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Evolving from Finite Difference (FD) 
to Finite Volume (FV)
• Over the last several decades, the shallow water 

equations in 1D and 2D were solved mostly using 
Finite Difference (FD) techniques. 

• Since about a decade ago (~2005), there is more 
emphasis on using Finite-Volume (FV) methods 
for the solution of the shallow water equations in 
1D and 2D

• A FV solution approach, similar to what was 
added for 2D modeling will be available for 1D 
modeling in HEC-RAS version 5.1



Preissmann Scheme (Finite Difference)
 This method has been widely used (e.g., 

HEC-RAS)

 The advantage of this method is that variable 
spatial grid may be used 

 Steep wave fronts may be properly simulated 
by varying the weighting coefficient

1D HEC-RAS (< V. 5.1)
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Preissmann Scheme cont…

 Where α is a weighting coefficient
 By selecting a suitable value for α, the scheme may 

be made totally explicit (α=0) or implicit (α=1)
 Usually, the scheme is stable if 0.6< α ≤1. 



Finite Volume Methods
(1D-2D)

Adapted from Lecture Notes on Shallow-Water equations by Andrew Sleigh, 
Toro (1999,2001) and Leon et al. (2006, 2010)



 Ability to handle extreme flows
 Transitions between subcritical / supercritical 

flows are easily handled
– Other techniques have problems with trans-critical 

flows
 Steep wave fronts can be accurately 

simulated

Finite Volume Shock-Capturing 
Methods



Dam break

Source: An unstructured node-centered finite volume scheme for shallow water flows with wet/dry fronts over complex topography, 
Nikolos and Delis



Dam break (animation)
http://www.youtube.com/watch?v=-QXUViTi_b0



Shallow-water equations in 1D
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I1 and I2
 Trapezoidal  channel

– Base width B, Side slope SL= Y/Z

 Rectangular, SL = 0

 Source  term
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Rectangular Prismatic
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Finite volume formulation
 For homogeneous form

– i.e. without source terms

rectangular control volume in x-t space
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Finite Volume Formulation (Cont.)

Defining as integral averages

Finite volume formulation becomes
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 So far no approximation was made

 The solution now depends on how the integral 
averages are estimated

 In particular, the inter-cell fluxes Fi+1/2 and F1-1/2 

need to be estimated. 

Finite Volume Formulation (Cont.)



Godunov method for flux comput.
 Uses information from the wave structure
 Assume piecewise linear data states

 Flux calculation is solution of local Riemann 
problem
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Riemann Problem
 The Riemann problem is an initial value 

problem defined by

 The solution of this problem can be used to 
estimate the flux at xi+1/2
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Riemann Problem (Cont.)
The Riemann problem is a generalisation of the 
dam break problem

Dam wall

Deep water at rest

Shallow water at rest

Dam wall

Deep water at rest

Shallow water at rest



Dam Break Solution

Evolution of 
solution
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Exact Solution

 Toro (1992) demonstrated an exact solution

 Considering all possible wave structures a 
single non-linear algebraic equation gives 
solution.



Exact Solution
 Consider the local Riemann problem

 Wave structure
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Possible
Wave structures
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 Across left and right 
wave h, u change v 
is constant

 Across shear wave 
v changes, h, u 
constant
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Conditions across each wave

 Left Rarefaction wave 

 Smooth change as move in x-direction
 Bounded by two (backward) characteristics

Left bounding characteristic

x

t

hL, uL h*, u*

Right bounding characteristic
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Crossing the rarefaction

 We cross on a forward characteristic

 States are linked by:

 or
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Solution inside the left rarefaction

 The backward characteristic equation is
 For any line in the direction of the rarefaction

 Crossing this the following applies:

 Solving gives

 On the t axis dx/dt = 0 
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Right rarefaction

 Bounded by forward characteristics
 Cross it on a backward characteristic

 In rarefaction

 On the t axis dx/dt = 0 
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Shock waves

 Two constant data states are separated by a 
discontinuity or jump

 Shock moving at speed Si

 Using Conservative flux for left shock
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Conditions across shock

 Rankine-Hugoniot condition

 Entropy condition

 λ1,2 are equivalent to characteristics. 
 They tend towards being parallel at shock
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Shock analysis

 Change frame of reference, add SL

 Rankine-Hugoniot  (mass and momentum ) 
gives
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Shock analysis

 Mass flux conserved

 From momentum eqn. 

