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Evolving from Finite Difference (FD)
to Finite Volume (FV)

® Over the last several decades, the shallow water
equations in 1D and 2D were solved mostly using
Finite Difference (FD) techniques.

® Since about a decade ago (~2005), there is more
emphasis on using Finite-Volume (FV) methods

for the solution of the shallow water equations in
1D and 2D

® AFV solution approach, similar to what was
added for 2D modeling will be available for 1D
modeling in HEC-RAS version 5.1



1D HEC-RAS (< V. 5.1)

Preissmann Scheme (Finite Difference)

e This method has been widely used (e.g.,
HEC-RAS)

e The advantage of this method is that variable
spatial grid may be used

e Steep wave fronts may be properly simulated
by varying the weighting coefficient



Preissmann Scheme cont...
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e \Where a is a weighting coefficient

e By selecting a suitable value for a, the scheme may
be made totally explicit (a=0) or implicit (a=1)

e Usually, the scheme is stable if 0.6< a <1.



Finite Volume Methods
(1D-2D)

Adapted from Lecture Notes on Shallow-Water equations by Andrew Sleigh,
Toro (1999,2001) and Leon et al. (2006, 2010)



Finite Volume Shock-Capturing
Methods

e Ability to handle extreme flows
e [ransitions between subcritical / supercritical
flows are easily handled

— Other techniques have problems with trans-critical
flows

e Steep wave fronts can be accurately
simulated
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Source: An unstructured node-centered finite volume scheme for shallow water flows with wet/dry fronts over complex topography,
Nikolos and Delis



Dam break (animation)

http://www.youtube.com/watch?v=-QXUViTi b0




Shallow-water equations in 1D

Governing equations in conservative form

U, +FU), =S(U)

FU)=

S(U)=




I, and |,

e Trapezoidal channel
—- Base width B, Side slope S,= Y/Z

_w[B_pS. I2=h2(1d8+hdSLj
: o 3 2 dx 3 dx

e Rectangular, S, =0

| B A2 , A’ dB
17 ThHg * 2B? dx
_ QQn’

e Source term S. =
f A2R(4/3)



Rectangular Prismatic

h  hu
U = _hu_ F(U)=_huz_|_%gh2_
[ 0 h
S(U )=
V)= gns, -s,)

$[U dx+ F (U )dt]= [ S(U U




Finite volume formulation

e For homogeneous form
— l.e. without source terms

$[U dx+F (U )dt]=0

V
rectangular control volume in x-t space
A

t t, ®

Fe T itz
e

X112 | itz X
>




Finite Volume Formulation (Cont.)

Defining as integral averages

1 |+1/2

n n+l | R
Ui = Ax S50 U ( ) dx UM = A S5, U (Xt,,,) dx
1 i 1 ths1
Fi—1/2 = A_’[Ln F (U (Xi—l/zat)) dt I:i+1/2 = EL F (U (Xi+1/29t)) dt

Finite volume formulation becomes

At
[Fi+1/2 - Fi—l/z ]

U in+1 _ U in
AX




Finite Volume Formulation (Cont.)

e So far no approximation was made

e [he solution now depends on how the integral
averages are estimated

e |n particular, the inter-cell fluxes F,,, and F._,
need to be estimated.



Godunov method for flux comput.

e Uses information from the wave structure
e Assume piecewise linear data states

@ n+1

Fiipn <1 -—F.n

Cells

° ® °
1-1 i i-1

Data states

U(0).1p
n+1

e Flux calculation is solution of local Riemann
problem



Riemann Problem

e The Riemann problem is an initial value
problem defined by

U,+FU), =0

U(x,t )= Ui It X< X5

N
Ui, 1F X> Xy,

1+1

e [he solution of this problem can be used to
estimate the flux at x,,,



Riemann Problem (Cont.)

The Riemann problem is a generalisation of the
dam break problem

Dam wall

Deep water at rest

Shallow water at rest




Dam Break Solution

h

W:ater levels at time t=t*

Evolution of
solution

Velocity at time t=t*

Rarefaction

~
~ ~

Wave structure




Exact Solution

e Toro (1992) demonstrated an exact solution

e Considering all possible a
single non-linear algebraic equation gives
solution.



