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In this chapter, we present a systematic procedure for solving linear programs. This procedure, called the
simplex method,proceeds by moving from one feasible solution to another, at each step improving the value
of the objective function. Moreover, the method terminates after a finite number of such transitions.

Two characteristics of the simplex method have led to its widespread acceptance as a computational tool.
First, the method is robust. It solvesany linear program; it detects redundant constraints in the problem
formulation; it identifies instances when the objective value is unbounded over the feasible region; and it
solves problems with one or more optimal solutions. The method is also self-initiating. It uses itself either
to generate an appropriate feasible solution, as required, to start the method, or to show that the problem has
no feasible solution. Each of these features will be discussed in this chapter.

Second, the simplex method provides much more than just optimal solutions. As byproducts, it indicates
how the optimal solution varies as a function of the problem data (cost coefficients, constraint coefficients,
and righthand-side data). This information is intimately related to a linear program called thedual to the
given problem, and the simplex method automatically solves this dual problem along with the given problem.
These characteristics of the method are of primary importance for applications, since data rarely is known
with certainty and usually is approximated when formulating a problem. These features will be discussed in
detail in the chapters to follow.

Before presenting a formal description of the algorithm, we consider some examples. Though elementary,
these examples illustrate the essential algebraic and geometric features of the method and motivate the general
procedure.

2.1 SIMPLEX METHOD—A PREVIEW

Optimal Solutions

Consider the following linear program:

Maximizez = 0x1 + 0x2 − 3x3 − x4 + 20, (Objective 1)

subject to:

x1 − 3x3 + 3x4 = 6, (1)

x2 − 8x3 + 4x4 = 4, (2)

x j ≥ 0 ( j = 1, 2, 3, 4).

Note that as stated the problem has a very special form. It satisfies the following:

1. All decision variables are constrained to be nonnegative.

2. All constraints, except for the nonnegativity of decision variables, are stated as equalities.
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3. The righthand-side coefficients are all nonnegative.

4. One decision variable is isolated in each constraint with a+1 coefficient (x1 in constraint (1) andx2 in
constraint (2)). The variable isolated in a given constraint does not appear in any other constraint, and
appears with a zero coefficient in the objective function.

A problem with this structure is said to be incanonical form. This formulation might appear to be quite
limited and restrictive; as we will see later, however,anylinear programming problem can be transformed so
that it is in canonical form. Thus, the following discussion is valid for linear programs in general.

Observe that, given any values forx3 andx4, the values ofx1 andx2 are determined uniquely by the
equalities. In fact, settingx3 = x4 = 0 immediately gives a feasible solution withx1 = 6 andx2 = 4.
Solutions such as these will play a central role in the simplex method and are referred to asbasic feasible
solutions. In general, given a canonical form for any linear program, a basic feasible solution is given by
setting the variable isolated in constraintj , called thej th basic-variable, equal to the righthand side of the
j th constraint and by setting the remaining variables, callednonbasic, all to zero. Collectively the basic
variables are termed abasis.∗

In the example above, the basic feasible solutionx1 = 6, x2 = 4, x3 = 0, x4 = 0, is optimal. For any
other feasible solution,x3 andx4 must remain nonnegative. Since their coefficients in the objective function
are negative, if eitherx3 or x4 is positive,z will be less than 20. Thus the maximum value forz is obtained
whenx3 = x4 = 0.

To summarize this observation, we state the:

Optimality Criterion. Suppose that, in a maximization problem, every nonbasic variable has a non-
positive coefficient in the objective function of a canonical form. Then the basic feasible solution given
by the canonical form maximizes the objective function over the feasible region.

Unbounded Objective Value

Next consider the example just discussed but with a new objective function:

Maximizez = 0x1 + 0x2 + 3x3 − x4 + 20, (Objective 2)

subject to:

x1 − 3x3 + 3x4 = 6, (1)

x2 − 8x3 + 4x4 = 4, (2)

x j ≥ 0 ( j = 1, 2, 3, 4).

