1D UNSTEADY OPEN CHANNEL FLOWS

Qiantang River Tidal Bore

Prof. Arturo S. Leon, Ph.D., P.E., D.WRE Florida International University

Examples of Wave Generating Mechanisms

- Sudden Change at control structures:
 - sudden opening or closing of hydraulic gates;
 - □ dam break;
 - sudden increase/decrease in demand at a power station;
 - □ ship-lock operation.
- Surges
- Tides

• Large Runoff: Flood wave in rivers; sewer surcharging.

Movies

Flooding in Greece

https://www.youtube.com/watch?v=b7OPQlzxrGo

Qiantang River Tide Wave, China

https://www.youtube.com/watch?v=ILi0_p1xt_Y

Various dam breaks

https://www.youtube.com/watch?v=LZDJ6zPHYAM

Saint-Venant equations

Propagation of a disturbance in subcritical, critical and supercritical flows

• Multiplying the Continuity equation (Eq. 1) by $\lambda = \pm g/c$ and adding it to the Momentum equation (Eq. 2) yields

 $(y \pm c) \xrightarrow{3} v \pm 9 \xrightarrow{3} (y \pm c)$

The above equation is a pair of equations along characteristics given by

 $\frac{dV + 9}{dt} = 9(s_0 - s_f), \text{ along } \frac{dV}{dt}$

- By multiplying equation (4) by *dt* and integrating along AP and BP (see slide 6), we obtain
- Along AP: $V_{P}-V_{A} + \begin{pmatrix} 9 \\ -\zeta \end{pmatrix}_{A} \begin{pmatrix} y_{P}-y_{A} \end{pmatrix} = g(s_{0}-s_{f})_{A} \begin{pmatrix} y_{P}-t_{A} \end{pmatrix}$ Along BP: $V_{P}-V_{B} - \begin{pmatrix} 9 \\ -\zeta \end{pmatrix}_{B} \begin{pmatrix} y_{P}-y_{B} \end{pmatrix} = g(s_{0}-s_{f})_{B} (t_{P}-t_{B})$

C = 19% Method of Characteristics (Cont.) For rectangular or wide channels: • Equation (4) can be written as $\frac{d(1+z_c)}{d(1+z_c)} = \partial(2^{\circ}-z^{\circ})\left[\frac{d+z}{dx} = 1+c\right]$ Along AP $\frac{d(v-2c)}{dt} = g(s_0 - s_f) \left[\frac{dx}{dt} = v - c \right]$ Along BP

• For a horizontal and frictionless channel, the characteristic system of equation becomes:

$$\frac{\sqrt{+2c}}{\sqrt{-2c}} = J^{+} \begin{bmatrix} \frac{dx}{dt} = \sqrt{+c} \end{bmatrix}$$
 constants
$$\frac{\sqrt{-2c}}{\sqrt{-2c}} = J^{-} \begin{bmatrix} \frac{dx}{dt} = \sqrt{-c} \end{bmatrix}$$

Riemann invariants

The constants V+2c and V-2c are called **Riemann invariants**

Riemann invariants (For Circular channels):

(See León, A., Ghidaoui, M., Schmidt, A., and García, M. (2006). "Godunov-Type Solutions for Transient Flows in Sewers." J. Hydraul. Eng., 132(8), 800–813.):

$$u_L + \phi_L = u_\star + \phi_\star = J^+ \left[\frac{dx}{dt} = V + c \right]$$

$$J^{-} = u_\star - \phi_\star = u_R - \phi_R = J^- \left[\frac{dx}{dt} = V - c \right]$$

$$\phi = \sqrt{g \frac{d}{8}} \int_0^\theta \frac{1 - \cos \theta}{\sqrt{(\theta - \sin \theta) \sin(\frac{\theta}{2})}} \, d\theta$$

$$\phi = \sqrt{g\frac{d}{8}} \left[\sqrt{3}\,\theta - \frac{\sqrt{3}}{80}\,\theta^3 + \frac{19\sqrt{3}}{448000}\,\theta^5 + \frac{\sqrt{3}}{10035200}\,\theta^7 + \frac{491\sqrt{3}}{27\times7064780800}\,\theta^9 + \ldots \right]$$

Positive Surges in rectangular channels

Momentum:
$$ZF = \dot{m}(V_2 - V_1)$$
 $\dot{m} = gAV$
 $\Sigma F = gA_1(V_1 + V_5)[V_2 + V_5 - (V_1 + V_5)]$
 $ZF = g b g_1(V_1 + V_5)(V_2 - V_1)$
For source = $\chi h A$
 $F_1 = gg \frac{g_1}{2} b g_1$
 $F_2 = gg \frac{g_2}{2} b^g 2$
For rectangular
 $\chi g \frac{g_1^2}{2} - \frac{gg \frac{g_2}{2}}{2} = gg \frac{g_1}{2} (V_1 + V_5)(V_2 - V_1) h = \frac{g}{2}$
 $g(\frac{g_1^2 - g_2}{2}) = (V_1 + V_5) g_1(V_2 - V_1)$
 $= (V_1 + V_5) (V_2 - V_1)$

