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Numerous mathematical-programming applications, including many introduced in previous chapters, are
cast naturally as linear programs. Linear programming assumptions or approximations may also lead to
appropriate problem representations over the range of decision variables being considered. At other times,
though, nonlinearities in the form of either nonlinear objectivefunctions or nonlinear constraints are crucial
for representing an application properly as a mathematical program. This chapter provides an initial step
toward coping with such nonlinearities, first by introducing several characteristics of nonlinear programs and
then by treating problems that can be solved using simplex-like pivoting procedures. As a consequence, the
techniques to be discussed are primarily algebra-based. The final two sections comment on some techniques
that do not involve pivoting.

As our discussion of nonlinear programming unfolds, the reader is urged to reflect upon the linear-
programming theory that we have developed previously, contrasting the two theories to understand why the
nonlinear problems are intrinsically more difficult to solve. At the same time, we should try to understand
the similarities between the two theories, particularly since the nonlinear results often are motivated by, and
are direct extensions of, their linear analogs. The similarities will be particularly visible for the material of
this chapter where simplex-like techniques predominate.

13.1 NONLINEAR PROGRAMMING PROBLEMS

A general optimization problem is to selectn decision variablesx1, x2, . . . , xn from a given feasible region
in such a way as to optimize (minimize or maximize) a given objective function

f (x1, x2, . . . , xn)

of the decision variables. The problem is called anonlinear programming problem(NLP) if the objective
function is nonlinear and/or thefeasible region is determined by nonlinear constraints. Thus, in maximization
form, the general nonlinear program is stated as:

Maximize f (x1, x2, . . . , xn),

subject to:

g1(x1, x2, . . . , xn) ≤ b1,

...
...

gm(x1, x2, . . . , xn) ≤ bm,

where each of the constraint functionsg1 throughgm is given. A special case is the linear program that has
been treated previously. The obvious association for this case is

f (x1, x2, . . . , xn) =

n∑
j=1

c j x j ,
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and

gi (x1, x2, . . . , xn) =

n∑
j=1

ai j x j (i = 1, 2, . . . , m).

Note that nonnegativity restrictions on variables can be included simply by appending the additional con-
straints:

gm+i (x1, x2, . . . , xn) = −xi ≤ 0 (i = 1, 2, . . . , n).

Sometimes these constraints will be treated explicitly, just like any other problem constraints. At other times,
it will be convenient to consider them implicitly in the same way that nonnegativity constraints are handled
implicitly in the simplex method.

For notational convenience, we usually letx denote the vector ofn decision variablesx1, x2, . . . , xn —
that is,x = (x1, x2, . . . , xn) — and write the problem more concisely as

Maximize f (x),

subject to:

gi (x) ≤ bi (i = 1, 2, . . . , m).

As in linear programming, we are not restricted to this formulation. To minimizef (x), we can of course
maximize− f (x). Equality constraintsh(x) = b can be written as two inequality constraintsh(x) ≤ b and
−h(x) ≤ −b. In addition, if we introduce a slack variable, each inequality constraint is transformed to an
equality constraint. Thus sometimes we will consider an alternative equality form:

Maximize f (x),

subject to:

hi (x) = bi (i = 1, 2, . . . , m)

x j ≥ 0 ( j = 1, 2, . . . , n).

Usually the problem context suggests either an equality or inequality formulation (or a formulation with both
types of constraints), and we will not wish to force the problem into either form.

The following three simplified examples illustrate how nonlinear programs can arise in practice.

Portfolio Selection An investor has $5000 and two potential investments. Letx j for j = 1 and j = 2
denote his allocation to investmentj in thousands of dollars. From historical data, investments 1 and 2 have
an expected annual return of 20 and 16 percent, respectively. Also, the total risk involved with investments 1
and 2, as measured by the variance of total return, is given by 2x2

1+x2
2+(x1+x2)

2, so that risk increases with
total investment and with the amount of each individual investment. The investor would like to maximize his
expected return and at the same time minimize his risk. Clearly, both of these objectives cannot, in general, be
satisfied simultaneously. There are several possible approaches. For example, he can minimize risk subject
to a constraint imposing a lower bound on expected return. Alternatively, expected return and risk can be
combined in an objective function, to give the model:

Maximize f (x) = 20x1+ 16x2− θ [2x2
1 + x2

2 + (x1+ x2)
2
],

subject to:
g1(x) = x1+ x2 ≤ 5,

x1 ≥ 0, x2 ≥ 0, (that is,g2(x) = −x1, g3(x) = −x2).

The nonnegative constantθ reflects his tradeoff between risk and return. Ifθ = 0, the model is a linear
program, and he will invest completely in the investment with greatest expected return. For very largeθ , the
objective contribution due to expected return becomes negligible and he is essentially minimizing his risk.
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Water Resources Planning In regional water planning, sources emitting pollutants might be required to
remove waste from the water system. Letx j be the pounds of Biological Oxygen Demand (an often-used
measure of pollution) to be removed at sourcej .

One model might be to minimize total costs to the region to meet specified pollution standards:

Minimize
n∑

j=1

f j (x j ),

subject to:

n∑
j=1

ai j x j ≥ bi (i = 1, 2, . . . , m)

0 ≤ x j ≤ u j ( j = 1, 2, . . . , n),

where

f j (x j ) = Cost of removingx j pounds of Biological Oxygen Demand at
sourcej ,

bi = Minimum desired improvement in water quality at pointi in the
system,

ai j = Quality response, at pointi in the water system, caused by removing
one pound of Biological Oxygen Demand at sourcej ,

u j = Maximum pounds of Biological Oxygen Demand that can be
removed at sourcej .

Constrained Regression A university wishes to assess the job placements of its graduates. For simplicity,
it assumes that each graduate accepts either a government, industrial, or academic position. Let

N j = Number of graduates in yearj ( j = 1, 2, . . . , n),

and letG j , I j , andA j denote the number entering government, industry, and academia, respectively, in year
j (G j + I j + A j = N j ).

One model being considered assumes that a given fraction of the student population joins each job
category each year. If these fractions are denoted asλ1, λ2, andλ3, then the predicted number entering the
job categories in yearj is given by the expressions

Ĝ j = λ1N j ,

Î j = λ2N j ,

Â j = λ3N j .

A reasonable performance measure of the model’s validity might be the difference between the actual number
of graduatesG j , I j , andA j entering the three job categories and the predicted numbersĜ j , Î j , and Â j , as
in the least-squares estimate:

Minimize
n∑

j=1

[(G j − Ĝ j )
2
+ (I j − Î j )

2
+ (A j − Â j )

2
],

subject to the constraint that all graduates are employed in one of the professions. In terms of the fractions
entering each profession, the model can be written as:

Minimize
n∑

j=1

[(G j − λ1N j )
2
+ (I j − λ2N j )

2
+ (A j − λ3N j )

2
],
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subject to:

λ1 + λ2+ λ3 = 1,

λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0.

This is a nonlinear program in three variablesλ1, λ2, andλ3.
There are alternative ways to approach this problem. For example, the objective function can be changed

to:

Minimize
n∑

j=1

[∣∣G j − Ĝ j | + |I j − Î j | + |A j − Â j
∣∣] .†

This formulation is appealing since the problem now can be transformed into a linear program. Exercise 28
(see also Exercise 20) from Chapter 1 illustrates this transformation.

The range of nonlinear-programming applications is practically unlimited. For example, it is usually simple
to give a nonlinear extension to any linear program. Moreover, the constraintx = 0 or 1 can be modeled
asx(1− x) = 0 and the constraintx integer as sin(πx) = 0. Consequently,in theoryany application of
integer programming can be modeled as a nonlinear program. We should not be overly optimistic about these
formulations, however; later we shall explain why nonlinear programming is not attractive for solving these
problems.

13.2 LOCAL vs. GLOBAL OPTIMUM

Geometrically, nonlinear programs can behave much differently from linear programs, even for problems
with linear constraints. In Fig. 13.1, the portfolio-selection example from the last section has been plotted for
several values of the tradeoff parameterθ . For each fixed value ofθ , contours of constant objective values
are concentric ellipses. As Fig. 13.1 shows, the optimal solution can occur:

a) at an interior point of the feasible region;
b) on the boundary of the feasible region, which is not an extreme point; or
c) at an extreme point of the feasible region.

As a consequence, procedures, such as the simplex method, that search only extreme points may not determine
an optimal solution.

Figure 13.2 illustrates another feature of nonlinear-programming problems. Suppose that we are to
minimize f (x) in this example, with 0≤ x ≤ 10. The pointx = 7 is optimal. Note, however, that in the
indicated dashed interval, the pointx = 0 is the best feasible point; i.e., it is an optimal feasible point in the
local vicinity of x = 0 specified by the dashed interval.

The latter example illustrates that a solution optimal in a local sense need not be optimal for the overall
problem. Two types of solution must be distinguished. A global optimum is a solution to the overall
optimization problem. Its objective value is as good as any other point in the feasible region. A local
optimum, on the other hand, is optimal only with respect to feasible solutionsclose to that point. Points
far removed from a local optimum play no role in its definition and may actually be preferred to the local
optimum. Stated more formally,

Definition. Let x = (x1, x2, . . . , xn) be a feasiblesolution to a maximization problem with objective
function f (x). We callx

1. A global maximumif f (x) ≥ f (y) for every feasible pointy = (y1, y2, . . . , yn);

†
| | denotes absolute value; that is,|x| = x if x ≥ 0 and|x| = −x if x < 0.
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Figure 13.1 Portfolio-selection example for various values ofθ . (Lines are contours of constant objective values.)
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Figure 13.2 Local and global minima.

2. A local maximumif f (x) ≥ f (y) for every feasible pointy = (y1, y2, . . . , yn) sufficiently close tox.
That is, if there is a numberε > 0 (possibly quite small) so that, whenever each variabley j is within
ε of x j — that is,x j − ε ≤ y j ≤ x j + ε —andy is feasible, thenf (x) ≥ f (y).

Global and local minima are defined analogously. The definition of local maximum simply says that if we
place ann-dimensional box (e.g., a cube in three dimensions) aboutx, whose side has length 2ε, then f (x)

is as small asf (y) for every feasible pointy lying within the box. (Equivalently, we can usen-dimensional
spheres in this definition.) For instance, ifε = 1 in the above example, the one-dimensional box, or interval,
is pictured about the local minimumx = 0 in Fig. 13.2.

The concept of a local maximum is extremely important. As we shall see, most general-purpose nonlinear-
programming procedures are near-sighted and can do no better than determine local maxima. We should
point out that, since every global maximum is also a local maximum, the overall optimization problem can
be viewed as seeking the best local maxima.

Under certain circumstances, local maxima and minima are known to be global. Whenever a function
‘‘curves upward’’ as in Fig. 13.3(a), a local minimum will be global. These functionsare calledconvex.
Whenever a function ‘‘curves downward’’ as in Fig. 13.3(b) a local maximum will be a global maximum.
These functions are calledconcave.† For this reason we usually wish to minimize convex functions and
maximize concave functions. These observations are formalized below.

13.3 CONVEX AND CONCAVE FUNCTIONS

Because of both their pivotal role in model formulation and their convenient mathematical properties, certain
functional forms predominate in mathematical programming. Linear functions are by far the most important.
Next in importance are functions which are convex or concave. These functions are so central to the theory
that we take some time here to introduce a few of their basic properties.

An essential assumption in a linear-programming model for profit maximization is constant returns to scale
for each activity. This assumption implies that if the level of one activity doubles, then that activity’s profit
contribution also doubles; if the first activity level changes fromx1 to 2x1, then profit increases proportionally
from say $20 to $40 [i.e., fromc1x1 to c1(2x1)]. In many instances, it is realistic to assume constant returns
to scale over the range of the data. At other times, though, due to economies of scale, profit might increase
disproportionately, to say $45; or, due to diseconomies of scale (saturation effects), profit may be only $35.
In the former case, marginal returns are increasing with the activity level, and we say that the profit function

† As a mnemonic, the ‘‘A’’ in concAve reflects the shape of these functions.
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Figure 13.3 a) Convex function b) concave function (c) nonconvex, nonconcave function.

is convex(Fig. 13.3(a)). In the second case, marginal returns are decreasing with the activity level and we
say that the profit function isconcave(Fig.13.3(b)). Of course, marginal returns may increase over parts of
the data range and decrease elsewhere, giving functions that are neither convex nor concave (Fig. 13.3(c)).

An alternative way to view a convex function is to note that linear interpolation overestimates its values.
That is, for any pointsy andz, the line segment joiningf (y) and f (z) lies above the function (see Fig. 13.3).
More intuitively, convex functions are ‘‘bathtub like’’ and hold water. Algebraically,

Definition. A function f (x) is calledconvexif,for every y andz and every 0≤ λ ≤ 1,

f [λy+ (1− λ)z] ≤ λ f (y)+ (1− λ) f (z).

It is calledstrictly convexif, for every two distinct pointsy andz and every 0< λ < 1,

f [λy+ (1− λ)z] < λ f (y)+ (1− λ) f (z).

The lefthand side in this definition is the function evaluation on the line joiningx andy; the righthand side is
the linear interpolation. Strict convexity corresponds to profit functions whose marginal returns are strictly
increasing.

Note that although we have picturedf above to be a function of one decision variable, this is not a restric-
tion. If y = (y1, y2, . . . , yn) andz = (z1, z2, . . . , zn), we must interpretλy + (1− λ)z only as weighting
the decision variables one at a time, i.e., as the decision vector (λy1+ (1− λ)z1, . . . , λyn + (1− λ)zn).

Concave functions are simply the negative of convex functions. In this case, linear interpolation under-
estimates the function. The definition above is altered by reversing the direction of the inequality. Strict
concavity is defined analogously. Formally,

Definition. A function f (x) is calledconcaveif,for every y andz and every 0≤ λ ≤ 1,

f [λy+ (1− λ)z] ≥ λ f (y)+ (1− λ) f (z).

It is calledstrictly concaveif, for every y andz and every 0< λ < 1,

f [λy+ (1− λ)z] > λ f (y)+ (1− λ) f (z).
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Figure 13.4 Convex and nonconvex sets.

We can easily show that a linear function is both convex and concave. Consider the linear function:

f (x) =

n∑
j=1

c j x j ,

and let 0≤ λ ≤ 1. Then

f (λy+ (1− λ)z) =
n∑

j=1

c j (λy j + (1− λ)z j )

= λ

 n∑
j=1

c j y j

+ (1− λ)

 n∑
j=1

c j z j


= λ f (y)+ (1− λ) f (z).

These manipulations state, quite naturally, that linear interpolation gives exact values forf and consequently,
from the definitions, that a linear function is both convex and concave. This property is essential, permitting
us to either maximize or minimize linear functions by computationally attractive methods such as the simplex
method for linear programming.

Other examples of convex functions arex2, x4, ex, e−x or –logx. Multiplying each example by minus
one gives aconcave function. The definition of convexity implies that the sum of convex functions is convex
and that any nonnegative multiple of a convex function also is convex. Utilizing this fact, we can obtain a
large number of convex functions met frequently in practice by combining these simple examples, giving, for
instance,

2x2
+ ex, ex

+ 4x,

or
−3 log x + x4.