Sincex3 now has a positive coefficient in the objective function, it appears promising to increase the value
of x3 as much as possible. Let us maintainx4 = 0, increasex3 to a valuet to be determined, and updatex1
andx2 to preserve feasibility. From constraints (1) and (2),

x1 = 6 + 3t,

x2 = 4 + 8t,

z = 20+ 3t.

∗ We have introduced the new termscanonical, basis, andbasic variableat this early point in our discussion because
these terms have been firmly established as part of linear-programming vernacular.Canonicalis a word used in many
contexts in mathematics, as it is here, to mean ‘‘a special or standard representation of a problem or concept,’’ usually
chosen to facilitate study of the problem or concept.Basisandbasicare concepts in linear algebra; our use of these
terms agrees with linear-algebra interpretations of the simplex method that are discussed formally in Appendix A.
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No matter how larget becomes,x1 andx2 remain nonnegative. In fact, ast approaches+∞, z approaches
+∞. In this case, the objective function is unbounded over the feasible region.

The same argument applies to any linear program and provides the:

Unboundedness Criterion. Suppose that, in a maximization problem, some nonbasic variable has a
positive coefficient in the objective function of a canonical form. If that variable has negative or zero
coefficients in all constraints, then the objective function is unbounded from above over the feasible
region.

Improving a Nonoptimal Solution

Finally, let us consider one further version of the previous problem:

Maximizez = 0x1 + 0x2 − 3x3 + x4 + 20, (Objective 3)

subject to:

x1 − 3x3 + 3x4 = 6, (1)

x2 − 8x3 + 4x4 = 4, (2)

x j ≥ 0 ( j = 1, 2, 3, 4).

Now asx4 increases,z increases. Maintainingx3 = 0, let us increasex4 to a valuet , and updatex1 andx2
to preserve feasibility. Then, as before, from constraints (1) and (2),

x1 = 6 − 3t,

x2 = 4 − 4t,

z = 20+ t.

If x1 andx2 are to remain nonnegative, we require:

6 − 3t ≥ 0, that is, t ≤
6
3 = 2

and

4 − 4t ≥ 0, that is, t ≤
4
4 = 1.

Therefore, the largest value fort that maintains a feasible solution ist = 1. Whent = 1, the new solution
becomesx1 = 3, x2 = 0, x3 = 0, x4 = 1, which has an associated value ofz = 21 in the objective
function.

Note that, in the new solution,x4 has a positive value andx2 has become zero. Since nonbasic variables
have been given zero values before, it appears thatx4 has replacedx2 as a basic variable. In fact, it is fairly
simple to manipulate Eqs. (1) and (2) algebraically to produce a new canonical form, wherex1 andx4 become
the basic variables. Ifx4 is to become a basic variable, it should appear with coefficient+1 in Eq. (2), and
with zero coefficients in Eq. (1) and in the objective function. To obtain a+1 coefficient in Eq. (2), we
divide that equation by 4, changing the constraints to read:

x1 − 3x3 + 3x4 = 6, (1)
1
4x2 − 2x3 + x4 = 1. (2′)

Now, to eliminatex4 from the first constraint, we may multiply Eq. (2′) by 3 and subtract it from constraint
(1), giving:

x1 −
3
4x2 + 3x3 = 3, (1′)
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1
4x2 − 2x3 + x4 = 1. (2′)

Finally, we may rearrange the objective function and write it as:

(−z) − 3x3 + x4 = −20 (3)

and use the same technique to eliminatex4; that is, multiply (2′) by −1 and add to Eq. (1) giving:

(−z) −
1
4x2 − x3 = −21.

Collecting these equations, the system becomes:

Maximizez = 0x1 −
1
4x2 − x3 + 0x4 + 21,

subject to:

x1 −
3
4x2 + 3x3 = 3, (1′)
1
4x2 − 2x3 + x4 = 1, (2′)

x j ≥ 0 ( j = 1, 2, 3, 4).

