24]) and

TELEMAC-2D models ([25], [26]) is presented; (4) the PG routing method (us-

ing a 1D and 2D steady flow model), the unsteady HEC-RAS and TELEMAC-70

2D models are applied to a stretch around an island in the Fraser River in

British Columbia; and (5) the key findings are summarized in the conclusion.

2. Suitability of two-dimensional hydrodynamics models for the con-

struction of PGs

The PG routing method is based on the one-dimensional steady gradually75

varied flow approximation of the Saint-Venant equation [20]. This is equivalent

to the so-called quasi-steady dynamic wave approximation which for a near

horizontal channel is given by (e.g., [20])

V

g

∂V

∂x
+
∂h

∂x
− (So − Sf ) = 0, (3)

Since the flow is steady, V and h are a function of x only and hence the

partial derivatives in Equation (3) can be replaced with total derivatives. The80

resulting equation can be discretized as

1

2g

∆V 2

∆x
+

∆h

∆x
−
(
− ∆z

∆x
− hf

∆x

)
= 0, (4)

By eliminating ∆x in Equation (4) and applying this equation between two

consecutive sections 1 and 2 (1 is upstream of 2) gives
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h1 +
U2
1

2g
+ z1 = h2 +

U2
2

2g
+ z2 + hf (5)

For flows in any dimension (e.g., two-dimensional), the energy equation in

integral form for a control volume CV bounded by a control surface CS can be85

written as (e.g., [27] )

Q̇+Ẇshear =
∂

∂t

∫ (
u+

∣∣∣~U2
∣∣∣

2
+ gz

)
ρdV+

∫
cs

(
u+

p

ρ
+

∣∣∣~U2
∣∣∣

2
+ gz

)
ρ~U · ~ndA,

(6)

where u is the internal energy, ~U2/2 is the kinetic energy and gz is the potential

U

n

Control
volume

U

n

Eddies

Near one-dimensional flowNear one-dimensional flow

2

1

Flow does not need to be one-dimensional

Figure 1. Control volume representation within a river reach; ~n and ~U represent the outward
normal and velocity vectors, respectively

energy, p is pressure, ρ is density, g is the acceleration of gravity, A is area, n

is the unit normal vector to the control surface, Q̇ is the rate of heat added on

system, Ẇshear is the shear work done on system. For a steady flow, the first90

term of the right hand side is zero. In addition, for uniform flow properties

at the inlet (section 1) and outlet (section 2) [see Figure 1] with control
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sections normal to the local flow direction, Equation (6) can be reduced to

(e.g., [27] ):

p1
ρ1

+

∣∣∣~U2
1

∣∣∣
2

+ gz1 =
p2
ρ2

+

∣∣∣~U2
2
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2

+ gz2 +

[
u2 − u1 −

Q̇

ṁ
− Ẇshear

ṁ

]
(7)

where ṁ is the mass flow rate. The term in square brackets in Equation (7) is95

the total head loss and hence, this equation can be written as (e.g., [27] )

h1 +
U2
1

2g
+ z1 = h2 +

U2
2

2g
+ z2 + hloss (8)

which is the typical representation of the energy equation. Note in Equation

(7) that near uniform and one-dimensional flow properties need to be

insured only at the inlet and outlet of the control volume (e.g., ends of

reaches). The reader can notice that Equations (5) and (8) are the same and100

hence it is expected that one and higher-order (e.g., two-dimensional) gradually

varied flow models are suitable for constructing PGs.

3. Performance Graph (PG) Hydraulic Routing method

The PG hydraulic routing method used herein is the same as that presented

in [9] that was formulated for a general river network, including dendritic and105

looped. Following the PG routing method is briefly described.

1. Definition of river network, where nodes and river reaches are defined.

As mentioned in the previous section, the flow at the ends of each reach

should be near uniform and one-dimensional. Because in the PG routing

method, the flow discharge and water surface elevations are only available110

at the end of reaches, the reaches should be selected according to where

data is needed and the desired resolution.

2. Computation of Performances Graphs. HPGs and VPGs are obtained for

each channel reach for as many flows and downstream boundary condi-

tions as necessary to cover the region of possible pairs of upstream and115
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downstream stages in the reach. Once the PGs are constructed, they are

plotted to visually check that they are free of numerically induced errors.

Numerical errors may result in the superposition of curves or in curves

that display oscillatory patterns. For the curves that present apparent

problems, the simulations must be repeated with more stringent criteria.120

These may require decreasing ∆x (interpolation between cross-sections)

and adjusting convergence parameters for the steady flow simulations.