Exact Solution

e Consider the local Riemann problem

U +FU), =0 h o
U= hy FU)= huer%gh2
U, If x<0 h h
U(x,0)=< " e -
U, If x>0
e \Wave structure

Left wave (u-c) < > Right wave, (utc)

Shear wave
t /(W

hg, ug, Vg




Left Rarefaction dX
-~ ~ \

Possible dx/dt =, e
Wave structures

/dt = u. —C. Shear wave
N Right Shock

» X

Left Shock Shear wave dx/dt =u, +c, RightRarefaction
* %k

e Across left and right
wave h, u change v
IS constant

e Across shear wave
v changes, h, u
constant

Shear wave Right Shock




Conditions across each wave

=

e |Left Rarefaction wave

i/ Right bounding characteristic

Left bounding characteristic '\ dx/dt=u. —c

dX/dt - uL _CL \;\\ \\\ \\

hy, up h., u.

e Smooth change as move in x-direction
e Bounded by two (backward) characteristics



Crossing the rarefaction

e \Ve cross on a forward characteristic

U + 2C = constant

e States are linked by:

u, +2¢, =u, +2c,

° Or u, =u, +2(c, —c.)



Solution inside the left rarefaction

dx
e The backward characteristic equation is 5 =4-¢

e For any line in the direction of the rarefaction

e Crossing this the following applies: U, +2C_ =u+2C

. : 1 dx 1 dx
o _1 _OX U=—| U, +2C, +2—
Solving gives C 3(uL+2cL dtj 3( L T2 dtj

e Onthe taxisdx/dt=0

1
Czé(UL—I—ZCL) UZE(UL+2CL)



Right rarefaction

dx
e Bounded by forward characteristics 5 =4*°

e Cross it on a backward characteristic

Uy —2C, =U, —2€, U. = Ug +2(c. —cy)

e In rarefaction C:l(_u 400 +%j u:l(u _ ax
R R dt R

e Onthe taxisdx/dt=0

CZ%(—UR+2CR) U=%(UR—2CR)



Shock waves

e [wo constant data states are separated by a
discontinuity or jump

e Shock moving at speed S,

e Using Conservative flux for left shock

" h - h,
U =| " U, =
h u, _h*u*_




Conditions across shock

e Rankine-Hugoniot condition

FU.)-FU,)=s,U,-U,)

e Entropy condition

AUL)>S > 4U.)

e A, are equivalent to characteristics.
e They tend towards being parallel at shock



Shock analysis

e Change frame of reference, add S;

. [ h . [h
U L — A U, = n
h U, h.0,

e Rankine-Hugoniot (mass and momentum )

gives
ha. =h 0,

h, G’ +%gh§ —h +%ghf



Shock analysis

e Mass flux conserved

e From momentum eqn.

e Using Gd.=M_/h, u =M /h,

e also




Left Shock Equation

e Equating gives

2% hh

1 (h+h
U*:UL_fL(h*ahL) fL(h*ﬂhL):(h*_hL)\/g£ - Lj

e Also
1{{h. +h ).
SL ZUL_CLqL qL :\/ (( + L) j



Right Shock Equation

e Similar analysis gives

U, = U, + fo(h,hy)  falh.hy)=(h —hR)\/lg(h* +hRj

27\ hh,

e Also

SR:UR + Cr0R qR:\/li(h* +hR)h*j

2 he




Complete equation

e Equating the left and right equations for u.
u.=u, —f (h,h) u =ug+ fo(h,he)
U, —u, +f (m,hL)+ fy (m,hR) =0

e \Which is the iterative of the function of Toro
(2001)

f(h.)

f, (h,h )+ fo(h,h )+Au=0



Steps to determine exact solution

Determine which wave

e \Which wave Is present is determined by the
change In data states thus:

- h*>h, left wave is a shock
- h*<h, left wave is a rarefaction
- h*> hyg right wave is a shock

- h* < hg right wave is a rarefaction



Solution Procedure

e Construct this equation
f(h)=f, (h,h )+ f, (h,hy)+Au

e And solve iteratively for h (=h*).
— The functions may change in each iteration



f(h)

e The function f(h) is defined as
f(h)=f, (hh )+ fy(hh)+Aau  AU=Uz —U,

r2(\/gh = \/ghL) if h<h, (rarefaction)
1:|_ = 1 h+h .
h—h, ). |= = | if h>h_ (shock
( L)\/zg( hh, j >h ( )

2(@ — ./ ghg ) if h <h, (rarefaction)

f =
R <(h—hR)\/;g(h;th] if  h>h. (shock)
R

1 1
o And u. u :E(UL +uR)+E[fR(h*,hR)— fL(h*,hL):|



Iterative solution

e The function is well behaved and solution by
Newton-Raphson is fast

— (2 or 3 iterations)

e One problem — if negative depth calculated!
e This is a dry-bed problem.
e Check with depth positivity condition:

Au =ug —u, <2(c, +cg)



Dry—Bed solution

e Dry bed on one side
of the Riemann
problem

e Dry bed evolves

Dry bed S Wet bed

e \Wave structure is .
different.