Now the problem is in canonical form withx1 and x4 as basic variables, andz has increased from
20 to 21. Consequently, we are in a position to reapply the arguments of this section, beginning with
this improved solution. In this case, the new canonical form satisfies the optimality criterion since all
nonbasic variables have nonpositive coefficients in the objective function, and thus the basic feasible solution
x1 = 3, x2 = 0, x3 = 0, x4 = 1, is optimal.

The procedure that we have just described for generating a new basic variable is calledpivoting. It is
the essential computation of the simplex method. In this case, we say that we have just pivoted onx4 in the
second constraint. To appreciate the simplicity of the pivoting procedure and gain some additional insight, let
us see that it corresponds to nothing more than elementary algebraic manipulations to re-express the problem
conveniently.

First, let us use constraint (2) to solve forx4 in terms ofx2 andx3, giving:

x4 =
1
4(4 − x2 + 8x3) or x4 = 1 −

1
4x2 + 2x3. (2′)

Now we will use this relationship to substitute forx4 in the objective equation:

z = 0x1 + 0x2 − 3x3 +

(
1 −

1
4x2 + 2x3

)
+ 20,

z = 0x1 −
1
4x2 − x3 + 0x4 + 21,

and also in constraint (1)

x1 − 3x3 + 3
(

1 −
1
4x2 + 2x3

)
= 6,

or, equivalently,

x1 −
3
4x2 + 3x3 = 3. (1′)

Note that the equations determined by this procedure for eliminating variables are the same as those given
by pivoting. We may interpret pivoting the same way, even in more general situations, as merely rearranging
the system by solving for one variable and then substituting for it. We pivot because, for the new basic
variable, we want a+1 coefficient in the constraint where it replaces a basic variable, and 0 coefficients in
all other constraints and in the objective function.

Consequently, after pivoting, the form of the problem has been altered, but the modified equations still
represent the original problem and have the same feasible solutions and same objective value when evaluated
at any given feasible solution.

Indeed, the substitution is merely the familiar variable-elimination technique from high-school algebra,
known more formally as Gauss–Jordan elimination.
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In summary, the basic step for generating a canonical form with an improved value for the objective
function is described as:

Improvement Criterion. Suppose that, in a maximization problem, some nonbasic variable has a
positive coefficient in the objective function of a canonical form. If that variable has a positive coefficient
in some constraint, then a new basic feasible solution may be obtained by pivoting.

Recall that we chose the constraint to pivot in (and consequently the variable to drop from the basis) by
determiningwhich basic variablefirst goes to zero as we increase the nonbasic variablex4. The constraint is
selected by taking the ratio of the righthand-side coefficients to the coefficients ofx4 in the constraints, i.e.,
by performing theratio test:

min
{

6
3, 4

4

}
.

Note, however, that if the coefficient ofx4 in the second constraint were−4 instead of+4, the values for
x1 andx2 would be given by:

x1 = 6 − 3t,

x2 = 4 + 4t,

so that asx4 = t increases from 0,x2 never becomes zero. In this case, we would increasex4 to t =
6
3 = 2.

This observation applies in general for any number of constraints, so that we need never compute ratios for
nonpositive coefficients of the variable that is coming into the basis, and we establish the following criterion:

Ratio and Pivoting Criterion. When improving a given canonical form by introducing variablexs into
the basis, pivot in a constraint that gives the minimum ratio of righthand-side coefficient to corresponding
xs coefficient. Compute these ratios only for constraints that have a positive coefficient forxs.

Observe that the valuet of the variable being introduced into the basis is the minimum ratio. This ratio is
zero if the righthand side is zero in the pivot row. In this instance, a new basis will be obtained by pivoting,
but the values of the decision variables remain unchanged sincet = 0.

As a final note, we point out that a linear program may have multiple optimal solutions. Suppose that the
optimality criterion is satisfied and a nonbasic variable has a zero objective-function coefficient in the final
canonical form. Since the value of the objective function remains unchanged for increases in that variable,
we obtain an alternative optimal solution whenever we can increase the variable by pivoting.