This initial screening of the PGs results in the elimination of the afore-

mentioned oscillatory patterns and superposition of curves. For a detailed

description on the construction of HPGs the reader is referred to [19].125

3. Boundary conditions, which are defined at the most upstream and down-

stream ends of the river system. The boundaries may include an inflow

hydrograph, a stage hydrograph or a rating curve.

4. Assembling and solving a non-linear system of equations, which is the

final step of the hydraulic routing. The equations include the reaches’130

HPGs and VPGs, compatibility of water stages at junctions, continuity

at junctions and the systems initial and boundary conditions. The HPGs

and VPGs are accessed as look-up tables.

Given that the hydraulics (HPGs and VPGs) of each reach are pre-computed,

the PG routing method results in a robust and computationally efficient tool135

for analyzing unsteady river flows. For further details about the PG routing

method, the reader is referred to [9].

4. Brief Overview of Unsteady HEC-RAS and TELEMAC-2D Models

Two hydrodynamic models were used in the present work, namely the one-

dimensional HEC-RAS model ([24]) and TELEMAC-2D ([25], [26]). These mod-140

els are briefly described next.

4.1. Unsteady HEC-RAS Model

The unsteady HEC-RAS model solves the full one-dimensional Saint-Venant

equations (Eqs. 1 and 2) using the four-point implicit finite difference scheme
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([24]). Standard applications of this model include flood wave routing and145

flooding inundation studies.

4.2. TELEMAC-2D

The open source TELEMAC-2D solves the two-dimensional shallow water

equations using the finite-element or finite-volume method and a computation

mesh of triangular elements ([28], [26]). In the present work we have used the150

finite volume method. Various turbulence closure schemes are implemented in

TELEMAC-2D. The extended k − ε turbulence model is used in this paper to

represent turbulence production and dissipation ([26]). Standard applications

of the TELEMAC-2D model include dam break and flood inundation studies.

5. Fraser River Application155

The test case is the Fraser River, which is the largest river in British Columbia

and the fifth largest in Canada. Fraser River is also the tenth longest river in

Canada, flowing with a length of 1,375 kilometers. The Fraser River test sec-

tion extends from 500 meters downstream of the Patullo Bridge in Vancouver,

Canada, to approximately 6.5 kilometers upstream. As shown in Fig. (2), the160

river reach consists of a branching flow around an island with a guiding dike

upstream of the island. The plan view of velocity field around the guiding dyke

simulated with TELEMAC-2D is shown in Fig. (3)

5.1. Generation of HEC-RAS cross-sections and TELEMAC-2D Mesh

The PG assumption requires that the flow is near one-dimensional (e.g., no165

recirculation) at the upstream and downstream ends of all reaches (e.g. see

Fig. 4). The flows inside the reach do not need to be one-dimensional. For

this study, the Fraser River stretch was divided into 22 reaches as shown in

Fig. (5). The subdivision of the system into reaches was performed according

to [19]. These authors suggest to divide the system into reaches according to170

channel geometry (a reach should be more or less uniform), roughness (a reach

should have a similar roughness), structures such as bridges or culverts (a new
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Pattullo Bridge 

Figure 2. Fraser River test case: 6.5 Kilometer river section neighboring New Westminster,
British Columbia

reach is placed at each side of the structure), and significant lateral flow from

major sewers or tributaries (a reach should be added after significant inflow to

the system). The geometric characteristics of the 22 reaches are shown in Table175

1.

For the HEC-RAS model, the geometry was created using HEC-GeoRAS, a

HEC-RAS extension to ArcGIS that acts as a pre- and post-processing tool to

cut cross-sections from the Digital Terrain Model (DTM) provided by North-

west Hydraulic Consultants, Vancouver office. For the TELEMAC-2D model,180

an unstructured, triangular element mesh was generated to represent both the

Fraser River domain mesh as well as the 22 individual PG reaches. Each mesh

was generated by constrained Delaunay Triangulation using the freely available

meshing tool, Blue Kenue, developed by the Canadian Hydraulics Centre of the

National Research Council [29].185
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Figure 3. Plan view of velocity field around guiding dyke simulated with TELEMAC-2D
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Figure 4. Reach depicting near one-dimensional flows at its upstream and downstream ends.
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Table 1. Geometric characteristics of the reaches used in the test case

