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Abstract. This paper focuses on the formulation and assessment of a second-order 
accurate Finite Volume (FV) shock-capturing scheme for simulating two-phase water 
hammer flows. The two-phase flow model is based on the single-equivalent fluid concept. 
The accuracy and numerical efficiency of the proposed scheme is compared to the fixed-
grid MOC scheme with space-line interpolation. The results show that the proposed 
scheme is much more efficient than the MOC scheme. 

1.   Introduction 

The study of two-phase water hammer flows has great significance in a wide 
range of industrial and municipal applications including power plants, 
petroleum industries, water distribution systems, etc. For Real-Time Control 
(RTC) of these systems, the numerical efficiency of transient flow models is a 
critical factor, since several simulations are required within a control loop in 
order to optimize the control strategy, and small simulation time steps are 
needed to reproduce the rapidly varying hydraulics (e.g., [1]). RTC is becoming 
increasingly indispensable for industrial and municipal applications in general. 
For instance, in the case of water distribution systems, RTC facilitates delivery 
of safe, clean and high-quality water in the most expedient and economical 
manner. 

1 



 2 

The partial differential equations that describe two-phase flows in closed 
conduits can be simplified to a great extent when the amount of gas in the 
conduit is small. In this case, the gas-liquid mixture can be treated as a single-
equivalent fluid (e.g., [2], [3]). The governing equations when using the single-
equivalent fluid approximation are identical to those for a one-phase flow. Due 
to this fact, similar techniques to those for a one-phase flow are used to solve 
the two-phase flow governing equations that are based on the single-equivalent 
fluid concept. However, since shocks may be produced during transient 
conditions in two-phase flows (e.g., [4]), only those methods that can handle 
shocks without special treatment are suitable for these applications. 

Numerical schemes that have been proposed for modeling one-dimensional 
two-phase flows using the single-equivalent fluid approximation include MOC 
schemes, Lax-Wendroff schemes, a plethora of explicit schemes, and implicit 
methods (e.g., [2]). The MOC scheme requires isolation of shocks. The Lax-
Wendroff scheme has the advantage that shock waves can be handled without 
special treatment (e.g., [2]). However, the solution produces an overshooting of 
the shock front, followed by damped oscillations. When using implicit methods, 
biasing or weighting problems may be encountered (e.g., [2]). Recently, [3] and 
[5] has applied GTS schemes to two-phase flows with good success. The first-
order GTS presented by [3] showed that numerical diffusion leads to a very fast 
degradation of the solution quality after a few oscillation periods. The second-
order scheme by [5] is largely superior to his first-order scheme, although an 
iterative process is required to solve the Riemann problem. 

The present paper focuses on the formulation and numerical efficiency 
assessment of a second-order accurate FV shock-capturing scheme for 
simulating two-phase water hammer flows. In the proposed approach, no 
iteration is required for the solution of the Riemann problem. This paper is 
organized as follows: (1) the governing equations are presented in conservation-
law form; (2) the corresponding FV discretization is described; (3) a Riemann 
solver for the flux computation at the cell interfaces is provided; and (4) results 
from testing the proposed model are presented.  

2.   Governing Equations 

The mass and momentum conservation equations for the “single-equivalent 
fluid” assumptions can be written in their vector conservative form (e.g., [2]): 
  (1) 
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where the vector variable U, the flux vector F and the source term vector S 
may be written as:  
  (2) 

where ρf is the fluid density, Af is the full cross-sectional area of the conduit, Ω 
= ρfAf is the mass of fluid per unit length of conduit, Qm = Ωu is the mass 
discharge, u is the water velocity, p is the pressure acting on the center of 
gravity of Af, g is the gravitational acceleration, S0 is the slope of the conduit, 
and Sf is the slope of the energy line. The vector Eq. (1) does not form a closed 
system in that the flow state is described using three variables: Ω, p and Qm. 
However, it is possible to eliminate the pressure variable by introducing the 
general definition of the celerity of the pressure wave (ag) [e.g., [3]], which 
relates p and Ω:  

 (3) 

The pressure-wave celerity for the gas-liquid mixture (am) can be estimated 
as ([3]):  

  (4) 

where a is the pressure-wave celerity in presence of liquid only, pref is a 
reference pressure for which the density is known (ρf ref), β is a coefficient equal 
to 1.0 for isothermal processes and 1.4 for adiabatic conditions, and ψref is the 
volume fraction of gas at the reference pressure. The water density measured at 
a temperature of 4 degrees Celsius under atmospheric pressure conditions is 
1000 kg/m3. Thus, the reference density and pressure when the liquid is water 
can be taken as 1000 kg/m3 and 101,325 Pa, respectively.  

