## Tutorial on the use of TELEMAC-2D Hydrodynamics model and Pre-/Post-processing with BlueKenue for flood-inundation mapping in Unsteady Flow Conditions

Christopher Gifford-Miears, Arturo S. Leon<sup>†</sup>



Oregon State University School of Civil and Construction Engineering CE 540 **Unsteady flows in Rivers and Pipe Networks**, Fall 2013

Instructor: Arturo Leon, Ph.D., P.E. E-mail: arturo.leon@oregonstate.edu Office phone: (541) 737-2606 Mail address: 220 Owen Hall School of Civil and Construction Engineering Oregon State University Corvallis, OR 97331-3212 Research Web page: http://web.engr.oregonstate.edu/~leon

Geometric data accessed and adapted from U.S. Army Corps. Hydrologic Engineering Center - HEC-GeoRAS Tutorial

**Objectives of this Tutorial:** The objective of this tutorial is to give a brief introduction on the use of TELEMAC-2D and BlueKenue for setting up and analyzing flood inundation in unsteady flow conditions.

**KeyWords:** Unsteady hydraulic routing; Two-dimensional modeling; Flood-inundation; BlueKenue; Finite-element mesh generation

<sup>\*</sup>Graduate Research Assistant, School of Civil and Construction Engineering, Oregon State University, 233 Owen Hall, Corvallis, OR 97331, USA. E-mail: cgiffordmiears@gmail.com (Corresponding author)

<sup>&</sup>lt;sup>†</sup>Assistant Professor, School of Civil and Construction Engineering, Oregon State University, 220 Owen Hall, Corvallis, OR 97331-3212, USA. E-mail: arturo.leon@oregonstate.edu

# Contents

| 1 | Pre- | requisites                                                      | 9                |
|---|------|-----------------------------------------------------------------|------------------|
|   | 1.1  | Computer Requirements                                           | 9                |
|   | 1.2  | Data Requirements                                               | 9                |
| 2 | Extr | act bathymetry from ArcGIS surface                              | 11               |
|   | 2.1  | ArcGIS TIN to ASCII text file                                   | 11               |
|   | 2.2  | Converting ArcGIS ASCII text file to XYZ text file              | 15               |
|   | 2.3  | Export ArcMap data as a Shape File                              | 18               |
|   | 2.4  | Representing TIN elevation data using Shape file                | 21               |
|   | 2.5  | Convert source data from US Survey Feet to Meters               | 22               |
| 3 | Pre- | processing utilizing BlueKenue                                  | 23               |
|   | 3.1  | Importing data to BlueKenue                                     | 23               |
|   | 3.2  | Viewing data in BlueKenue                                       | 25               |
|   | 3.3  | Mesh Generation                                                 | 27               |
|   | 0.0  | 3.3.1 Steps 1 and 2: Create Open- and Closed-Lines in BlueKenue | $\frac{-1}{28}$  |
|   |      | 3.3.2 Steps 3 and 4: Create Channel Meshes in BlueKenue         | 30               |
|   |      | 3 3 3 Steps 5 and 1. Create Combined Mesh in BlueKenue          | 35               |
|   | 34   | Interpolate bathymetry to the mesh                              | 38               |
|   | 5.4  | 3.4.1 Levee height adjustment                                   | <u>4</u> 3       |
|   |      | 3.4.2 Viewing cross-sections of the mesh                        | $\Lambda\Lambda$ |
|   |      |                                                                 | 44               |
| 4 | TEL  | EMAC-2D input file generation                                   | 47               |
|   | 4.1  | BlueKenue                                                       | 47               |
|   |      | 4.1.1 TELEMAC-2D Geometry File                                  | 47               |
|   |      | 4.1.2 TELEMAC-2D Boundary Condition File                        | 52               |
|   | 4.2  | FUDAA Pre-pro                                                   | 61               |
|   |      | 4.2.1 TELEMAC-2D parameters file (.cas)                         | 61               |
|   |      | 4.2.2 Example unsteady parameters file (.cas)                   | 68               |
| 5 | Run  | ning TELEMAC-2D simulation                                      | 71               |
|   | 5.1  | TELEMAC-2D from the DOS Command Prompt                          | 71               |
|   | 5.2  | TELEMAC-2D Steady-state simulation                              | 75               |
|   |      | 5.2.1 Create a HOTSTART file from previous computation          | 75               |
|   | 5.3  | TELEMAC-2D Unsteady simulation                                  | 81               |
|   |      | 5.3.1 Unsteady boundary conditions                              | 81               |
| 6 | Post | -processing utilizing BlueKenue                                 | 83               |
|   | 6.1  | Flood inundation view settings                                  | 85               |
|   | 6.2  | Animation of Flood-wave propagation                             | 85               |
|   | 6.3  | Outflow hydrographs using MATLAB                                | 86               |
|   | 6.4  | TELEMAC-2D vs HEC-GeoRAS Flood Inundation                       | 87               |

| Append     | ices                                                  | 89 |
|------------|-------------------------------------------------------|----|
| Append     | ix A Create Simple Meshes in Blue Kenue               | 89 |
| A.1        | Supporting figures for simple mesh tutorial           | 89 |
| Append     | ix B Self-installation of TELEMAC hydrodynamics suite | 95 |
| B.1        | Pre-requisite programs for TELEMAC installation       | 95 |
| B.2        | TELEMAC source code checkout using Tortoise SVN       | 95 |
| B.3        | Environment variables for running/compiling TELEMAC   | 96 |
| <b>B.4</b> | Testing your PATH variables                           | 96 |
| B.5        | Compiling TELEMAC                                     | 96 |

# **List of Figures**

| 1  | Contents of unzipped TELEMAC tutorial data. Note: extract this data to a direc-                 |    |
|----|-------------------------------------------------------------------------------------------------|----|
|    | tory with no spaces                                                                             | 10 |
| 2  | Activate 3D Analyst extension from ArcMap Customize > Extensions menu                           | 11 |
| 3  | Add TIN data to ArcMap and initialize the ArcToolbox                                            | 12 |
| 4  | Extract and export ASCII xyz bathymetric data utilizing the <b>3D</b> Analyst Tools             |    |
|    | toolbox                                                                                         | 13 |
| 5  | Prompt from <b>Step 1</b> , converting <i>TIN</i> to <i>TIN-Node Feature Class</i>              | 14 |
| 6  | Prompt from Step 2, converting TIN Node Feature Class to ASCII text                             | 15 |
| 7  | Open the Baxter River ASCII text file using Excel, importing as a space delimited               |    |
|    | file                                                                                            | 16 |
| 8  | Format the cells in order to avoid truncating the data                                          | 17 |
| 9  | Node IDs are not necessary for <i>xyz</i> format; delete the entire column of IDs               | 17 |
| 10 | Save altered bathymetric ASCII text file as a Tab delimited text file                           | 18 |
| 11 | BlueKenue utilizes a (.xyz) file extension, therefore the extension is simply up-               |    |
|    | dated to (.xyz)                                                                                 | 18 |
| 12 | Open ArcMap and add the <b>RASGeometry</b> data layer from <b>baxter10.mbd</b> database         | 19 |
| 13 | Select dataset of interest from RASGeometry and Export Data                                     | 20 |
| 14 | Exported data features, as <b>Shape Files</b> (*.shp), are simple to import using BlueKenue     | 21 |
| 15 | BlueKenue is capable of importing ArcMap/ArcView Shape Files directly                           | 22 |
| 16 | Import the Baxter bathymetry using either the <i>Open</i> command or the <i>Import</i> ;        |    |
|    | ArcView Shape file command                                                                      | 23 |
| 17 | When importing the bathymetry text file, toggle file types to <i>All Files</i> (*.*)            | 24 |
| 18 | To view <b>Data Items</b> imported to BlueKenue, drag item of interest to a <b>Views</b> object |    |
|    | (e.g. 2D View (1))                                                                              | 25 |
| 19 | Create a new viewing window using the toolbar icons or Windows command and                      |    |
|    | drag the data object to the new view (e.g. <b>3D View</b> ( <b>2</b> ))                         | 26 |
| 20 | Step 1; create a <b>New Closed Line</b> representing the domain extents                         | 28 |
| 21 | Step 2; Right and Left banks are necessary for all channels; either import the 2D-              |    |
|    | Lines (.i2s), or create them using <b>New Open Lines</b>                                        | 29 |
| 22 | For each channel mesh (i.e. 3 in total) a new Channel Mesher object should be                   |    |
|    | initialized                                                                                     | 30 |
| 23 | Specify the <b>Open Lines</b> representing banks of the channel feature of interest (e.g.       |    |
|    | Baxter River) and specify the meshing parameters (Table 3)                                      | 31 |
| 24 | Rename and <b>Run</b> the Channel Mesher                                                        | 32 |
| 25 | Resulting Baxter River Channel Mesh and corresponding parameters                                | 33 |
| 26 | Resulting Baxter River Channel Meshes                                                           | 34 |
| 27 | Baxter River Channel Meshes components                                                          | 34 |
| 28 | Settings for Baxter tutorial T3 Mesh Generator                                                  | 35 |
| 29 | Mesh components added to Mesh Generator                                                         | 36 |
| 30 | Execution of the mesh generator                                                                 | 37 |
| 31 | Resulting 2D triangular mesh generated using T3 Mesh Generator                                  | 38 |
| 32 | Create a new <b>2D Interpolator</b> object                                                      | 39 |

| 33 | Drag elevation datasets to <b>2D Interpolator</b> object                                 | 40 |
|----|------------------------------------------------------------------------------------------|----|
| 34 | Select the mesh and execute the Map Objects command (e.g. Tools ; Map Ob-                |    |
|    | jects )                                                                                  | 40 |
| 35 | Select the elevation source data to map, or interpolate, onto the selected object (mesh) | 41 |
| 36 | When <b>Map Object</b> command is finished, a progress window will appear                | 41 |
| 37 | Drag the interpolated mesh onto a <b>2D View</b> Object to view the mapped bathymetry    | 42 |
| 38 | Drag the interpolated mesh onto a <b>3D View</b> Object to view the mapped bathymetry    | 42 |
| 39 | Adjust the levee height prior to interpolating the domain mesh by using the BlueKenue    |    |
|    | calculator                                                                               | 43 |
| 40 | Apply adjusted levee heights using a <b>2D Interpolator</b>                              | 43 |
| 41 | Create a new line where cross-section view is desired                                    | 44 |
| 42 | Resample the newline to increase number of sampling points                               | 45 |
| 43 | Once resampled, use command Map Object to choose the source surface to sam-              |    |
|    | ple from                                                                                 | 46 |
| 44 | Drag the mapped, resampled line onto a new <b>1D View</b> to see the cross-section       | 46 |
| 45 | Create a new geometry object using either the toolbar icon or File command               | 48 |
| 46 | Double-click the New Selafin object, rename, and select Apply                            | 49 |
| 47 | Right-click the geometry object and select Add Variable                                  | 49 |
| 48 | Select the computational domain mesh and add as a <b>BOTTOM</b> variable                 | 50 |
| 49 | Geometry object with <b>BOTTOM</b> variable added                                        | 50 |
| 50 | Non-interpolated / Mapped BOTTOM - BAD                                                   | 51 |
| 51 | Correctly interpolated / Mapped BOTTOM - GOOD                                            | 51 |
| 52 | Comparison of bad versus good <b>BOTTOM</b> interpolation                                | 51 |
| 53 | Save <b>geometry</b> object under the TELEMAC simulation directory                       | 52 |
| 54 | Create a new <b>Boundary Conditions</b> file for the <b>BOTTOM</b> object                | 53 |
| 55 | Assign the new <b>Boundary Conditions</b> file to the <b>BOTTOM</b> object               | 54 |
| 56 | Rename the <b>BOTTOM BC</b> object for ease of identification                            | 55 |
| 57 | All boundary nodes are assigned as <b>Closed boundary</b> (wall) by default              | 55 |
| 58 | Zoomed in view of the default <b>bc baxter</b> object                                    | 56 |
| 59 | TELEMAC-2D Boundary condition node types                                                 | 56 |
| 60 | Boundary condition overview for the Baxter River tutorial                                | 57 |
| 61 | Select the starting edge node where the boundary condition segment begins                | 58 |
| 62 | Select the end node of the segment and right-click to Add Boundary Segment               | 58 |
| 63 | Apply an <b>Open boundary with prescribed Q</b> BC code to the Baxter River up-          |    |
|    | stream reach                                                                             | 59 |
| 64 | Boundary condition applied to <b>bc baxter</b> object                                    | 59 |
| 65 | Save <b>both</b> boundary condition objects to the simulation directory                  | 60 |
| 66 | FUDAA Supervisor initialized screen                                                      | 61 |
| 67 | Populate this window with necessary hydraulic project files                              | 62 |
| 68 | Under the Steering file field, specify the name of your parameters file (e.g. bax-       |    |
|    | ter_unsteady.cas                                                                         | 63 |
| 69 | Under the Boundary conditions field, specify the file location of bounary condi-         |    |
|    | tions file, <b>bc_baxter.cli</b>                                                         | 64 |
| 70 | Under the Serafin file field (i.e. TELEMAC geometry file format), specify the            |    |
|    | location of <b>geometry_baxter.slf</b>                                                   | 65 |