Similarly, we can easily write several concave functions by multiplying these examples by minus one.
A notion intimately related to convex and concave functions is that of aconvex set. These sets are ‘‘fat,’’

in the sense that, whenevery andz are contained in the set, every point on the line segment joining these
points is also in the set (see Fig. 13.4). Formally,

Definition. A set of pointsC is calledconvexif, for all λ in the interval 0≤ λ ≤ 1, λy+ (1− λ)z is
contained inC wheneverx andy are contained inC.

Again we emphasize thaty andz in this definition are decision vectors; in the example, each of these vectors
has two components.
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We have encountered convex sets frequently before, since the feasible region for a linear program is
convex. In fact, the feasible region for a nonlinear program is convex if it is specified by less-than-or-equal-to
equalities with convex functions. That is, iffi (x) for i = 1, 2, . . . , m, are convex functions and if the points
x = y andx = z satisfy the inequalities

fi (x) ≤ bi (i = 1, 2, . . . , m),

then, for any 0≤ λ ≤ 1, λy+ (1− λ)z is feasible also, since the inequalities

fi (λy+ (1− λ)z) ≤ λ fi (y) + (1− λ) fi (z) ≤ λbi + (1− λ)bi = bi
↑ ↑

Convexity Feasibility ofy andz

hold for every constraint. Similarly, if the constraints are specified by greater-than-or-equal-to inequali-
ties and the functions are concave, then the feasible region is convex. In sum, for convex feasible regions
we want convex functions for less-than-or-equal-to constraints and concave functions for greater-than-or-
equal-to constraints. Since linear functions are both convex and concave, they may be treated as equali-
ties.

An elegant mathematical theory, which is beyond the scope of this chapter, has been developed for convex
and concave functions and convex sets. Possibly the most important property for the purposes of nonlinear
programming was previewed in the previous section. Under appropriate assumptions, a local optimumcan
be shown to be a global optimum.

Local Minimum and Local Maximum Property

1. A local

{
minimum
maximum

}
of a

{
convex
concave

}
function on a convex feasible region is also a

global

{
minimum
maximum

}
.

2. A local

{
minimum
maximum

}
of a strictly

{
convex
concave

}
function on a convex feasible region

is the unique global

{
minimum
maximum

}
.

We can establish this property easily by reference to Fig. 13.5. The argument is for convex functions;
the concave case is handled similarly. Suppose thaty is a local minimum. Ify is not a global minimum,
then, by definition, there is a feasible pointz with f (z) < f (y). But then if f is convex, the function must
lie on or below the dashed linear interpolation line. Thus, in any box abouty, there must be anx on the line
segment joiningy andz, with f (x) < f (y). Since the feasible region is convex, thisx is feasible and we
have contradicted the hypothesis thaty is a local minimum. Consequently, no such pointz can exist and any
local minimum such asy must be a global minimum.

To see the second assertion, suppose thaty is a local minimum. By Property 1 it is also a global minimum.
If there is another global minimumz (so that f (z) = f (y)), then 1

2x + 1
2z is feasible and, by the definition

of strict convexity,

f
(

1
2x + 1

2z
)

< 1
2 f (y)+ 1

2 f (z) = f (y).

But this states that12x + 1
2z is preferred toy, contradicting our premise thaty is a global minimum.

Consequently, no other global minimum such asz can possibly exist; that is,y must be the unique global
minimum.
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Figure 13.5 Local minima are global minima for convex function

13.4 PROBLEM CLASSIFICATION

Many of the nonlinear-programming solution procedures that have been developed do not solve the general
problem

Maximize f (x),

subject to:

gi (x) ≤ bi (i = 1, 2, . . . , m),

but rather some special case. For reference, let us list some of these special cases:

1. Unconstrained optimization:
f general, m= 0 (noconstraints).

2. Linear programming:

f (x) =

n∑
j=1

c j x j , gi (x) =
∑n

j=1 ai j x j (i = 1, 2, . . . , m),

gm+i (x) = −xi (i = 1, 2, . . . , n).

3. Quadratic programming:

f (x) =

n∑
j=1

c j x j +
1
2

n∑
i=1

n∑
j=1

qi j xi x j (Constraints of case 2),

(qi j are given constants).

4. Linear constrained problem:

f (x) general, gi (x) =

n∑
j=1

ai j x j (i = 1, 2, . . . , m),

(Possiblyx j ≥ 0 will be included as well).
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5. Separable programming:

f (x) =

n∑
j=1

f j (x j ), gi (x) =

n∑
j=1

gi j (x j ) (i = 1, 2, . . . , m);

i.e., the problem ‘‘separates’’ into functions of single variables. The functionsf j andgi j are given.

6. Convex programming:

f is a concave function. The functionsgi (i = 1, 2, . . . , m)

(In a minimization problem, are all convex.
f would be a convex function.)

Note that cases 2, 3, and 4 are successive generalizations. In fact linear programming is a special case of
every other problem type except for case 1.

13.5 SEPARABLE PROGRAMMING

Our first solution procedure is for separable programs, which are optimization problems of the form:

Maximize
n∑

j=1

f j (x j ),

subject to:
n∑

j=1

gi j (x j ) ≤ 0 (i = 1, 2, . . . , m),

where each of the functionsf j andgi j is known. These problems are called separable because the decision
variables appear separately, one in each functiongi j in the constraints and one in each functionf j in the
objective function.

Separable problems arise frequently in practice, particularly for time-dependent optimization. In this case,
the variablex j usually corresponds to an activity level for time periodj and the separable model assumes
that the decisions affecting resource utilization and profit (or cost) are additive over time. The model also
arises when optimizing over distinct geographical regions, an example being the water-resources planning
formulation given in Section 13.1.

Actually, instead of solving the problem directly, we make an appropriate approximation so that linear
programming can be utilized. In practice, two types of approximations, called theδ-methodand theλ-method,
are often used. Since we have introduced theδ-method when discussing integer programming, we consider
theλ-method in this section.

The general technique is motivated easily by solving a specific example. Consider the portfolio-selection
problem introduced in Section 13.1. Takingθ = 1, that problem becomes:

Maximize f (x) = 20x1+ 16x2− 2x2
1 − x2

2 − (x1+ x2)
2,

subject to:

x1 + x2 ≤ 5,

x1 ≥ 0, x2 ≥ 0.

As stated, the problem is not separable, because of the term(x1 + x2)
2 in the objective function. Letting

x3 = x1+ x2, though, we can re-express it in separable form as:

Maximize f (x) = 20x1+ 16x2− 2x2
1 − x2

2 − x2
3,
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subject to:

x1 + x2 ≤ 5,

x1 + x2− x3 = 0,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

The objective function is now written asf (x) = f1(x1)+ f2(x2)+ f3(x3), where

f1(x1) = 20x1− 2x2
1,

f2(x2) = 16x2− x2
2,

and

f3(x3) = −x2
3.

Thus it is separable. Clearly, the linear constraints are also separable.
To form the approximation problem, we approximate each nonlinear term by a piecewise-linear curve,

as pictured in Fig. 13.6. We have used three segments to approximate the functionf1 and two segments to
approximate the functionsf2 and f3. Note that the constraints imply that

x1 ≤ 5, x2 ≤ 5, and x3 ≤ 5,

so that we need not extend the approximation beyond these bounds on the variables.
The dashed approximation curves forf1(x1), f2(x2), and f3(x3) are determined by linear approximation

between breakpoints. For example, if 1≤ x1 ≤ 3, then the approximationf a
1 for f1 is given by weighting

the function’s values atx1 = 1 andx1 = 3; that is, as

f a
1 (x1) = 18λ1+ 42λ2,

where the nonnegative variablesλ1 andλ2 expressx1 as a weighted combination of 1 and 3; thus,

x1 = 1λ1+ 3λ2, λ1+ λ2 = 1.

For instance, evaluating the approximation atx1 = 1.5 gives

f a
1 (1.5) = 18

(
3
4

)
+ 42

(
1
4

)
= 24,

since
1.5= 1

(
3
4

)
+ 3

(
1
4

)
.

The overall approximation curvef a
1 (x1) for f1(x1) is expressed as:

f a
1 (x1) = 0λ0+ 18λ1+ 42λ2+ 50λ3,

(1)

Figure 13.6 Approximating separable functions.
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where

x1 = 0λ0+ 1λ1+ 3λ2+ 5λ3, (2)

λ0+ λ1+ λ2+ λ3 = 1,

λ j ≥ 0 ( j = 1, 2, 3, 4),

with the provision that theλ j variables satisfy the following restriction:

Adjacency Condition. At most twoλ j weights arepositive. If two weights are positive, then they are
adjacent, i.e., of the formλ j andλ j+1. A similar restriction applies to each approximation.

Figure 13.7 illustrates the need for the adjacency condition. If the weightsλ0 =
1
3 andλ2 =

2
3, then the

approximation (1) gives

f a
1 (x1) = 0

(
1
3

)
+ 42

(
2
3

)
= 28,

x1 = 0
(

1
3

)
+ 3

(
2
3

)
= 2,

as shown in Fig. 13.7(a) by the light curve joiningλ0 andλ2. In contrast, atx1 = 2 the approximation curve
gives f a

1 (2) = 30.
An essential point to note here is that, forconcaveobjective functions, the adjacency condition will

always be enforced by the maximization and can be ignored. This property is easy to see geometrically by
considering Fig 13.7(a). Suppose that the weightsλ0 andλ2 are positive. By concavity, the function value
of 18 atx1 = 1 associated with the intermediate weightλ1 lies above the line segment joiningλ0 andλ2 in
the figure. Consequently, the approximation curve must also lie above this line segment. The maximization,
therefore, will select the dashed approximation curve with only the adjacent weightsλ0 andλ1, or λ1 and
λ2, positive, rather than any solution with bothλ0 andλ2 positive. A similar argument applies if three or
more weights are positive. For example, ifλ0, λ2, andλ3 are all positive, then the additional weightλ3 can
be viewed as weighting a point on the line segment joiningλ0 andλ2 with the point atλ3. Again, concavity
implies that this point lies below the approximation curve and will not be accepted by the maximization.
Note, however, that for the nonconcave function of Fig. 13.7(b), nonadjacent weightsλ0 andλ2 are actually
preferred to the approximation curve. Consequently, for nonconcave functions some effort must be expended
to ensure that the adjacency condition is satisfied.

Returning to the portfolio-selection example, we can write the approximation problem:

Maximizez= f a
1 (x1)+ f a

2 (x2)+ f a
3 (x3),

Figure 13.7 Need for the adjacency condition
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subject to:

x1 + x2 ≤ 5,

x1 + x2 − x3 = 0,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

in terms of weighting variablesλi j . Here we use the first subscripti to denote the weights to attach to
variablei . The weightsλ0, λ1, λ2, andλ3 used above for variablex1 thus becomeλ10, λ11, λ12, andλ13.
The formulation is:

Maximizez=

0λ10+ 18λ11+ 42λ12+ 50λ13+ 0λ20+ 39λ21+ 55λ22− 0λ30− 4λ31− 25λ32,

subject to:

0λ10 + 1λ11 + 3λ12 + 5λ13 + 0λ20 + 3λ21 + 5λ22 ≤ 5,

0λ10 + 1λ11 + 3λ12 + 5λ13 + 0λ20 + 3λ21 + 5λ22 − 0λ30 − 2λ31 − 5λ32 = 0,

λ10 + λ11 + λ12 + λ13 = 1
λ20 + λ21 + λ22 = 1

λ30 + λ31 + λ32 = 1

λi j ≥ 0, for all i and j .

Since each of the functionsf1(x1), f2(x2), and f3(x3) is concave, the adjacency condition can be ignored and
the problem can be solved as alinear program. Solving by the simplex method gives an optimal objective
value of 44 withλ11 = λ12 = 0.5, λ21 = 1, andλ32 = 1 as the positive variables in the optimal solution.
The corresponding values for the original problem variables are:

x1 = (0.5)(1)+ (0.5)(3) = 2, x2 = 3, and x3 = 5.

This solution should be contrasted with the true solution

x1 =
7
3, x2 =

8
3, x3 = 5, and f (x1, x2, x3) = 461

3,

which we derive in Section 13.7.
Note that the approximation problem has added severalλ variables and that one weighting constraint in

(2) is associated with eachx j variable. Fortunately, these weighting constraints are of a special generalized
upper-bounding type, which add little to computational effort and keep the number of effective constraints
essentially unchanged. Thus, the technique can be applied to fairly large nonlinear programs, depending of
course upon the capabilities of available linear-programming codes.

Once the approximation problem has been solved, we can obtain a better solution by introducing more
breakpoints. Usually more breakpoints will be added near the optimal solution given by the original approx-
imation.

Adding a single new breakpoint atx1 = 2 leads to an improved approximation for this problem with a
linear-programming objective value of 46 and

x1 = 2, x2 = 3, and x3 = 5.

In this way, an approximate solution can be found as close as desired to the actual solution.

General Procedure

The general problem must be approached more carefully, since linear programming can give nonadjacent
weights. The procedure is to express each variable∗ in terms of breakpoints, e.g., as above

x1 = 0λ10+ 1λ11+ 3λ12+ 5λ13,

∗ Variables that appear in the model in only a linear fashion should not be approximated and remain asx j variables.
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and then use these breakpoints to approximate the objective function and each constraint, giving the approx-
imation problem:

Maximize
n∑

j=1

f a
j (x j ),

subject to: (3)

n∑
j=1

ga
i j (x j ) ≤ bi (i = 1, 2, . . . , m).

If each original functionf j (x j ) is concave and eachgi j (x j ) convex,† then theλi j version is solved as a linear
program. Otherwise, the simplex method is modified to enforce the adjacency condition. A natural approach
is to apply the simplex method as usual, except for a modified rule that maintains the adjacency condition at
each step. The alteration is:

Restricted-Entry Criterion. Use the simplex criterion, butdo not introduce aλik variable into the basis
unless there is only oneλi j variable currently in the basis and it is of the formλi,k−1 or λi,k+1, i.e.,it is
adjacent toλik .

Note that, when we use this rule, the optimal solution may contain a nonbasic variableλik that would
ordinarily be introduced into the basis by the simplex method (since its objective cost in the canonical form is
positive), but is not introduced because of the restricted-entry criterion. If the simplex method would choose
a variable to enter the basis that is unacceptable by the restricted-entry rule, then we choose the next best
variable according to the greatest positive reduced cost.

An attractive feature of this procedure is that it can be obtained by making very minor modifications to
any existing linear-programming computer code. As a consequence, most commercial linear-programming
packages contain a variation of this separable-programming algorithm. However, the solution determined by
this method in the general case can only be shown to be a localoptimum to the approximation problem (3).

Inducing Separability

Nonseparable problems frequently can be reduced to a separable form by a variety of formulation tricks. A
number of such transformations are summarized in Table 13.1.

Table 13.1 Representative transformations

Term Substitution Additional constraints Restriction

x1x2 x1x2 = y2
1 − y2

2 y1 =
1
2(x1+ x2)

None
y2 =

1
2(x1− x2)

x1x2 x1x2 = y1 log y1 = logx1+ logx2 x1 > 0, x2 > 0

xx2
1 xx2

1 = y1 y1 = 10y2x2
∗

x1 > 0
x1 = 10y2

2x1+x2
2 2x1+x2

2 = y1 log y1 = (log 2)(x1+ x2
2) None

∗ The termy2x2 should now be separated by the first transformation, followed by
an application of the last transformation to separate the resulting power-of-10 term.