Reach Upstream Downstream Length zu zd

ID section section (m) (m) (m)

US-1 1 2 288.05 10.00 10.97
US-2 2 3 434.78 10.97 13.28
US-3 3 4 609.93 13.28 14.97
RB-0 4 5 274.33 14.97 13.99
RB-1 5 6 1582.08 13.99 20.08
RB-2 6 7 344.78 20.08 19.75
RB-3 7 8 478.21 19.75 16.65
RB-4 8 9 460.28 16.65 17.99
RB-5 9 10 343.74 17.99 17.73
RB-6 10 11 275.74 17.73 16.12
RB-7 11 12 304.40 16.12 16.00
RB-8 12 13 337.92 16.12 12.01
RB-9 13 14 137.24 12.01 9.77
LB-0 4 15 305.90 14.97 12.18
LB-1 15 16 1489.62 12.18 14.19
LB-2 16 17 506.62 14.16 12.03
LB-3 17 18 500.67 12.09 11.73
LB-4 18 19 562.02 11.73 13.81
LB-5 19 20 330.46 13.81 12.30
LB-6 20 14 156.72 12.30 9.77
DS-4 14 21 688.43 9.77 4.60
DS-5 21 22 570.00 4.60 12.30

5.2. Calibration of TELEMAC-2D

Calibration of the TELEMAC-2D model was performed using ADCP tran-

sect velocity data provided by Northwest Hydraulic Consultants (NHC), Van-

couver office (British Columbia). Through this calibration, TELEMAC-2D was

found to have a better agreement with the measured velocity data when using190

a Manning’s roughness n of 0.04 m1/3. Simulated (TELEMAC-2D) and mea-

sured velocity profiles for two transects are presented in Fig. (6). Due to lack

of streamflow gages within the Fraser River study section, ADCP velocity mea-

surements were the primary ground truth information available for calibration.

A summary of the performance metrics (e.g., root mean square error, mean195

absolute error) comparing TELEMAC-2D results and the two ADCP velocity

transects are shown in Table 2. Overall, the TELEMAC-2D model results com-
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Figure 5. Reaches used for the Performance Graph routing

pare reasonably well with the two ADCP velocity transects. The Manning’s

roughness of 0.04 m1/3 was also used for the HEC-RAS model.

To estimate the spatial discretization error and assess grid independence,200

the Grid Convergence Index (GCI) [30] method was used. The GCI is an index

of the numerical uncertainty associated with a solution at a particular grid size,

in comparison to another grid size, based on the Richardson extrapolation (RE)

theory [31]. Application of Richardson extrapolation theory as a component

of the GCI requires that the flow field be sufficiently smooth for the quantity205

of interest, convergence is monotonic, and that the numerical method is in its
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Figure 6. ADCP velocity transect measurements compared with results of TELEMAC-2D

asymptotic range [32]. The GCI procedure consists of five steps that system-

atically compare discrete solutions of a variable of interest, φ, between three

or more grid resolutions, and estimate the discretization error multiplied by a

factor of safety. A GCI value of zero would indicate that an exact solution has210

been achieved, which is not likely due to numerical and discretization errors.

The Grid Convergence Index is calculated using the following equation ([31]):

GCI21fine = 1.25
e21a

rp21 − 1
(9)

Where superscripts 1 and 2 represent the fine and coarse mesh resolution,

ea = relative error between solutions 1 and 2, and r21 = ratio of representative

element sizes, and p = apparent order of accuracy. Using a factor of safety215

of 1.25 is akin to providing a 95% confidence interval for solutions of interest

[31]. Grid resolutions tested were 5 m, 10 m, and 20 m element edge lengths

using timesteps of 0.25, 0.50, and 1.00 second, respectively. Timestep sizes

were chosen to maintain an approximately constant Courant number for each
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simulation. Grid resolutions and GCI values for variables of interest, WSE and220

Q, are shown in Tables 3 and 4, respectively.