| 71       | Select the <b>General Parameters</b> tab to access the project parameters                                                                                      | 66       |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 72       | Under General Parameters the files associated with the project are shown                                                                                       | 66       |
| 73       | Select the <b>Results File</b> field to specify where to write the T2D results                                                                                 | 67       |
| 74       | The Keywords tab is used for viewing and understanding the hydraulic project                                                                                   |          |
|          | parameters                                                                                                                                                     | 68       |
| 75       | Project files for example TELEMAC-2D unsteady parameters file                                                                                                  | 69       |
| 76       | Using the filters under the Keywords tab can help view pertinent parameters to                                                                                 |          |
|          | your project quickly                                                                                                                                           | 69       |
| 77       | Once changes are saved from FUDAA, the parameters file is well organized and                                                                                   |          |
|          | ready for the TELEMAC-2D simulation                                                                                                                            | 70       |
| 78       | initialize new DOS command prompt                                                                                                                              | 71       |
| 79       | Test Python installation                                                                                                                                       | 72       |
| 80       | Check Python version, should be 2.7.3 or 2.7.5                                                                                                                 | 72       |
| 81       | Test gfortran installation                                                                                                                                     | 72       |
| 82       | Copy the full-path directory address to the <b>TELEMAC_simulation_files</b> folder                                                                             | 73       |
| 83       | Using the change-directory DOS command, cd , change the directory to the loca-                                                                                 |          |
|          | tion of the <b>TELEMAC_simulation_files</b> folder                                                                                                             | 73       |
| 84       | Within the input file working directory, execute TELEMAC-2D using the com-                                                                                     |          |
|          | mand, <b>telemac2d.py name_of_input_file.cas</b>                                                                                                               | 74       |
| 85       | If there are no errors, the simulation will execute until finished                                                                                             | 74       |
| 86       | Open the previous results file in BlueKenue (e.g. Baxter_SS_hotstart.slf)                                                                                      | 75       |
| 87       | Create, and rename a new <b>Selafin</b> file for the HOTSTART components to be stored                                                                          | 76       |
| 88       | If the previous results file has several timesteps, be sure to Animate the results,                                                                            |          |
|          | and fast-forward to the final <b>frame</b>                                                                                                                     | 76       |
| 89       | BlueKenue Calculator method for extracting V component velocities as a new ob-                                                                                 |          |
| 0.0      | ject hotstart_velocity_V                                                                                                                                       | 77       |
| 90       | BlueKenue Calculator method for extracting U component velocities as a new ob-                                                                                 |          |
|          | ject hotstart_velocity_U                                                                                                                                       | 77       |
| 91       | Add copies of the current domain mesh as new variables to the Selatin file                                                                                     | 78       |
| 92       | Unmapped new variable VELOCITY U, prior to Map Objects command                                                                                                 | /8       |
| 93       | Map previous result file components to new components using Map Objects com-                                                                                   | 70       |
| 0.4      |                                                                                                                                                                | 79<br>70 |
| 94<br>05 | Successfully mapped <b>VELOCITY</b> U object                                                                                                                   | /9       |
| 95       | Successful HOISTART file generation should contain the above four child-objects                                                                                | 80       |
| 90<br>07 | Outflow ratio a sume for this tutuorial                                                                                                                        | 81<br>82 |
| 9/       | Outnow rating curve for this tutuorial                                                                                                                         | 82       |
| 98       | Applying a vertical exaggeration to datasets with nonzontal scales much larger<br>than the vertical scale (e.g. POTTOM, EPEE SUBEACE, etc.) halps to visualize |          |
|          | than the vertical scale (e.g. BOI IOW, FREE SURFACE, etc.) helps to visualize                                                                                  | 02       |
| 00       | Changing the <b>Style</b> and engoity of the object is easily performed by double eligibing                                                                    | 03       |
| 99       | changing the style and opacity of the object is easily performed by double-clicking                                                                            | 01       |
| 100      | After initializing the <b>Animate</b> item under properties and select <b>Anniv</b> , then the                                                                 | 04       |
| 100      | After initializing the Annuale from under properties and select Apply, then the                                                                                | Q1       |
| 101      | To view only the Flood Inundation depths, apply <b>Clin Contours</b> and make sure                                                                             | 04       |
| 101      | that Style is set to Filled Contours                                                                                                                           | 85       |
|          |                                                                                                                                                                | 05       |

| 102  | Resulting view from Figure 101 settings with Animate enabled       | 85 |
|------|--------------------------------------------------------------------|----|
| 103  | Control sections within the Baxter River domain                    | 86 |
| 104  | Outflow hydrographs resulting from unsteady TELEMAC-2D simulation  | 87 |
| 105  | Example comparison of TELEMAC-2D and HEC-GeoRAS inundation extents | 88 |
| A106 | Create closed line for the exterior boundary of the mesh.          | 90 |
| A107 | Create New T3 Mesh                                                 | 90 |
| A108 | BDrag newClosedLine into newT3Mesh Outline                         | 91 |
| A109 | Select edge length for elements and run.                           | 91 |
| A110 | The new T3 mesh!                                                   | 92 |
| A111 | Create New 2D Interpolator.                                        | 92 |
| A112 | 2Drag subset of xyz data into newInterpalator2D                    | 93 |
| A113 | Choose Tools>Map Object and select newInterpolator2D               | 93 |
| A114 | Give a new name and choose put M for units.                        | 94 |
| A115 | The new interpolated mesh                                          | 94 |

# List of Tables

| 1 | Individual xyz point information from ArcMap ASCII bathymetry file | 15 |
|---|--------------------------------------------------------------------|----|
| 2 | Conversion equivalents from US Survey Feet to Meters               | 22 |
| 3 | BlueKenue Channel Mesher and Mesh Generator tutorial values        | 30 |
| 4 | Baxter tutorial inflow hydrograph values                           | 81 |
| 5 | Rating curve for downstream boundary condition                     | 82 |

## **1** Pre-requisites

### **1.1 Computer Requirements**

- 1. ArcGIS 10.1
- 2. OpenTELEMAC CFD suite (via auto- or self-install) Successful installation/compilation requires:
  - (a) Python 2.7.3
  - (b) gfortran compiler
  - (c) TortoiseSVN client
- 3. BlueKenue pre-/post-processing software
- 4. FUDAA pre-processing software
- 5. 64-bit operating system (ideal, but not required if self-installing)

You can download the Open TELEMAC automatic installer and FUDAA pre-processor from the TELEMAC-MASCARET website at:

http://www.opentelemac.org/

The geometric dataset can be obtained from the course webpage or from the US Army Corps of Engineers Hydrologic Engineering Center website at:

http://www.hec.usace.army.mil/software/hec-georas/downloads.aspx

BlueKenue Pre-/Post-processing program is available from the "Canadian Hydraulics Centre of the National Research Council Canada" website at:

http://www.nrc-cnrc.gc.ca/eng/solutions/advisory/blue\_kenue\_index.
html

If performing a self-installation of the TELEMAC-MASCARET suite, it is recommended to follow the **Python installation guidelines** along with a summary of installation/compilation tips for a gfortran/Python/Windows specific build (**Appendix B**).

## **1.2 Data Requirements**

The data required for this tutorial is available at:

http://web.engr.oregonstate.edu/~leon/Teaching\_transients.html Download both zip files on your local drive (e.g. C:\TELEMAC\_tutorial), and unzip their contents. The TELEMAC and GeoRAS Data folder contain three sub-folders; one TIN dataset, a RASModel and one aerial image (as raster grid) as shown in Figure 1.

| rganize 🔻 🛛 Include | in library 🔻 Share with 💌 Burn | New folder        |                  | - 61 (  |
|---------------------|--------------------------------|-------------------|------------------|---------|
| Favorites           | Name                           | Date modified     | Туре             | Size    |
| 🗾 Desktop           | 🌗 Aerials                      | 10/22/2013 12:01  | File folder      |         |
| 🐌 Downloads 👘       | 📕 RASModel                     | 10/22/2013 12:01  | File folder      |         |
| Recent Places       | 🔋 🕕 Terrain                    | 10/22/2013 12:01  | File folder      |         |
|                     | baxter10.mdb                   | 4/27/2012 2:43 PM | Microsoft Access | 6,248 K |
| Libraries           | 🔕 Baxter10.mxd                 | 6/8/2012 2:10 PM  | ArcGIS ArcMap D  | 8,031 K |
| Documents           |                                |                   |                  |         |
| 🚮 Git               |                                |                   |                  |         |
| J Music             |                                |                   |                  |         |
| 🔄 Pictures 🛛 👻      |                                |                   |                  |         |

Figure 1: Contents of unzipped TELEMAC tutorial data. Note: extract this data to a directory with no spaces

## 2 Extract bathymetry from ArcGIS surface

Accurate representation of the waterway geometry is a crucial component for successful hydraulic modeling. In this section, two methods are illustrated for extracting a bathymetric data from an ArcGIS Triangulated Irregular Network (TIN) terrain model. The first method involves extracting *xyz* bathymetric points from the surface, into an *ASCII text file* and the second method exports the bathymetric data as an *ArcView Shape File (.shp)*.

## 2.1 ArcGIS TIN to ASCII text file

Start ArcMAP, and enable the *3D Analyst* extension from the Customize > Extensions menu as shown in Figure 2.

| Extensions                                                            |       | X |
|-----------------------------------------------------------------------|-------|---|
| Select the extensions you want to use.                                |       |   |
|                                                                       |       |   |
| Description:                                                          |       |   |
| 3D Analyst 10.1<br>Copyright ©1999-2012 Esri Inc. All Rights Reserved |       |   |
| Provides tools for surface modeling and 3D visualization.             |       |   |
|                                                                       | Close | • |

Figure 2: Activate 3D Analyst extension from ArcMap Customize > Extensions menu

Add the Baxter river TIN data set to the data frame using the 'Add Data' command, and open the 'ArcToolbox' window, as shown in Figure 3.



Figure 3: Add TIN data to ArcMap and initialize the ArcToolbox

In order to generate the finite-element mesh, the bathymetric and topographic information needs to be extracted or imported from a CAD program. A universal method to represent the elevation data of a domain is to have the xyz coordinates of each node representing the surface. This can be accomplished in three steps using ArcMap and Excel:

- 1. Extract TIN-Nodes using 3D-Analyst Toolbox command (Figure 4): ArcToolbox > 3DAnalystTools > Conversion > FromTIN > TINNode
- 2. Convert TIN-Node feature class to ASCII text via Toolbox command (Figure 4): ArcToolbox > 3DAnalystTools > Conversion... > FromFeatureClass > FeatureClassZtoASCII
- 3. Open text file using Excel, remove point index numbering column, and save-as a new text file (e.g. Baxter\_geometry.xyz)

Steps 1 and 2 are illustrated in Figures 4 through 6, and Step 3 details are illustrated in Figures 7 through 11



Figure 4: Extract and export ASCII xyz bathymetric data utilizing the 3D Analyst Tools toolbox

| TIN Node                                         | Select original ArcMap TIN         |
|--------------------------------------------------|------------------------------------|
| C:\CE540_telemac2d_tutorial\BaxterExample10 -    | smaller\Terrain\baxter_tin         |
| Output Feature Class                             |                                    |
| C:\CE540_telemac2d_tutorial\BaxterExample10 - sm | aller\Terrain\Baxter_TIN_nodes.shp |
| Spot Field (optional)                            |                                    |
| Tag Value Field (optional)<br>Tag_Value          |                                    |
| ОК                                               | Cancel Environments Show Help >>   |

Figure 5: Prompt from Step 1, converting TIN to TIN-Node Feature Class

| Seature Class Z to ASCII                                                       | Select TIN-Node shape file                   |
|--------------------------------------------------------------------------------|----------------------------------------------|
| Input Feature Class                                                            |                                              |
|                                                                                |                                              |
| C:\CE540_telemac2d_tutorial\BaxterExar<br>Output Text File                     | ample 10 - smaller \Terrain \baxter_xyz_data |
| baxter_xyz.txt<br>File Format (optional)<br>GENERATE                           | Specify converted file location              |
| Delimiter (optional)         Specify nam           SPACE         file to be ex | me of text xported $\checkmark$              |
| Decimal Notation (optional)<br>AUTOMATIC                                       |                                              |
| Digits after Decimal (optional)                                                | 3                                            |
| Decimal Separator (optional)<br>DECIMAL_POINT                                  | <b>~</b>                                     |
|                                                                                | OK Cancel Environments Show Help >>          |

Figure 6: Prompt from Step 2, converting TIN Node Feature Class to ASCII text

## 2.2 Converting ArcGIS ASCII text file to XYZ text file

Now that the xyz point information has been converted from the ArcMap TIN to the corresponding ASCII format, the next step requires a minor change in formatting and unit conversion using Microsoft Excel. Import the ASCII bathymetric information from ArcMap to Excel (e.g. *File ; Open ;* baxter\_xyz.txt); each row of data represents an individual xyz point in the form illustrated in Table 1:

Table 1: Individual xyz point information from ArcMap ASCII bathymetry file

| point-id | x-coord    | y-coord    | z-coord |
|----------|------------|------------|---------|
| (#)      | (ft)       | (ft)       | (ft)    |
| 1        | 6417302.24 | 2048668.67 | 32.5123 |
| •        |            |            | •       |
| •        | •          | •          | •       |
|          |            |            |         |
| 238547   | 6417290.38 | 2048732.06 | 31.5000 |

For this tutorial, the original source data (e.g. **baxter tin**) had to be converted from US Survey Feet to the SI unit equivalent for use in TELEMAC-2D. This was done using the conversion described in Section 2.5.

| Text Import Wizard -                                                     | Step 2 of 3                                                                                              |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| This screen lets you se<br>below.                                        | t the delimiters your data contains. You can see how your text is affected in the preview                |
| Delimiters<br><u>T</u> ab<br>Semicolon<br>Comma<br>Space<br><u>Other</u> | ✓ Treat consecutive delimiters as one Text gualifier:                                                    |
| Data preview                                                             | Specify Space delimitation Finish text data import                                                       |
| 0 6417302.2<br>1 6417310.8                                               | 4501799 2048668.67309242 32.5123<br>2806509 2048663.69465323 32.3907                                     |
| 2 6417310.1<br>3 6417302.6<br>4 6417292.6                                | 9090414 2048689.17344517 32.4391<br>5689635 2048648.77956685 32.4745<br>4509903 2048666.82527429 31.5316 |
|                                                                          |                                                                                                          |
|                                                                          | Cancel < <u>B</u> ack <u>N</u> ext > <u>F</u> inish                                                      |