† Because the constraints are written as (≤), the constraints should be convex; they should be concave for (≥) inequalities.
Similarly, for a minimization problem, the objective functionsf j (x j ) should be convex.
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To see the versatility of these transformations, suppose that the nonseparable termx1x2
2/(1+ x3) appears

either in the objective function or in a constraint of a problem. Lettingy1 = 1/(1+ x3), the term becomes
x1x2

2 y1. Now if x1 > 0, x2
2 > 0, andy1 > 0 over the feasible region, thenlettingy2 = x1x2

2 y1, the original
term is replaced byy2 and the separable constraints

y1 =
1

1 + x3

and
log y2 = logx1+ logx2

2 + log y1

are introduced. If the restrictionsx1 > 0, x2
2 > 0, y1 > 0 arenot met, we may lety2 = x1x2

2, substitutey1y2
for the original term, and append the constraints:

y1 =
1

1 + x3
, y2 = x1x2

2.

The nonseparable termsy1y2 andx1x2
2 can now be separated using the first transformation in Table 13.1 (for

the last expression, letx2
2 replacex2 in the table).

Using the techniques illustrated by this simple example, we may, in theory, state almost any optimization
problem as a separable program. Computationally, though, the approach is limited since the number of added
variables and constraints may make the resulting separable program too large to be manageable.

13.6 LINEAR APPROXIMATIONS OF NONLINEAR PROGRAMS

Algebraic procedures such as pivoting are so powerful for manipulating linear equalities and inequalities that
many nonlinear-programming algorithms replace the given problem by an approximating linear problem.
Separable programming is a prime example, and also one of the most useful, of these procedures. As in
separable programming, these nonlinear algorithms usually solve several linear approximations by letting the
solution of the last approximation suggest a new one.

By using different approximation schemes, this strategy can be implemented in several ways. This section
introduces three of these methods, all structured to exploit the extraordinary computational capabilities of the
simplex method and the wide-spread availability of its computer implementation.

There are two general schemes for approximating nonlinear programs. The last section used linear ap-
proximation for separable problems by weighting selected values of each function. This method is frequently
referred to asinner linearizationsince, as shown in Fig. 13.8 when applied to a convex programming prob-
lem (i.e., constraintsgi (x) ≥ 0 with gi concave, orgi (x) ≤ 0 with gi convex), the feasible region for the
approximating problem lies inside that of the original problem. In contrast, other approximation schemes use
slopes to approximate each function. These methods are commonly referred to asouter linearizationssince,
for convex-programming problems, the feasible region for the approximating problem encompasses that of
the original problem. Both approaches are illustrated further in this section.

Frank–Wolfe Algorithm

Let x0
= (x0

1, x0
2, . . . , x0

n) be any feasible solution to a nonlinear program with linear constraints:

Maximize f (x1, x2, . . . , xn),

subject to:

n∑
j=1

ai j x j ≤ bi (i = 1, 2, . . . , m),

x j ≥ 0 ( j = 1, 2, . . . , n).
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Figure 13.8 Inner and outer linearizations ofg(x) ≥ 0.

Herex0 might be determined by phase I of the simplex method. This algorithm forms a linear approximation
at the pointx0 by replacing the objective function with its current value plus a linear correction term; that is,
by the linear objective

f (x0)+

n∑
j=1

c j (x j − x0
j ),

wherec j is the slope, or partial derivative, off with respect tox j , evaluated at the pointx0. Since f (x0), c j ,
andx0

j are fixed, maximizing this objective function is equivalent to maximizing:

z=
n∑

j=1

c j x j .

The linear approximation problem is solved, giving an optimal solutiony = (y1, y2, . . . , yn). At this
point the algorithm recognizes that, although the linear approximation problem indicates that the objective
improves steadily fromx0 to y, thenonlinearobjective might not continue to improve fromx0 to y. Therefore,
the algorithm uses a procedure to determine the maximum value forf (x1, x2, . . . , xn) along the line segment
joining x0 to y. Special methods for performing optimization along the line segment are discussed in Section
13.9. For now, let us assume that there is a method to accomplish this line-segment maximization for us.

Letting x1
= (x1

1, x1
2, . . . , x1

n) denote the optimal solution of the line-segment optimization, we repeat
the procedure by determining a new linear approximation to the objective function with slopesc j evaluated
at x1. Continuing in this way, we determine a sequence of pointsx1, x2, . . . , xn, . . . ; any pointx∗ =
(x∗1, x∗2, . . . , x∗n) that these points approach in the limit is an optimal solution to the original problem.

Let us illustrate the method with the portfolio-selection example from Section 13.1:

Maximize f (x) = 20x1+ 16x2− 2x2
1 − x2

2 − (x1+ x2)
2,

subject to:

x1 + x2 ≤ 5,

x1 ≥ 0, x2 ≥ 0.

The partial derivatives of the objective function at any pointx = (x1, x2) are given by:

c1 = 20− 4x1− 2(x1+ x2) = 20− 6x1− 2x2,

c2 = 16− 2x2− 2(x1+ x2) = 16− 2x1− 4x2.
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Suppose that the initial point isx0
= (0, 0). At this pointc1 = 20 andc2 = 16 and the linear approximation

uses the objective function 20x1 + 16x2. The optimal solution to this linear program isy1 = 5, y2 = 0,
and the line-segment optimization is made on the line joiningx0

= (0, 0) to y = (5, 0); that is, with
0 ≤ x1 ≤ 5, x2 = 0. The optimal solution can be determined to bex1 = 31

3, x2 = 0, so that the procedure is
repeated fromx1

= (31
3, 0).

The partial derivatives are nowc1 = 0, c2 = 91
3, and the solution to the resulting linear program of

maximizing 0x1+ 91
3x2 is y1 = 0, y2 = 5. The line segment joiningx1 andy is given by

x1 = θy1+ (1− θ)x1
1 = 31

3(1− θ),

x2 = θy2+ (1− θ)x1
2 = 5θ,

asθ varies between 0 and 1. The optimal value ofθ over the line segment isθ = 7
15, so that the next point is:

x2
1 =

(
10
3

) (
8
15

)
= 17

9 and x2
2 = 21

3.

Figure 13.9 illustrates these two steps of the algorithm and indicates the next few pointsx4, x5, andx6

that it generates.

Figure 13.9 Example of the Frank–Wolfe algorithm.

The Frank–Wolfe algorithm is convenient computationally because it solves linear programs with the
same constraints as the original problem. Consequently, any structural properties of these constraints are
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available when solving the linear programs. In particular, network-flow techniques or large-scale system
methods can be used whenever the constraints have the appropriate structure. Also, note from Fig. 13.9
that the pointsx1, x2, x3, . . . oscillate. The even-numbered pointsx2, x4, x6, . . . lie on one line directed
toward the optimal solution, and the odd-numbered pointsx1, x3, x5, . . . , lie on another such line. This
general tendency of the algorithm slows its convergence. One approach for exploiting this property to speed
convergence is to make periodic optimizations along the line generated by every other pointxk+2 andxk for
some values ofk.

MAP (Method of Approximation Programming)

The Frank–Wolfe algorithm can be extended to general nonlinear programs by making linear approximations
to the constraints as well as the objective function. When the constraints are highly nonlinear, however, the
solution to the approximation problem can become far removed from feasible region since the algorithm
permits large moves from any candidate solution. The Method of Approximation Programming (MAP) is a
simple modification of this approach that limits the size of any move. As a result, it is sometimes referred to
as asmall-step procedure.

Let x0
= (x0

1, x0
2, . . . , x0

n) be any candidate solution to the optimization problem:

Maximize f (x1, x2, . . . , xn),

subject to:
gi (x1, x2, . . . , xn) ≤ 0 (i = 1, 2, . . . , m).

Each constraint can be linearized, using its current valuegi (x0) plus a linear correction term, as:

ĝi (x) = gi (x
0)+

n∑
j=1

ai j (x j − x0
j ) ≤ 0,

whereai j is the partial derivative of constraintgi with respect to variablex j evaluated at the pointx0. This
approximation is a linear inequality, which can be written as:

n∑
j=1

ai j x j ≤ b0
i ≡

n∑
j=1

ai j x0
j − gi (x

0),

since the terms on the righthand side are all constants.
The MAP algorithm uses these approximations, together with the linear objective-function approximation,

and solves the linear-programming problem:

Maximizez=
n∑

j=1

c j x j ,

subject to:

n∑
j=1

ai j x j ≤ b0
i (i = 1, 2, . . . , m), (4)

x0
j − δ j ≤ x j ≤ x0

j + δ j ( j = 1, 2, . . . , n).

The last constraints restrict the step size; they specify that the value forx j can vary fromx0
j by no more than

the user-specified constantδ j .
When the parametersδ j are selected to be small, the solution to this linear program is not far removal

from x0. We might expect then that the additional work required by the line-segment optimization of the
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Frank–Wolfe algorithm is not worth the slightly improved solution that it provides. MAP operates on this
premise, taking the solution to the linear program (4) as the new pointx1. The partial-derivative dataai j , bi ,
andc j is recalculated atx1, and the procedure is repeated. Continuing in this manner determines points
x1, x2, . . . , xk, . . . and as in the Frank–Wolfe procedure, any pointx∗ = (x∗1, x∗2, . . . , x∗n) that these points
approach in the limit is considered a solution.

Steps of the MAP Algorithm

STEP (0): Letx0
= (x0

1, x0
2, . . . , x0

n) be any candidate solution, usually selected to be feasible or near-
feasible. Setk = 0.

STEP (1): Calculatec j and ai j (i = 1, 2, . . . , m), the partial derivatives of the objective function and
constraints evaluated atxk

= (xk
1, xk

2, . . . , xk
n). Let bk

i = ai j xk
− gi (xk).

STEP (2): Solve the linear-approximation problem (4) withbk
i andxk

j replacingb0
i andx0

j , respectively.

Let xk+1
= (xk+1

1 , xk+1
2 , . . . , xk+1

n ) be its optimal solution. Incrementk to k+ 1 and return to
STEP 1.

Since many of the constraints in the linear approximation merely specify upper and lower bounds on the
decision variablesx j , the bounded-variable version of the simplex method is employed in its solution. Also,
usually the constantsδ j are reduced as the algorithm proceeds. There are many ways to implement this idea.
One method used frequently in practice, is to reduce eachδ j by between 30 and 50 percent at each iteration.

To illustrate the MAP algorithm, consider the problem:

Maximize f (x) = [(x1− 1)2
+ x2

2],

subject to:

g1(x) = x2
1 + 6x2− 36≤ 0,

g2(x) = −4x1+ x2
2 − 2x2 ≤ 0,

x1 ≥ 0, x2 ≥ 0.

The partial derivatives evaluated at the pointx = (x1, x2) are given by:

c1 = 2x1− 2, c2 = 2x2,

a11 = 2x1, a12 = 6,

a21 = −4, a22 = 2x2− 2.

Since linear approximations of any linear function gives that function again, no data needs to be calculated
for the linear constraintsx1 ≥ 0 andx2 ≥ 0.

Using these relationships and initiating the procedure atx0
= (0, 2) with δ1 = δ2 = 2 gives the linear-

approximation problem:

Maximizez= −2x1+ 4x2,

subject to:

0x1+ 6x2 ≤ 0(0)+ 6(2)− (−24) = 36,

−4x1+ 2x2 ≤ −4(0)+ 2(2)− 0 = 4.

−2 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 4.

The righthand sides are determined as above by evaluatingai 1x0
1 + ai 2x0

2 − gi (x0).
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The feasible region and this linear approximation are depicted in Fig. 13.10. Geometrically, we see that
the optimalsolution occurs atx1

1 = 1, x1
2 = 4. Using this point and reducing bothδ1 andδ2 to 1 generates

the new approximation:

Maximizez= 0x1+ 8x2,

subject to:

2x1+ 6x2 ≤ 2(1)+ 6(4)− (−11) = 37,

−4x1+ 6x2 ≤ −4(1)+ 6(4)− (4) = 16,

0 ≤ x1 ≤ 2, 3≤ x2 ≤ 5.

The solution indicated in Fig. 13.10 occurs atx2
1 = 2, x2

2 = 4.

Figure 13.10 Example of the MAP algorithm.

If the procedure is continued, the pointsx3, x4, . . . that it generates approach the optimal solutionx∗

shown in Fig. 13.10. As a final note, let us observe that the solutionx1 is not feasible for the linear program
that was constructed by making linear approximations atx1. Thus, in general, both Phase I and Phase II of
the simplex method may be required to solve each linear-programming approximation.
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Generalized Programming

This algorithm is applied to the optimization problem of selecting decision variablesx1, x2, . . . , xn from a
regionC to:

Maximize f (x1, x2, . . . , xn),

subject to:
gi (x1, x2, . . . , xn) ≤ 0 (i = 1, 2, . . . , m).

The procedure uses inner linearization and extends the decomposition and column-generation algorithms
introduced in Chapter 12. When the objective function and constraintsgi are linear andC consists of the
feasible points for a linear-programming subproblem, generalized programming reduces to the decomposition
method.

As in decomposition, the algorithm starts withk candidate solutionsx j
= (x j

1, x j
2, . . . , x j

n) for j =
1, 2, . . . , k, all lying the regionC. Weighting these points byλ1, λ2, . . . , λk generates the candidate solution:

xi = λ1x1
i + λ2x2

i + · · · + λkxk
i (i = 1, 2, . . . , n). (5)

Any choices can be made for the weights as long as they are nonnegative and sum to one. The ‘‘best’’ choice
is determined by solving the linear-approximation problem in the variablesλ1, λ2, . . . , λk:

Maximize λ1 f (x1)+ λ2 f (x2)+ · · · + λk f (xk), Optimal
subject to: shadow

prices

λ1g1(x1)+ λ2g1(x2)+ · · · + λkg1(xk) ≤ 0, y1
...

...
...

... (6)
λ1gm(x1)+ λ2gm(x2)+ · · · + λkgm(xk) ≤ 0, ym

λ1 + λ2 + λk = 1. σ

λ j ≥ 0 ( j = 1, 2, . . . , k).

The coefficientsf (x j ) andgi (x j ) of the weightsλ j in this linear program are fixed by our choice of the
candidate solutionsx1, x2, . . . , xk. In this problem, the original objective function and constraints have
been replaced by linear approximations. Whenx is determined from expression (5) by weighting the points
x1, x2, . . . , xk by the solution of problem (6), the linear approximations atx are given by applying the same
weights to the objective function and constraints evaluated at these points; that is,

f a(x) = λ1 f (x1)+ λ2 f (x2)+ · · · + λk f (xk)

and
ga

i (x) = λ1gi (x
1)+ λ2gi (x

2)+ · · · + λkgi (x
k).

The approximation is refined by applying column generation to this linear program. In this case, a new
column with coefficientsf (xk+1), g1(xk+1), . . . , gm(xk+1) is determined by the pricing-out operation:

v = Max [ f (x)− y1g1(x)− y2g2(x)− · · · − ymgm(x)],

subject to:
x ∈ C.