From $= (V_{1} + V_{s}) ((V_{1} + V_{s} +$ $= (V_{1}+V_{5}) \left[\frac{V_{1} y_{1}^{2}}{y_{2}} - V_{5} y_{1} + V_{5} y_{1}^{2} - V_{1} y_{1} \right]$ $= (V_{1}+V_{5}) \left[V_{1} \left[\begin{array}{c} y_{1}^{2} - y_{1} \\ y_{2} \end{array} \right] + V_{5} \left[\begin{array}{c} y_{1}^{2} - y_{1} \\ y_{2} \end{array} \right] \right]$ $= (V_{1}+V_{5}) (\frac{y_{1}^{2}-y_{1}y_{2}}{y_{1}-y_{1}y_{2}}) (V_{1}+V_{5})$ $= (V_{1+}V_{s})^{2} \frac{9}{9}(91-9_{z})$

what if Vs = O (Steady hydraulic jump) $0 = -V_1 + \sqrt{\frac{9(y_1 + y_2)y_2}{2}} \frac{y_2}{y_1}$ $Fr_1 = \underline{V_1}$ $V_1^2 = g(\underline{y_1 + y_2}) \underline{y_2}$ 1991 94, **199**, 12 V_1^2 $F_{1}^{2} = \frac{1}{2} \left[\frac{3}{3}^{+} \frac{3}{3}^{+} \left[\frac{3}{3} \right] \left[\frac{3}{3} \right] \right]$ 941 $2F_{1}^{2} = (1 + \frac{y_{2}}{y_{1}})(\frac{y_{2}}{y_{1}}) \rightarrow (\frac{y_{2}}{y_{1}}) + \frac{y_{2}}{y_{1}} - 2F_{1} = 0$ $0x^2+bx+C=0$ $\chi = -b \pm \sqrt{b^2 - 4qc}$ $\frac{y_2}{y_1} = -\frac{1}{2}\sqrt{1^2 - 4(1)(-2F_1^2)}$ 2(1) Not possible

8Fr.2 Classical eguation 9 2 for sfeady hydrau jumps.

Example of Application:

Water flows at a uniform depth of 5ft and $V_o = 3$ ft/s in a rectangular channel. The outlet consists of a large estuary. The initial level of the estuary is equal to that in the channel. The level in the estuary commences to fall at a rate of 1ft/hr for 3hrs. How long does it take for the river level to fall by 2ft at a section 1 mile upstream of the mouth? At this time, how far upstream will the river level just begin to start falling? Note: 1 mile = 5280 ft and 1 ft = 0.3048 m.

time = time 1 + time 2
time 1 = time to propagate from estuary
mouth to 1 mile upstream
time 2 = time for water level at minimum
estuary mouth to drop 2ft
time 2 = 2hr

$$X = V_0 + 2\sqrt{9Y_0} - 3\sqrt{9Y}$$

 $-\frac{52B0}{5} = 3 + 2\sqrt{32.2x5} - 3\sqrt{32.2x3}$
 $t = 47.66 \text{ S} = 79.4 \text{ min}$
 $\circ \circ \text{ time} = 120 + 79.4 = 199.4 \text{ min}$

¥ Method 2:

$$\frac{x}{t} = V_0 + 2\sqrt{99}_0 - 3\sqrt{99}$$

Note: initial water depth $9 = 5.ft$
at estuary mouth
is 5.ft.[t] will be total $t = 199.4$ min
time] = 11,964 S
 $\frac{x}{11964} = 3 + 2\sqrt{32.2 \times 5} - 3\sqrt{32.2 \times 5}$
 $x = -115914$ ft
 $x = -21.95$ miles

Dam break problem and its solution

A sudden dam collapse results in a large flow at dam location, which in turn leads to a positive surge downstream of dam and a negative surge upstream of dam.

Solution in the varefaction or expansion wave _*___*X & X A region $(-x + V_0 + 2\sqrt{9})^2$ > (×亡) 99 Solution upstream of rarefaction wave $(X < X_D)$ y = 90 $y_{V_0=0}, \chi_{D=\pm}(-\sqrt{9}y_0)$ * Path of point A what if $V_2 = C_2$, then poin A remains fixed

Supercrit Subcur Δ $\mathcal{S}^{o} = \mathcal{S}^{t}$ X = t (V - c)C2 = 1942 V2>1942, A ves downstream 952 $x_A = t(V_2$ V2<V94 A

* With some algebra:
Point A moves downstream if
$$\frac{y_i}{y_0} < 0.14$$

II II II Upstream if $\frac{y_i}{y_0} > 0.14$
* If point "A" moves downstream, dam break
location falls within rarefaction wave.
Thus, at $\chi = 0$ (dam break location)
 $y_{\chi=0,t} = (0+0+2\sqrt{9y_0})^2 = \frac{48y_0}{98}$
 $\frac{y_{\chi=0,t}}{98} = \frac{49}{98}$

 $V = \frac{1}{3} \left(\frac{2x}{4} + \frac{1}{6} + 2\sqrt{99} \right) = \frac{2}{3} \sqrt{99}$ $C = \frac{3}{3}\sqrt{95}$ [left for you as exercise] V=C (critical flow) Example: $y_{0=50m}, b=10m$ V_= 0 $V = 2 \sqrt{9.8 \times 50}$ = 14.7m/s $Q = \frac{8 \times 10 \times \sqrt{9.8}}{27} (50)^{3/2} = 3279 \text{ m}^3/5$

0° VS, Vz and J2 can be now determined.