Figure 7: Open the Baxter River ASCII text file using Excel, importing as a space delimited file

| Format Cells                                                                                                                                         |                                                                                                    |                                                                                                                |      |                | ? 🔀        |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------|----------------|------------|
| Number Alig                                                                                                                                          | gnment Font                                                                                        | Border                                                                                                         | Fill | Protection     |            |
| <u>Category:</u><br>General<br>Number<br>Currency<br>Accounting<br>Date<br>Time<br>Percentage<br>Fraction<br>Scientific<br>Text<br>Special<br>Custom | Update Cell F<br>avoid data tru<br>(12<br>(12<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>(12)<br>( | nple<br>00000000<br>mal places:<br><i>Format</i> to<br>ncation<br>14.76543210)<br>34.76543210)<br>34.76543210) | 3 🚔  | Select 8 decir | mal places |
|                                                                                                                                                      |                                                                                                    |                                                                                                                |      | ОК             | Cancel     |

Figure 8: Format the cells in order to avoid truncating the data

|           | <u>ຈ</u> ~ (× - ∥≂ |                                                    | baxter_xyz             | .txt - Microsoft Excel | _           |               | _        |                         |             |                |
|-----------|--------------------|----------------------------------------------------|------------------------|------------------------|-------------|---------------|----------|-------------------------|-------------|----------------|
| File      | Home Insert        | Page Layout Formula                                | s Data Review \        | /iew Developer         | Team        |               |          |                         | ∾ 🕜 🗆       | e x            |
| Paste     | Calibri<br>B I U - | $\mathbf{x}_{11} \mathbf{x}_{A} \mathbf{x} \equiv$ | ≡ <b>≡</b> ≫ · · ■ N   | umber<br>nited file    | Condition   | al Format     | Cell     | nsert ▼ Σ<br>Delete ▼ 3 | Sort & Find | 1&             |
| Clipboard | i G Fo             | nt                                                 | (.i.xi) tuo dein       | inted ine              | Formattin   | Styles        | styles - | Cells                   | Editing     |                |
|           | A1 -               | <i>f</i> * 0                                       |                        |                        |             |               |          |                         |             | ~              |
|           | А                  | В                                                  | С                      | D                      | E           | F             | G        | Н                       | I.          | =              |
| 1         | 0.00000000         | 6 17302.24501799                                   | 2048668.67309242       | 32.51230000            |             |               |          |                         |             |                |
| 2         | 1.00000000         | 6 17310.82806509                                   | 2048663.69465323       | 32.39070000            |             |               |          |                         |             |                |
| 3         | 2.0000000          | 6 17310.19090414                                   | 2048689.17344517       | 32.43910000            |             |               |          |                         |             |                |
| 4         | 3.00000000         | 6 17302.65689635                                   | 2048648.77956685       | 32.47450000            |             |               |          |                         |             |                |
| 5         | 4.00000000         | 6 17292.64509903                                   | 2048666.82527429       | 31.53160000            |             |               |          |                         |             |                |
| 6         | 5.0000000          | 6 1 D L G                                          | 1 4 0 1                | , 000                  |             |               |          |                         |             |                |
| 7         | 6.0000000          | $_{611}$ Delete C                                  | olumn A; Selec         | t 100                  |             |               |          |                         |             |                |
| 8         | 7.0000000          | <sup>6</sup> <sup>1</sup> Column                   | A header, right        | -click.                |             |               |          |                         |             |                |
| 9         | 8.00000000         | 6 1                                                | 1 11000001, 11g.11     | 000                    |             |               |          |                         |             |                |
| 10        | 9.00000000         | <sub>61</sub> and delet                            | e                      | 000                    |             |               |          |                         |             |                |
| 11        | 10.0000000         | 6 17301.83313964                                   | 2048688.56661798       | 32.55010000            |             |               |          |                         |             |                |
| 12        | 11.00000000        | 6 17301.29000000                                   | 2048714.80000000       | 32.60000000            |             |               |          |                         |             |                |
| 13        | 12.00000000        | 6 17300.14860729                                   | 2048729.08211065       | 32.60000000            |             |               |          |                         |             |                |
| 14        | 13.00000000        | 6 17309.39000000                                   | 2048721.20000000       | 32.50000000            |             |               |          |                         |             |                |
| 15        | 14.00000000        | 6 17327.39000000                                   | 2048723.00000000       | 33.50000000            |             |               |          |                         |             |                |
| 16        | 15.00000000        | 6 17326.32623054                                   | 2048687.07621770       | 33.39580000            |             |               |          |                         |             |                |
| 17        | 16.00000000        | 6 17335.37004546                                   | 2048688.62652166       | 33.30540000            |             |               |          |                         |             | -              |
|           | 🛛 baxter_xyz / 🞾   | 7                                                  | 1                      |                        |             |               |          |                         |             | ► I            |
| Ready     | Calculate 🛅        |                                                    | Average: 119220.500000 | 000 Count: 238443      | Sum: 284271 | 74461.0000000 | ) 🗐 🗆 🗉  | ] 115% —                | 0           | - <b>+</b> _;; |

Figure 9: Node IDs are not necessary for xyz format; delete the entire column of IDs

| 🔀 Save As           |                                               |                     |                  | ٤          | × |
|---------------------|-----------------------------------------------|---------------------|------------------|------------|---|
| 😪 🌍 🗸 🕌 « BaxterEx  | ample10 - smaller 🔸 Terrain 🔸 baxter_xyz_data |                     | Search baxter_   | xyz_data   | P |
| Organize 🔻 New fold | der                                           |                     |                  | !≡ ▼ (2    |   |
| Microsoft Excel     | Name                                          | Date modified       | Type             | Size       |   |
| ★ Favorites         | baxter_xyz.txt                                | 10/22/2013 10:38    | Text Document    | 11,549 KB  |   |
| Desktop             |                                               |                     |                  |            |   |
| 📳 Recent Places     |                                               | Save <i>xyz</i> dat | ta as a Tab deli | mited file | ] |
| ز Libraries         |                                               | L                   |                  |            |   |
| Documents           |                                               |                     |                  |            |   |
| Git 👻               |                                               |                     |                  |            |   |
| File name: baxt     | er xvz.bxt                                    | K                   |                  |            | - |
| Save as type: Text  | (Tab delimited) (*.txt)                       |                     |                  |            | • |
| Authors: Giftor     | rdMiears, Christop Tags: Add a tag            |                     | litle: Add a tr  | tie        |   |
| Alide Folders       |                                               | Tools               | ▼ Save           | Cancel     | ] |

Figure 10: Save altered bathymetric ASCII text file as a Tab delimited text file

| 🔆 🌑 🗕 🔢 « CE540_telemac2d_tutorial 🕨 Baxter&                                                                                                     | xample10 - smaller 🕨 Terrain 🕨 baxter_xyz_data                  | ✓ 4y Search                                                | baxter_xyz_data               | x = .           |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|-------------------------------|-----------------|
| Organize 🔻 🧻 Open 🔻 Print Burn                                                                                                                   | New folder                                                      |                                                            | •== •                         |                 |
| 🔆 Favorites<br>💻 Desktop                                                                                                                         | Name Daxter_geometry.xy2                                        | Date modified 10/22/2013 10:43                             | Type<br>XYZ File              | Size<br>6,776 K |
| 🐌 Downloads<br>📃 Recent Places                                                                                                                   | baxter_xyz.xyz                                                  | 10/31/2013 9:33 PM<br>10/22/2013 10:38                     | Text Document<br>XML Document | 10,959 K<br>1 K |
| <ul> <li>□ Libraries</li> <li>□ Documents</li> <li>□ Git</li> <li>□ Music</li> <li>□ Pictures</li> <li>□ Subversion</li> <li>□ Videos</li> </ul> | Change the file ex<br>this can be done by<br>and pressing the F | tension to (.xyz)<br>y selecting the fi<br>2 key to rename | ;<br>le                       |                 |
| Computer                                                                                                                                         | • • • • • • • • • • • • • • • • • • •                           | m                                                          |                               |                 |
| Text Document Size: 10.7 MB                                                                                                                      | 5755 TH 564C COLOR 10/22/2015 10:50 TH                          |                                                            |                               |                 |

Figure 11: BlueKenue utilizes a (.xyz) file extension, therefore the extension is simply updated to (.xyz)

### 2.3 Export ArcMap data as a Shape File

The ability to import **ArcView Shape Files** into BlueKenue is a powerful feature. The previous topographic data for the *HEC-GeoRAS* tutorial (e.g. levees, bridges, reservoirs, etc.) can readily

be included for analyzing TELEMAC-2D results and incorporating these features into the computational mesh.

For example, exporting the *HEC-GeoRAS* cross-sections, 3D levee and bridge information, can each be accomplished in a single step from ArcMap, as shown in Figures 12, 13 and 14.



Figure 12: Open ArcMap and add the RASGeometry data layer from baxter10.mbd database



Figure 13: Select dataset of interest from RASGeometry and Export Data

| Export Data                                                                                                                                   | X                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Export: All features                                                                                                                          | -                                                                                                                  |
| Use the same coordinate syst                                                                                                                  | em as:                                                                                                             |
| <ul> <li>this layer's source data</li> <li>the data frame</li> <li>the feature dataset you export<br/>(only applies if you export)</li> </ul> | Select <b>layer's source data</b> and<br>provide an appropriate filename<br>to a feature dataset in a geodatabase) |
| Output feature class:<br>C:\CE540_telemac2d_tutoria                                                                                           | I\Bridges3D.shp                                                                                                    |
|                                                                                                                                               | OK Cancel                                                                                                          |

Figure 14: Exported data features, as Shape Files (\*.shp), are simple to import using BlueKenue

Once the ArcView Shape Files are exported, importing them to BlueKenue is achieved through the File ; Import ; ArcView Shape File command, detailed in the subsequent section.

## 2.4 Representing TIN elevation data using Shape file

If the raw *xyz* values are not required, then you can simply perform Step 1 of the process described in Section 2.1 (i.e. Figure 4), save the newly created Shape File (.shp), and import the Tin-Node file directly into BlueKenue. To import an ArcMap Shape File to BlueKenue, use the *File ¿ Import ¿ ArcView Shape File* command as depicted in Figure 15.



Figure 15: BlueKenue is capable of importing ArcMap/ArcView Shape Files directly

### 2.5 Convert source data from US Survey Feet to Meters

The geographic projection of the original dataset is Oregon State Plane Coordinates in United State (US) Survey Foot units (ft). The exact project information in ArcMap:

NAD\_1983\_StatePlane\_California\_III\_FIPS\_0403\_Feet

TELEMAC-2D exclusively uses International System of Units (SI), therefore the projection of the elevation data **must** be converted to equivalent SI units (i.e. meters). The conversion of US Survey foot to meters is shown below in Table 2:

| Table 2: Co | onversion | equivalents | from US | Survey | Feet to  | Meters   |
|-------------|-----------|-------------|---------|--------|----------|----------|
| 10010 2. 00 |           | equivalents | nom ob  | Juivey | 1 001 10 | 10101015 |

| US Survey Foot | Meter     | Meter        |
|----------------|-----------|--------------|
| (ft)           | (m)       | (m)          |
| 1.0            | 1200/3937 | 0.3048006096 |

Resulting information and datasets can be viewed in ArcMap after conversion so long as the geographic projection is changed to the meter equivalent:

NAD\_1983\_StatePlane\_California\_III\_FIPS\_0403

## **3** Pre-processing utilizing BlueKenue

BlueKenue is developed by the *Canadian Hydraulics Centre of the National Research Council* and is utilized in this tutorial to accomplish the following:

- 1. Generate the Baxter Finite-Element mesh
- 2. Create the boundary conditions influencing the system
- 3. Visualizing the TELEMAC-2D hydrodynamic results

### 3.1 Importing data to BlueKenue

Start BlueKenue and open the (.xyz) geometry data extracted from the ArcMap TIN, or import the Tin Node Shape File (Figure 16). In order to see your XYZ dataset, change the *Filetype* drop-down menu from *Selaphin* to *AllFiles* as shown in Figure 17.

| 🚟 BlueKenue -              |                                           |   |
|----------------------------|-------------------------------------------|---|
| File Edit View Tools Run V | Vindow Help                               |   |
| N 🛎 🗉 🎒 📲 💳 🤻 🖞            | 🎥   🧎 🏒 🟹   🗰   🔜 🐼 🗾 🗜 🐼 📰   🎙           | ? |
| WorkSpace                  | 🗾 2D View (1)                             |   |
|                            |                                           |   |
| 2D View (1)                | Option 1: Select the bathymetry text      |   |
|                            | file (.xyz) using the <i>Open</i> command |   |
|                            |                                           |   |
|                            | Option 2: Import the <i>ArcView Shape</i> |   |
|                            | <i>file</i> (e.g. TIN_Nodes.shp)          |   |
|                            |                                           |   |
|                            |                                           |   |
|                            |                                           |   |
|                            |                                           |   |

Figure 16: Import the Baxter bathymetry using either the *Open* command or the *Import ¿ ArcView Shape file* command



Figure 17: When importing the bathymetry text file, toggle file types to All Files (\*.\*)





Figure 18: To view **Data Items** imported to BlueKenue, drag item of interest to a **Views** object (e.g. **2D View** (1))

The bathymetric data can also be viewed in an iso-metric **3D** View by opening a new **3D** View icon or through Window ; New **3D** View as shown in Figure 19.