This itself is a nonlinear programming problem but without thegi constraints. Ifv − σ ≤ 0, then no new
column improves the linear program and the procedure terminates. Ifv − σ > 0, then the solutionxk+1



432 Nonlinear Programming 13.6

giving v determines a new column to be added to the linear program (6) and the procedure continues.
The optimal weightsλ∗1, λ

∗

2, . . . , λ
∗

k to the linear program provide a candidate solution

x∗i = λ∗1x1
i + λ∗2x2

i + · · · + λ∗kxk
i

to the original optimization problem. This candidate solution is most useful whenC is a convex set and each
constraint is convex, for thenx∗i is a weighted combination of pointsx1, x2, . . . , xk in C and thus belongs to
C; and, since linear interpolation overestimates convex functions,

gi (x
∗) ≤ λ∗1gi (x

1)+ λ∗2gi (x
2)+ · · · + λ∗kgi (x

k).

The righthand side is less than or equal to zero by the linear-programming constraints; hence,gi (x∗) ≤ 0
andx∗ is a feasible solution to the original problem.

As an illustration of the method, consider the nonlinear program:

Maximize f (x) = x1− (x2− 5)2
+ 9,

subject to:

g(x) = x2
1 + x2

2 − 16≤ 0,

x1 ≥ 0, x2 ≥ 0.

We letC be the region withx1 ≥ 0 andx2 ≥ 0, and start with the three pointsx1
= (0, 0), x2

= (5, 0), and
x3
= (0, 5) from C. The resulting linear approximation problem:

Maximizez= −16λ1− 11λ2+ 9λ3, Optimal
subject to: shadow

prices

−16λ1+ 9λ2+ 9λ3 ≤ 0, y = 1

λ1+ λ2+ λ3 = 1, σ = 0

λ1 ≥ 0, λ2 ≥ 0, λ2 ≥ 0,

is sketched in Fig. 13.11, together with the original problem. The feasible region for the approximation
problem is given by plotting the points defined by (5) that correspond to feasible weights in this linear
program.

Figure 13.11 An example of generalized programming.

The solution to the linear program is:

λ∗1 = 0.36, λ∗2 = 0, and λ∗3 = 0.64,



13.7 Quadratic Programming 433

or
x∗ = 0.36(0, 0)+ 0.64(0, 5) = (0, 3.2).

The nonlinear programming subproblem is:

Maximize[ f (x)− yg(x)] = x1− (x2− 5)2
− yx2

1 − yx2
2 + 16y+ 9,

subject to:
x1 ≥ 0, x2 ≥ 0.

For y > 0 the solution to this problem can be shown to bex1 = 1/(2y) andx2 = 5/(1+ y), by setting the
partial derivatives off (x)− yg(x), with respect tox1 andx2, equal to zero.

In particular, the optimal shadow pricey = 1 gives the new pointx4
=

(
1
2, 21

2

)
. Since f (x4) = 31

4 and

g(x4) = −91
2, the updated linear programming approximation is:

Maximizez= −16λ1− 11λ2+ 9λ3+ 31
4λ4, Optimal

subject to: shadow
prices

−16λ1+ 9λ2+ 9λ3− 91
2λ4 ≤ 0, y = 23

74

λ1+ λ2+ λ3+ λ4 = 1, σ = 459
74

λ j ≥ 0 ( j = (1, 2, 3, 4).

The optimal solution hasλ3 andλ4 basic withλ∗3 =
19
37, λ

∗

4 =
18
37. The corresponding value forx is:

x∗ = λ∗3(0, 5)+ λ∗4

(
1
2, 21

2

)
=

19
37(0, 5)+ 18

37

(
1
2, 21

2

)
=

(
9
37, 329

37

)
.

As we continue in this way, the approximate solutions will approach the optimal solutionx1 = 1.460 and
x2 = 3.724 to the original problem.

We should emphasize that the generalized programming is unlike decomposition for linear programs in
that it does not necessarily determine the optimal solution in a finite number of steps. This is true because
nonlinearity does not permit a finite number of extreme points to completely characterize solutions to the
subproblem.

13.7 QUADRATIC PROGRAMMING

Quadratic programming concerns the maximization of a quadratic objective function subject to linear con-
straints, i.e., the problem:

Maximize f (x) =

n∑
j=1

c j x j +
1
2

n∑
j=1

n∑
k=1

q jkx j xk,

subject to:

n∑
j=1

ai j x j ≤ bi (i = 1, 2, . . . , m),

x j ≥ 0 ( j = 1, 2, . . . , n).

The datac j , ai j , andbi are assumed to be known, as are the additionalq jk data. We also assume the sym-
metry conditionq jk = qk j . This condition is really no restriction, sinceq jk can be replaced by12(q jk + qk j ).
The symmetry condition is then met, and a straightforward calculation shows that the old and newq jk co-
efficients give the same quadratic contribution to the objective function. The factor1

2 has been included to
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simplify later calculations; if desired, it can be incorporated into theq jk coefficients. Note that, if every
q jk = 0, then the problem reduces to a linear program.

The first and third examples of Section 13.1 show that the quadratic-programming model arises in con-
strained regression and portfolio selection. Additionally, the model is frequently applied to approximate
problems of maximizing general functions subject to linear constraints.

In Chapter 4 we developed the optimality conditions for linear programming. Now we will indicate
the analogous results for quadratic programming. The motivating idea is to note that, for a linear objective
function

f (x) =

n∑
j=1

c j x j ,

the derivative (i.e., the slope or marginal return) off with respect tox j is given byc j , whereas, for a quadratic
program, the slope at a point is given by

c j +

n∑
k=1

q jkxk.

The quadratic optimality conditions are then stated by replacing everyc j in the linear-programming optimality
conditions byc j +

∑n
k=1q jkxk. (See Tableau 1.)

Tableau 1 Optimality conditions

Linear program Quadratic program

Primal
feasibility

n∑
j=1

ai j x j ≤ bi ,
n∑

j=1
ai j x j ≤ bi ,

x j ≥ 0 x j ≥ 0

Dual
feasibility

m∑
i=1

yi ai j ≥ c j ,
m∑

i=1
yi ai j ≥ c j +

n∑
k=1

q jk xk,

yi ≥ 0 yi ≥ 0

Complementary

slackness yi

[
bi −

n∑
j=1

ai j x j

]
= 0, yi

[
bi −

n∑
j=1

ai j x j

]
= 0,[

m∑
i=1

yi ai j − c j

]
x j = 0

[
m∑

i=1
yi ai j − c j −

n∑
k=1

q jk xk

]
x j = 0

Note that the primal and dual feasibility conditions for the quadratic program are linear inequalities in
nonnegative variablesx j and yi . As such, they can be solved by the Phase I simplex method. A simple
modification to that method will permit the complementary-slackness conditions to be maintained as well.
To discuss the modification, let us introduce slack variablessi for the primal constraints and surplus variables
v j for the dual constraints; that is,

si = bi −

n∑
j=1

ai j x j ,

v j =

m∑
i=1

yi ai j − c j −

n∑
k=1

q jkxk.

Then the complementary slackness conditions become:

yi si = 0 (i = 1, 2, . . . , m),
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and
v j x j = 0 ( j = 1, 2, . . . , n).

The variablesyi andsi are calledcomplementary, as are the variablesv j andx j . With this notation, the
technique is to solve the primal and dual conditions by the Phase I simplex method, but not to allow any
complementary pair of variables to appear in the basis both at the same time. More formally, the Phase I
simplex method is modified by the:

Restricted-Entry Rule. Never introduce avariable into the basis if its complementary variable is already
a member of the basis, even if the usual simplex criterion says to introduce the variable.

Otherwise, the Phase I procedure is applied as usual. If the Phase I procedure would choose a variable to enter
the basis that is unacceptable by the restricted-entry rule, then we choose the next best variable according to
the greatest positive reduced cost in the Phase I objective function.

An example should illustrate the technique. Again, the portfolio-selection problem of Section 13.1 will
be solved withθ = 1; that is,

Maximize f (x) = 20x1+ 16x2− 2x2
1 − x2

2 − (x1+ x2)
2,

subject to:
x1+ x2 ≤ 5,

x1 ≥ 0, x2 ≥ 0.

Expanding(x1 + x2)
2 asx2

1 + 2x1x2 + x2
2 and incorporating the factor12, we rewrite the objective function

as:
Maximize f (x) = 20x1+ 16x2+

1
2(−6x1x1− 4x2x2− 2x1x2− 2x2x1),

so thatq11 = −6, q12 = −2, q21 = −2, q22 = −4, and the optimality conditions are:

s1 = 5− x1− x2, (Primal constraint)
v1 = y1− 20+ 6x1+ 2x2
v2 = y1− 16+ 2x1+ 4x2

}
(Dual constraints)

x1, x2, s1, v1, v2, y1 ≥ 0, (Nonnegativity)

y1s1 = 0, v1x1 = 0, v2x2 = 0. (Complementary slackness)

Letting s1 be the basic variable isolated in the first constraint and adding artificial variablesa1 anda2 in the
second and third constraints, the Phase I problem is solved in Table 13.2.

For this problem, the restricted-entry variant of the simplex Phase I procedure has provided the optimal
solution. It should be noted, however, that the algorithm willnot solve every quadratic program. As an
example, consider the problem:

Maximize f (x1, x2) =
1

4
(x1− x2)

2,

subject to:
x1+ x2 ≤ 5,

x1 ≥ 0, x2 ≥ 0.

As the reader can verify, the algorithm gives the solutionx1 = x2 = 0. But this solution is not even a
local optimum, since increasing eitherx1 or x2 increases the objective value.

It can be shown, however, that the algorithm does determine an optimal solution iff (x) is strictly concave
for a maximization problem or strictly convex for a minimization problem. For the quadratic problem,f (x)

is strictly concave whenever
n∑

i=1

n∑
j=1

αi qi j α j < 0 for every choice ofα1, α2, . . . , αn,

such that someα j 6= 0. In this case, the matrix of coefficients(qi j ) is callednegative definite. Thus the
algorithm will always work for a number of important applications including the least-square regression and
portfolio-selection problems introduced previously.
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Table 13.2 Solving a quadratic program.

Basic Current
variables values x1 x2 s1 y∗1 v1 v2 a1 a2

s1 5 1 1 1 0 0 0
← a1 20 ©6 2 1 −1 0 1

a2 16 2 4 1 0 −1 1
(−w) 36 8 6 2 −1 −1

↑

Basic Current
variables values x1 x2 s1 y∗1 v∗1 v2 a1 a2

← s1
5
3 ©

2
3 1 −

1
6

1
6 0 −1

6
x1

10
3 1 1

3
1
6 −

1
6 0 1

6
a2

28
3

10
3

2
3

1
3 −1 −1

3 1

(−w) 28
3

10
3

2
3

1
3 0 −4

3

↑

Basic Current
variables values x1 x2 s1 y1 v∗1 v∗2 a1 a2

x2
5
2 1 3

2 −
1
4

1
4 0 −1

4

x1
5
2 1 −

1
2

1
4 −

1
4 0 1

4
← a2 1 −5 ©

3
2 −

1
2 −1 1

2 1

(−w) 1 −5 3
2 −

1
2 0 −1

2

↑

Basic Current
variables values x1 x2 s∗1 y1 v∗1 v∗2 a1 a2

x2
8
3 1 2

3
1
6 −

1
6 −

1
6

1
6

x1
7
3 1 1

3 −
1
6

1
6

1
6 −

1
6

y1
2
3

10
3 1 1

3 −
2
3

1
3

2
3

(−w) 0 0 0 1 −1 −1

* Starred variables cannot be introduced into the basis since their
complementary variable is in the basis

.13.8 UNCONSTRAINED MINIMIZATION AND SUMT

Conceptually, the simplest type of optimization is unconstrained. Powerful solution techniques have been
developed for solving these problems, which are based primarily upon calculus, rather than upon algebra and
pivoting, as in the simplex method. Because the linear-programming methods and unconstrained-optimization
techniques are so efficient, both have been used as the point of departure for constructing more general-
purpose nonlinear-programming algorithms. The previous sections have indicated some of the algorithms
using the linear-programming-based approach. This section briefly indicates the nature of the unconstrained-
optimization approaches by introducing algorithms for unconstrained maximization and showing how they
might be used for problems with constraints.

Unconstrained Minimization

Suppose that we want to maximize the functionf (x) of n decision variablesx = (x1, x2, . . . , xn) and that
this function is differentiable. Let∂ f/∂x j denote the partialderivative off with respect tox j , defined by

∗ This section requires some knowledge of differential calculus.
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∂ f
∂x j
= lim

θ→0

f (x+θu j )− f (x)

θ
, (7)

whereu j is a decision vectoru j = (0, 0, . . . , 0, 1, 0, . . . , 0), with all zeros except for thej th component,
which is 1. Thus,x + θu j corresponds to the decisions(x1, x2, . . . , x j−1, x j + θ, x j+1, . . . , xn), in which
only the j th decision variable is changed from the decision vectorx.

Note that if∂ f/∂x j > 0, then

f (x + θu j )− f (x)

θ
> 0 for θ > 0 small enough,

and thereforex + θu j is preferred tox for a maximization problem. Similarly, if∂ f/∂x j < 0, then

f (x + θu j )− f (x)

θ
< 0 for θ < 0 small enough,

and x + θu j is again preferred tox. Therefore, at any given point with at least one partial derivative
∂ f/∂x j > 0, we can improve the value off by making a one dimensional search

Maximize
θ≥0

f (x1, x2, . . . , x j−1, x j + θ, x j+1, . . . , xn),

in which only the value ofx j is varied. Similarly, if∂ f/∂x j < 0, we can alterx j to x j − θ and search on
θ ≥ 0 to improve the function’s value. The one-dimensional search can be made by using any of a number
of procedures that are discussed in the next section. One algorithm using this idea, calledcyclic coordinate
ascent, searches by optimizing in turn with respect tox1, thenx2, thenx3 and so on, holding all other variables
constant at stagej when optimizing with respect to variablex j . After optimizing withxn, the method starts
over again withx1.

In fact, there is a large class of algorithms known asascent algorithmsthat implement the ‘‘uphill
movement’’ philosophy of cyclic coordinate ascent. Suppose that we consider moving in a general direction
d = (d1, d2, . . . , dn) instead of in a coordinate, or unit, direction. Then, instead of considering the partial
derivative, as in (7), we consider thedirectionalderivative. The directional derivative, which indicates how
the function varies as we move away fromx in the directiondis defined by:

lim
θ→0

f (x + θd)− f (x)

θ
=

∂ f

∂x1
d1+

∂ f

∂x2
d2+ · · · +

∂ f

∂xn
dn. (8)

The directional derivative is just the slope of the functionf (x) in the directiond and reduces to the definition
of the partial derivative∂ f/∂x j in Eq. (7) when the direction is taken to bed = u j . Just as in the case of
partial derivatives, if the directional derivative in Eq. (8) is positive, thenf increases in the directiond; that
is,

f (x1+ θd1, x2+ θd2, . . . , xn + θdn) > f (x1, x2, . . . , xn)

for θ > 0 small enough. At any given pointx, the ascent algorithms choose an increasing directiond (i.e.,
such that Eq. (8) is positive), and then select the next pointx̄i = xi + θ̄di as the solutionθ = θ̄ to the
one-dimensional problem

Maximize
θ≥0

f (x1+ θd1, x2+ θd2, . . . , xn + θdn).