Table 2. Performance metrics comparing TELEMAC-2D model results and the ADCP ve-
locity transects shown in Fig. 6

Metric
TELEMAC-2D

Transect 1 Transect 3

Minimum residual (ft/s) -0.59 -0.23
Maximum residual (ft/s) 0.11 0.48
Standard deviation (ft/s) 0.13 0.14

Root Mean Square Error (RMSE) 0.21 0.16
Mean Absolute Error (MAE) 0.0001 0.0007
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Figure 7. Averaged cross-sectional water surface elevation for three meshes at various cross-
sections

According to Table 4, the numerical uncertainty on parameters of interest

range from 0.1% to 1.51% for the finer grid (5 m) and 0.46% to 2.78% for the

coarser grid (10 m). After comparing results for mesh element sizes of 5 m, 10
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Figure 8. Flow discharge for three meshes at various cross-sections

m, and 20 m, it was determined that 10 m grid resolution was sufficient based225

on computational expense (e.g. each performance graph requires hundreds or

thousands of simulations) and acceptable error for generation of performance

graphs. The mesh convergence results for WSE and Q are shown in Figs. (7)

and (8), respectively. These figures show that the water surface elevation and

flow discharge are practically constant for the three meshes used, indicating that230

grid independence has been achieved.

Table 3. Mesh data used for the TELEMAC-2D Grid Convergence analysis

Mesh Element size ∆t Number of elements

(m) (s) N

1 5 0.25 456962
2 10 0.50 114218
3 20 1.00 28379

A major benefit of the performance graph approach is the ability to remove
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Table 4. Grid Convergence Index results

Location GCI21fine(5m) GCI32coarse(10m)

Reach (See Fig. 5) Variable (%) (%)

Upstream Section 4 Average WSE 1.512 2.781
Discharge, Q 0.011 0.035

Right branch Section 8 Average WSE 0.387 1.049
Discharge, Q 1.174 2.152

Left branch Section 15 Average WSE 0.071 0.460
Discharge, Q 0.553 0.667
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Figure 9. Example of instability problem for HPC at 500 m3/s

instabilities that could occur during the construction of the performance graphs.

Fig. (9) shows an example of an instability that was removed and re-simulated

with updated parameters.235

5.3. Boundary Conditions for generation of PGs

For HEC-RAS and TELEMAC-2D, the upstream boundary condition for

each individual reach was a specified discharge, while the downstream boundary
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was a specified water depth. For TELEMAC-2D, in an effort to minimize the

effect of the upstream discharge boundary condition, the mesh domain of each240

PG reach was extended as illustrated in Fig. (10). The purpose of extending

the computational domain is to allow for flow development at the location of

interest, which is the upstream end of the original reach. This extension was

not necessary for the HEC-RAS model.
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Figure 10. Reach extension at its upstream end when using TELEMAC-2D

5.4. Treatment of head losses at three-way junctions in the PG routing method245

For approximating head-losses at junctions in the PG method, we project

each nearest cross-section to the junction up to the approximate intersection

of the reaches (junction) as an additional reach (e.g., Fig. 11). The additional

reaches are treated as standard PG reaches. Then at the junction, the equation

of continuity and water surface elevation compatibility condition are used. For250
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more details see [9].

Near one-dimensional flow

Flow direction
Extend cross-section
up to junction

Junction

Extend cross-section

Cross-section with near
one-dimensional flow

(approximate intersection of reaches)

Extended reach

Reach

Reach

Reach

Figure 11. Schematic of treatment of head losses at three-way junctions for the PG routing
method

5.5. Results

Generating PGs requires the computation of gradually varied flow scenar-

ios for each reach (e.g., [19]). Each curve of the performance graph consists of

a series of gradually varied flow (GVF) hydraulic simulations through a range255

of fixed downstream water stages, hence, each performance graph is composed

of hundreds, potentially thousands of simulations dependent on desired reso-

lution. The HEC-RAS and TELEMAC-2D simulations were conducted in a

batch-style manner utilizing the Parallel Computing Toolbox within MATLAB

and also using parallel batch scripts (e.g., [33]). Given that each hydraulic GVF260

simulation is solved independently of one another, embarrassingly parallel com-

putation techniques can be employed (e.g. parametric sweeps, high performance

computing clusters, etc.)
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Figure 12. HPGs for reach US-3 generated with the steady HEC-RAS (1D) and steady
TELEMAC-2D models

A comparison of HPGs and VPGs for reach US-3 generated with the steady

TELEMAC-2D and steady HEC-RAS (1D) models are shown in Figs. (12) and265

(13), respectively. For displaying purposes, some of the HPCs and VPCs were

removed intentionally. The relative difference in water depths between 1D and

2D HPCs is computed using Eq. (10).