Geometrical Interpretation

The three simplex criteria just introduced algebraically may be interpreted geometrically. In order to represent
the problem conveniently, we have plotted the feasible region in Figs. 2.1(a) and 2.1(b) in terms of only the
nonbasic variablesx3 andx4. The values ofx3 andx4 contained in the feasible regions of these figures satisfy
the equality constraints and ensure nonnegativity of the basic and nonbasic variables:

x1 = 6 + 3x3 − 3x4 ≥ 0, (1)

x2 = 4 + 8x3 − 4x4 ≥ 0, (2)

x3 ≥ 0, x4 ≥ 0.
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Consider the objective function that we used to illustrate the optimality criterion,

z = −3x3 − x4 + 20. (Objective 1)

For any value ofz, sayz = 17, the objective function is represented by a straight line in Fig. 2.1(a). As
z increases to 20, the line corresponding to the objective function moves parallel to itself across the feasible
region. Atz = 20, it meets the feasible region only at the pointx3 = x4 = 0; and, forz > 20, it no longer
touches the feasible region. Consequently,z = 20 is optimal.

The unboundedness criterion was illustrated with the objective function:

z = 3x3 − x4 + 20, (Objective 2)

which is depicted in Fig.2.1(b). Increasingx3 while holdingx4 = 0 corresponds to moving outward from
the origin (i.e., the pointx3 = x4 = 0) along thex3-axis. As we move along the axis, we never meet either
constraint (1) or (2). Also, as we move along thex3-axis, the value of the objective function is increasing to
+∞.

The improvement criterion was illustrated with the objective function

z = −3x3 + x4 + 20, (Objective 3)

which also is shown in Fig. 2.1(b). Starting fromx3 = 0, x4 = 0, and increasingx4 corresponds to moving
from the origin along thex4-axis. In this case, however, we encounter constraint (2) atx4 = t = 1 and
constraint (3) atx4 = t = 2. Consequently, to maintain feasibility in accordance with the ratio test, we move
to the intersection of thex4-axis and constraint (2), which is the optimal solution.

2.2 REDUCTION TO CANONICAL FORM

To this point we have been solving linear programs posed in canonical form with (1) nonnegative variables,
(2) equality constraints, (3) nonnegative righthand-side coefficients, and (4) one basic variable isolated in each
constraint. Here we complete this preliminary discussion by showing how to transform any linear program
to this canonical form.

1. Inequality constraints

In Chapter 1, the blast-furnace example contained the two constraints:

40x1 + 10x2 + 6x3 ≤ 55.0,

40x1 + 10x2 + 6x3 ≥ 32.5.

The lefthand side in these constraints is the silicon content of the 1000-pound casting being produced. The
constraints specify the quality requirement that the silicon content must be between 32.5 and 55.0 pounds.
To convert these constraints to equality form, introduce two new nonnegative variables (the blast-furnace
example already includes a variable denotedx4) defined as:

x5 = 55.0 − 40x1 − 10x2 − 6x3,

x6 = 40x1 + 10x2 + 6x3 − 32.5.

Variablex5 measures the amount that the actual silicon content fallsshortof the maximum content that can
be added to the casting, and is called aslack variable; x6 is the amount of silicon inexcessof the minimum
requirement and is called asurplus variable. The constraints become:

40x1 + 10x2 + 6x3 + x5 = 55.0,

40x1 + 10x2 + 6x3 − x6 = 32.5.

Slack or surplus variables can be used in this way to convert any inequality to equality form.
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2. Free variables

To see how to treat free variables, or variables unconstrained in sign, consider the basic balance equation of
inventory models:

xt + I t−1 = dt + I t .(
Production
in periodt

) (
Inventory

from period(t − 1)

) (
Demand in

periodt

) (
Inventory at

end of periodt

)
In many applications, we may assume that demand is known and that productionxt must be nonnegative.
InventoryI t may be positive or negative, however, indicating either that there is a surplus of goods to be stored
or that there is a shortage of goods and some must be produced later. For instance, ifdt − xt − I t−1 = 3, then
I t = −3 units must be produced later to satisfy current demand. To formulate models with free variables,
we introduce two nonnegative variablesI +

t and I −
t , and write

I t = I +
t − I −

t

as a substitute forI t everywhere in the model. The variableI +
t represents positive inventory on hand and

