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Evolving from Finite Difference (FD) 
to Finite Volume (FV)
• Over the last several decades, the shallow water 

equations in 1D and 2D were solved mostly using 
Finite Difference (FD) techniques. 

• Since about a decade ago (~2005), there is more 
emphasis on using Finite-Volume (FV) methods 
for the solution of the shallow water equations in 
1D and 2D

• A FV solution approach, similar to what was 
added for 2D modeling will be available for 1D 
modeling in HEC-RAS version 5.1



Preissmann Scheme (Finite Difference)
 This method has been widely used (e.g., 

HEC-RAS)

 The advantage of this method is that variable 
spatial grid may be used 

 Steep wave fronts may be properly simulated 
by varying the weighting coefficient

1D HEC-RAS (< V. 5.1)
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Preissmann Scheme cont…

 Where α is a weighting coefficient
 By selecting a suitable value for α, the scheme may 

be made totally explicit (α=0) or implicit (α=1)
 Usually, the scheme is stable if 0.6< α ≤1. 



Finite Volume Methods
(1D-2D)

Adapted from Lecture Notes on Shallow-Water equations by Andrew Sleigh, 
Toro (1999,2001) and Leon et al. (2006, 2010)



 Ability to handle extreme flows
 Transitions between subcritical / supercritical 

flows are easily handled
– Other techniques have problems with trans-critical 

flows
 Steep wave fronts can be accurately 

simulated

Finite Volume Shock-Capturing 
Methods



Dam break

Source: An unstructured node-centered finite volume scheme for shallow water flows with wet/dry fronts over complex topography, 
Nikolos and Delis



Dam break (animation)
http://www.youtube.com/watch?v=-QXUViTi_b0



Shallow-water equations in 1D
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Governing equations in conservative form



I1 and I2
 Trapezoidal  channel

– Base width B, Side slope SL= Y/Z

 Rectangular, SL = 0

 Source  term
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Rectangular Prismatic
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Finite volume formulation
 For homogeneous form

– i.e. without source terms

rectangular control volume in x-t space

   0
V
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Finite Volume Formulation (Cont.)

Defining as integral averages

Finite volume formulation becomes
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 So far no approximation was made

 The solution now depends on how the integral 
averages are estimated

 In particular, the inter-cell fluxes Fi+1/2 and F1-1/2 

need to be estimated. 

Finite Volume Formulation (Cont.)



Godunov method for flux comput.
 Uses information from the wave structure
 Assume piecewise linear data states

 Flux calculation is solution of local Riemann 
problem
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Riemann Problem
 The Riemann problem is an initial value 

problem defined by

 The solution of this problem can be used to 
estimate the flux at xi+1/2

  0 xt UFU
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Riemann Problem (Cont.)
The Riemann problem is a generalisation of the 
dam break problem

Dam wall

Deep water at rest

Shallow water at rest

Dam wall

Deep water at rest

Shallow water at rest



Dam Break Solution

Evolution of 
solution
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Exact Solution

 Toro (1992) demonstrated an exact solution

 Considering all possible wave structures a 
single non-linear algebraic equation gives 
solution.



Exact Solution
 Consider the local Riemann problem

 Wave structure

  0 xt UFU
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Possible
Wave structures
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Right Shock

Left Rarefaction Shear wave
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Right ShockLeft Shock
Shear wave

 Across left and right 
wave h, u change v 
is constant

 Across shear wave 
v changes, h, u 
constant

LL cudtdx /
**/ cudtdx 

LL cudtdx /

**/ cudtdx 

* */dx dt u c 

/ R Rdx dt u c 

* */dx dt u c  / R Rdx dt u c 



Conditions across each wave

 Left Rarefaction wave 

 Smooth change as move in x-direction
 Bounded by two (backward) characteristics

Left bounding characteristic

x

t

hL, uL h*, u*

Right bounding characteristic

LL cudtdx / **/ cudtdx 



Crossing the rarefaction

 We cross on a forward characteristic

 States are linked by:

 or

constant2  cu

** 22 cucu LL 
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Solution inside the left rarefaction

 The backward characteristic equation is
 For any line in the direction of the rarefaction

 Crossing this the following applies:

 Solving gives

 On the t axis dx/dt = 0 

cucu LL 22 
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Right rarefaction

 Bounded by forward characteristics
 Cross it on a backward characteristic

 In rarefaction

 On the t axis dx/dt = 0 
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Shock waves

 Two constant data states are separated by a 
discontinuity or jump

 Shock moving at speed Si

 Using Conservative flux for left shock
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Conditions across shock

 Rankine-Hugoniot condition

 Entropy condition

 λ1,2 are equivalent to characteristics. 
 They tend towards being parallel at shock

     LiL UUSUFUF  **

   *USU iiLi  



Shock analysis

 Change frame of reference, add SL

 Rankine-Hugoniot  (mass and momentum ) 
gives

LLL Suu ˆLSuu  **ˆ
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Shock analysis

 Mass flux conserved

 From momentum eqn. 