From x̄, the ascent algorithms select a new direction and solve another one-dimensional problem, and then
continue by repeating this procedure. Cyclic coordinate ascent is a special case in which, at each step, all but
oned j , saydi , is set to zero;di is set todi = +1 if ∂ f/∂xi > 0 anddi = −1 if ∂ f/∂xi < 0.

One natural choice for the directiond for this general class of algorithms is:

d1 =
∂ f

δx1
, d2

∂ f

∂x2
, . . . , dn =

∂ f

∂xn
,
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since then Eq. (8) is positive as long as∂ f/∂x j 6= 0 for some variablex j . This choice ford is known as
Cauchy’s method, or steepest ascent.

To illustrate the ascent algorithms, consider the objective function

f (x1, x2) = 20x1+ 16x2− 2x2
1 − x2

2 − (x1+ x2)
2

introduced earlier in this chapter for a portfolio-selection problem. The partial derivatives of this function
are: ∂ f

∂x1
= 20− 6x1− 2x2 and

∂ f

∂x2
= 16− 2x1− 4x2.

Figure 13.12 shows the result of applying the first few iterations of both cyclic coordinate ascent and steepest
ascent for maximizing this function, starting at the pointx1 = x2 = 0.

Cyclic coordinate ascent first increasesx1 from the starting pointx1 = x2 = 0 since∂ f /∂x1 = 20 > 0.
Holding x2 = 0 and setting∂ f /∂x1 = 0 gives the solution to the first one-dimensional problem at©2 as
x1 = 31

3 andx2 = 0. At this point∂ f /∂x2 = 91
3 > 0 and we increasex2, holdingx1 = 31

3. The optimum to
this one-dimensional problem occurs at point©3 with ∂ f /∂x2 = 0 andx1 = 31

3, x2 = 21
3. We now decrease

x1 since∂ f /∂x1 = −42
3, generating the next pointx1 = 2.56 andx2 = 21

3. The last point©5 shown has
x1 = 2.56 andx2 = 2.72. Continuing in this way from this point, the algorithm approaches the optimal
solutionx1 = 2.4 andx2 = 2.8.

Since the partial derivatives atx1 = x2 = 0 are∂ f/∂x1 = 20 and∂ f/∂x2 = 16, the first direction for
steepest ascent isd1 = 20 andd2 = 16, giving the one-dimensional problem:

Maximize
θ≥0

f (0+ 20θ, 0+ 16θ) = 20(20θ)+ 16(16θ)− 2(20θ)2
− (16θ)2

−(20θ + 16θ)2
= 656θ − 2352θ2.

Setting the derivative with respect toθ equal to zero gives the optimal solution

θ̄ =
656

2(2352)
= 0.1395

and the next point
x̄1 = 0+ 20θ̄ = 2.79 and x2 = 0+ 16θ̄ = 2.23.

At this point, the partial derivatives off are

∂ f

∂x1
= 20− 6x1− 2x2 = 20− 6(2.79)− 2(2.23) = −1.2,

and
∂ f

∂x2
= 16− 2x1− 4x2 = 16− 2(2.79)− 4(2.23) = 1.5.

Figure 13.12 Ascent algorithms.
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Therefore, the next one-dimensional optimization is in the directiond1 = −1.2 andd2 = 1.5 from the last
point; that is,

Maximize
θ≥0

f (2.79− 1.2θ, 2.23+ 1.5θ).

The optimal choice forθ is θ̄ = 0.354, giving

x1 = 2.79− 1.2(0.354) = 2.37 and x2 = 2.23+ 1.5(0.354) = 2.76

as the next point. Evaluating derivatives gives the directiond1 = 0.26 andd2 = 0.22 and the point©4 with
x1 = 2.40 andx2 = 2.79, which is practically the optimal solutionx1 = 2.4 andx2 = 2.8.

As we have noted, if any partial derivative is nonzero, then the current solution can be improved by an
ascent algorithm. Therefore any optimal solution must satisfy the(first order) optimality conditions

∂ f

∂x j
= 0 for j = 1, 2, . . . . , n. (9)

As Fig. 13.13 illustrates, these conditions can be satisfied for nonoptimal points as well. Nevertheless,
solving the system (9) permits us to generate potential solutions. In fact, we have used this observation above
by setting∂ f/∂θ to zero to find the solution to the one-dimensional problems. Usually, though, we cannot
easily solve for a point that gives zero derivatives, and must rely on numerical methods such as those given
in the next section.

Figure 13.13 Partial derivatives are zero at maximum points.

Since the partial derivatives of the objective function are zero at an optimal solution, ‘‘first-order’’ methods
like those described in this section, which rely only upon first-derivative information, may encounter numerical
difficulties near an optimal solution. Also, in general, first-order methods do not converge to an optimal
solution particularly fast. Other methods that use curvature, or second-derivative, information (or more often,
approximations to the inverse of the matrix of second partial derivatives) overcome these difficulties, at the
expense of more computational work at each step. TheNewton–Raphsonalgorithm, which is described in the
next section for the special case of one-dimensional optimization, is one popular example of these methods.
An entire class of methods known asconjugate directionalgorithms also use second-derivative information.
Instead of reviewing these more advanced methods here, we show how unconstrained algorithms can be used
to solve constrained optimization problems.

SUMT (Sequential Unrestrained Maximization Technique)

In principle, any optimization problem can be converted into an unconstrained optimization, as illustrated by
the example

Minimize x2,
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subject to:

x ≤ 4,

x ≥ 1. (10)

Suppose that we letP(x) denote a penalty for being infeasible, given by:

P(x) =

{
+∞ if x is infeasible (that is, x > 4 or x > 1),

0 if x is feasible (that is, 1≤ x ≤ 4).

Then the constrained optimization problem (10) can be restated in unconstrained form as

Minimize {x2
+ P(x)},

since the objective function with the penalty term agrees with the original objective function for any feasible
point and is+∞ for every infeasible point.

Although this conceptualization in terms of penalties is useful, the method cannot be implemented easily
because of numerical difficulties caused by the+∞ terms. In fact, even if a large penaltyM > 0 is used to
replace the+∞ penalty, the method is difficult to implement, since the objective function is discontinuous
(i.e., jumps) at the boundary of the feasible region; for example, withM = 1000, the termx2

+ P(x) would
equalx2

+ 1000 to the left ofx = 1 and onlyx2 at x = 1. Consequently, we cannot use the algorithms for
unconstrained optimization presented in this section, which require differentiability.

We can overcome this difficulty by approximating the penalty term by a smooth function and refining the
approximation sequentially by a method known as theSequential Unconstrained Maximization Technique,
or SUMT. In this method, instead of giving every infeasible point the same penalty, such as+∞ or a large
constantM, we impose a penalty that increases the more a point becomes infeasible.

The curve withr = 1 in Fig. 13.14 shows a penalty term used frequently in practice, in which the penalty
P(x) grows quadratically as points move farther from the feasible region. In this case, the penalty is zero for
feasible points 1≤ x ≤ 4. To the left ofx = 1, the penalty is the quadratic term(1− x)2, and to the right of
x = 4, the penalty is the quadratic term(x − 4)2, and to the right ofx = 4, the penalty is the quadratic term
(x − 4)2; that is,

P(x) =

(1− x)2 if x ≤ 1,

0 if 1 ≤ x ≤ 4,

(x − 4)2 if x ≥ 4,

(11)

which is stated compactly as:

P(x) = Max (1− x, 0)2
+Max (x − 4, 0)2.

Note that when 1≤ x ≤ 4, both maximum terms in this expression are zero and no penalty is incurred; when

Figure 13.14 Imposing penalty terms sequentially.
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x ≤ 1 or x ≥ 4, the last expression reduces to the appropriate penalty term in (11).
As Fig. 13.14 illustrates, the infeasible pointx = 1

2 solves the problem

Minimize { f (x)+ P(x)} = Minimize {x2
+ P(x)},

since the quadratic penalty term does not impose a stiff enough penalty for near-feasible points. Note,
however, that if the penalty termP(x) is replaced by 2P(x), 3P(x), 4P(x), or, in general,r P(x) for r > 1,
the penalty increases for any infeasible point. As the penalty scale-factorr becomes very large, the penalty
associated with any particular infeasible point also becomes large, so that the solution to the modified penalty
problem

Minimize { f (x)+ r P(x)}

is driven closer and closer to the feasible region. The example problem illustrates this behavior. From Fig.
13.14 we see that, for anyr > 1, the solution to the penalty problem occurs to the left ofx = 1, where the
penalty term isr (1− x)2. In this region, the penalty problem of minimizingx2

+ r P(x) reduces to:

Minimize {x2
+ r (1− x)2

}.

Setting the first derivative of this objective function to zero gives

2x − 2r (1− x) = 0

or
x =

r

r + 1
as the optimal solution. At this point, the objective value of the penalty problem is:

x2
+ r Max (1− x, 0)2

+ r Max (4− x, 0)2
=

(
r

r + 1

)2

+ r

(
1−

r

r + 1

)2

+ r (0)2

=
r

r + 1
.

Consequently, asr approaches+∞, both the optimal solutionr/(r + 1) and the optimal valuer/(r + 1) to
the penalty problem approach the optimal valuesx∗ = 1 and f (x∗) = 1 to the original problem.

Although the penalty function cannot always be visualized as nicely as in this simple example, and
the computations may become considerably more involved for more realistic problems, the convergence
properties exhibited by this example are valid for any constrained problem. The general problem

z∗ = Min f (x),

subject to:
gi (x) ≤ bi for i = 1, 2, . . . , m,

is converted into a sequence of unconstrained penalty problems

Minimize { f (x)+ r P(x)} (12)

asr increases to+∞. The penalty term

P(x) =

m∑
i=1

Max (gi (x)− bi , 0)2

introduces a quadratic penalty[gi (x) − bi ]
2 for any constrainti that is violated; that is,gi (x) > bi . If xr

denotes the solution to the penalty problem (12) when the penalty scale factor is r, then any pointx∗ that
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these points approach in the limit solves the original constrained problem. Moreover, the optimal objective
values f (xr )+ r P(xr ) to the penalty problems approach the optimal valuez∗ to the constrained optimization
problem.

The general theory underlying penalty-function approaches to constrained optimization permits many
variations to the methodology that we have presented, but most are beyond the scope of our introduction to the
subject. For example, the absolute value, or any of several other functions of the terms Max(gi (x)− bi , 0),

can be used in place of the quadratic terms. When equality constraintshi (x) = bi appear in the problem
formulation, the termr (hi (x)− bi )

2 is used in the penalty function.
In addition,barrier methodscan be applied, in which the penalty terms are replaced by barrier terms:

1

r

m∑
i=1

1

(gi (x)− bi )2
. (13)

In contrast to the SUMT procedure, these methods always remain within the feasible region. Since the
barrier term 1/(gi (x) − bi )

2 becomes infinite asx approaches the boundary of the constraintgi (x) ≤ bi ,
wheregi (x) = bi , if the method starts with an initial feasible point, the minimization will not let it cross
the boundary and become infeasible. Asr becomes large, the barrier term decreases near the boundary and
the terms (13) begin to resemble the penalty function withP(x) = 0 whenx is feasible andP(x) = +∞

whenx is infeasible. Figure 13.15 illustrates this behavior when the barrier method is applied to our example
problem withr = 1 andr = 4.

To conclude this section, let us see how the standard penalty procedure, without any of these variations,
performs on the portfolio-selection problem that has been solved by several other methods in this chapter.
The problem formulation

Maximize{20x1+ 16x2− 2x2
1 − x2

2 − (x1+ x2)
2
},

subject to:

x1+ x2 ≤ 5,

x1 ≥ 0 (or − x1 ≤ 0)

x2 ≥ 0 (or − x2 ≤ 0)

Figure 13.15 The barrier method.
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leads to the penalty problem∗:

Max [20x1+ 16x2− 2x2
1 − x2

2 − (x1+ x2)
2
− r Max (x1+ x2− 5, 0)2

− r Max (−x1, 0)2
− r Max (−x2, 0)2

].

We can find the solution to this problem for any value ofr by setting to zero the partial derivatives of the
terms in braces with respect to bothx1 andx2, that is, by solving the equations.†

20− 6x1− 2x2− 2r Max (x1+ x2− 5, 0)− 2r Max (−x1, 0) = 0,

16− 2x1− 4x2− 2r Max (x1+ x2− 5, 0)− 2r Max (−x2, 0) = 0.

The solution to these equations is given by

x1 =
7r 2
+ 33r + 36

3r 2+ 14r + 15

and

x2 =
8r + 14

3r + 5
,

as can be verified by substitution in the equations. Figure 13.16 shows how the solutions approach the optimal
solutionx∗1 = 21

3, x∗2 = 22
3, and the optimal objective value 461

3 asr increases.

Figure 13.16 Penalty method for portfolio selection.

13.9 ONE-DIMENSIONAL OPTIMIZATION

Many algorithms in optimization are variations on the following general approach: given a current feasible
solution x = (x1, x2, . . . , xn), find a direction of improvementd = (d1, d2, . . . , dn) and determine the
next feasible solution̄x = (x̄1, x̄2, . . . , x̄n) as the point that optimizes the objective function along the line
segment̄xi = xi + θdi pointing away fromx in the directiond. For a maximization problem, the new point
is the solution to the problem

Maximize
θ≥0

f (x1+ θd1, x2+ θd2, . . . , xn + θdn).

∗ Note that we subtract the penalty term from the objective function in this example because we are maximizing rather
than minimizing.
† The partial derivative of Max(x1+ x2−5, 0)2 with respect tox1 or x2 equals 2(x1+22−5) if x1+ x2 ≥ 5 and equals
zero ifx1+ x2 ≤ 5. Therefore it equals 2 Max(x1+ x2−5, 0). Generally, the partial derivative of Max(gi (x)−bi , 0)2

with respect tox j equals

2 Max (gi (x)− bi , 0)
∂gi (x)

∂x j
.
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Figure 13.17 Bolzano search for a concave function.

Since the current point(x1, x2, . . . , xn) and direction(d1, d2, . . . , dn) are fixed, this problem is a one-
dimensional optimization in the variableθ . The directiond used in this method is chosen so that the solution
to this one-dimensional problem improves upon the previous point; that is,

f (x̄1, x̄2, . . . , x̄n) > f (x1, x2, . . . , xn).

Choosing the direction-finding procedure used to implement this algorithm in various ways gives rise to
many different algorithms. The Frank-Wolfe algorithm discussed in Section 13.6, for example, determines
the direction from a linear program related to the given optimization problem; algorithms for unconstrained
optimization presented in the last section select the direction based upon the partial derivatives of the objective
function evaluated at the current pointx. This section briefly discusses procedures for solving the one-
dimensional problem common to this general algorithmic approach; i.e., it considers maximizing a function
g(θ) of a single variableθ .

Search Techniques

Wheneverg(θ) is concave and differentiable, we can eliminate certain points as non-optimal by evaluating
the slopeg′(θ) of the function as shown in Fig. 13.17; ifg′(θ1) > 0, then no pointθ ≤ θ1 can maximizeg,
and if g′(θ2) < 0, then no pointθ ≥ θ2 can maximizeg. This observation is the basis for a method known
asbisectionor Bolzano search.