I −
t represents backorders (i.e., unfilled demand). WheneverI t ≥ 0, we setI +

t = I t and I −
t = 0, and when

I t < 0, we setI +
t = 0 and I −

t = −I t . The same technique converts any free variable into the difference
between two nonnegative variables. The above equation, for example, is expressed with nonnegative variables
as:

xt + I +

t−1 − I −

t−1 − I +
t + I −

t = dt .

Using these transformations, any linear program can be transformed into a linear program with nonnega-
tive variables and equality constraints. Further, the model can be stated with only nonnegative righthand-side
values by multiplying by−1 any constraint with a negative righthand side. Then, to obtain a canonical form,
we must make sure that, in each constraint, one basic variable can be isolated with a+1 coefficient. Some
constraints already will have this form. For example, the slack variablex5 introduced previously into the
silicon equation,

40x1 + 10x2 + 6x3 + x5 = 55.0,

appears in no other equation in the model. It can function as an intial basic variable for this constraint. Note,
however, that the surplus variablex6 in the constraint

40x1 + 10x2 + 6x3 − x6 = 32.5

does not serve this purpose, since its coefficient is−1.

3. Artificial variables

There are several ways to isolate basic variables in the constraints where one is not readily apparent. One
particularly simple method is just to add a new variable to any equation that requires one. For instance, the
last constraint can be written as:

40x1 + 10x2 + 6x3 − x6 + x7 = 32.5,

with nonnegative basic variablex7. This new variable is completely fictitious and is called anartificial
variable. Any solution withx7 = 0 is feasible for the original problem, but those withx7 > 0 are not
feasible. Consequently, we should attempt to drive the artificial variable to zero. In a minimization problem,
this can be accomplished by attaching a high unit costM (>0) to x7 in th objective function (for maximization,
add the penalty−Mx7 to the objective function). ForM sufficiently large,x7 will be zero in the final linear
programming solution, so that the solution satisfies the original problem constraint without the artificial
variable. Ifx7 > 0 in the final tableau, then there is no solution to the original problem where the artificial
variables have been removed; that is, we have shown that the problem is infeasible.
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Let us emphasize the distinction between artificial and slack variables. Whereas slack variables have
meaning in the problem formulation, artificial variables have no significance; they are merely a mathematical
convenience useful for initiating the simplex algorithm.

This procedure for penalizing artificial variables, called thebig M method, is straightforward conceptually
and has been incorporated in some linear programming systems. There are, however, two serious drawbacks
to its use. First, we don’t knowa priori how largeM must be for a given problem to ensure that all artificial
variables are driven to zero. Second, using large numbers forM may lead to numerical difficulties on a
computer. Hence, other methods are used more commonly in practice.

An alternative to the bigM method that is often used for initiating linear programs is called thephase
I–phase II procedureand works in two stages. Phase I determines a canonical form for the problem by solving
a linear program related to the original problem formulation. The second phase starts with this canonical
form to solve the original problem.

To illustrate the technique, consider the linear program:

Maximizez = −3x1 + 3x2 + 2x3 − 2x4 − x5 + 4x6,

subject to:

x1 − x2 + x3 − x4 − 4x5 + 2x6 − x7 + x9 = 4,

−3x1 + 3x2 + x3 − x4 − 2x5 + x8 = 6,

− x3 + x4 + x6 + x10 = 1,

x1 − x2 + x3 − x4 − x5 + x11︸ ︷︷ ︸ = 0,

x j ≥ 0 ( j = 1, 2, . . . , 11). Artificial variables
added

Assume thatx8 is a slack variable, and that the problem has been augmented by the introduction of artificial
variablesx9, x10, andx11 in the first, third and fourth constraints, so thatx8, x9, x10, andx11 form a basis.
The following elementary, yet important, fact will be useful:

Any feasible solution to the augmented system with all artificial variables equal to zero provides a feasible
solution to the original problem. Conversely, every feasible solution to the original problem provides a feasible
solution to the augmented system by setting all artificial variables to zero.

