Steady Flow in Pipe Networks

Prof. Arturo S. Leon, Ph.D., P.E., D.WRE Florida International University

Video of pipe flows

3D Petrochemical Refinery

https://www.youtube.com/watch?v=tkmozP-97M4

Figure 8.1 © John Wiley & Sons, Inc. All rights reserved.

Laminar or Turbulent Flow?

Re ≤ 2000 (Laminar) 2000 < Re < 4000 (transitio Re ≥ 4000 (turbs lent)

Total head losses: Major + Minor

Major losses (pipe friction)

Table 8.1

Equivalent Roughness for New Pipes [Adapted from Moody (Ref. 7) and Colebrook (Ref. 8)]

	Equivalent	Roughness, ε
Pipe	Feet	Millimeters
Riveted steel	0.003-0.03	0.9–9.0
Concrete	0.001 - 0.01	0.3-6.0
Wood stave	0.0006-0.003	0.18-0.9
Cast iron	0.00085	0.26
Galvanized iron	0.0005	0.15
Commercial steel		
or wrought iron	0.00015	0.045
Drawn tubing	0.000005	0.0015
Plastic, glass	0.0 (smooth)	0.0 (smooth)
Table 8.1 © John Wiley & Sons, Inc. All rights reserved.	(depen	w high ds on surface finis

Entrance flow conditions and loss coefficient

Head Loss coefficients

Threaded elbow

Flanged elbow

Loss Coefficients for Pipe Components	$\left(h_L = K_L \frac{V^2}{2g}\right)$) (Data from	Refs. 5	5, 10,	27)
---------------------------------------	---	--------------	---------	--------	-----

Component	K _L		
a. Elbows			
Regular 90°, flanged	0.3		
Regular 90°, threaded	1.5		
Long radius 90°, flanged	0.2	V	90° elbow
Long radius 90°, threaded	0.7		
Long radius 45°, flanged	0.2		
Regular 45°, threaded	0.4		
b. 180° return bends		V	45° elbow
180° return bend, flanged	0.2		
180° return bend, threaded	1.5		
c. Tees			
Line flow, flanged	0.2		180° return
Line flow, threaded	0.9	V	bend
Branch flow, flanged	1.0		
Branch flow, threaded	2.0		
d. Union, threaded	0.08	v	Tee
*e. Valves			
Globe, fully open	10		
Angle, fully open	2		
Gate, fully open	0.15	V	Tee
Gate, $\frac{1}{4}$ closed	0.26		
Gate, $\frac{1}{2}$ closed	2.1		
Gate, $\frac{3}{4}$ closed	17	V	
Swing check, forward flow	2	and the second se	Union
Swing check, backward flow	00		Union
Ball valve, fully open	0.05		
Ball valve, $\frac{1}{3}$ closed	5.5		
Ball valve, $\frac{4}{3}$ closed	210		_

Example:

A 40-m long, 12-mm diameter pipe with a friction factor of 0.020 is used to siphon 30° C water from a tank as shown in Fig. 8.50. Determine the maximum value of *h* allowed if there is to be no cavitation within the hose. Neglect minor losses.

 $\gamma_{30'c} = J \cdot g = 9 \cdot 768 \frac{kN}{m^3}$ $\frac{P_{1}+V_{2}+z_{1}}{V_{2}+z_{2}} = \frac{P_{2}+V_{2}+z_{2}+h_{1-2}}{V_{2}+z_{2}}$ $\frac{4.24 \text{ km}^2}{9.268 \text{ kN} \text{ km}^3} + \frac{V_2^2}{29} + 4$ 101.3 Krolm2 + 0 9.768 Kolm3 $+ \underbrace{0.020 \times 10}_{0.012} \left(\frac{V_2^2}{2g} \right)$ $V_2 = 2.56 \, \text{m/s}$ ***** Q = A•∨ $v_2 = v_3 = 2.56 \text{ m/s}$

 $E_1 = E_3 \approx 0$ $= \frac{P_{2}}{8} + \frac{V_{3}}{29} + \frac{V_{3}}{23} + \frac{V_{3}}{4} + \frac{V_{3}}{4$ $h+3 = 2.56^2$ $+ 0.020 \times 40$ 0.012 2×9.81 h = 19.6 m

Hydraulic Pumps

Arturo S. Leon, Ph.D., P.E., D.WRE

Typical discharge, head, and power requirements for different types of pumps

Pump Performance Characteristics

Fig. 12.6 Radial-flow pump and performance curves for four different impellers with N = 2900 rpm ($\omega = 304$ rad/s). Water at 20°C is the pumped liquid. (Courtesy of Sulzer Pumps Ltd.)

System Characteristics and Pump Selection

- To select a pump, it is necessary to utilize both the system curve (determined by the system equation), and the pump performance curve.
- The intersection of both curves represents the operating point for the system.
- The operating point should be near the best efficiency point.