Example of Application:

Stagnant water of depth 3.2 m is stored in a long rectangular irrigation channel. A maneuver error resulted in the sudden opening of the gate. Determine the solution of the water surface profile after 5, 30 and 60 minutes of gate opening.

+ How fast
$$X_D$$
 is moving
 $3 \cdot 2 = \left(-\frac{X_D}{t} + 0 + 2\sqrt{9 \cdot 8 \times 3 \cdot 2}\right)^2$
 $9 \times 9 \cdot 8$
 $X_D = -5 \cdot 6t$ after 5 nun (300 seconds)
 $X_D = -1680 \text{ m}$
+ How fast X_A is moving
 $0 = \left(-\frac{X_A}{t} + 0 + 2\sqrt{9 \cdot 8 \times 3 \cdot 2}\right)^2$
 $9 \times 9 \cdot 8$
 $X_A = 11 \cdot 2t$

Example of Application:

The headrace channel in a hydroelectric power plant has a rectangular cross section with a width of b = 10.0 m. This channel has a bed slope of $S_{\bullet} = 0.002$ and the coefficient of Manning is n = 0.02. During the normal turbine operation the flow is uniform, having a discharge of Q = 40 m³/s. Due to a sudden load rejection, the gate in the headrace channel is partially, but rapidly closed, thus decreasing the discharge to $Q_f = 0.5$ m³/s.

(i) Determine the hydraulics of the waves traveling downstream and upstream from the gate;

(ii) Determine the type of front for these waves; (bore, negative wave) (iii) How long will it take for the wave to arrive at a station located at a distance of 0.5 km upstream from the gate?

So = 0.002

$$n = 0.02$$

 $Q_0 = 40 \text{ m}^3/\text{s}$
 $Q_f = 0.5 \text{ m}^3/\text{s} (after partial closure)$

Negative wave enstock 10 $\overline{Q_0} = 40 \text{ m}^3/\text{s}$ $Q_{f} = 0.5 m^{3}/s$ Headrace *Normal depth Qo = 1 AR So turbi リン $40 = \frac{1}{109} (109)^{5/3}$ 0.002 0.02 (10+2y)2/3

 $y_0 = 1.58m$, $V_0 = \frac{Q}{A} = \frac{40}{10 \times 90}$ $V_0 = 2.53 \frac{m}{s}$ $F_0 = V_0$ = 2.53 $\sqrt{9}_{0} = \frac{2.55}{9.8(1.58)} = 0.64$ (subcritical flow) $y_1 = 1.58 m$ $y_1 = 2.53 m/s$ (i) Positive surge $-V_{5}(y_{2}-y_{1})=V_{2}y_{2}-V_{1}y_{1}$ $\frac{1}{9(9_{2+91})} \frac{y_2}{y_1} = -V_1 + \sqrt{9(9_{2+91})} \frac{y_2}{y_1} = 2$ $0.5 = V_2(10 y_2)$ $V_2 = \frac{0.5}{(10 y_2) \dots (3)}$

m (3 2 - 2.53×1.58 0.5 $-V_{s}(9_{2} - 1.58) =$ 10, 0.5 - 2.53 10 58 Vs 1.58 J_2 10 1.58 1.58) <u>92</u> - 2.53 , ^y2+ 9. 1.58 92-1.58 0.018 m/s 2.71m - 3.49m

* Bacause characteristic are straight lines for our case $X = V + C \cdot (3)$ $V = V_0 - 2\tilde{C}_0 + 2C ... (4)$ From(1) in(3) $V_{0-2}C_{0}+2C+C$ $V_{0} - 2C_{0} + 3\sqrt{94}$

Use Excel for plotting $D \rightarrow 6.46 \text{ m/s}$ Use Equaprofiles. (S) tion 1 for comp 1-58 0.776m -> V= 2.53m/s * Locations of XD and XA as a fune-tion of time $\frac{1}{1} = 2 \cdot 53 - 2\sqrt{9 \cdot 8 \times 1.58} + 3\sqrt{9 \cdot 8 \times 1.58}$ Litewise, $\chi_D = 6.46 t$ SXA= 2.95 七)

ii) * Shock (Steep front) K rarefaction wave (initial negative wave is step and flattens out with time $iii) e = \sqrt{t}$ $500 = \sqrt{s} t$ t = 500 = 144s3.49m/s 3.49