4
Wet bed s Dry bed

Wet bed Wet bed




Dry-Bed Solution (Cont.)

e Solutions are explicit
- Need to identify which applies — (simple to do)

e Dry bed to right

n=3l+2)  e=1@+2)  ho=cl/g
e Dry bed to left

u*=%(uR—2cR) C. =%(—uR +2C,)

e Dry bed evolves h*=0andu*=0
— Falils depth positivity test



Shear wave (discontinuities that
arise from eigenmodal analysis)

e The solution for the shear wave is straight

forward.
~_1fv,>0 V¥ =y,
- Else V* = Vg

e Can now calculate inter-cell flux from h*, u®
and v*

- For any initial conditions



Approximate Riemann Solvers —
1D Model

e No need to use exact solution

Exact solutions require iterations and are
computationally expensive

e For some problems, exact solutions may not
exist

e Many Riemann solvers are available (Roe’s
and HLL are most popular)



Toro Two-Rarefaction Solver

e Assume two rarefactions
e Take the left and right equations

u.=u_+2(c.—¢)  u, =ug+2(c.—cy)

e Solving gives

e For critical rarefaction use solution earlier



Toro Two-Shock Solver

e Assuming the two waves are shocks

_ thL T thR t U —Ug
Ao + Qg

h.

U. Z%(UL _UR)_%[(h* - hR)qR _(h* ~ hL)qL]

qL:\/g(hO+hL) qR:\/g(hoJth)

2h h, 2h .

e Use two rarefaction solver to give h,



Approximate Riemann Solvers — 1D
Roe’s Solver

e Governing equations are approximated as:
U +FU),=U, + AU, ~U, + AU,

e Where A is obtained by Roe averaging

CLZM;CR:m HZ\/thR
U /N +Ugy/Ng \/1(
C C




Roe’s Solver (Cont.)

e Properties of matrix

~/

- Eigenvalues 4 =0-C A, =0+C

~ Right Eigen vectors R® =

— Wave Strengths 551 — %[Ah _DAUJ

Ah=h, —h

e Fluxis given by F Ly =
1+ 2




HLL Solver 5, =% ! .
At Sp=—1
v, 5 At
.. * .
e Harten, Lax, Van Leer 1 r
o Assume wave speed | < |7 T
UL ".". ...""‘
e Construct volume o -
e Integrate DS ——

AX U, + Ax U, —(AX + Ax, J, — AtU, + AtU, =0

U,=(SU,-SU, +F —F)/(S.-S,)

Or,
F.=(SgF, =S, Fy +S,S. (U, -U_))/(S,-S,)



HLL Solver

e \What wave speeds to use?
-~ One option:

S| = min(UL —CL,Urg _CTR)
Sg = min(Ug + Cg,Urg +Cre )

e For dry bed (right)
SL =Uu,—C_

Sy =U, +2C;

e Simple, but robust



Higher-Order in Space

e Construct Riemann problem using surrounding cells
e May create oscillations

e Piecewise
reconstruction
e Need to use o o— ° P
o i1 i i+1 i+2
limiters
L
R
o ° ° ¢



Limiters

e ODbtain a gradient for variable in cell i/, Ai

1
U, =U. +%AXAi U,=U., _EAXA”I

e Gradient obtained from Limiter functions
e Provide gradients at cell faces

ui+1 - ui Ai—1/2 — b= ui o ui—l

Ai+1/2 = a

Kiv12 =K X — X

|
e Limiter Ai =G(a,b)



Limiters (Cont.)

e A general limiter

‘max|0, min(fa,b),min(a, Zb)]

Gla,b)= i min[0, max(/a,b),max(a, Sb)]

fora>0
fora<0

a B=1 give MINMOD,
0 p=2 give SUPERBEE

e Van Leer G(a,b): ajp| + |ajo




Higher order in time

e Needs to advance half time step

e MUSCL-Hancock
— Primitive variable Wt T A(W)W =0

X

— Limit variable
- Evolve the cell face values 1/2At:

whr = wer ¢ LA (w
2 AX
e Update as normal solving the Riemann problem

using evolved W, Wy

W )[WiL B WiR]

At [
Ax

U "= U " Fi+1/2 - Fi—1/2]