Figure 19: Create a new viewing window using the **toolbar icons** or **Windows** command and drag the data object to the new view (e.g. **3D View (2)**)

### 3.3 Mesh Generation

TELEMAC-2D solves the depth-averaged Navier-Stokes equation utilizing both Finite-Element (FE) and Finite-Volume (FV) formulations. All of these formulations require that a spatial representation of the domain be created using a computational mesh. BlueKenue has several tools for mesh generation and editing. Mesh types that BlueKenue can generate are unstructured and regular (via **T3 Channel Mesher**) triangular meshes.

The basic requirements for creating a simple mesh in BlueKenue are outlined in Appendix A. For this tutorial, the following steps are illustrated for generating a mesh incorporating the Baxter River, Tule Creek, Flood-plains, and Levee embankment components:

- 1. Create New Closed Line around computational domain of interest
- 2. Create New Open Lines outlining the river channel, and levee, right and left extents
- 3. Open a new Channel Mesher via File ¿ New ¿ T3 Channel Mesher...
  - (a) Specify the number of cross-channel nodes
  - (b) Specify the mesh element length along the channel
  - (c) Drag and drop the right and left channel bank open-lines to the **RightBank** and **Left-Bank** objects
  - (d) Double click the T3 Channel Mesher and select Run
  - (e) This will be performed for both the Baxter River and Tule Creek channels
- 4. Represent the levee utilizing a new T3 Channel Mesher...
  - (a) Specify the number of cross-channel nodes
  - (b) Specify the mesh element length along the levee
  - (c) Drag and drop the right and left channel levee open-lines to the **RightBank** and **Left-Bank** objects
  - (d) Double click the T3 Channel Mesher and select Run
- 5. Open a new T3 Mesh generator via File ¿ New ¿ T3 Mesh Generator...
  - (a) Drag domain outline to **Outline** child-object
  - (b) Drag main-channel and creek mesh onto the SubMeshes child-object
  - (c) Drag levee mesh onto the **SubMeshes** child-object
  - (d) Drag 3D Line Set representing bridge abutments to HardLines child-object
  - (e) Double click the T3 Mesh Generator and specify Default Edge Length and Edge Growth Ratio

Following these steps will result in the generation of a hybrid unstructured triangular mesh that incorporates major topographic features in this flood-inundation scenario. The steps outlined above are described in additional detail, in their respective order, in the following subsections.

#### 3.3.1 Steps 1 and 2: Create Open- and Closed-Lines in BlueKenue

Steps 1 and 2 involve creating a bounding polygon of the entire domain and the delineation of the river channel, and levee, right and left banks. Figure 20 shows the process of creating a **New Closed Line** to represent the extents of the computational domain. Once the **New Closed Line** icon is selected, you can use the cursor to define the points representing the outline. Figure 20 also shows the imported *HEC-GeoRAS* cross-section cuts as a reference for creating the outline (see Section 2.3 for details how)



Figure 20: Step 1; create a New Closed Line representing the domain extents



Figure 21: Step 2; Right and Left banks are necessary for all channels; either import the 2D-Lines (.i2s), or create them using **New Open Lines** 

#### 3.3.2 Steps 3 and 4: Create Channel Meshes in BlueKenue

The mesh for this tutorial includes three channel mesher components:

- 1. Baxter River channel mesh
- 2. Tule Creek channel mesh
- 3. Levee represented using channel mesh

Table 3 presents the values that will be used for the tutorial mesh parameters. Generating a channel mesh is illustrated in Figures 22 through 25

| Table 3: BlueKenue Channel Mesher and Mesh Generator tutorial values |                |                              |     |  |  |  |
|----------------------------------------------------------------------|----------------|------------------------------|-----|--|--|--|
| BlueKenue Mesh Type                                                  | Mesh Component | Channel Interval/Edge Length |     |  |  |  |
|                                                                      |                | (-)                          | (M) |  |  |  |
| T3 Channel Mesher                                                    | Baxter River   | 10                           | 50  |  |  |  |
| T3 Channel Mesher                                                    | Tule Creek     | 10                           | 30  |  |  |  |
| T3 Channel Mesher                                                    | Levee Mesh     | 3                            | 20  |  |  |  |
| T3 Mesh Generator                                                    | Full Mesh      | -                            | 100 |  |  |  |



Figure 22: For each channel mesh (i.e. 3 in total) a new **Channel Mesher** object should be initialized



Figure 23: Specify the **Open Lines** representing banks of the channel feature of interest (e.g. Baxter River) and specify the meshing parameters (Table 3)

| Properties of: newT3ChannelMesh                                                   | × 1                                       |
|-----------------------------------------------------------------------------------|-------------------------------------------|
| Mesh Parameters                                                                   |                                           |
| CrossChannelNodeCount 3 (includ                                                   | ing banks)                                |
| AlongChannelInterval 1                                                            | Run                                       |
| LeftBank RightBank Thalweg Mesh Met                                               | a Data                                    |
| Keyword Value                                                                     | Once the <b>Right and Left Bank</b>       |
| Name newT3ChannelMesh                                                             | objects are placed, and mesh              |
| Type T3 Channe Mesh Generator                                                     | parameters are specified, <b>Run</b> will |
| Directory                                                                         | generate the channel mesh                 |
| Filename<br>Each channel mesh (e.g.<br>should be renamed for ea<br>identification | 3 total)<br>ise of                        |
| OK Apply                                                                          | Cancel                                    |

Figure 24: Rename and **Run** the Channel Mesher



Figure 25: Resulting Baxter River Channel Mesh and corresponding parameters



Figure 26: Resulting Baxter River Channel Meshes



Figure 27: Baxter River Channel Meshes components

#### 3.3.3 Steps 5: Generate Combined Mesh in BlueKenue

Once the submesh components are created, the domain mesh combining all elements can be generated. Due to the large size of the domain ( $\sim 20$ KM), a coarse mesh will be generated for demonstration purposes. The objects needed for creating this mesh include:

- 1. Baxter River channel mesh
- 2. Tule Creek channel mesh
- 3. Levee channel mesh
- 4. Baxter domain outline (Baxter\_outline\_20m\_resampled.i2s)
- 5. Bridge 3D elevation line (Bridges3d\_20m\_resampled.i3s)

All of the above items are available from the tutorial dataset directory, BK\_baxter\_tutorial\_files.

Open a new T3 Mesh generator via File ; New ; T3 Mesh Generator... and enter the settings specified in Figure 28 and select Apply, then exit.

| Properties of: B     | Baxter_tutorial_ | mesh                       |                                | 8           |
|----------------------|------------------|----------------------------|--------------------------------|-------------|
| - Mesh Parame        | ters             | Deselee                    | <u>et</u> Resample C           | Outline     |
| 🔲 Resample           | Outline          |                            | 📝 Auto Smooth                  | Mesh        |
| 🔽 Edge Grov          | wth Ratio 1.2    |                            | 🔲 Resample Lii                 | nes Only    |
| Default Edge         | Length 1         |                            | B                              | un          |
| Meta Data<br>Keyword | Value Set        | <b>Default</b><br>kimum el | Edge Length<br>lement size des | to<br>sired |
| Title                |                  |                            | 1                              | +           |
| Name                 | Baxter_tutor     | al_mesh                    |                                |             |
| Type<br>Directory    | 13 Mesh ve       | nerator                    | _                              |             |
| Filename             | Change T         | 3 Mesh                     |                                |             |
|                      | Generato         | r Name                     |                                |             |
|                      |                  |                            | _                              |             |
| OK                   |                  | Apply                      | Cancel                         |             |

Figure 28: Settings for Baxter tutorial T3 Mesh Generator

BlueKenue mesh generator utilizes a Delaunay triangulation method and can accommodate a wide range of complex topographic and bathymetric features. Following Step 5 of the Mesh Generation process, the location of each component in the **T3 Mesh Generator** are specified. Figure 29 illustrates the component locations from Step 5.



Figure 29: Mesh components added to Mesh Generator
| Properties of: Bay                                                                                                                                                                                                                                                                                                                      | ter_tutorial_mesh           |       | 8             |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------|---------------|--|--|--|
| -Mesh Paramete                                                                                                                                                                                                                                                                                                                          | Mesh Parameters             |       |               |  |  |  |
| 📃 Resample O                                                                                                                                                                                                                                                                                                                            | utline                      | 🔽 Aut | o Smooth Mesh |  |  |  |
| Mesh Parameters          Mesh Parameters         Resample Outline         Edge Growth Ratio         1.2         Default Edge Length         100         Run         Meta Data         Keyword       Value         Title         Name       Baxter_tutorial_mesh         Type       T3 Mesh Generator         Directory         Filename |                             |       |               |  |  |  |
| Default Edge Le                                                                                                                                                                                                                                                                                                                         | Default Edge Length 100 Run |       |               |  |  |  |
| Meta Data                                                                                                                                                                                                                                                                                                                               |                             |       |               |  |  |  |
| Keyword                                                                                                                                                                                                                                                                                                                                 | Value                       |       |               |  |  |  |
| Title                                                                                                                                                                                                                                                                                                                                   |                             |       | +             |  |  |  |
| Name                                                                                                                                                                                                                                                                                                                                    | Baxter_tutorial_mesh        |       |               |  |  |  |
| Туре                                                                                                                                                                                                                                                                                                                                    | T3 Mesh Generator           |       |               |  |  |  |
| Directory                                                                                                                                                                                                                                                                                                                               |                             |       |               |  |  |  |
| Filename                                                                                                                                                                                                                                                                                                                                |                             |       |               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                         |                             |       |               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                         |                             |       |               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                         |                             |       |               |  |  |  |
| OK                                                                                                                                                                                                                                                                                                                                      | Apply                       |       | Cancel        |  |  |  |

Figure 30: Execution of the mesh generator



Figure 31: Resulting 2D triangular mesh generated using T3 Mesh Generator

### **3.4** Interpolate bathymetry to the mesh

Section 3.3 describes the process of creating a two-dimensional triangular mesh to represent the domain extents. It can be noticed that the mesh initially has a constant value assigned to each mesh node (e.g. EL. 0 m). In order to map elevation values to the nodes of a mesh, BlueKenue has a tool called **2D Interpolator...**.

A primary function of BlueKenue is to project, or interpolate the values of one dataset, onto another. In this tutorial, the bathymetric and topographic information are contained in several components, one of which is <code>baxter\_xyz\_meters.xyz</code>. Mapping the bathymetry to a mesh can be completed through the following steps:

- 1. Create a new 2D Interpolator through File ; New ; 2D Interpolator...
- 2. Drag and drop all relevant elevation datasets onto the 2D Interpolator object
- 3. Select the mesh of interest, and go-to Tools ¿ Map Objects...
- 4. Find the 2D Interpolator object on the list, select and press OK
- 5. View the resulting interpolation in a 2D-View or 3D-View

Step 1, create a new 2D Interpolator object through File ; New ; 2D Interpolator... .

| 🚈 BlueK                                                                                                                                                                                                             | enue - [2D View (6)]          |      |           |                                    |                 |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------|-----------|------------------------------------|-----------------|---------|
| 🗾 File                                                                                                                                                                                                              | Edit View Tools Run Window    | Help |           |                                    |                 |         |
| Ľ                                                                                                                                                                                                                   | New                           | ×    |           | SELAFIN Object                     | t               |         |
|                                                                                                                                                                                                                     | Open                          |      |           | Boundary Con                       | ditions (Conlin | n )     |
| <b>.</b>                                                                                                                                                                                                            | Import                        | •    |           | T3 Mesh Gener                      | rator           |         |
|                                                                                                                                                                                                                     | Base Maps                     |      |           | T3 Channel Me                      | esher           |         |
|                                                                                                                                                                                                                     | Save                          |      |           | Triangulation                      |                 |         |
|                                                                                                                                                                                                                     | Save Copy As                  |      |           | Regular Grid                       |                 |         |
|                                                                                                                                                                                                                     | Load WorkSpace                |      |           | Table                              |                 |         |
|                                                                                                                                                                                                                     | Save WorkSpace                |      |           | Points<br>Open Line<br>Closed Line |                 |         |
|                                                                                                                                                                                                                     | Print                         |      |           |                                    |                 |         |
|                                                                                                                                                                                                                     | 1 Briders 2d 20m second ad 25 |      |           |                                    |                 |         |
|                                                                                                                                                                                                                     | 2 geometry, byster olf        |      |           | 2D Interpolator                    |                 |         |
|                                                                                                                                                                                                                     | 3 Levee xvz pts.xvz           |      |           | SED Run                            |                 |         |
|                                                                                                                                                                                                                     | 4 levee_xyz_pts.xyz           |      | POO       |                                    |                 |         |
|                                                                                                                                                                                                                     | 5 levee_density_polygon.i2s   |      | L .       |                                    |                 |         |
|                                                                                                                                                                                                                     | 6 Bridges3d.i3s               |      | L .       |                                    |                 |         |
|                                                                                                                                                                                                                     | 7 tule_right_bank.i2s         |      | poo       | )                                  |                 |         |
|                                                                                                                                                                                                                     | 8 tule_left_bank.i2s          |      |           |                                    |                 |         |
|                                                                                                                                                                                                                     | Exit                          |      |           |                                    |                 |         |
|                                                                                                                                                                                                                     | Tule Creek mesher Mesh        | 61   | -<br>8000 |                                    |                 |         |
| BlueKenue - [20 File Edit Vi C New Open Import Base Map Save Save Cop Load Wo Save Wo Print 1 Bridges 2 geome 3 Leve_y 4 levee_x 5 levee_d 6 Bridges 7 tule_rig 8 tule_lef Exit Exit Exit C New C Con C Con C C C C | Baxter_River_mesher_Mesh      |      |           | ,                                  |                 |         |
|                                                                                                                                                                                                                     | New Mesh (NodeType)           |      |           |                                    |                 |         |
| -4                                                                                                                                                                                                                  | newInterpolator2D             |      |           | 1954000                            | 1956000         | 1958000 |
|                                                                                                                                                                                                                     | ConstraintOutline             | Crea | ate a r   | new 2D Interpola                   | tor object      |         |

Figure 32: Create a new **2D Interpolator** object

Step 2, drag and drop all relevant elevation datasets onto the 2D Interpolator object.