The relationship between the volume fraction of gas ψ and pressure for the 
“single-equivalent fluid” assumptions can be expressed as (e.g., [3]): 

 (5) 

Substituting Eq. (4) into Eq. (3) and integrating the differentials dΩ and dp (Af 
is assumed to be constant) leads to the following equation that relates p and Ω: 

 (6) 

where Ωref = ρf ref Af. The pressure p in Eq. (6) can be determined by an iterative 
scheme such as the Newton Raphson method and typically between three and 
five iterations are needed to ensure convergence. The flow variables used in this 
paper are Ω and Qm. However, the engineering community prefers to use the 
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piezometric head h and flow discharge Q. The latter variables can be 
determined from Ω and Qm as follows: 
  (7)   (8) 

where d is the pipe diameter and h is measured over the conduit bottom. The 
absolute pressure head (H) in meters of water can be obtained as H = h + 10.33. 

3.   Formulation of Finite Volume Godunov-type schemes 

This method is based on writing the governing equations in integral form over 
an elementary control volume or cell, hence the general term of Finite Volume 
(FV) method. The computational grid or cell involves discretization of the 
spatial domain x into cells of length Δxi and the temporal domain t into intervals 
of duration Δt. The ith cell is centered at node i and extends from i-1/2 to i+1/2. 
The flow variables (A and Q) are defined at the cell centers i and represent their 
average value within each cell. Fluxes, on the other hand are evaluated at the 
interfaces between cells (i-1/2 and i+1/2). For the ith cell, the updating FV 
formula for the left side of Eq. (1) is given by (e.g., [6]): 

  (9) 

where the superscripts n and n+1 reflect the t and t+Δt time levels respectively. 
In Eq. (9), the determination of U at the new time step n+1 requires computation 
of the numerical flux at the cell interfaces at the old time n. To introduce the 
source terms [right side of Eq. (1)] into the solution, a time splitting method 
using a second-order Runge-Kutta discretization is used (e.g., [7]). In the 
Godunov approach, the flux is obtained by solving the Riemann problem with 
constant states Ui and Ui+1. This leads to first-order accuracy of the numerical 
solution. To achieve second-order accuracy in space and time, the MUSCL - 
Hancock method (e.g., [6]) was used in this paper. Second or higher order 
schemes are prone to spurious oscillations in the vicinity of discontinuities. To 
preserve the accuracy of the solution away from discontinuities, while ensuring 
that the solution is oscillation-free near shock waves and other sharp flow 
features, the MINMOD pre-processing slope limiter (see [6]) was used.  

4.   Riemann solver 

In contrast with one-phase water hammer flows, in two-phase flows the 
pressure-wave celerity may be reduced to very low values, in which case u is 
not necessarily negligible compared to am. However, u is still smaller than am 
and consequently the characteristics travel in opposite directions, and the star 
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region (∗), which is an intermediate region between the left and right states, 
contains the location of the initial discontinuity. Hence, the flow variables in the 
star region are used to compute the flux. Simple estimates for Ω* and Qm * that 
do not require iterations can be obtained by solving the Riemann problem for 
the linearized hyperbolic system ∂ U/∂ t + Α ∂ U/∂ x = 0 where Α is the 
Jacobian matrix of the flux vector. This yields:  
 (10)   (11) 

where a m = (am L+ am R)/2 and u  =(uL+uR)/2. By using the estimated values of 
Ω* and Qm *, the flux is obtained from Eq. (2). 

5.   Evaluation of the model 

The proposed approach is valid for pipes with and without friction. In the 
considered test case, a frictionless pipe is used only because in such case the 
physical dissipation is zero, so any dissipation or amplification in the results is 
solely due to the numerical scheme. The CPU times that are reported in this 
paper were averaged over three realizations and computed using a HP AMD 
Athlon (tm) 64 processor 3200 + 997 MHz, 512 MB of Ram notebook.  