Wet / Dry Fronts

e Wet / Dry fronts are difficult
- Source of error
- Source of instability

e Found In:

a Filling of storm-water and combined sewer
systems

a Flooding - inundation



Dry front speed

e Dry front is fast

S, =U+C
U +2C, =u+2cC
c=0
S, =U, +2¢C

e Can cause problem with time-step / Courant

number




Solutions for wet/dry fronts

e Most popular way is to artificially wet bed

e Provide a small water depth with zero
velocity

e Can drastically affect front speed

e Need to be very careful about dividing by
Zero



Boundary Conditions

e Set flux on boundary

_ Directly

~ Ghost cell
e Wall u, v=20. Ghost cell u.,=-u,
e Transmissive Ghost cell h,,., = h,

un+1 = un



Source Terms

e “‘Lumped” in to one term and integrated
e Attempts at “upwinding source”

e Current time-step
—- Could use the half step value

o E.Q.

0 K =CR'"?

_ ulu 2
S = gh & — ‘ 2‘ +¢—@ R2/3
ox K 2B ox K =




Main Problem is Slope Term

e Flat still water over uneven bed starts to
move.

. . . 0z
e Problem with discretisation of gh&
i-1 i i+1
| ‘ ‘ water surface
hi‘l h' hi hr hi+1
- bed level
P / L — 17
N p // g - A o ) //'/ 1 g hl ( rAX | )
Z,h 4, ) Z, Z, Z,,
4 , X

datum level



Discretisation

e Discretised momentum eqgn

2 2
(= )+ 5 ) - ) 93 9

]—At ghy(z, -z,

AX

e For flat, still water

2 2
(hu)™ =g 2;[( [(hz' +hiz,j—(h7r+ hizrD:O

e Require

2 2
h—'+ h.z, =h—r+ hz
2 2



A solution

e Assume a “datum” depth, measure down.

For horizontal water surface: a__oh
OX ax
0z oh 1 8h2
h —= h —
J ' OX E OX =95 2 8x
l(hi +2,-2,) -(h+z,-7)
J 2 AX

e Momentum eqgn:
— Flatsurface h =h+z.-z;, h =h+z -z

(hu)' gii(hz hr2+(hi+Zi_zr)2_(hi+zi_zl)2)



Shallow-water in two-dimensions

e In 2-d we have an extra term:

U = S, -8,

OX X
0, _Sfy

J

2

. . N
e Friction _ 2 2
Sfx_h(1/3) U\/U +V




Finite Volume in 2-D

If nodes and sides are labelled as :

Solution is

um =u’ —‘\A/—t‘( Fn, L, + Fn,L, + Fn,L, + Fn,,L,)

Where Fn._, is normal flux for side 1 etc.



FV 2-D Rectangular Grid

A
y G, 1/2
i-1/2,+1/2 J N i+1/2,j+1/2
|
«— —> F
Fiti2 .ij Fivtrz
}
i-1/2,j-1/2 i+1/2,j-1/2
G
X
Solution is

U in+1 =U in o %[Fiﬂ/z,j — li-1/2 J] A;[/ [Gi,j+1/2 o Gi,j—l/z]




Approximate Riemann Solvers — 2D

Roe’s Solver is simple and one of the most popular. This
solver will be used in this class.

Roe’s Solver:
Eigen values %ZU—E 1220 2,3:(]4—6

Right Eigen vectors

1 0

~J

1
RO =| d-¢ R® =]0 R® =|g+¢

Vv 1 Vv




Roe’s Solver (Cont.)

Where: C, = \/gihl_; o ZM

h =/hh C= J%(Cﬁ +ch)

L’]:uL\/rTL_I_uR\/E v:VL\ﬂ_FVR\ﬁ
Vh + e Jh + g




Roe’s Solver (Cont.)

Wave strengths

Au,(U+C)—Au,

a, = Y ; a, =AU, —VAU,;
_ =AU (G—€)+Au,
el 2¢

Where:

Au,
Au,

qR_hL; Auz:uRhR_uLhL or g —(;

nRVR o hRVL



Roe’s Solver (Cont.)

Numerical Flux is given by (Toro 2001)

s =—(F

i+1/2 —
2

Update of solution:

U_n+1:U_n_£
I I AX

[Fi+1/2,j - Fi—1/2,j ]_ 2_:/[Gi,j+1/2 - Gi,j—l/z]




Show Demo in MATLAB for Solution of 2D Shallow Water
Equations using Roe’s solver (Droplets and Dam break problem)
Download Matlab files from Canvas.
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