Figure 33: Drag elevation datasets to 2D Interpolator object

Step 3, select the mesh of interest, and utilize the **Tools ; Map Objects...** command to interpolate elevation data to the mesh nodes.



Figure 34: Select the mesh and execute the Map Objects command (e.g. Tools ¿ Map Objects )

Step 4, find the **2D Interpolator** object on the list, then select, and press OK.

| Available Objects                            |
|----------------------------------------------|
| Levee_mesher_Mesh                            |
| Ridges3d_20m_resampled                       |
| ✓ Levee_mesher_Mesh ✓ Tule_Creek_mesher_Mesh |
| River_mesher_Mesh                            |
| newInterpolator2D                            |
|                                              |
| OK Cancel                                    |

Figure 35: Select the elevation source data to map, or interpolate, onto the selected object (mesh)

| Processing                                                      |        |   |
|-----------------------------------------------------------------|--------|---|
| Interpolating from: newInterpolator2D                           |        |   |
| Target mesh: New Mesh                                           |        | * |
| Processing 24469 Nodes<br>Using Inverse Distance Interpolation. |        |   |
| Interpolation finished in: 0.000000 sec.                        |        |   |
|                                                                 |        | Ŧ |
| Done                                                            |        |   |
|                                                                 |        |   |
| ОК                                                              | Cancel |   |

Figure 36: When Map Object command is finished, a progress window will appear

Step 5, once the elevation data is mapped to the mesh, drag the mesh object to a **2D-View** or **3D-View** to inspect the interpolation.



Figure 37: Drag the interpolated mesh onto a 2D View Object to view the mapped bathymetry



Figure 38: Drag the interpolated mesh onto a **3D View** Object to view the mapped bathymetry

#### 3.4.1 Levee height adjustment

Utilizing the steps outlined in Section 3.4, new levee heights can be imposed and mapped, or interpolated, to the bathymetric mesh. A method to adjust the crest height of the levee involves adjusting the **xyz** point file **levee\_xyz.xyz**. This is accomplished utilizing the BlueKenue calculator tool. Select the **levee\_xyz.xyz** object, go-to **Tools** *¿* **Calculator...**, and the xyz dataset can be vertically adjusted. As the calculator directly alters the **xyz** point file, it is recommended to make copies of the levee elevation data file prior adjustment.

| Calculator            |         |
|-----------------------|---------|
| Object<br>levee_xyz   |         |
| Function<br>Plus<br>0 | Units M |
| ОК                    | Cancel  |

Figure 39: Adjust the levee height prior to interpolating the domain mesh by using the BlueKenue calculator



Figure 40: Apply adjusted levee heights using a **2D Interpolator** 

If creating a new levee using the **T3 Channel Mesher**, the following are the steps used to generate **levee\_xyz.xyz** used in Section 3.4.

- 1. Create T3 Channel Mesh representing levee
- 2. Use **2D Interpolator** to map original levee elevations (from Exported Shape File)
- 3. Save mapped levee mesh as a text file (\*.t3s)
- 4. Open levee mesh file in text editor, delete mesh face info, leaving xyz vertex info at each levee mesh node
- 5. Save as a xyz file, and include in **2D Interpolator** used for combined mesh to incorporate changes exactly

#### 3.4.2 Viewing cross-sections of the mesh



Figure 41: Create a new line where cross-section view is desired

| Resample LineSet                                 | Disht                 |                                                                                                                |
|--------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|
| Source LineSet<br>Name cross_section_view        | object                | and select <b>resample</b> to control ing density of cross-section                                             |
| Attribute                                        | Value                 |                                                                                                                |
| Line Count                                       | 1                     |                                                                                                                |
| Point Count of Line                              | 2                     |                                                                                                                |
| Length of Line                                   | 1530.0                |                                                                                                                |
| Average Delta of Line                            | 1529.98               | Select <b>Equal Distance</b> and a spacing of <b>1 M</b> ; this will create a line with points every 1 m along |
| Resample Options                                 |                       | the original cross-section                                                                                     |
| Method Equal Distance Delta 1                    | •                     |                                                                                                                |
| Create New LineSet<br>New Name Resampled cross_s | ection_view<br>Cancel |                                                                                                                |

Figure 42: Resample the newline to increase number of sampling points



Figure 43: Once resampled, use command **Map Object** to choose the source surface to sample from



Figure 44: Drag the mapped, resampled line onto a new 1D View to see the cross-section

#### **TELEMAC-2D** input file generation 4

A TELEMAC-2D hydrodynamics simulation requires a minimum of three input files:

- 1. Geometry File (\*.slf)
- 2. Boundary Conditions File (\*.cli)
- 3. TELEMAC-2D simulation parameters file (\*.cas)

Items 1 and 2 are prepared in BlueKenue, and FUDAA Pre-Processor will be used to set up the TELEMAC-2D parameters file.

#### BlueKenue 4.1

#### 4.1.1 **TELEMAC-2D Geometry File**

The geometry file for TELEMAC-2D can be represented in several formats. Using BlueKenue, a formatted binary file will be created that includes the bathmetric mesh. The process of creating a geometry file is achieved through the following steps:

- 1. Create a New SELAFIN File and rename (e.g. geometry\_baxter) Step 1 - Page 47
- 2. Add the bathymetric mesh as a New Variable specified as BOTTOM Step 2 - Page 49 Step 3 - Page 50
- 3. Map the bathymetry to the new child-object mesh, **BOTTOM**
- 4. Save geometry file to the TELEMAC-2D simulation directory Step 4 - Page 51

Step 1, create new Selafin File utilizing either the New SELAFIN Object icon or through File : New ¿ SELAFIN Object (i.e. Figure 45).



Figure 45: Create a new geometry object using either the toolbar icon or File command

| roperties of:r | newSelafin              |        |
|----------------|-------------------------|--------|
| Meta Data      |                         |        |
| Keyword        | Value                   |        |
| Title          | newSelafin              | +      |
| Name           | geometry_baxter         |        |
| Туре           | Telemac 2D Selafin File |        |
| Directory      |                         |        |
| Filename       |                         |        |
|                |                         |        |
|                |                         |        |
|                |                         |        |
|                |                         |        |
| ОК             | Apply                   | Cancel |

Figure 46: Double-click the New Selafin object, rename, and select Apply

Step 2, add the bathymetric mesh as a **New Variable** specified as **BOTTOM** as shown in Figures 47 and 48.



Figure 47: Right-click the geometry object and select Add Variable

| Add New  | SELAFIN Variable                                | Select <b>New Mesh</b> from the drop-down list |
|----------|-------------------------------------------------|------------------------------------------------|
| Source   | Mesh and Attribute Data                         |                                                |
| Mesh     | New Mesh                                        |                                                |
| Attribut | e Name NodeType A                               | Assign to <b>Bottom</b> variable               |
| New Va   | riable Properties                               | K                                              |
| Name     | BOTTOM                                          | ▼                                              |
| Units    | М                                               |                                                |
| Cop De   | y Node Values from Source<br>fault Node Value 0 |                                                |
|          | OK Cancel                                       |                                                |

Figure 48: Select the computational domain mesh and add as a **BOTTOM** variable



Figure 49: Geometry object with **BOTTOM** variable added

Step 3, map the bathymetry to the new object **BOTTOM** as shown in section 3.4. Again, inspect that the elevation data is represented on the geometry **BOTTOM** child-object in a **2D View** or **3D View** window. An example of a non-interpolated mesh and correctly interpolated mesh are shown below in Figure 52.



Figure 51: Correctly interpolated / Mapped BOTTOM - GOOD

Figure 52: Comparison of bad versus good BOTTOM interpolation

Step 4, save the geometry file under the TELEMAC\_simulation\_files directory.

| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |               |                 |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|-----------------|----------------|
| 🚟 Save As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                  |               |                 | 8              |
| C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _Baxter_tutorial_files                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | es 🕨 👻             | Search TELEMA | NC_simulation_f | <mark>P</mark> |
| Organize 🔻 New folde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |               |                 | 0              |
| Documents ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date modified      | Туре          | Size            |                |
| Git Music                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ctrl_section_results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11/10/2013 7:36 PM | File folder   |                 |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 📗 inflow_hydrograph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/10/2013 7:36 PM | File folder   |                 |                |
| Pictures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AC_Baxter_tutorial_files > TELEMAC_simulation_files ><br>AC_Baxter_tutorial_files > TELEMAC_simulation_files ><br>der<br>BET<br>Pate modified Type Size<br>Ctrl_section_results 11/10/2013 7:36 PM File folder<br>inflow_hydrograph 11/10/2013 7:36 PM File folder<br>results 11/10/2013 7:36 PM File folder<br>results 11/10/2013 7:36 PM File folder<br>metry_baxter.slf<br>mate 2D Selafin File (BigEndian) (*.slf)<br>Save Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |               |                 |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Source Add   Organize   New folder     Image: Computer   Image: Computer <th></th> <th></th> |                    |               |                 |                |
| E Computer<br>Computer<br>Ieon (\attic) (A:)<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Constant<br>Cons |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |               |                 |                |
| File name: geom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | etry_baxter.slf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |               |                 | •              |
| Save as type: Telema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ac 2D Selafin File (BigEndian) (*.slf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |               |                 | •              |
| ) Hide Folders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | Save          | Cancel          |                |

Figure 53: Save geometry object under the TELEMAC simulation directory

#### 4.1.2 TELEMAC-2D Boundary Condition File

| 1. | Create a New ¿ Boundary conditions (conlim) file for BOTTOM              | Step 1 - Page 52 |
|----|--------------------------------------------------------------------------|------------------|
| 2. | Rename the boundary conditions file (e.g. bc_baxter)                     | Step 2 - Page 54 |
| 3. | Drag the boundary conditions object to a <b>2D-View</b> object           | Step 3 - Page 55 |
| 4. | Prescribe boundary conditions at the inflow and outflow domain locations | Step 4 - Page 56 |
| 5. | Save boundary conditions file to the TELEMAC-2D simulation directory     | Step 5 - Page 60 |
| 6. | Save boundary conditions child-object to the T2D simulation directory    | Step 6 - Page 60 |

Step 1 , create a New ; Boundary conditions (conlim) file for the geometry child-object Bottom



Figure 54: Create a new Boundary Conditions file for the BOTTOM object



Figure 55: Assign the new **Boundary Conditions** file to the **BOTTOM** object

Step 2, rename the boundary conditions file (e.g. bc\_baxter). This can be done by doubleclicking the **BC BOTTOM** object and changing the **Name** under the **Meta Data** tab (Figure 56).



Figure 56: Rename the **BOTTOM BC** object for ease of identification

Step 3, drag the boundary conditions object to a **2D-View** object.



Figure 57: All boundary nodes are assigned as Closed boundary (wall) by default



Figure 58: Zoomed in view of the default bc baxter object

Step 4, prescribe boundary conditions at the inflow and outflow domain locations

Each node along the boundary has a specific code and color representing what type of boundary it is. For example, **Closed boundary (wall)** nodes are brown, **Open boundary with prescribed Q** nodes are blue, and **Open boundary with prescribed H** nodes are green, where Q is volumetric flowrate, and H is water depth. The full list of boundary nodes are shown below in Figure 59

|                                           | CONLIM Boundary Segment Editor |                                                                                              |  |  |  |  |
|-------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------|--|--|--|--|
| Boundary Name newBoundary (19564 - 19384) |                                |                                                                                              |  |  |  |  |
| Boundary Co                               | ode                            | Closed boundary (wall) 👻                                                                     |  |  |  |  |
| Tracer Code                               |                                | Closed boundary (wall)<br>Open boundary with prescribed Q<br>Open boundary with prescribed H |  |  |  |  |
| HBOR                                      | U                              | Open boundary with prescribed Q and H                                                        |  |  |  |  |
| 0                                         |                                | Open boundary with prescribed UV and H                                                       |  |  |  |  |
| 0                                         |                                | Open boundary with incident Waves                                                            |  |  |  |  |
| 0                                         |                                | Custom                                                                                       |  |  |  |  |

Figure 59: TELEMAC-2D Boundary condition node types



Figure 60: Boundary condition overview for the Baxter River tutorial

Updating and adding boundary condition segments is performed on the **bc baxter** object within a **2D View** window. To create a segment of nodes, representing a single boundary condition, **select the starting edge node** of the domain where the boundary condition begins, then holding the **Shift** key, **select the end node** where the boundary condition segment ends. For example, Figure 64 shows the delineation of the upstream Baxter River boundary condition as an **Open boundary with prescribed Q**. The process of prescribing a boundary condition nodes is illustrated in Figures 61 through 64 below.