 Using

 also

LLL uhuhM ˆˆ** 
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Left Shock Equation

 Equating gives

 Also

 LLL hhfuu ,**      






 


L

L
LLL hh

hhghhhhf
*

*
** 2

1,

L L L LS u c q   







 
 2

**

2
1

L

L
L h

hhhq



Right Shock Equation

 Similar analysis gives

 Also

 RRR hhfuu ,**      
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Complete equation
 Equating the left and right equations for u*

 Which is the iterative of the function of Toro 
(2001)

 * *,L L Lu u f h h   RRR hhfuu ,** 

   * *, , 0R L L L R Ru u f h h f h h   

      0,, ***  uhhfhhfhf LRLL



Determine which wave

 Which wave is present is determined by the 
change in data states thus:

– h* > hL left wave is a shock
– h* ≤ hL left wave is a rarefaction

– h* > hR right wave is a shock
– h* ≤ hR right wave is a rarefaction

Steps to determine exact solution



Solution Procedure
 Construct this equation

 And solve iteratively for h (=h*). 
– The functions may change in each iteration

     , ,L L R Rf h f h h f h h u   



f(h)
 The function f(h) is defined as

 And u*

     , ,L L R Rf h f h h f h h u   
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Iterative solution

 The function is well behaved and solution by 
Newton-Raphson is fast 
– (2 or 3 iterations)

 One problem – if negative depth calculated!
 This is a dry-bed problem.
 Check with depth positivity condition:

 RLLR ccuuu  2



Dry–Bed solution

 Dry bed on one side 
of the Riemann 
problem

 Dry bed evolves 
 Wave structure is 

different.
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Dry-Bed Solution (Cont.)
 Solutions are explicit

– Need to identify which applies – (simple to do)
 Dry bed to right

 Dry bed to left

 Dry bed evolves h* = 0 and u* = 0
– Fails depth positivity test
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Shear wave (discontinuities that 
arise from eigenmodal analysis)

 The solution for the shear wave is straight 
forward.
– If vL > 0 v* = vL 

– Else v* = vR

 Can now calculate inter-cell flux from h*, u*  
and v*
– For any initial conditions



Approximate Riemann Solvers –
1D Model
 No need to use exact solution

Exact solutions require iterations and are 
computationally expensive

 For some problems, exact solutions may not 
exist

 Many Riemann solvers are available (Roe’s 
and HLL are most popular)



Toro Two-Rarefaction Solver

 Assume two rarefactions
 Take the left and right equations

 Solving gives

 For critical rarefaction use solution earlier

 ** 2 ccuu LL   RR ccuu  ** 2
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Toro Two-Shock Solver
 Assuming the two waves are shocks

 Use two rarefaction solver to give h0
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Roe’s Solver
 Governing equations are approximated as:

 Where      is obtained by Roe averaging
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Approximate Riemann Solvers – 1D
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Roe’s Solver (Cont.)
 Properties of matrix 

– Eigen values

– Right Eigen vectors

– Wave strengths

 Flux is given by
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HLL Solver
 Harten, Lax, Van Leer
 Assume wave speed
 Construct volume
 Integrate

Or, 
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HLL Solver
 What wave speeds to use?

– One option:

 For dry bed (right)

 Simple, but robust

 TRTRLLL cucuS  ,min

 TRTRRRR cucuS  ,min

LLL cuS 

RRR cuS 2



Higher-Order in Space
 Construct Riemann problem using surrounding cells 
 May create oscillations
 Piecewise 
reconstruction

 Need to use 
limiters 
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Limiters
 Obtain a gradient for variable in cell i,  Δi

 Gradient obtained from Limiter functions 
 Provide gradients at cell faces

 Limiter Δi =G(a,b)
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Limiters (Cont.)
 A general limiter

 β=1 give MINMOD, 
 β=2 give SUPERBEE

 Van Leer
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Higher order in time
 Needs to advance half time step
 MUSCL-Hancock

– Primitive variable
– Limit variable
– Evolve the cell face values 1/2t:

 Update as normal solving the Riemann problem 
using evolved WL, WR
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Wet / Dry Fronts

 Wet  / Dry fronts are difficult
– Source of error
– Source of instability

 Found in: 
 Filling of storm-water and combined sewer 

systems 
 Flooding - inundation



Dry front speed

 Dry front is fast
 Can cause problem with time-step / Courant  
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Solutions for wet/dry fronts

 Most popular way is to artificially wet bed
 Provide a small water depth with zero 

velocity
 Can drastically affect front speed 
 Need to be very careful about dividing by 

zero



Boundary Conditions

 Set flux on boundary
– Directly
– Ghost cell

 Wall u, v = 0. Ghost cell un+1=-un

 Transmissive Ghost cell hn+1 = hn

un+1 = un



Source Terms

 “Lumped” in to one term and integrated
 Attempts at “upwinding source”  
 Current time-step

– Could use the half step value
 E.g.
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Main Problem is Slope Term
 Flat still water over uneven bed starts to 

move.
 Problem with discretisation of

x
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Discretisation

 Discretised momentum eqn

 For flat, still water 

 Require
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A solution
 Assume a “datum” depth, measure down.
For horizontal water surface: 

 Momentum eqn:
– Flat surface 
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Shallow-water in two-dimensions

 In 2-d we have an extra term:

 Friction
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Finite Volume in 2-D
If nodes and sides are labelled as : 

Solution is

Where Fns1 is normal flux for side 1 etc.
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FV 2-D Rectangular Grid

Solution is
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Eigen values

Right Eigen vectors
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Roe’s Solver:

Roe’s Solver is simple and one of the most popular. This 
solver will be used in this class.

Approximate Riemann Solvers – 2D
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Roe’s Solver (Cont.)

Where:



Wave strengths
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Roe’s Solver (Cont.)
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Update of solution:
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Roe’s Solver (Cont.)

Numerical Flux is given by (Toro 2001)
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Show Demo in MATLAB for Solution of 2D Shallow Water 
Equations using Roe’s solver  (Droplets and Dam break problem)
Download Matlab files from Canvas. 
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