 Using

 also
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Left Shock Equation

 Equating gives

 Also
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Right Shock Equation

 Similar analysis gives

 Also
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Complete equation
 Equating the left and right equations for u*

 Which is the iterative of the function of Toro 
(2001)
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Determine which wave

 Which wave is present is determined by the 
change in data states thus:

– h* > hL left wave is a shock
– h* ≤ hL left wave is a rarefaction

– h* > hR right wave is a shock
– h* ≤ hR right wave is a rarefaction

Steps to determine exact solution



Solution Procedure
 Construct this equation

 And solve iteratively for h (=h*). 
– The functions may change in each iteration
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f(h)
 The function f(h) is defined as

 And u*
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Iterative solution

 The function is well behaved and solution by 
Newton-Raphson is fast 
– (2 or 3 iterations)

 One problem – if negative depth calculated!
 This is a dry-bed problem.
 Check with depth positivity condition:

 RLLR ccuuu  2



Dry–Bed solution

 Dry bed on one side 
of the Riemann 
problem

 Dry bed evolves 
 Wave structure is 

different.
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Dry-Bed Solution (Cont.)
 Solutions are explicit

– Need to identify which applies – (simple to do)
 Dry bed to right

 Dry bed to left

 Dry bed evolves h* = 0 and u* = 0
– Fails depth positivity test
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Shear wave (discontinuities that 
arise from eigenmodal analysis)

 The solution for the shear wave is straight 
forward.
– If vL > 0 v* = vL 

– Else v* = vR

 Can now calculate inter-cell flux from h*, u*  
and v*
– For any initial conditions



Approximate Riemann Solvers –
1D Model
 No need to use exact solution

Exact solutions require iterations and are 
computationally expensive

 For some problems, exact solutions may not 
exist

 Many Riemann solvers are available (Roe’s 
and HLL are most popular)



Toro Two-Rarefaction Solver

 Assume two rarefactions
 Take the left and right equations

 Solving gives

 For critical rarefaction use solution earlier
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Toro Two-Shock Solver
 Assuming the two waves are shocks

 Use two rarefaction solver to give h0
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Roe’s Solver
 Governing equations are approximated as:

 Where      is obtained by Roe averaging
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Roe’s Solver (Cont.)
 Properties of matrix 

– Eigen values

– Right Eigen vectors

– Wave strengths

 Flux is given by
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HLL Solver
 Harten, Lax, Van Leer
 Assume wave speed
 Construct volume
 Integrate

Or, 
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HLL Solver
 What wave speeds to use?

– One option:

 For dry bed (right)

 Simple, but robust
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Higher-Order in Space
 Construct Riemann problem using surrounding cells 
 May create oscillations
 Piecewise 
reconstruction

 Need to use 
limiters 
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Limiters
 Obtain a gradient for variable in cell i,  Δi

 Gradient obtained from Limiter functions 
 Provide gradients at cell faces

 Limiter Δi =G(a,b)
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Limiters (Cont.)
 A general limiter

 β=1 give MINMOD, 
 β=2 give SUPERBEE

 Van Leer
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Higher order in time
 Needs to advance half time step
 MUSCL-Hancock

– Primitive variable
– Limit variable
– Evolve the cell face values 1/2t:

 Update as normal solving the Riemann problem 
using evolved WL, WR
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Wet / Dry Fronts

 Wet  / Dry fronts are difficult
– Source of error
– Source of instability

 Found in: 
 Filling of storm-water and combined sewer 

systems 
 Flooding - inundation



Dry front speed

 Dry front is fast
 Can cause problem with time-step / Courant  
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Solutions for wet/dry fronts

 Most popular way is to artificially wet bed
 Provide a small water depth with zero 

velocity
 Can drastically affect front speed 
 Need to be very careful about dividing by 

zero



Boundary Conditions

 Set flux on boundary
– Directly
– Ghost cell

 Wall u, v = 0. Ghost cell un+1=-un

 Transmissive Ghost cell hn+1 = hn

un+1 = un



Source Terms

 “Lumped” in to one term and integrated
 Attempts at “upwinding source”  
 Current time-step

– Could use the half step value
 E.g.
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Main Problem is Slope Term
 Flat still water over uneven bed starts to 

move.
 Problem with discretisation of
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Discretisation

 Discretised momentum eqn

 For flat, still water 

 Require
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A solution
 Assume a “datum” depth, measure down.
For horizontal water surface: 

 Momentum eqn:
– Flat surface 
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Shallow-water in two-dimensions

 In 2-d we have an extra term:

 Friction
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Finite Volume in 2-D
If nodes and sides are labelled as : 

Solution is

Where Fns1 is normal flux for side 1 etc.
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FV 2-D Rectangular Grid

Solution is
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Eigen values

Right Eigen vectors
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Roe’s Solver:

Roe’s Solver is simple and one of the most popular. This 
solver will be used in this class.

Approximate Riemann Solvers – 2D
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Where:
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Update of solution:
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Roe’s Solver (Cont.)

Numerical Flux is given by (Toro 2001)
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Show Demo in MATLAB for Solution of 2D Shallow Water 
Equations using Roe’s solver  (Droplets and Dam break problem)
Download Matlab files from Canvas. 
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