The test compares the accuracy and numerical efficiency of the proposed 
scheme against the fixed-grid MOC scheme with space-line interpolation. The 
two-phase homogeneous mathematical model presented in [2] is solved using 
the MOC scheme. In this case, if shocks are present, the Rankine-Hugoniot 
conditions are enforced across the shock. The test considers one horizontal 
frictionless pipe connected to an upstream reservoir and a downstream valve. 
The length of the pipe is 10,000 m and its diameter is 1 m, the pressure-wave 
celerity in presence of water only is 1000 m/s, the upstream reservoir constant 
head h0 is 200 m, and the initial steady-state discharge is 2.0 m3/s. The void ratio 
at the reference pressure (101,325 Pa) is assumed to be 0.002 (0.2%). The 
transient flow is obtained after an instantaneous closure of the downstream 
valve.  

The instantaneous closure of the downstream valve results in the formation 
of a shock wave at the downstream end of the pipe. This wave propagates 
upstream until on reflection against the left boundary, it becomes a rarefaction 
wave. Figure 1 shows the pressure profiles at t = 140 s computed using the 
MOC scheme and the proposed approach assuming isothermal conditions (β = 
1) for two different number of grids. The “Near exact” profile is also presented 
in this figure. In this test case, all the simulations were carried out using a 
maximum Courant number of 0.95 to avoid numerical instability problems. It 
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should be noted that in two phase flows, the air content and pressure wave 
celerity are continuously changing [Eqs. (4) and (5)]. When using an explicit 
scheme (as used here) for simulating these flows, it is possible to exceed Cr = 
1.0 if a Cr close to 1.0 is specified at the beginning of the time step. As shown 
in Figure 1, for the same number of grids and maximum Courant number, the 
timing and magnitude of the shock wave simulated by the proposed scheme is in 
better agreement with the “Near exact” solution than the MOC scheme. 

 
  

 

Figure 1 Pressure head versus longitudinal 
distance (β = 1, t = 140 s and Crmax = 0.95). 

Figure 2 Pressure traces at the middle of the 
pipe (β = 1 and Crmax = 0.95). 

 
Figure 2 displays the simulated pressure traces at the middle of the pipe for 

two different numbers of grids. As can be observed in this figure, the MOC is 
more dissipative than the proposed scheme. The results presented in Figs. 1 and 
2 show that, for the same discretization, the proposed scheme is more accurate 
than the MOC scheme. A more conclusive comparison requires measurement of 
the CPU time needed by each scheme to achieve a given level of accuracy. The 
accuracy of a scheme can be measured using the following error norm (e.g., 
[8]):  

  (12) 

where ei = φi numerical - φi exact = difference between the numerical and exact 
solution at node i, φ = dependent variable such as the pressure head or flow 
velocity, ABSERROR = absolute error, and Nx = number of grids. The absolute 
error is a measure of the difference between the numerical and exact solution for 
either the pressure head or flow velocity. 

Figure 3 shows the plot of the absolute error for the pressure head against 
the number of grids on log-log scale. As shown in this figure, to achieve a given 
level of accuracy, the MOC scheme requires a finer grid than the proposed 
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scheme, or, for the same number of grids, the proposed scheme is more 
accurate than the MOC scheme. For comparison of CPU times, four levels of 
absolute error were selected (0.4% - 10%). The number of grids needed by each 
of the schemes to achieve the four absolute error levels, were obtained from 
Figure 3. These numbers of grids in turn were used to compute the CPU times, 
which results are shown in Figure 4. The CPU time results show that the 
proposed scheme is about 3 to 130 times faster to execute than the MOC scheme 
for the same level of accuracy. The numerical efficiency of the proposed scheme 
compared to the MOC approach increases as the absolute error decreases.  

 
  

 

Figure 3 Absolute error for the pressure head 
versus number of grids (β = 1, t = 140 s and 
Crmax = 0.95). 

Figure 4 Absolute error for the pressure head 
versus CPU time (β = 1, t = 140 s and Crmax 
= 0.95). 
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