Eh2D-PG
(%) = 100

 h2D-PG − h1D-PG
h2D-PGmax

− h2D-PGmin

 (10)

Each GVF simulation was performed using the same geometry and fixed

downstream water surface elevations for both models. The relative difference270

in water depths are shown in Fig. (14). Results from Fig. (14) suggest that

the individual HPCs yield a difference in computed depths of ± 0.1-4.0%, with

discrepancies increasing as discharge rises. In general, the 1D HEC-RAS simula-
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Figure 13. VPGs for reach US-3 generated with the steady HEC-RAS (1D) and steady
TELEMAC-2D models

tions result in higher upstream water surface elevation (WSE) values suggesting

that HEC-RAS predicted larger headlosses than TELEMAC-2D.275

Performance graphs (HPGs and VPGs) using the steady HEC-RAS (1D)

and steady TELEMAC-2D models were generated for all reaches and assembled

as inputs for the PG routing. The PG routing method assembles and solves a

nonlinear system of equations based on information summarized in the reaches

HPGs and VPGs, continuity and compatibility of water stages at junctions,280

and the system’s initial and boundary conditions [9]. Figure (15) shows outflow

hydrographs obtained with the PG routing [constructed using the steady HEC-

RAS (1D) and the steady TELEMAC-2D models], the unsteady TELEMAC-

2D model and the unsteady HEC-RAS model. The comparison in Fig. (15)

shows that similar results are obtained with these four models. The results285

also show that the 2D PG routing has a slightly better agreement with those
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Figure 14. Relative difference in water depth between 1D and 2D HPCs for reach US-3

of the unsteady TELEMAC-2D model compared to the 1D PG routing. The

previous results were expected because the 2D PG routing better quantifies

the head losses compared to the 1D PG routing. The resulting CPU times for

each model are shown in Table 5. Note that after the performance curves are290

constructed, the CPU time for the PG routing is independent of the model used

for the generation of PGs. The CPU time calculation excluded the construction

of the performance graphs for the PG routing method and the pre- and post-

processing for the TELEMAC-2D and HEC-RAS models. The time step in

the models is chosen such that the Courant number does not exceed one. In295

the TELEMAC-2D model case, the time step is relatively small because of the

relatively small grid size. In the PG method, because the length of the reaches

is much larger than the TELEMAC-2D grid size, the time step used in the PG

method is also much larger than that used in the TELEMAC-2D model. As can

be seen in Table 5, the computational efficiency of the PG routing (1D and 2D)300
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is several orders of magnitude faster than TELEMAC-2D, and is significantly

more efficient than the unsteady HEC-RAS model.
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Figure 15. Outflow hydrographs obtained with the PG routing [constructed using the steady
HEC-RAS (1D) and steady TELEMAC-2D models], the unsteady TELEMAC-2D model and
the unsteady HEC-RAS model.

Table 5. Comparison of CPU times

Model ∆t (s) CPU Time (s)

TELEMAC-2D 1.0 14,300
PG routing (1D and 2D) 400 0.56

HEC-RAS 360 5.41

6. Summary and Conclusions

This paper investigates whether the PG hydraulic routing method can still

be used when utilizing two-dimensional (2D) models for the construction of the305

pre-computed performance curves (HPGs and VPGs). This paper also compares
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the accuracy and numerical efficiency (CPU time) of the PG routing and those

of the unsteady HEC-RAS model and the unsteady TELEMAC-2D model. The

test case is a stretch around an island in the Fraser River in British Columbia.

The key findings are as follows:310

1. The family of hydraulic performance curves produced using a steady 2D

model are monotonic and don’t cross each other. Thus, the PG routing

method is still applicable when utilizing a 2D steady flow model for the

construction of PGs.

2. In general, outflow hydrographs produced using the PG routing method315

(1D and 2D), the unsteady HEC-RAS model and the unsteady TELEMAC-

2D models show very similar results.

3. The 2D PG routing has a slightly better agreement with those of the

unsteady TELEMAC-2D model (assumed as the more accurate model of

the four used) compared to the 1D PG routing. The previous results were320

expected because the 2D PG routing better quantifies the head losses

compared to the 1D PG routing.

4. Once the HPGs and VPGs are constructed (regardless of the model used

for their construction), the PG hydraulic routing method (1D and 2D) is

computationally more efficient than the unsteady HEC-RAS model and325

can be several orders of magnitude faster than TELEMAC-2D.

Overall, the PG routing (1D and 2D) is accurate, fast and robust and can

be used even when simulating flows through complex river bathymetries.

The 1D PG routing should be accurate enough for most applications,

however if a more accurate quantification of head losses is necessary, the330

2D PG routing can be used.
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