Suppose that the maximum ofg(θ) is known to occur in some interval such as 0≤ θ ≤ 5 in Fig. 13.17.
Then, evaluating the slope at the midpointθ = 21

2 of the interval permits us to eliminate half of the inerval
from further consideration—here, 21

2 ≤ θ ≤ 5. By evaluating the slope again at the midpointθ = 11
4 of

the remaining interval, we can eliminate half ofthis interval. Continuing, we can halve the search interval
in which the optimum is known to lie at each step, until we obtain a very small interval. We can then find a
point as close as we like to a point that optimizes the given function.

The same type of procedure can be used without evaluating slopes. This extension is important, since
derivatives must be evaluated numerically in many applications. Such numerical calculations usually require
several function calculations. Instead of evaluating the slope at any pointθ = θ̄ , we make function evaluations
at two pointsθ = θ1 andθ = θ2 close toθ = θ̄ , separated from each other only enough so that we can
distinguish between the valuesg(θ1) and g(θ2). If g(θ1) < g(θ2), then every point withθ ≤ θ1 can be
eliminated from further consideration; ifg(θ1) > g(θ2), then points withθ ≥ θ2 can be eliminated. With this
modification; Bolzano search can be implemented by making two function evaluations near the midpoint of
any interval, in place of the derivative calculation.

Bolzano’s method does not require concavity of the function being maximized. All that it needs is that,
if θ1 ≤ θ2, then (i)g(θ1) ≤ g(θ2) implies thatg(θ) ≤ g(θ1) for all θ ≤ θ1, and (ii) g(θ1) ≥ g(θ2) implies
that g(θ) ≤ g(θ2) for all θ ≥ θ2. We call such functionsunimodal,or single-peaked, since they cannot
contain any more than a single local maximum. Any concave function, of course, is unimodal. Figure 13.18
illustrates Bolzano’s method, without derivative evaluations, for a unimodal function.

The Bolzano search procedure for unimodal functions can be modified to be more efficient by a method
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Figure 13.18 Bolzano search for a unimodal function.

Figure 13.19 Fibonacci search.

known asFibonacci search. This method is designed to reduce the size of the search interval at each step by
making only a single function evaluation instead of two evaluations or a derivative calculation, as in Bolzano
search.

Figure 13.19 illustrates the method for the previous example. The first two points selected atθ1 = 2
andθ2 = 3 eliminate the intervalθ ≤ 2 from further consideration, by the unimodal property. Note that
θ2 = 3stays within the search interval that remains. By selecting the next point atθ3 = 4, we eliminate
θ ≥ 4 from further consideration. Finally, by selecting the last point close toθ2 at θ = 3, we eliminate
θ ≥ 3. Consequently, by making four function evaluations, Fibonacci search has reduced the length of the
final search interval to 1 unit, whereas four function evaluations (or two, usually more expensive, derivative
calculations) in Bolzano search reduced the length of the final search interval to only 11

4.
In general, Fibonacci search chooses the function evaluations so that each new point is placed symmetri-

cally in the remaining search interval with respect to the point already in that interval. As Fig. 13.19 illustrates
for k = 1, the symmetry in placing the function evaluations implies that the length`k of successive search
intervals is given by:

`k = `k+1+ `k+2. (14)

This expression can be used to determine how many function evaluations are required in order to reduce the
final interval to length̀ n. By scaling our units of measurement, let us assume that`n = 1 (for example, if we
want the final interval to have length 0.001, we measure in units of 0.001). Since the final function evaluation
just splits the last interval in two, we know that the second-to-last interval has length`n−1 = 2. Then, from
Eq. 14, the length of succeeding intervals for function evaluations numbered 3, 4, 5, 6, 7, . . . , is given by
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Figure 13.20 A seven-point Fibonacci search.

the ‘‘Fibonacci numbers’’:∗

3= 1+ 2, 5= 2+ 3, 8= 3+ 5,

13= 5+ 8, 21= 8+ 13, . . . (15)

Consequently, if the initial interval has length 21 (i.e., 21 times larger than the desired length of the final
interval), then seven function evaluations are required, with the initial two evaluations being placed atθ = 8
andθ = 13, and each succeeding evaluation being placed symmetrically with respect to the point remaining
in the search interval to be investigated further. Figure 13.20 shows a possibility for the first three steps of this
application. Fibonacci search is known to be optimal in the sense that, of all search methods guaranteed to
reduce the length of the final interval to`n, it uses the fewest function evaluations. Unfortunately, the length of
the final interval must be known in advance, before the location of the initial two function evaluations can be
determined. Thisa priori determination of̀ n may be inconvenient in practice. Therefore, an approximation
to Fibonacci search, called themethod of golden sections, is used frequently. As the number of function
evaluations becomes large, the ratio between succeeding Fibonacci numbers approaches 1/γ ≈ 0.618, where
γ = (1+

√
5)/2 is known as thegolden ratio. This observation suggests that the first two evaluations be

placed symmetrically in the initial interval, 61.8 percent of the distance between the two endpoints, as in
golden-section search. Each succeeding point then is placed, as in Fibonacci search, symmetrically with
respect to the point remaining in the search interval. Note that this approximation is very close to Fibonacci
search even for a procedure with as few as seven points, as in the example shown in Fig. 13.20, since the
initial points are at13

21 = 0.619, or 61.9 percent, of the distance between the two endpoints when applying
Fibonacci search. When applied to this example, the first five golden-section points areθ1 = 8.022, θ2 =

12.978, θ3 = 4.956, θ4 = 9.912, andθ5 = 6.846, as compared toθ1 = 8, θ2 = 13, θ3 = 5, θ4 = 10, and
θ5 = 7 from Fibonacci search.

Curve Fitting and Newton’s Method

Another technique for one-dimensional optimization replaces the given function to be maximized by an
approximation that can be optimized easily, such as a quadratic or cubic function. Figure 13.21, for instance,
illustrates a quadratic approximation to our previous example. By evaluating the given functiong(θ) at three
pointsθ = θ1, θ2, andθ3, we can determine a quadratic function

q(θ) = aθ2
+ bθ + c,

which agrees withg(θ) at θ1, θ2, andθ3. In this case, the resulting quadratic approxi- mation is:

q(θ) = −
25

8
θ2
+

65

4
θ + 10.

By setting the first derivativeq′(θ) of the approximation to 0, we can solve for an approximate optimal

∗ The method is called Fibonacci search because the numbers in expression (15), which arise in many other applications,
are called the Fibonacci numbers.
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Figure 13.21 Quadratic approximation.

solutionθ̂ . Here,

q′(θ) = −
50

8
θ +

65

4
,

and

θ̂ =
(65/4)

(50/8)
= 2.6 with q(θ̂) = 31.1.

After determining this approximation, we can use the new pointθ̂ , together with two of the pointsθ1, θ2,

andθ3, to define a new approximation. We select the three points,θ̂ and two others, so that the middle point
has the highest value for the objective function, since then the approximating quadratic function has to be
concave. Sinceg(θ̂) = g(2.6) > 30 in this case, we takeθ2, θ̂ , andθ3 as the new points. Ifg(θ) ≤ 30, we
would takeθ1, θ2, andθ̂ as the three points to make the next approximation. By continuing to make quadratic
approximations in this way, the pointsθ̂1, θ̂2, . . . determined at each step converge to an optimal solutionθ∗.
† In practice, the method maynotfind an optimal solutionθ∗ and stop in a finite number of steps; therefore,
some finite termination rule is used. For example, we might terminate when the function valuesg(θ̂ j ) and
g(θ̂ j+1) for two succeeding points become sufficiently small—say, withinε = 0.00001 of each other.

Similar types of approximation methods can be devised by fitting with cubic functions, or by using other
information such as derivatives of the function for the approximation.Newton’s methodfor example, which
is possibly the most famous of all the approximating schemes, uses a quadratic approximation based upon
first- and second-derivative information at the current pointθ j , instead of function evaluations at three points
as in the method just described. The approximation is given by the quadratic function:

q(θ) = g(θ j )+ g′(θ j )(θ − θ j )+
1
2g′′(θ j )(θ − θ j )

2. (16)

Note that theq(θ j ) = g(θ j ) and that the first and second derivatives ofq(θ) agree with the first derivative
g′(θ j ) and the second derivativeg′′(θ j ) of g(θ) at θ = θ j .

The next pointθ j+1 is chosen as the point maximizingq(θ). Setting the first derivative ofq(θ) in Eq. 16
to zero and solving forθ j+1 gives the general formula

θ j+1 = θ j −
g′(θ j )

g′′(θ j )
, (17)

† In the sense that for any givenε > 0, infinitely many of theθ̂ j are withinε of θ∗; that is,

θ∗ − ε ≤ θ̂ j ≤ θ∗ + ε.
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Figure 13.22 Newton’s method for solvingh θ = 0.

for generating successive points by the algorithm.
Lettingh(θ) = g′(θ) denote the first derivative ofg(θ) suggests an interesting interpretation of expression

(17). Sinceg′(θ̂) = 0 at any pointθ̂ maximizing g(θ), θ̂ must be a solution to the equationh(θ̂) = 0.
Newton’s method for solving this equation approximatesh(θ) at any potential solutionθ j by a line tangent
to the function atθ = θ j given by:

Approximation: y = h(θ j )+ h′(θ j )(θ − θ j ).

Sinceh(θ j ) = g′(θ j ) andh′(θ j ) = g′′(θ j ), the solutiony = 0 to this approximation is the pointθ j+1 specified
in (17). It is because of this association with Newton’s well- known method for solving equationsh(θ) = 0
that the quadratic-approximation scheme considered here is called Newton’s method.

To illustrate Newton’s method, letg(θ) = (θ − 3)4. Thenh(θ) = g′(θ) = 4(θ − 3)3 andh′(θ) =

g′′(θ) = 12(θ − 3)2. Starting withθ0 = 0, Newton’s method gives:

θ j+1 = θ j −
h(θ j )

h′(θ j )
= θ j −

4(θ j − 3)3

12(θ j − 3)2
= θ j −

θ j − 3

3
=

2
3θ j + 1.

The pointsθ1 = 1, θ2 = 12
3, θ3 = 21

9, θ3 = 211
27, θ4 = 249

81, . . . that the method generates converge to the
optimal solutionθ∗ = 3. Figure 13.22 shows the first twoapproximations toh(θ) for this example.

Newton’s method is known to converge to an optimal solutionθ∗ that maximizesg(θ) as long asg′′(θ∗) 6=
0 and the initial pointθ0 is close enough toθ∗. The precise definition of what is meant by ‘‘close enough
to θ∗’’ depends upon the problem data and will not be developed here. We simply note that, because the
rate of convergence to an optimal solution has been shown to be good for Newton’s method, it often is used
in conjunction with other procedures for one-dimensional optimizations that are used first to find a pointθ0
close to an optimal solution.

EXERCISES

1. a) Over what region is the functionf (x) = x3 convex? Over what region isf concave?
b) Over what region is the functionf (x) = −12x + x3 convex (concave)?
c) Plot the functionf (x) = −12x + x3 over the region−3 ≤ x ≤ 3. Identify local minima and local

maxima of f over this region. What is the global minimum and what is the global maximum?
2. a) Which of the following functions are convex, which are concave, and which are neither convex nor

concave?

i) f (x) = |x|.
ii) f (x) = 1

x over the regionx > 0.
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iii) f (x) = log (x) over the regionx > 0.
iv) f (x) = e−x2

.
v) f (x1, x2) = x1x2.

vi) f (x1, x2) = x2
1 + x2

2.

b) Graph the feasible solution region for each of the following constraints:

i) x2
1 + x2

2 ≤ 4.
ii) x2

1 + x2
2 = 4.

iii) x2
1 + x2

2 ≥ 4.
iv) x2 − |x1| ≤ 0.
v) x2 − |x1| ≥ 0.

Which of these regions is convex?
c) Is the functionf (x1, x2) = x2− |x1| concave?

3. Because of the significance of convexity in nonlinear programming, it is useful to be able to identify
convex sets and convex (or concave) functions easily. Apply the definitions given in this chapter to
establish the following properties:

a) If C1 andC2 are two convex sets, then the intersection ofC1 andC2 (that is, points lying in both) is
a convex set. For example, since the setC1 of solutions to the inequality

x2
1 + x2

2 ≤ 4

is convex and the setC2 of points satisfying

x1 ≥ 0 and x2 ≥ 0

is convex, then the feasible solution to the system

x2
1 + x2

2 ≤ 4,

x1 ≥ 0, x2 ≥ 0,

which is the intersection ofC1 andC2, is also convex. Is the intersection of more than two convex
sets a convex set?

b) Let f1(x), f2(x), . . . , fm(x) be convex functions and letα1, α2, . . . , αm be nonnegative numbers;
then the function

f (x) =

m∑
j=1

α j f j (x)

is convex. For example, sincef1(x1, x2) = x2
1 and f2(x1, x2) = |x2| are both convex functions ofx1

andx2, the function
f (x1, x2) = 2x2

1 + |x1|

is convex.
c) Let f1(x) and f2(x) be convex functions; then the functionf (x) = f1(x) f2(x) need not be convex.

[Hint. See part (a(v)) of the previous exercise.]
d) Let g(y) be a convex and nondecreasing function [that is,y1 ≤ y2 implies thatg(y1) ≤ g(y2)] and

let f (x) be a convex function; then the composite functionh(x) = g[ f (x)] is convex. For example,
since the functioney is convex and nondecreasing, and the functionf (x1, x2) = x2

1 + x2
2 is convex,

the function
h(x1, x2) = ex2

1+x2
2

is convex.
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4. One of the equivalent definitions for convexity of a differentiable functionf of single variablex given
in this chapter is that the slopes of the function be nondecreasing with respect to the variablex; that is,

d f

dx

∣∣∣∣
x=y
≥

d f

dx

∣∣∣∣
x=z

whenevery ≥ z∗.

For a strictly convex function, the condition becomes:

d f

dx

∣∣∣∣
x=y

>
d f

dx

∣∣∣∣
x=z

whenevery > z.

Similar conditions can be given for concave functions. If the functionf has second derivations, these
conditions are equivalent to the very useful second-order criteria shown in Table E13.1.

Table E13.1

Condition on the second derivative

Function property d2f
dx2 implying the function property

Convex d2f
dx2 ≥ 0 for all values ofx

Concave d2f
dx2 ≤ 0 for all values ofx

Strictly convex d2f
dx2 > 0 for all values ofx

Strictly concave d2f
dx2 < 0 for all values ofx

For example, iff (x) = x2, then
d2 f

dx2
= 2,

implying thatx2 is strictly convex.

Not only do the second-order conditions imply convexity or concavity, but any convex or concave
function must also satisfy the second-order condition. Consequently, since

d2 f

dx2
= 6x

can be both positive and negative for the functionf (x) = x3, we know thatx3 is neither convex nor
concave.

Use these criteria to show which of the following functions are convex, concave, strictly convex, or
strictly concave.

a) 4x + 2 b)ex

c) 1
x for x > 0 d) 1

x for x < 0

e) x5 f) log(x) for x > 0

g) log(x2) for x > 0 h) f (x) =

{
0 if x ≤ 0,

x2 if x > 0.

i) x4 [Hint. Can a function be strictly convex even if its second derivative is zero at some point?]