Figure 61: Select the starting edge node where the boundary condition segment begins



Figure 62: Select the end node of the segment and right-click to Add Boundary Segment

| CONLIM Bound                              | ary Segme                                                          | nt Editor                             |             |                |       |       |       | x |
|-------------------------------------------|--------------------------------------------------------------------|---------------------------------------|-------------|----------------|-------|-------|-------|---|
| Boundary Name newBoundary (19606 - 19338) |                                                                    |                                       |             |                |       |       |       |   |
| Boundary Code                             | Closed b                                                           | oundary (w                            | all)        |                | - 222 | 2     |       |   |
| Tracer Code                               | Tracer Code Open boundary (wai)<br>Open boundary with prescribed Q |                                       |             |                |       |       |       |   |
| HBOR                                      | U Open bo                                                          | Open boundary with prescribed Q and H |             |                |       | BTBOR | NBOR  |   |
| 0                                         | Open bo<br>Open bo                                                 | undary with<br>undary with            | prescribed  | UV<br>UV and H | 0     | 0     | 19606 |   |
| 0                                         | Open bo                                                            | undary with                           | incident Wa | aves           | 0     | 0     | 19602 |   |
| 0                                         | Custom                                                             | -                                     |             |                | 0     | 0     | 19600 | - |
| 0                                         | 0                                                                  | 0                                     | 0           | 0              | 0     | 0     | 19596 | = |
| 0                                         | 0                                                                  | 0                                     | 0           | 0              | 0     | 0     | 19591 |   |
| 0                                         | 0                                                                  | 0                                     | 0           | 0              | 0     | 19588 |       |   |
| 0                                         | 0                                                                  | 0 0 0 0                               |             |                |       | 0     | 19584 |   |
| 0                                         | 0                                                                  | 0                                     | 0           | 0              | 0     | 0     | 19578 |   |
| 0                                         | 0                                                                  | 0                                     | 0           | 0              | 0     | 0     | 19573 |   |
| 0                                         | 0                                                                  | 0                                     | 0           | 0              | 0     | 0     | 19564 |   |

Figure 63: Apply an **Open boundary with prescribed Q** BC code to the Baxter River upstream reach



Figure 64: Boundary condition applied to bc baxter object

Step 5 and Step 6 , save boundary conditions file and boundary conditions child-object (.cli) to the TELEMAC-2D simulation directory



Figure 65: Save **both** boundary condition objects to the simulation directory

### 4.2 FUDAA Pre-pro

For this tutorial, the TELEMAC-2D parameter files will be provided, however creating a new hydraulic project is detailed below.

#### 4.2.1 TELEMAC-2D parameters file (.cas)

- 1. Open FUDAA Pre-Processor using executable (\*.jar)
- 2. Launch the hydraulic project editor,
- 3. Create a new TELEMAC-2D hydraulic project,
- 4. Specify the TELEMAC-2D files to be used:
  - (a) boundary conditions
  - (b) geometry
  - (c) results filename, etc.
- 5. Save the hydraulic project,  $\begin{bmatrix} 1 \\ save \end{bmatrix}$

Creating a new TELEMAC-2D project is illustrated below in Figures 66 through 74

| <u>File E</u> dition <u>Applications</u> <u>Bookmarks</u> <u>H</u> elp                                                          |     |
|---------------------------------------------------------------------------------------------------------------------------------|-----|
| 🚖 🖸 R, M, 🗏 🗉 🔟                                                                                                                 |     |
| C:\CE540_telemac2d_tutorial\TELEMAC_Baxter_tutorial_files\TELEMAC_simulation_files                                              | 5 🖌 |
| All                                                                                                                             |     |
| S C() V Name                                                                                                                    |     |
| bexter bc2 bruter bc2 bc_bter cli bc_bter cli crating_curve rating_curve results Navigate to TELEMAC_simulation_files directory |     |
| 22M                                                                                                                             |     |

Figure 66: FUDAA Supervisor initialized screen

If creating a new hydraulic project, launch the **hydraulic project editor** by selecting the icon, Create a new TELEMAC project using the **Create...** icon,

| E Create a new Telemac project | tt X                                                         |
|--------------------------------|--------------------------------------------------------------|
|                                |                                                              |
|                                |                                                              |
| Serafin file :                 | tutorial_files\TELEMAC_simulation_files\geometry_baxter.slf  |
| Steering file :                |                                                              |
| Dictionary :                   | telemac2d 🗸                                                  |
| • version of the dico file :   | v6p1                                                         |
| Coad a dico file :             |                                                              |
| Language :                     | English                                                      |
| Boundary conditions file:      | Baxter_tutorial_files\TELEMAC_simulation_files\bc_baxter.cli |
| Optimise with OLB              | Configure                                                    |
| 0                              | ✓ <u>V</u> alidate 🔀 Ca <u>n</u> cel                         |

Figure 67: Populate this window with necessary hydraulic project files

| E S  | ering file :                                   | x   |
|------|------------------------------------------------|-----|
| Boo  | narks: 😭 🔍 💌                                   | / 🛛 |
| Sa   | In: TELEMAC_simulation_files                   |     |
|      | trl_section_results                            |     |
|      | nflow_hydrograph                               |     |
|      | ating_curve Specify steering file name (* cas) |     |
|      | esults                                         |     |
|      | oc_baxter.bc2                                  |     |
|      | oc_baxter.cli                                  |     |
|      | jeometry_baxter.slf                            |     |
| File | lame: baxter_unsteady.cas                      |     |
| File | of <u>Type</u> : All Files                     | -   |
|      | Save Cano                                      | cel |

Figure 68: Under the **Steering file** field, specify the name of your parameters file (e.g. **bax-ter\_unsteady.cas** 

| E File                 |               |                                            |
|------------------------|---------------|--------------------------------------------|
| Bookmarks:             | 1             | ▼ ♥ Z                                      |
| Save In:               | TELEMAC_simu  | lation_files ▼ 🗟 🔂 🗂 📴 🗖                   |
| ctrl_section           | on_results    |                                            |
| inflow_hyd             | lrograph      | Select the boundary condition file (*.cli) |
| 📑 rating_cur           | ve            | J J J J                                    |
| results                |               |                                            |
| bc baxter              | .bc2          |                                            |
| bc_baxter              | .cli          |                                            |
| geometry_              | baxter.slf    |                                            |
| I                      |               |                                            |
| File <u>N</u> ame:     | bc_baxter.cli |                                            |
| Files of <u>Type</u> : | All Files     | -                                          |
|                        |               | Save Cancel                                |

Figure 69: Under the **Boundary conditions** field, specify the file location of bounary conditions file, **bc\_baxter.cli** 

| E Serafin file :       | x                               |
|------------------------|---------------------------------|
| Bookmarks: 📄           | ▼ ♥ Z                           |
| Look <u>I</u> n: 📑 TE  | ELEMAC_simulation_files         |
| ctrl_section           | _results                        |
| inflow_hydr            | ograph Select the geometry file |
| rating_curv            | e                               |
| results                |                                 |
| bc_baxter.b            | 0.2                             |
| bc_baxter.c            | li                              |
| geometry_b             | axter.slf                       |
|                        |                                 |
|                        |                                 |
| File <u>N</u> ame:     | jeometry_baxter.slf             |
| Files of <u>Type</u> : | All Files 🗸 🗸                   |
|                        | Open Cancel                     |

Figure 70: Under the **Serafin file** field (i.e. TELEMAC geometry file format), specify the location of **geometry\_baxter.slf** 

Once the core files have been specified, select **Validate** (e.g. Figure 67) to begin specifying TELEMAC-2D parameters.



Figure 71: Select the General Parameters tab to access the project parameters

| File       | Edition | Project    | Windows           | <u>H</u> elp |            |           |         |           |             |                                       |         |         |            |          |          |             |           |
|------------|---------|------------|-------------------|--------------|------------|-----------|---------|-----------|-------------|---------------------------------------|---------|---------|------------|----------|----------|-------------|-----------|
| D          |         | 凹          |                   | 10           | -          |           | 0       | G         |             | 12                                    | (3)     | 68      | 8          |          |          |             |           |
| Create     | e Open  | Save       | Print             | Undo         | Redo       | Select    | Find    | Arrang    | . Palett.   | Export.                               | Export. | Copy t. | Super.     |          |          |             |           |
| 8 <b>-</b> | -       |            |                   |              |            |           |         |           |             |                                       |         |         |            |          |          |             |           |
| 2          | diff    | 88 🖂       | R <sub>/</sub> Ma |              |            |           |         |           |             |                                       |         |         |            |          |          |             |           |
| =          | G       | noral para | motore 🔅          |              |            |           |         |           |             |                                       |         |         |            |          |          |             |           |
|            | Desis   |            |                   | 4000000000   |            |           |         |           |             |                                       |         |         |            |          |          |             | <u>88</u> |
| ×          | Proje   | ct Key     | words             | soundar      | y conditio | ons       |         |           |             |                                       |         |         |            |          |          |             | - 11      |
|            | Projec  | t's name:  |                   |              |            |           |         |           |             |                                       |         |         |            |          |          |             |           |
|            | Main fi | ile:       | C:\CE540          | telema       | ac2d tuto  | rial\TELE | MAC F   | Baxter ti | itorial fil | es\TELEN                              | IAC sim | ulation | files\bay  | ter unst | eadv.cas |             |           |
|            |         |            |                   |              |            |           |         |           |             | U U U U U U U U U U U U U U U U U U U |         |         | inco as as |          | Judjiede |             |           |
|            | Projec  | t s type:  | telemacz          |              |            |           |         |           |             |                                       |         |         |            |          |          |             |           |
|            | Last s  | ave:       | Nov 11, 2         | 013 10:4     | 44:25 PM   |           |         |           |             |                                       |         |         |            |          |          |             |           |
|            | State:  |            | Modified          | project:     | : model pa | arameter  | s and g | graphic p | roperties   |                                       |         |         |            |          |          |             |           |
|            |         |            | Valid proj        | iect         |            |           |         |           |             |                                       |         |         |            |          |          |             |           |
|            |         |            | Valia proj        |              |            |           |         |           |             |                                       |         |         |            |          |          | <b>E</b> 11 |           |
|            |         |            | Keyword:          |              | h          | c baytor  | cli     |           |             |                                       |         |         |            |          |          | Files       | 411       |
|            | RE      | ESULTS FI  | ILE               | ISTILL       | re         | sults/ba  | ter un: | steadv r  | esults.slf  |                                       |         |         |            |          |          |             | - 11      |
|            | 🔌 GE    | OMETRY     | FILE              |              | g          | eometry_  | baxter  | r.slf     |             |                                       |         |         |            |          |          |             | - 11      |
|            | PF      | REVIOUS    | COMPUTAT          | ION FIL      | E re       | sults\ba  | ter_SS  | _hotstar  | slf         |                                       |         |         |            |          |          |             |           |
|            |         |            | INDARIES F        | FILE         | in         | flow_hyd  | rograpi | h\hydrogr | aphs_ba     | xter.liq                              |         |         |            |          |          |             | - 11      |
|            |         |            |                   |              |            |           |         |           |             |                                       |         |         |            |          |          |             |           |
|            |         |            |                   |              |            |           |         |           |             |                                       |         |         |            |          |          |             |           |
|            |         |            |                   |              |            |           |         |           |             |                                       |         |         |            |          |          |             |           |
|            |         |            |                   |              |            |           |         |           |             |                                       |         |         |            |          |          |             |           |
|            |         |            |                   |              |            |           |         |           |             |                                       |         |         |            |          |          |             |           |
|            |         |            |                   |              |            |           |         |           |             |                                       |         |         |            |          |          |             |           |
|            |         |            |                   |              |            |           |         |           |             |                                       |         |         |            |          |          |             |           |
|            |         |            |                   |              |            |           |         |           |             |                                       |         |         |            |          |          |             |           |
|            |         |            |                   |              |            |           |         |           |             |                                       |         |         |            |          |          |             |           |
|            |         |            |                   |              |            |           |         |           |             |                                       |         |         |            |          |          |             |           |
|            |         |            |                   |              |            |           |         |           |             |                                       |         |         |            |          |          |             |           |
|            |         |            |                   |              |            |           |         |           |             |                                       |         |         |            |          |          |             |           |
|            |         |            |                   |              |            |           |         |           |             |                                       |         |         |            |          |          |             |           |
|            |         |            |                   |              |            |           |         |           |             |                                       |         |         |            |          |          |             |           |
|            | •       |            |                   |              |            |           |         |           |             |                                       |         |         |            |          |          |             |           |



| E File                                 |
|----------------------------------------|
| Bookmarks: 😭 🔍 🗹                       |
| Look In: results                       |
|                                        |
|                                        |
|                                        |
| File Name: unsteady_baxter_results.slf |
| Files of <u>Type</u> : All Files       |
| Open Cancel                            |

Figure 73: Select the **Results File** field to specify where to write the T2D results

| General parameters Project Keywords                                                            | Searching and viewing your hydraulic project parameters are easily accessed                                                          |                                                                                            |                    |                                                                     |                 |   |  |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------|-----------------|---|--|
| $\mathbb{N} \otimes$                                                                           |                                                                                                                                      | Name                                                                                       |                    | Value                                                               |                 |   |  |
| Name A                                                                                         | ABSCISSAE OF SOURCES<br>AIR PRESSURE<br>BINARY DATA FILE 1                                                                           | Under the <b>Keyw</b>                                                                      | ords tab, a        | Ill parameters                                                      |                 |   |  |
| State                                                                                          | BINARY DATA FILE 2<br>BINARY RESULTS FILE<br>BOTTOM SURFACES DELW<br>BOTTOM TOPOGRAPHY FILE                                          | listed with short                                                                          | description        | 18                                                                  |                 |   |  |
| Error E                                                                                        | BOUNDARY CONDITIONS FI                                                                                                               | OF TRACERS                                                                                 | bc_baxter2.0       | cli                                                                 |                 |   |  |
| Normal<br>Advanced<br>Expert                                                                   | COMPUTATION CONTINUED                                                                                                                | )                                                                                          |                    |                                                                     |                 |   |  |
| Headings                                                                                       | CORIOLIS COEFFICIENT<br>COST FUNCTION                                                                                                |                                                                                            | 0.                 |                                                                     |                 | - |  |
| EQUATIONS<br>EQUATIONS, BOUNDARY                                                               | COUPLING PERIOD FOR SIS                                                                                                              | SYPHE<br>MAWAC                                                                             | 1                  |                                                                     |                 |   |  |
| EQUATIONS, SOURCE T                                                                            | CRAY NAME<br>DEBUGGER                                                                                                                |                                                                                            | cicraya<br>0       |                                                                     |                 |   |  |
| INPUT-OUTPUT, FILES                                                                            |                                                                                                                                      | ITABLE                                                                                     | telemac2dit        | el2d_VVV PPP telemac2dl<br>el2d_VVV PPPItelemac2dl<br>DEFAULT EXECU |                 |   |  |
| INPUT-OUTPUT, INFORM L<br>NUMERICAL PARAMETE V<br>NUMERICAL PARAMETE V<br>NUMERICAL PARAMETE E | Default value:<br>Value: bc_b<br>Error:                                                                                              | axter2.cli                                                                                 | Defat<br>telen     | ult value:<br>nac2d tel2d_VVV PPP tele                              | mac2dMMMVVV.exe |   |  |
| NUMERICAL PARAMETE PHYSICAL CONSTANTS                                                          | Dependent keywords: nor<br>Help                                                                                                      | ne                                                                                         |                    |                                                                     |                 |   |  |
|                                                                                                | Type: Character<br>Level: Normal<br>Name of the file containing t<br>This file is filled automatical<br>through colours that are ass | the types of boundary condit<br>ly by the mesh generator thi<br>igned to the boundary node | ons.<br>ough<br>s. |                                                                     |                 | = |  |
|                                                                                                |                                                                                                                                      |                                                                                            |                    |                                                                     | -               | · |  |

Figure 74: The **Keywords** tab is used for viewing and understanding the hydraulic project parameters

#### 4.2.2 Example unsteady parameters file (.cas)

To view the example TELEMAC-2D parameters file, initialize FUDAA Pre-pro and launch the hy-

draulic project editor, E. Next, open the baxter\_unsteady.cas file from the TELEMAC\_simulation\_files directory to load and view the project parameters.