Example 12.7. Water is pumped between two reservoirs in a pipeline with the following characteristics:

D = 300 mm, L = 70 m, f = 0.025, $\Sigma K = 2.5$. The radial-flow pump characteristic curve is approximated by the formula

$$H_P = 22.9 + 10.7 Q - 111 Q^2$$

where H_P is in meters and Q is in m³/s. Determine the discharge Q_D and pump head H_D for the following situations:

(a) $z_2 - z_1 = 15$ m, one pump placed in operation; (b) $z_2 - z_1 = 15$ m, with two identical pumps operating in parallel; and (c) the pump layout, discharge, and head for $z_2 - z_1 = 25$ m.

a) $Z_z - Z_J = 15m$ [one pump]. System curve: $H_p = Z_z - Z_1 + (fL + \geq k) \frac{Q^2}{D}$ $H_p = 15 + (\underbrace{0.025 \times 70}_{0.3} + 2.5) \frac{Q^2}{Q^2}$ $Z_{-Q,R1V} [T1 \times 0.3^2]^2$ $Hp = 15 + 85.09 Q^{2} \dots 2$ $(1) = (2) 15 + 85 \cdot 090 = 22 \cdot 9 + 10 \cdot 70 -$ $||| Q^2$ In (1) or (2) Hp = 19.5 m/s

(b)
$$Z_2 - Z_1 = 15 \text{ m}$$
, two pumps in parallel.
For one pump:
Hp=22.9+10.7@-III@²
 $A_2 = A_2$
Hp=22.9+10.7@-III@²
For two pumps: Hp=22.9+10.7(@)-III(@)²
For "N" pumps: Hp=22.9+10.7(@)-III(@)²
 N

For two pumps in parallel $15+85.09 \ Q^2 = 22.9+10.7(\underline{Q})$ $-11\left(\frac{\varphi}{2}\right)$ $Q = 0.29 \, \text{m}^3/\text{s}$ Hp = 22.2 m $(C) Z_{2-}Z_{1} = 25 m$ Q, Hp [How many pumps, series or parallel System cure $H_{p} = (25) + 85.09 Q^{2}$

25
25
22.9

$$pumps in series.$$

 $pumps in series.$
 $pumps in series.$
 $hp = 2(22.9 + 10.7 Q - 111 Q^2)$
 $hp = N(22.9 + 10.7 Q - 111 Q^2)$
 $hp = N(22.9 + 10.7 Q - 111 Q^2)$
 $hp = N(22.9 + 10.7 Q - 111 Q^2)$
 $hp = N(22.9 + 10.7 Q - 111 Q^2)$
 $hp = N(22.9 + 10.7 Q - 111 Q^2)$
 $hp = N(22.9 + 10.7 Q - 111 Q^2)$

Pipe Networks

Bronchiole

Arturo S. Leon, Ph.D., P.E., D.WRE

Frictional Losses in Pipe Elements

Frictional losses in piping are commonly evaluated using the **Darcy–Weisbach** or **Hazen–Williams** equation. The Darcy–Weisbach formulation provides a more accurate estimation.

Hazen-Williams equation (For Water)

C = Hazen–Williams roughness coefficient, m = 4.87, $\beta = 1.85$

)10.59 (SI) 4.72 (English)

Table 11.1Nominal Values of theHazen–Williams Coefficient C

Type of pipe	С
Extremely smooth; asbestos-cement New or smooth cast iron; concrete Wood stave; newly welded steel	140 130 120 110
vitrified clay Cast iron or riveted steel after some	95–100
Deteriorated old pipes	60-80

Fig. 11.5 Branch piping systems: (a) gravity flow; (b) pump-driven flow.

Example 11.7. For the piping system (**commercial steel**) shown below, determine the flow distribution and piezometric heads at the junctions. Use the **EPANET Model** (<u>https://www.epa.gov/water-research/epanet</u>).

Important Considerations in EPANET

EPANET defaults to gallons per minute and other Customary US units. To change to SI units do the following:
Project > Analysis Options... > Flow Units > LPS (or LPM or other SI units for flow) (This also changes units for pipe lengths and head to meters and pipe diameters to mm.)

- Length: The actual length of the pipe in feet (meters)
- **Diameter:** The pipe diameter in inches (mm)
- Roughness: The roughness coefficient of the pipe. It is unitless for Hazen-Williams or Chezy-Manning roughness and has units of millifeet (mm) for Darcy-Weisbach roughness.
- Loss Coefficient: Unitless minor loss coefficient associated with bends, fittings, etc. Assumed 0 if left blank.
- Initial Status: Determines whether the pipe is initially open, closed, or contains a check valve. If a check valve is specified then the flow direction in the pipe will always be from the Start node to the End node

Results:

III Network Table - Links at 24:00 Hrs

Link ID	Length m	Diameter mm	Roughness mm	Flow LPS	Velocity m/s	Friction Factor	Status
Pipe C1	66	250	0.045	341.34	6.95	0.014	Open
Pipe C2	330	250	0.045	143.08	2.91	0.015	Open
Pipe C3	330	250	0.045	66.54	1.36	0.016	Open
Pipe C8	260	250	0.045	48.26	0.98	0.017	Open
Pipe C7	200	250	0.045	198.26	4.04	0.015	Open
Pipe C6	260	250	0.045	76.54	1.56	0.016	Open
Pipe C5	55	250	0.045	25.19	0.51	0.018	Open
Pipe C4	130	250	0.045	-41.34	0.84	0.017	Open

III Network Table - Nodes at 0:00 Hrs						
Node ID	Elevation m	Base Demand LPS	Demand LPS	Head m	Pressure m	
June N2	0	0	0.00	40.79	40.79	
June N3	0	0	0.00	32.29	32.29	
June N4	0	0	0.00	30.32	30.32	
June N6	0	150	150.00	31.11	31.11	
June N5	0	150	150.00	30.26	30.26	
Resvr N1	50	#N/A	-341.34	50.00	0.00	
Resvr N7	30	#N/A	41.34	30.00	0.00	

Results (Cont.):