∗
d f
dx

∣∣∣
x= y

means the derivative off with respect tox evaluated atx = y.
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5. Brite-lite Electric Company produces two types of electric lightbulbs; a 100-watt bulb and a 3-way
(50–100–150) bulb. The machine that produces the bulbs is fairly old. Due to higher maintenance costs
and down time, the contribution per unit for each additional unit produced decreases as the machine is
used more intensely. Brite-lite has fit the following functions to per-unit contribution (in $) for the two
types of lightbulbs it produces:

f1(x1) = 50− 2x1, for x1 units of 100-watt bulbs;

f2(x2) = 70− 3x2, for x2 units of 3-way bulbs.

The Brite-lite Company is in the unusual position of being able to determine the number of units demanded
of a particular type of lightbulb from the amount (in $) it spends on advertisements for that particular
bulb.

The equations are:

150−
1000

10+ y1
= Number of units of 100-watt bulbs demanded,

250−
2000

10+ y2
= Number of units of 3-way bulbs demanded,

wherey1 is the amount (in $) spent on advertisements for 100-watt bulbs, andy2 is the amount (in $)
spent on advertisements for 3-way bulbs.

Brite-lite has an advertising budget of $1500. Its management is committed to meeting demand.
Present production capacity is 125 and 175 units of 100-watt and 3-way bulbs, respectively.

Finally, the production of a unit of lightbulbj consumesai j units of resourcei for i = 1, 2, . . . , m,

of which onlybi units are available.
6. Besides its main activity of providing diaper service, Duke-Dee Diapers, a small workshop owned by a

large fabrics firm, produces two types of diapers. The diapers are constructed from a special thin cloth
and an absorbent material. Although both materials are manufactured by the fabrics company, only
limited monthly amounts,b1 andb2, respectively, are available because this activity always has been
considered as secondary to production of other fabrics. Management has decided to analyze the activity
of the workshop in terms of profits, to decide whether or not to continue its diaper-service operation.
A limited market survey showed that the following linear functions give good approximations of the
demand curves for the two types of diapers:

p j = β j − α j 1x1− α j 2x2 ( j = 1, 2),

where
p j = Unit price for the diapers,
β j = Constant,

α jk = Coefficient related to the substitutability of the two types of diapers
(if α11 = 1, α12 = 0, α22 = 1, α21 = 0, there is no substitutability), and

xk = Units of diapers of typek sold.

Each unit of typej

diaper costsc j ( j = 1, 2) to produce and usesai j (i = 1, 2; j = 1, 2) units of resourcei.

a) Formulate a model to determine the profits from diaper production.
b) Show how you would transform the model into a separable program.

7. A connoisseur hasm bottles of rare wine in his cellar. Bottlej is currentlyt j years old. Starting next
year, he wishes to drink one bottle each year on his birthday, until his supply is exhausted. Suppose
that his utility for drinking bottlej is given byU j (t) (t is its age when consumed) and that utility is
additive. The connoisseur wishes to know in what order to drink the wine to maximize his total utility
of consumption.
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E

Figure E13.1 Network with arc costs.

a) Formulate his decision problem of which bottle to select each year as an integer linear program. What
is the special structure of the formulation? How can this structure help in solving the problem?

b) Suppose that the utility for consuming each bottle of wine is the same, given by a convex function
U (t). Show that it is optimal to select the youngest available bottle each year.

8. Consider a directed communications network, where each arc represents the communication link between
two geographically distant points. Each communication link between pointsi and j has a probability
of failure of pi j . Then, for any path through the network, the probability of that particular path being
operative is the product of the probabilities(1− pi j )(1− p jk)(1− pkl) . . . of the communication links
connecting the two points of interest.

a) Formulate a network model to determine the path froms to t having the highest probability of being
operative.

b) In what class does the problem formulated in (a) fall?
c) How can this formulation be transformed into a network problem?

9. In Section 4 of Chapter 1, we formulated the following nonlinear-programming version of the custom-
molder example:

Maximize 60x1− 5x2
1 + 80x2− 4x2

2,
subject to:

6x1 + 5x2 ≤ 60,

10x1 + 12x2 ≤ 150,

x1 ≤ 8,

x1 ≥ 0, x2 ≥ 0.

Using the following breakpoints, indicate a separable-programming approximation to this problem:

x1 = 2, x1 = 4, x1 = 6,

and
x2 = 3, x2 = 6, x2 = 10.

Do notsolve the separable program.
10. In the network of Fig. E13.1, we wish to ship 10 units from node 1 to node 4 as cheaply as possible.

The flow on each arc is uncapacitated. The costs on arcs 1–2, 2–3, and 3–4 are linear, with costs per
unit of 8, 2, and 4, respectively; the costs on arcs 1–3 and 2–4 are quadratic and are given byx2

13 and
x2

24.

a) Suppose that we apply the separable-programmingδ-technique discussed in Chapter 9, using the
breakpoints

x13 = 0, x13 = 2, x13 = 6, x13 = 10



Exercises 453

Figure E13.2 Linear approximation with parallel arcs.

and
x24 = 0, x24 = 2, x24 = 6, x24 = 10.

Interpret the resulting linear-programming approximation as a network-flow problem with parallel
arcs joining nodes 1 and 3 and nodes 2 and 4, as in Fig. E13.2. Specify the per-unit cost and the arc
capacity for each arc in the linear approximation.

b) Solve the separable-programming approximation from part (a), comparing the solution with the
optimal solution

x12 = 5, x13 = 5, x23 = 3.5, x24 = 1.5, x34 = 8.5,

and minimum cost= 110.25, to the original nonlinear problem formulation.

11. a) What is the special form of the linear approximation problem when the Frank-Wolfe algorithm is
applied to the network example in the previous exercise?

b) Complete Table E13.2 for applying the first two steps of the Frank-Wolfe algorithm to this example.

Table E13.2

Initial Solution to linear SecondSolution to linear Next
Arc solution approximation solution approximation solution

1–2 10
1–3 0
2–3 10
2–4 0
3–4 10

Total cost 140 ———— ————

12. Solve the following nonlinear program using theλ-method of separable programming described in this
chapter.

Maximize 2x1− x2
1 + x2,

subject to:

x2
1 + x2

2 ≤ 4,

x2 ≤ 1.8,

x1, x2 ≥ 0.

Carry out calculations using two decimal places. For each decision variable, use a grid of 5 points
(including the extreme values).
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13. Two chemicals can be produced at one facility, and each takes one hour per ton to produce. Both exhibit
diseconomies of scale: Ifx1 tons of the first are produced, the contribution is 6x1 − (x2

1/2); for the
second chemical, the contribution is

√
50x2 for x2 tons produced. The facility can work 23 hours per

day (one hour is required for maintenance) and, because of raw materials availability, no more than 10
tons of the first chemical and 18 tons of the second can be produced daily. What is the optimal daily
production schedule, to maximize contribution?

Solve by separable programming, using theδ-method described in Chapter 9. Forx1 use a grid: 0,
3, 6, 10, and forx2 use a grid 0, 2, 5, 18.

14. A young R & D engineer at Carron Chemical Company has synthesized a sensational new fertilizer
made of just two interchangeable basic raw materials. The company wants to take advantage of this
opportunity and produce as much as possible of the new fertilizer. The company currently has $40, 000
to buy raw materials at a unit price of $8000 and $5000 per unit, respectively. When amountsx1 andx2
of the basic raw materials are combined, a quantityq of fertilizer results given by:

q = 4x1+ 2x2− 0.5x2
1 − 0.25x2

2.

a) Formulate as a nonlinear program.
b) Apply four iterations of the Frank-Wolfe algorithm; graphically identify the optimal point, using the

property that even- and odd-numbered points lie on lines directly toward the optimum. Start from
x0
= (0, 0) and use three decimal places in your computations.

c) Solve the problem using the algorithm for quadratic programming discussed in Section 13.7.

15. A balloon carrying an x-ray telescope and other scientific equipment must be designed and launched. A
rough measure of performance can be expressed in terms of the height reached by the balloon and the
weight of the equipment lifted. Clearly, the height itself is a function of the balloon’s volume.

From past experience, it has been concluded that a satisfactory performance function to be maximized
is P = f (V, W) = 100V − 0.3V2

+ 80W − 0.2W2 whereV is the volume, andW the equipment
weight.

The project to be undertaken has a budget constraint of $1040. The cost associated with the volume
V is 2V, and the cost of the equipment is 4W. In order to ensure that a reasonable balance is obtained
between performance due to the height and that due to the scientific equipment, the designer has to meet
the constraint 80W ≥ 100V .

Find the optimal design in terms of volume and equipment weight, solving by the Frank-Wolfe
algorithm.

16. Consider the nonlinear-programming problem:

Maximize 2x1− x2
1 + x2,

subject to:

x2
1 + x2

2 ≤ 4,

x2 ≤ 1.8,

x1 ≥ 0, x2 ≥ 0.

a) Carry out two iterations of the generalized programming algorithm on this problem. Let

C = {(x1, x2)|x1 ≥ 0, 0 ≤ x2 ≤ 1.8},

leaving only one constraint to handle explicitly. Start with the following two initial candidate solutions:

x1 = 0, x2 = 1.8, and x1 = 2, x2 = 0.

Is the solution optimal after these two iterations?
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b) Carry out two iterations of the MAP algorithm on the same problem. Start withx1 = 0, x2 = 0, as the
initial solution, and set the parametersδ1 = δ2 = 2 at iteration 1 andδ1 = δ2 = 1 at iteration 2. Is the
solution optimal after these two iterations?

17. An orbital manned scientific lab is placed on an eccentric elliptical orbit described byx2
+5y2

+x+3y =
10, the reference system(x, y) being the center of the earth. All radio communications with the ground
stations are going to be monitored via a satellite that will be fixed with respect to the reference system.
The power required to communicate between the satellite and the lab is proportional to the square of the
distance between the two.

Assuming that the satellite will be positioned in the plane of the ellipse, what should be the position
of the satellite so that the maximum power required for transmissions between the lab and the satellite
can be minimized? Formulate as a nonlinear program.

18. An investor has $2 million to invest. He has 5 opportunities for investment, with the following charac-
teristics:

i) The yield on the first investment is given by a linear function:

r1 = 3+ 0.000012x1,

wherer1 = yield per year (%), andx1 = amount invested ($).

Minimum required: $ 100,000
Maximum allowed: $1,000,000
Years to maturity: 6

ii) The second investment yields:
r2 = 2+ 0.000018x2,

wherer2 = yield per year (%), andx2 = amount invested ($).

Minimum required: $ 200,000
Maximum allowed: $1,000,000
Years to maturity: 10

iii) An investment at 5% per year with interest continuously compounded. (An amountA invested at 5%
per year with continuously compounded interest becomesAe0.05 after one year.)

Years to maturity: 1

iv) Category 1 of government bonds that yield 6% per year.

Years to maturity: 4

v) Category 2 of government bonds that yield 5.5% per year.

Years to maturity: 3

The average years to maturity of the entire portfolio must not exceed 5 years.

a) The objective of the investor is to maximize accumulated earnings at the end of the first year. Formulate
a model to determine the amounts to invest in each of the alternatives. Assume all investments are
held to maturity.

b) Identify the special type of nonlinear program obtained in part (a).
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19. Since its last production diversification, New Home Appliances, Inc. (NHA), a kitchen equipment
manufacturer, has encountered unforeseen difficulty with the production scheduling and pricing of its
product line. The linear model they have used for a number of years now no longer seems to be a valid
representation of the firm’s operations.

In the last decade, the output of the firm has more than tripled and they have become the major
supplier of kitchen equipment in the southeastern United States market. After conducting a market
survey as well as a production-cost analysis, the consulting firm hired by NHA has concluded that the
old linear model failed to optimize the activity of the firm because it did not incorporate the following
new characteristics of NHA as a major supplier in the southeastern market;

I. NHA was no longer in a perfectly competitive situation, so that it had to take into account the market
demand curve for its products. The consulting firm found that for NHA’s 15 principal products, the
price elasticity of demand was roughly 1.2; hence, the market demand curve can be expressed by:

x j p1.2
j = 1, 600, 000 ( j = 1, 2, . . . , 15), (1)

wherex j = units of productj sold; andp j = unit price of productj . For the remaining 25 products,
the price is known and can be considered constant for all levels of sales.

II. Since output has increased, the firm has reached the stage where economies of scale prevail; thus, the
per-unit production costc j decreases according to:

c j = γ j − δ j x j ( j = 1, 2, . . . , 15), (2)

whereγ j and δ j are coefficients determined individually for the 15 principal products. For the
remaining 25 products, constant returns to scale is a reasonable assumption (i.e., a linear relationship
exists between the amount produced and the cost); consider the production costs per unit as known.

III. Production of each unit of productj consumesai j units of resourcei . Resource utilization is limited
by a budget ofB dollars, which is available for the purchase of raw materials and labor. The suppliers
of sheet steel and aluminum are offering discount prices for larger quantities. Linear regression leads
to the following equations that show the relationship between the amount ordered and the unit price
of each:

µs = αs− βsbs,

µa = αa − βaba,

Whereµs, µa are the unit prices for steel and aluminum, respectively;bs, ba are the amounts con-
tracted, andαs, αa, βs, βa are coefficients. No discounts are available for other resources, because
NHA’s consumption falls below the level at which such discounts are offered. Unit prices for all
other resources are constant and known. Besides steel and aluminum, 51 resources are used.

Formulate a mathematical program that incorporates the above information; the objective is the
maximization of contribution (revenues – costs). what type of nonlinear program have you obtained?

20. A rent-a-car company operating in New York City serves the three major airports—Kennedy, La Guardia,
and Newark—and has two downtown distribution centers. On Sunday evenings most of the cars are
returned to the downtown locations by city residents returning from weekend travels. On Monday
morning, most of the cars are needed at the airports and must be ‘‘deadheaded’’ by company drivers.

The two downtown distribution centers haveai (i = 1, 2) excess cars available. The three airports
must be supplied with cars at a transportation cost ofci j (i = 1, 2; j = 1, 2, 3) for deadheading from
distribution centeri to airport j . The Monday morning demandr j for cars at airportj is uncertain
and is described by the probability distributionp j (r j ). If the demand exceeds supply at airportj , the
unsatisfied demand is lost, with an average lost contribution per car ofu j .
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a) Formulate a mathematical program to minimize total deadheading transportation cost plus expected
lost contribution.

b) Suppose now that the manager of fleet allocation is also concerned with supply over demand. All
cars in excess of 50 cars above demand must be parked in an overflow lot at a cost ofsj per car.
Reformulate the program to include these expected average costs.

21. After the admissions decisions have been made for the graduate engineering school, it is the Scholarship
Committee’s job to award financial aid. There is never enough money to offer as much scholarship aid
as each needy applicant requires.

Each admitted applicant’s financial need is determined by comparing an estimate of his sources
of revenue with a reasonable school and personal expense budget for the normal academic year. An
admittee’s need, if any, is the difference between the standard budget and the expected contribution
from him and his family. Scholarship offers provide an amount of aid equal to some fraction of each
applicant’s need. In cases where need is not met in full, the school is able to supply low-cost loans to
cover the difference between scholarships and need.