Figure 75: Project files for example TELEMAC-2D unsteady parameters file

| General parameters                           | Apply filter to view only the M<br>TELEMAC-2D project parame<br>to clear the filter and view all <b>F</b> | lodified<br>ters; right-click<br>Keywords      |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------|
|                                              | BOUNDARY CONDITIONS FILE                                                                                  | bc baxter2 cli                                 |
| Name                                         | COMPATIBLE COMPLITATION OF FLUXES                                                                         |                                                |
|                                              | OMPUTATION CONTINUED                                                                                      |                                                |
| []                                           | ERICTION COFFEICIENT                                                                                      | 0.06                                           |
| State                                        | GEOMETRY FILE                                                                                             | geometry_bayter2 slf                           |
| Not modified                                 | GRAPHIC PRINTOUT PERIOD                                                                                   | 60                                             |
| Modified                                     | LAW OF BOTTOM ERICTION                                                                                    | 4: MANNING                                     |
| Error                                        | LIQUID BOUNDARIES FILE                                                                                    | inflow hydrograph/hydrographs baxter lig       |
| U1                                           | LISTING PRINTOUT PERIOD                                                                                   | 10                                             |
| Mode                                         | MASS-BALANCE                                                                                              |                                                |
| Normal                                       | NUMBER OF TIME STEPS                                                                                      | 15240                                          |
| Advanced                                     | OPTION FOR LIQUID BOUNDARIES                                                                              | 1.1.1                                          |
| Expert                                       | PREVIOUS COMPUTATION FILE                                                                                 | results/baxter_hotstart.slf                    |
| <u>.                                    </u> | RESULTS FILE                                                                                              | results/unsteady_results.slf                   |
| Headings                                     | SECTIONS INPUT FILE                                                                                       | ctrl section results/control sections.txt      |
| BOUNDARY CONDITIONS                          | SECTIONS OUTPUT FILE                                                                                      | ctrl section results/unsteady ctrl results.txt |
| EQUATIONS                                    | STAGE-DISCHARGE CURVES                                                                                    | 0:0:1                                          |
| EQUATIONS, BOUNDARY                          | STAGE-DISCHARGE CURVES FILE                                                                               | rating curve/rating curve So 001.bt            |
| EQUATIONS, INITIAL CO                        | SUPG OPTION                                                                                               | 1:1:1:1                                        |
| EQUATIONS, SOURCE T                          | TIME STEP                                                                                                 | 5                                              |
| FILES                                        | TURBULENCE MODEL                                                                                          | 3: K-EPSILON MODEL                             |
| GENERAL                                      | VARIABLES FOR GRAPHIC PRINTOUTS                                                                           | U.V.B.H.S.F                                    |
| INPUT-OUTPUT, FILES                          | VELOCITY PROFILES                                                                                         | 5;5;1                                          |
| INPUT-OUTPUT, GRAPHI                         |                                                                                                           |                                                |
| INPUT-OUTPUT, INFORM                         | Name: FRICTION COEFFICIENT                                                                                | A                                              |
| NUMERICAL PARAMETE                           | Heading: EQUATIONS                                                                                        |                                                |
| NUMERICAL PARAMETE                           | Default value: 50.                                                                                        |                                                |
| NUMERICAL PARAMETE                           | Value: 0.06                                                                                               |                                                |
| PHYSICAL CONSTANTS                           | Error:                                                                                                    |                                                |
|                                              | Dependent keywords: none                                                                                  |                                                |
|                                              | Help                                                                                                      |                                                |
|                                              | formulation. It is noteworthy that the meaning of this fi                                                 |                                                |
|                                              | according to the selected formula (Chazy Strickler, et                                                    |                                                |
|                                              | 1 : linear coefficient                                                                                    | ~J.                                            |
|                                              | 2 : Chezy coefficient                                                                                     |                                                |
|                                              | 2 : Strickler coefficient                                                                                 |                                                |
|                                              | A : Manning coefficient                                                                                   |                                                |
|                                              | 5 : Nikuradse grain size                                                                                  |                                                |
|                                              | 5. Nikurause grain size                                                                                   |                                                |

Figure 76: Using the filters under the **Keywords** tab can help view pertinent parameters to your project quickly

```
🖶 rating_curve_So_001.txt 🗵 📙 baxter_unsteady.cas 🖾 🔚 baxter_unsteady2.cas 🖾 🔚 T2DCAS_fast_impl_
  /-----
1
                                         L
  / TELEMAC2D Version v6p1 Nov 14, 2013
2
                                         ľ
3
  / nom inconnu
4
  /-----
                                         -
5
6
  /-----
7
  / BOUNDARY CONDITIONS
8
  /-----
9
10
  STAGE-DISCHARGE CURVES =0;0;1
11
12
13
  /-----
14
  / EQUATIONS
  /-----
15
16
17
  BOTTOM SMOOTHINGS =1
18
19 FRICTION COEFFICIENT =0.06
20
21 LAW OF BOTTOM FRICTION =4
22
23 TURBULENCE MODEL
              =3
```

Figure 77: Once changes are saved from FUDAA, the parameters file is well organized and ready for the TELEMAC-2D simulation

# **5** Running TELEMAC-2D simulation

- 1. Open DOS command window
- 2. Test that **Python** and **gfortran** is working
- 3. Change working directory to TELEMAC-2D simulation directory
- 4. Execute TELEMAC-2D simulation

## 5.1 TELEMAC-2D from the DOS Command Prompt

The following figures (78 to 85) illustrate the process of opening a new DOS command prompt, testing Python and gfortran installations, and executing TELEMAC-2D.

| Programs<br>cmd.e<br>cmd.e | (2)<br>xe<br>03              |
|----------------------------|------------------------------|
| Creat                      | te a new DOS Prompt through: |
|                            | Start > cmd > enter          |
| ₽ See m                    | esults                       |
| cmd                        | × Log off +                  |
| <b>S</b>                   | 🗧 🖸 💓 😰 🔛                    |

Figure 78: initialize new DOS command prompt







Figure 80: Check Python version, should be 2.7.3 or 2.7.5



Figure 81: Test gfortran installation


Figure 82: Copy the full-path directory address to the TELEMAC\_simulation\_files folder



Figure 83: Using the change-directory DOS command, **cd**, change the directory to the location of the **TELEMAC\_simulation\_files** folder



Figure 84: Within the input file working directory, execute TELEMAC-2D using the command, **telemac2d.py name\_of\_input\_file.cas** 

| C:\Windows\system32\cmd.exe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8     |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| _files\TELEMAC_simulation_files\baxter_unsteady2.cas_2013-11-13-23h37min37s\T2<br>LI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2DC 🔺 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |
| Munning your simulation :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |  |  |
| C:\CE540_telemac2d_tutorial\TELEMAC_Baxter_tutorial_files\TELEMAC_simulation_f<br>es\baxter_unsteady2.cas_2013-11-13-23h37min37s\out_telemac2d.exe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fil   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |
| LISTING OF TELEMAC-2D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |
| T E L E MM MM A A C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |  |  |
| $\begin{array}{ccccc} \mathbf{I} & \mathbf{E} & \mathbf{E} & \mathbf{E} & \mathbf{E} & \mathbf{M} & \mathbf{M} & \mathbf{A} & \mathbf{A} & \mathbf{C} \\ \mathbf{T} & \mathbf{E} & \mathbf{E} & \mathbf{E} & \mathbf{M} & \mathbf{M} & \mathbf{A} & \mathbf{A} & \mathbf{C} \\ \mathbf{T} & \mathbf{E} & \mathbf{E} & \mathbf{E} & \mathbf{E} & \mathbf{E} & \mathbf{M} & \mathbf{M} & \mathbf{A} & \mathbf{A} & \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} & \mathbf{C} $ |       |  |  |
| 2D VERSION 6.3 FORTRAN 90<br>WITH SEVERAL TRACERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |  |  |
| COUPLED WITH SISYPHE AND TOMAWAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |  |  |
| DIFFERENT NUMBER OF PARALLEL PROCESSORS:<br>DECLARED BEFORE (CASE OF COUPLING ?): Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |  |  |
| TELEMAC-2D: 1<br>VALUE ØISKEPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |  |  |
| ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |  |  |
| * LECDON: *<br>* AFTER CALLING DAMOCLES *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |  |  |
| * CHECKING OF DATA READ *<br>* IN THE STEPPING FILE *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |  |  |
| *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |  |  |

Figure 85: If there are no errors, the simulation will execute until finished

#### 5.2 TELEMAC-2D Steady-state simulation

Good initial conditions are imperative for reducing overall simulation times as well as ensuring that no additional factors influence the final results. In general, achieving a steady-state solution occurs when the discharge and water surface elevation are no longer changing as a function of time (i.e.  $\frac{\partial Q}{\partial t} = 0, \frac{\partial H}{\partial t} = 0$ ). Here we can utilize the fully-implicit descritization of TELEMAC-2D to speed up the computation for achieving an initial steady state.

An example steady-state parameters file has been included in the **TELEMAC\_simulation\_files** directory.

#### 5.2.1 Create a HOTSTART file from previous computation

A **HOTSTART** file in this context refers to a simulation, continuing from the final time-step of a previous simulation. For example, a steady-state solution could have been reached for a given mesh configuration. If the computational mesh were changed for the same domain (added levees, bridge piers, etc.), instead of re-simulating from an at rest condition, the values from the previous mesh/solution can be mapped to the new, updated mesh. It requires a few steps, but ultimately saves time, especially when altering meshes on larger domains where reaching a steady-state solution can take hours or days to complete.

Figures 86 through 95 illustrate the process of creating a HOTSTART file from one mesh to another, using the **BlueKenue Calculator** tool.

| 🚟 Open                |                             |                   |          | 8    |
|-----------------------|-----------------------------|-------------------|----------|------|
| 😪 🌍 🗸 📗 « TELEMAC     | _simulation_files 🕨 results | 🕶 🍫 Search resul  | ts       | Q    |
| Organize 🔻 New folde  | r                           |                   | · · ·    | 0    |
| *                     | Name                        | Date modified     | Туре     |      |
| Cibraries             | baxter_SS_hotstart.slf      | 11/6/2013 9:14 PM | SLF File |      |
| Git                   |                             |                   |          |      |
| J Music               |                             |                   |          |      |
| Pictures              |                             |                   |          |      |
| Subversion            |                             |                   |          |      |
| Videos                |                             |                   |          |      |
| 🖳 Computer            |                             |                   |          |      |
| 🖵 leon (\\attic) (A:) |                             |                   |          |      |
| 🚽 rivers (\\pandora   |                             |                   |          |      |
| SDisk (C:)            |                             |                   |          |      |
| 💿 DVD RW Drive (D     |                             |                   |          |      |
| □ GiffordMiears_Ex ▼  | <                           |                   |          | •    |
| File na               | me: baxter_SS_hotstart.slf  | ✓ All Files (*.*) |          | •    |
|                       |                             | Open              | Cance    | el l |
|                       |                             |                   |          |      |

Figure 86: Open the previous results file in BlueKenue (e.g. Baxter\_SS\_hotstart.slf)

| Meta Data |                         |   |
|-----------|-------------------------|---|
| Keyword   | Value                   |   |
| Title     | newSelafin              | + |
| Name      | baxter_hotstart         |   |
| Туре      | Telemac 2D Selafin File |   |
| Directory |                         |   |
| Filename  |                         |   |
|           |                         |   |
|           |                         |   |
|           |                         |   |

Figure 87: Create, and rename a new Selafin file for the HOTSTART components to be stored



Figure 88: If the previous results file has several timesteps, be sure to **Animate** the results, and fast-forward to the final **frame** 

Select the **VELOCITY UV** object from the previous results file, **go-to Tools ; Calculator...** and extract a copy of the U velocity component of the object using the calculator method shown in Figures 89 and 90. This is necessary because BlueKenue automatically combines U and V components of velocity when loading result files, where TELEMAC-2D requires that each variable component be available separately.

| Calcu  | lator                        | X   |  |  |  |  |
|--------|------------------------------|-----|--|--|--|--|
| -Varia | ables<br>Start               | End |  |  |  |  |
| A      | VELOCITY UV V                |     |  |  |  |  |
| В      | 0.0 👻                        |     |  |  |  |  |
| C      | 0.0 🗸                        |     |  |  |  |  |
| D      | 0.0 🗸                        |     |  |  |  |  |
| Ехр    | Expression                   |     |  |  |  |  |
| A      |                              | •   |  |  |  |  |
|        |                              |     |  |  |  |  |
|        |                              |     |  |  |  |  |
|        |                              | ~   |  |  |  |  |
| Res    | Result                       |     |  |  |  |  |
| Nan    | he hotstart_velocity_V Units | M/S |  |  |  |  |
|        |                              |     |  |  |  |  |
|        | Evaluate Cancel              |     |  |  |  |  |

Figure 89: BlueKenue Calculator method for extracting V component velocities as a new object  $hotstart_velocity_V$ 

| Calcu  | ulator                      | X      | 3 |  |
|--------|-----------------------------|--------|---|--|
| -Varia | Variables Start             |        |   |  |
| Α      | VELOCITY UV 🗸 U 🗸           |        |   |  |
| В      | 0.0 💌                       |        |   |  |
| С      | 0.0 🗸                       |        |   |  |
| D      | 0.0 🗸                       |        |   |  |
| Expr   | ression                     | -      |   |  |
|        |                             | *      |   |  |
|        |                             | Ŧ      |   |  |
| Res    | Result                      |        |   |  |
| Nan    | me hotstart_velocity_U Unit | ts M/S |   |  |
|        |                             |        |   |  |
|        | Evaluate Cano               | cel    |   |  |

Figure 90: BlueKenue Calculator method for extracting U component velocities as a new object hotstart\_velocity\_U

Now that the U and V components of velocity across the domain are extracted, new objects have

to be added to the **Selafin** file for interpolating. Add the current domain mesh as the **Source Mesh** and specify the **New Variable** as **VELOCITY U**, for example (Figure 91).

| Add New SELAFIN Variable                                     |                    |  |  |
|--------------------------------------------------------------|--------------------|--|--|
| Source Mesh and Attribute Data                               |                    |  |  |
| Mesh                                                         | New Mesh 💌         |  |  |
| Attribu                                                      | te Name NodeType 💌 |  |  |
| New Variable Properties                                      |                    |  |  |
| Name                                                         | VELOCITY U 👻       |  |  |
| Units                                                        | M/S                |  |  |
| Add copy of domain mesh as<br>new <b>VELOCITY U</b> variable |                    |  |  |
| OK Cancel                                                    |                    |  |  |

Figure 91: Add copies of the current domain mesh as new variables to the Selafin file

Once the **New Variables** are added, they will by default be set to **0** and appear flat as shown in Figure 92.



Figure 92: Unmapped new variable VELOCITY U, prior to Map Objects command

Select one of the **New Variables** of the **Selafin** file, and **go-to Tools ; Map Objects** and select the previous result file child-object that corresponds to the selected **New Variable**. This is shown with the child-object **VELOCITY U** in Figure 93.

| Available Objects                                                                                                   | 23       |
|---------------------------------------------------------------------------------------------------------------------|----------|
| TISSIPATION TO DISSIPATION TO VISCOSITY TO VISCOSITY TO FLOWRATE ALONG XY TO FLOCITY V TO VELOCITY V TO WATER DEPTH |          |
| THEREE SUBFACE                                                                                                      | E        |
| <pre> hotstart_velocity_v </pre>                                                                                    | <b>T</b> |
| OK Cancel                                                                                                           | ]        |

Figure 93: Map previous result file components to new components using Map Objects command



Figure 94: Successfully mapped VELOCITY U object

The variables required for a complete HOTSTART file to be created are VELOCITY U, VELOC-ITY V, WATER DEPTH, and FREE SURFACE ELEVATION.



Figure 95: Successful HOTSTART file generation should contain the above four child-objects

Once the HOTSTART file is created, it can be included in the parameters file as a **PREVIOUS COMPUTATION FILE**.

#### 5.3 TELEMAC-2D Unsteady simulation

#### 5.3.1 Unsteady boundary conditions

Inflow hydrographs are to be specified at the **Open boundary with specified Q** nodes for both upstream reaches. The downstream boundary will be represented using a rating curve assuming **Normal Flow** and a bed-slope,  $S_0$ , equal to 0.001 m/m.



Figure 96: Inflow hydrographs applied to the Baxter River and Tule Creek

| Т     | Q(1)     | Q(2)    |
|-------|----------|---------|
| S     | m3/s     | m3/s    |
| 0     | 566.337  | 11.327  |
| 7200  | 566.337  | 11.327  |
| 39000 | 3567.923 | 102.649 |
| 70800 | 566.337  | 11.327  |
| 76200 | 566.337  | 11.327  |

Table 4: Baxter tutorial inflow hydrograph values



### **Baxter River Outflow Rating Curve**

Figure 97: Outflow rating curve for this tutuorial

| Z(3)   | Q(3)     |
|--------|----------|
| m      | m3/s     |
| 7.266  | 2.832    |
| 8.830  | 76.399   |
| 9.513  | 149.966  |
| •      |          |
| •      | •        |
| •      | •        |
| 16.106 | 3681.190 |
| 16.426 | 4247.527 |
| 17.057 | 5663.369 |

Table 5: Rating curve for downstream boundary condition

## 6 Post-processing utilizing BlueKenue

BlueKenue as a post-processing tool serves as an intuitive and capable platform for viewing and analyzing 2D- and 3D-results. Once the results are opened within the **Workspace**, the following are some guidelines for basic viewing of results.



Figure 98: Applying a vertical exaggeration to datasets with horizontal scales much larger than the vertical scale (e.g. BOTTOM, FREE SURFACE, etc.) helps to visualize geometric features



Figure 99: Changing the **Style** and opacity of the object is easily performed by double-clicking or right-clicking the object



Figure 100: After initializing the **Animate** item under properties and select **Apply**, then the playback controls initialize to view the dataset

### 6.1 Flood inundation view settings



Figure 101: To view only the Flood Inundation depths, apply **Clip Contours** and make sure that **Style** is set to **Filled Contours** 



Figure 102: Resulting view from Figure 101 settings with Animate enabled

#### 6.2 Animation of Flood-wave propagation

Animations of your TELEMAC-2D results are easily exported as video files using BlueKenue. For example, the following steps will illustrate how to export an animation of the flood-wave propagation to a video file.

- 1. Create a new **3D View**
- 2. Drag and drop TELEMAC-2D result objects to animate

- 3. Enable animation on the T2D object and select desired Scale, viewing angle, etc.
- 4. Under properties of the 3D View object, select the Recording tab
- 5. Choose destination filename, number of frames, playback frame-rate, encoding method, etc.
- 6. Create the animation by selecting the record icon,

#### 6.3 Outflow hydrographs using MATLAB

Using control sections defined within the computational domain, it is possible to calculate and track discharge at specified locations. The control sections can be specified by either coordinate pairs, or by start-and-end mesh nodes. The control sections incorporated in this tutorial are shown in Figure 103 below. An example of outflow hydrographs resulting from using control sections is shown in Figure 104. The simple MATLAB plotting routine is included in the **ctrl\_section\_results** directory as **plot\_ctrl\_section\_results.m**.



Figure 103: Control sections within the Baxter River domain



Figure 104: Outflow hydrographs resulting from unsteady TELEMAC-2D simulation

### 6.4 TELEMAC-2D vs HEC-GeoRAS Flood Inundation

Comparison between TELEMAC-2D and HEC-GeoRAS flood inundation can be achieved through importing the HEC-GeoRAS inundation map to BlueKenue. The process for exporting an ArcView Shape File from ArcGIS is detailed in Section 2.3. Note that the exported Shape File will need to be converted using the conversion in Section 2.5.

A quick comparison between the TELEMAC-2D and HEC-GeoRAS flood inundation extents shows loose agreement, with TELEMAC-2D showing greater inundation extents for the same flow event. Using the **Animate** playback controls, the TELEMAC-2D max inundation occurs around time 15:00 (HH:MM).



Figure 105: Example comparison of TELEMAC-2D and HEC-GeoRAS inundation extents

# Appendix A Create Simple Meshes in Blue Kenue

This section gives brief step-by-step instructions on how to create a simple mesh in BlueKenue for use with the TELEMAC hydrodynamics suite. The content and figures herein are adapted from the work of **Stephen Kwan, MCS, Ph.D**. You can find the original document link at his website: http://river2dm.wordpress.com/telemac2d/

| 1.  | Load xyz data.                                                    |               |
|-----|-------------------------------------------------------------------|---------------|
| 2.  | Create closed line (Figure A106)                                  | Page 90       |
| 3.  | Highlight the xyz data in DataItems                               |               |
| 4.  | Select Files>New>T3 Mesh generator (Figure A107)                  | Page 90       |
| 5.  | Give length of element side and press OK                          |               |
| 6.  | Drag the new ClosedLine into Outline of newT3Mesh (Figure A108)   | Page 91       |
| 7.  | Double click on new T3 Mesh and press run (Figures A109 and A110) | Pages 91 & 92 |
| 8.  | Select File>New 2D Interpolator (Figure A111)                     | Page 92       |
| 9.  | Drag subset into newInterpolator2D (Figure A112)                  | Page 93       |
| 10. | Highlight New Mesh (NodeType)                                     |               |
| 11. | Select Tools>Map object                                           |               |
| 12. | Choose New2Dinterpolator (Figure A113)                            | Page 93       |
| 13. | Give name, put M for units (Figure A114)                          | Page 94       |
| 14. | Mesh shown in (Figure A115)                                       | Page 94       |

#### A.1 Supporting figures for simple mesh tutorial

The figures below correspond to the above list of steps required to create a simple mesh in BlueKenue.



Figure A106: Create closed line for the exterior boundary of the mesh.



Figure A107: Create New T3 Mesh



Figure A108: Drag newClosedLine into newT3Mesh Outline



Figure A109: Select edge length for elements and run.



Figure A110: The new T3 mesh!



Figure A111: Create New 2D Interpolator.



Figure A112: Drag subset of xyz data into newInterpalator2D.



Figure A113: Choose Tools>Map Object and select newInterpolator2D.



Figure A114: Give a new name and choose put M for units.



Figure A115: The new interpolated mesh.

## Appendix B Self-installation of TELEMAC hydrodynamics suite

TELEMAC-MACARET Python Installation Notes Link

### **B.1** Pre-requisite programs for TELEMAC installation

These brief notes detail requirements for source code compilation using a Python/gfortran/windows configuration. As stated above in Section 1, the required programs to be installed include:

- - Python 2.7.3 or 2.7.5
- - gfortran (gcc) Compiler
- - SVN Tortoise subversion program

### **B.2 TELEMAC source code checkout using Tortoise SVN**

Checking out the source code of TELEMAC is easily done using Tortoise SVN software. Create a new folder named 'opentelemac' in the desired directory (e.g. c:\... for this example), right-click the folder and select 'SVN Checkout...'. Next, you'll enter the SVN address below and then enter the username and password when prompted. Note: if there is a new version of TELEMAC available, simply change the SVN address per www.opentelemac.org.

```
URL of Repository (as of November 1st, 2013):
http://svn.opentelemac.org/svn/opentelemac/tags/v6p3r1/
username: ot-svn-public
password: telemac1*
```

In order for TELEMAC to communicate with the required programs from the DOS command prompt, the user/system environmental variables must direct the system to each application/required file. You can get to the environmental variable dialogue through the Control- Panel, typing 'environmental variables' into the search bar, or from the 'Start' menu. Once there, append the environmental variables to include the ones stated below. As time goes on, each system will be slightly different, however the general idea is as follows:

- 1. grant access to Python, scripts¿python27 folder, and gcc bin folder within PATH
- 2. include EQ\_LIBRARY\_PATH for gfortran (gcc) to reference
- 3. include SYSTELCFG path to the TELEMAC configuration file

#### **B.3** Environment variables for running/compiling TELEMAC

```
PATH:
c:\gcc\bin;c:\Python27\Lib;c\Python27; ...
c:\opentelemac\v6p3\scripts\python27;
EQ_LIBRARY_PATH:
c:\gcc\x86_64-w64-mingw32\lib
SYSTELCFG:
c:\opentelemac\v6p3\configs\systel.cfg
```

See www.opentelemac.org for additional installation instructions if this isn't clear: http://www.opentelemac.org/... search for Python installation instructions.

#### **B.4** Testing your PATH variables

To test that your path variables are working, open a DOS command prompt session and type the following:

- 'gfortran -v'
- 'python -v'

If your path variables are set-up correctly, the version information will print to your screen. (note: to exit python-mode type 'exit()' or 'CTRL+Z+Enter')

#### **B.5 Compiling TELEMAC**

Once the path variables are working and the 'systel.cfg' file is appropriately set-up (or copied from this installation repository) for your system specifics, open the command prompt. Change directory to the pytel folder directory (**not necessary**),

```
(e.g. cd c:\opentelemac\v6p3\scripts\python27) and execute the command:
```

```
'compileTELEMAC.py'
```

If all is set-up correctly, then the TELEMAC system will soon be installed, compiled, and ready for use on your machine.

As mentioned before, if you're having any trouble installing TELEMAC with these instructions as well as the provided guide- lines of opentelemac.org, feel free to contact me.

Cheers!

Christopher Gifford-Miears cgiffordmiears@gmail.com