Besides receiving funds from the university, a needy admittee might receive a scholarship from
nonuniversity funds. In this case the admittee, if he decides to matriculate, is expected to accept the
outside funds. His total scholarship award is then the greater of the university offer or the outside offer,
because the university supplements any outside offer up to the level awarded by the scholarship commit-
tee. Prior to the deadline for determining a school scholarship-offer policy, the committee has a good
estimate of the amount of outside aid that each needy admittee will be offered.

The most important function of the scholarship policy is to enroll thehighest-qualityneedy admittees
possible. The admissions committee’s rank list of all needy admittees is used as the measurement of
quality for the potential students.

In using this list, the top 100α% of the needy group ordered by quality is expected to yield at leastβT
enrollees, whereT is the total desired number of enrollees from the needy group. In addition to satisfying
the above criteria, the dean wants to minimize the total expected cost of the scholarship program to the
university.

As a last point,Pi , the probability that needy admitteei enrolls, is an increasing function ofyi , the
fraction of the standard budgetB covered by the total scholarship offer. An estimate of this function is
given in Fig. E13.3.Here,xi B is the dollar amount of aid offered admitteei andni B is the dollar amount
of need for admitteei .

Figure E13.2

a) Formulate a nonlinear-programming model that will have an expected numberT of enrolling needy
admittees, and minimize the scholarship budget. (Assume thatPi can be approximated by a linear
function.)

b) Suggest two different ways of solving the model formulated in (a). [Hint. What special form does
the objective function have?]

c) Reformulate the model so as to maximize the expected number of enrolling needy students from the
top 100α% of the need group, subject to a fixed total scholarship budget. Comment on how to solve
this variation of the model.
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d) suppose that, in the formulation proposed in (a), the probabilityPi that admitteei enrolls is approx-
imated byPi = ai + bi y

1/2
i . Comment on how to solve this variation of the model.

22. A well-known model to solve the aggregate production-planning problem that permits quadratic cost
functions in the model’s objective was developed by Holt, Modigliani, Muth, and Simon.∗ The model
allocates manpower, production, and inventories during a prescribed planning horizon, divided intot
time periods denoted byt = 1, 2, . . . , T . The decision variables of the model are:

Pt = Production rate for periodt ;
Wt = Work-force size used in periodt ;
I t = Ending inventory at periodt .

If dt is the demand to be satisfied during periodt , the constraints of the model are:

Pt + I t−1− I t = dt (t = 1, 2, . . . , T).

The objective function is to minimize the sum of the cost elements involved in the production process.
Holt, Modigliani, Muth, and Simon identified the following cost elements for each time period:

i) Regular payroll cost =c1Wt + c13;

ii) Hiring and firing cost =c2(Wt −Wt−1− c11)
2
;

iii) Overtime and idle cost =c3(Pt − c4Wt )
2
+ c5Pt − c6Wt + c12Pt Wt ;

iv) Inventory and back-order cost =c7[I t − (c8+ c9dt )]
2.

a) Discuss and interpret the assumption made on the behavior of the cost components. Is it reasonable
to assume quadratic functions to characterize costs (ii), (iii), and (iv)?

b) Formulate the overall objective function and the constraints of the model.
c) Suggest a procedure to obtain the optimum solution to the model.

23. In an application of the Holt, Modigliani, Muth, and Simon model (see Exercise 22) to a paint factory,
the following decision rules were derived for optimal values ofPt andWt for a twelve-month period
starting with the forthcoming month,t .

Pt =



+0.458dt
+0.233dt+1
+0.111dt+2
+0.046dt+3
+0.014dt+4
−0.001dt+5
−0.007dt+6
−0.008dt+7
−0.008dt+8
−0.007dt+9
−0.005dt+10
−0.004dt+11



+ 1.005Wt−1+ 153− 0.464I t−1

∗Holt, C. C., F. Modigliani, J. F. Muth, H. A. Simon,Planning Production, Inventories, and Work-Force, Prentice-Hall,
Inc., Englewood Cliffs, N.J., 1960.
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Wt = 0.742Wt−1+ 2.00− 0.010I t−1+



+0.0101dt
+0.0088dt+1
+0.0071dt+2
+0.0055dt+3
+0.0042dt+4
+0.0031dt+5
+0.0022dt+6
+0.0016dt+7
+0.0011dt+8
+0.0008dt+9
+0.0005dt+10
+0.0004dt+11


a) Study the structure of the decision rules. How would you apply them? Are you surprised that the

decision rules are linear (as opposed to quadratic)?
b) Note the weights that are given to the demand forecastdt (t = 1, 2, . . . , T). Comment on the

implication of these weights.
c) How would you obtain the resulting optimum inventory levels,I t?

24. An important problem in production management is the allocation of a given production quantity (deter-
mined by an aggregate model or by subjective managerial inputs) among a group of items. For example,
let us assume that we have decided to produceP = 6000 units of a given product line consisting of
three individual items. The allocation of the total quantity among the three items will be decided by the
following mathematical model:

Minimize c =
3∑

i=1

(
hi

Qi

2
+ Si

di

Qi

)
subject to:

3∑
i=1

Qi = P,

where
Qi = Production quantity for itemi (in units),
hi = Inventory holding cost for itemi (in $ /month× unit),
Si = Setup cost for itemi (in $),
di = Demand for itemi (in units/month),
P = Total amount to be produced (in units).

a) Interpret the suggested model. What is the meaning of the objective function? What implicit as-
sumption is the model making?

b) The model can be proved to be equivalent to the following unconstrained minimization problem (by
means of Lagrange multiplier theory):

Minimize L =
3∑

i=1

(
hi

Qi

2
+ Si

di

Qi

)
+ λ

(
3∑

i=1

Qi − P

)
.

State the optimality conditions for this unconstrained problem (see Section 13.8). Note that the
unknowns areQi , i = 1, 2, 3, andλ. What is the interpretation ofλ?

c) Given the following values for the parameters of the problem, establish a procedure to obtain the
optimal values ofQi .
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Items

Parameter 1 2 3

hi 1 1 2
Si 100 50 400
di 20,00040,00040,000

Q = 6000

[Hint. Perform a search onλ; plot the resulting values ofQ andλ. Select the optimum value of
λ from the graph corresponding toQ = 6000.]

d) Apply the SUMT method to the original model. How do you compare the SUMT procedure with the
approach followed in part (c)?

25. When applying the Frank-Wolfe algorithm to the optimization problem

Maximize f (x1, x2, . . . , xn),

subject to:

n∑
j=1

ai j x j ≤ bi (i = 1, 2, . . . , m), (1)

x j ≥ 0 ( j = 1, 2, . . . , n),

we replace the given problem by a linear approximation at the current solutionx∗ = (x∗1, x∗2, . . . , x∗n)

given by

Maximize

[
f (x∗)+

∂ f

∂x1
x1+

∂ f

∂x2
x2+ · · · +

∂ f

∂xn
xn

]
,

subject to:

n∑
j=1

ai j x j ≤ bi (i = 1, 2, . . . , m) (2)

x j ≥ 0 ( j = 1, 2, . . . , n).

The Partial derivatives(∂ f /∂x j ) are evaluated at the pointx∗. We then perform a one-dimensional
optimization along the line segment joiningx∗ with the solution to the linear approximation.

a) Suppose thatx∗ solves the linear approximation problem so that the solution does not change after
solving the linear approximation problem. Show that there are ‘‘Lagrange multipliers"λ1, λ2, . . . , λm
satisfying theKuhn-Tucker Optimality Conditionsfor linearly-constrained nonlinear programs:



Exercises 461

Primal feasibility


n∑

j=1
ai j x∗j ≤ bi

x∗j ≥ 0

(i = 1, 2, . . . , m),

( j = 1, 2, . . . , n),

Dual feasibility

 ∂ f
∂x j
−

m∑
i=1

λi ai j ≤ 0

λi ≥ 0

( j = 1, 2, . . . , n)

(i = 1, 2, . . . , m),

Complementary


[

∂ f
∂x j
−

m∑
i=1

λi ai j

]
x∗j = 0

λi

[
n∑

j=1
ai j x∗j − bi

]
= 0

( j = 1, 2, . . . , m).

slackness (i = 1, 2, . . . , m).
b) What is the form of these Kuhn-Tucker conditions when (1) is a linear program or a quadratic program?
c) Suppose thatx∗ = (x∗1, x∗2, . . . , x∗n) solves the original optimization problem (1). Show thatx∗

also solves the linear approximation problem (2) and therefore satisfies the Kuhn-Tucker conditions.
[Hint. Recall that

lim
θ→0

f (x∗ + θx j )− f (x∗)

θ
=

∂ f

∂x1
x1+

∂ f

∂x2
x2+ · · · +

∂ f

∂xn
xn.

]
d) Suppose thatf (x1, x2, . . . , xn) is a convex function. Show that ifx∗ = (x∗1, x∗2, . . . , x∗n) solves the

Kuhn-Tucker conditions, thenx∗ is a global minimum to the original non-linear program (1).

26. When discussing sensitivity analysis of linear programs in Chapter ??, we indicated that the optimal
objective value of a linear program is a concave function of the righthand-side values. More generally,
consider the optimization problem

v(b1, b2, . . . , bm) = Maximize f (x),

subject to:

gi (x) ≤ bi (i = 1, 2, . . . , m)

wherex = (x1, x2, . . . , xn) are the problem variables; for linear programs

f (x) =

n∑
j=1

c j x j and gi (x) =

n∑
j=1

ai j x j for i = 1, 2, . . . , m.

a) Show that if eachgi (x) is a convex function, then the values ofb1, b2, . . . , bm for which the problem
has a feasible solution form a convex setC.

b) Show that if, in addition,f (x) is a concave function, then the optimal objective valuev(b1, b2, . . . , bm)

is a concave function of the righthand-side valuesb1, b2, . . . , bm on the setC.

27. In many applications, the ratio of two linear functions is to be maximized subject to linear constraints.
The linear fractional programming problem is:

Maximize

∑n
j=1 c j x j + c0∑n
j=1 d j x j + d0

,

subject to:
n∑

j=1

ai j x j ≤ bi (i = 1, 2, . . . , m), (1)

x j ≥ 0 ( j = 1, 2, . . . , n).
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A related linear program is

Maximize
n∑

j=1

c j y j + c0y0,

subject to:

n∑
j=1

ai j y j − bi y0 ≤ 0 (i = 1, 2, . . . , m), (2)

n∑
j=1

d j y j + d0y0 = 1,

y j ≥ 0 ( j = 0, 1, 2, . . . , n).

a) Assuming that the optimal solution to the linear fractional program occurs in a region where the
denominator of the objective function is strictly positive, show that:

i) If y∗j ( j = 0, 1, 2, . . . , n) is a finite optimal solution to (2) withy∗0 > 0, thenx∗j = y∗j /y∗0 is a finite
optimal solution to (1).

ii) If λy∗j ( j = 0, 1, 2, . . . , n) is an unbounded solution to (2) asx → ∞ and y∗0 > 0, then
λx∗j = λy∗j /y∗0( j = 1, 2, . . . , n) is an unbounded solution of (1) asλ→∞.

b) Assuming that it is not known whether the optimal solution to the linear fractional program occurs in
a region where the denominator is positive or in a region where it is negative, generalize the approach
of (a) to solve this problem.

28. A primal optimization problem is:

Maximize f (x),

subject to:

gi (x) ≤ 0 (i = 1, 2, . . . , m),

x ∈ X

wherex is understood to mean(x1, x2, . . . , xn) and the setX usually meansx j ≥ 0 ( j = 1, 2, . . . , n)

but allows other possibilities as well. The related Lagrangian form of the problem is:

L(y) = Maximize
x∈X

[
f (x)−

m∑
i=1

yi gi (x)

]
.

Thedualproblem is defined to be:

Minimize L(y),

subject to:

yi ≥ 0 (i = 1, 2, . . . , m).

Without making any assumptions on the functionsf (x) andgi (x), show the following:

a) (Weak duality) If x j ( j = 1, 2, . . . , n) is feasible to the primal andyi (i = 1, 2, . . . , m) is feasible
to the dual, thenf (x) ≤ L(y).
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b) (Unboundedness) If the primal (dual) is unbounded, then the dual (primal) is infeasible.
c) (Optimality) If x̂ j ( j = 1, 2, . . . , n) is feasible to the primal and̂yi (i = 1, 2, . . . , m) is feasi-

ble to the dual, and, further, iff (x̂) = L(ŷ), then x̂ j ( j = 1, 2, . . . , n) solves the primal and
ŷi (i = 1, 2, . . . , m) solves the dual.

29. Supposêx = (x̂1, x̂2, . . . , x̂n) and ŷ = (ŷ1, ŷ2, . . . , ŷm) satisfy the following saddlepoint condition:

f (x)−

m∑
i=1

ŷi gi (x)
≤

↑
f (x̂)−

m∑
i=1

ŷi gi (x̂)
≤

↑
f (x̂)−

m∑
i=1

yi gi (x̂),

All (x1, x2, . . . , xn) ∈ X All yi ≥ 0 (i = 1, 2, . . . , m)

a) Show that̂x solves the nonlinear program

Maximize f (x),

subject to:

gi (x) ≤ 0 (i = 1, 2, . . . , m),

x ∈ X

wherex refers to(x1, x2, . . . , xn). [Hint. (1) Show that complementary slackness holds;i .e.,
∑m

i=1 ŷi gi (x̂) =

0, using the righthand inequality withyi = 0 (i = 1, 2, . . . , m) to show ’’≥’’, and the signs ofyi
andgi (x) to ’’≤’’. (2) Use the lefthand inequality and the sign ofgi (x) to complete the proof.]

b) Show that the saddlepoint condition implies a strong duality of the form

Maximize f (x) = Minimize L(y)

subject to: subject to:

gi (x) ≤ 0 yi ≥ 0

x ∈ X

whereL(y) is defined in Exercise 28.

30. In linear programming, the duality property states that, whenever the primal (dual) has a finite optimal
solution, then so does the dual (primal), and the values of their objective functions are equal. In nonlinear
programming, this is not necessarily the case.

a) (Duality gap) Consider the nonlinear program:

Maximize{Min|(x1x2)
1/2
;1|},

subject to:

x1 = 0,

x1 ≥ 0, x2 ≥ 0.

The optimal objective-function value for the primal problem is clearly 0. The Lagrangian problem
is:

L(y) = Maximize{Min|(x1x2)
1/2
;1| + yx1},
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subject to:

x1 ≥ 0, x2 ≥ 0.

Show that the optimal objective value of the dual problem
Minimize

y
L(y)

is 1. (Note thaty is unrestricted in the dual, since it is associated with an equality constraint in the
primal.)

b) (No finite shadow prices) Consider the nonlinear program:

Minimize x1,

subject to:

x2
1 ≤ 0,

x1 unrestricted.

The optimal solution to this problem is clearlyx1 = 0. The Lagrangian problem is:

L(y) = Maximize
x1

{x1− yx2
1},

wherex1 is unrestricted. Show that the optimal solution to the dual does not exist but thatL(y)→ 0
asy→∞.
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