Next, observe that since the artificial variablesx9, x10, andx11 are all nonnegative, they are all zero only
when their sumx9+x10+x11 is zero. For the basic feasible solution just derived, this sum is 5. Consequently,
the artificial variables can be eliminated by ignoring the original objective function for the time being and
minimizing x9 + x10 + x11 (i.e., minimizing the sum of all artificial variables). Since the artificial variables
are all nonnegative, minimizing their sum means driving their sum towards zero. If the minimum sum is 0,
then the artificial variables are all zero and a feasible, but not necessarily optimal, solution to the original
problem has been obtained. If the minimum is greater than zero, then every solution to the augmented system
hasx9 + x10 + x11 > 0, so thatsomeartificial variable is still positive. In this case, the original problem has
no feasible solution.

The essential point to note is that minimizing the infeasibility in the augmented system is a linear program.
Moreover, adding the artificial variables has isolated one basic variable in each constraint. To complete the
canonical form of the phase I linear program, we need to eliminate the basic variables from the phase I objective
function. Since we have presented the simplex method in terms of maximizing an objective function, for the
phase I linear program we will maximizew defined to beminusthe sum of the artificial variables, rather than
minimizing their sum directly. The canonical form for the phase I linear program is then determined simply
by adding the artificial variables to thew equation. That is, we add the first, third, and fourth constraints in
the previous problem formulation to:

(−w) − x9 − x10 − x11 = 0,
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and express this equation as:

w = 2x1 − 2x2 + x3 − x4 − 5x5 + 3x6 − x7 + 0x9 + 0x10 + 0x11 − 5.

The artificial variables now have zero coefficients in the phase I objective.
Note that the initial coefficients for the nonartificial variablex j in the w equation is the sum of the

coefficients ofx j from the equations with an artificial variable (see Fig. 2.2).
If w = 0 is the solution to the phase I problem, then all artificial variables are zero. If, in addition, every

artificial variable is nonbasic in this optimal solution, then basic variables have been determined from the
original variables, so that a canonical form has been constructed to initiate the original optimization problem.
(Some artificial variables may be basic at value zero. This case will be treated in Section 2.5.) Observe that
the unboundedness condition is unnecessary. Since the artificial variables are nonnegative,w is bounded
from above by zero (for example,w = −x9 − x10− x11 ≤ 0) so that the unboundedness condition will never
apply.

To recap, artificial variables are added to place the linear program in canonical form. Maximizingw

either

i) gives maxw < 0. The original problem is infeasible and the optimization terminates; or
ii) gives maxw = 0. Then a canonical form has been determined to initiate the original problem. Apply

the optimality, unboundedness, and improvement criteria to the original objective functionz, starting
with this canonical form.

In order to reduce a general linear-programming problem to canonical form, it is convenient to perform
the necessary transformations according to the following sequence:

1. Replace each decision variable unconstrained in sign by a difference between two nonnegative variables.
This replacement applies to all equations including the objective function.

2. Change inequalities to equalities by the introduction of slack and surplus variables. For≥ inequalities,
let the nonnegativesurplus variablerepresent the amount by which the lefthand side exceeds the
righthand side; for≤ inequalities, let the nonnegativeslack variablerepresent the amount by which the
righthand side exceeds the lefthand side.

3. Multiply equations with a negative righthand side coefficient by−1.
4. Add a (nonnegative) artificial variable to any equation that does not have an isolated variable readily

apparent, and construct the phase I objective function.

To illustrate the orderly application of these rules we provide, in Fig. 2.2, a full example of reduction to
canonical form. The succeeding sets of equations in this table represent the stages of problem transformation
as we apply each of the steps indicated above. We should emphasize that at each stage the form of the given
problem is exactly equivalent to the original problem.

2.3 SIMPLEX METHOD—A FULL EXAMPLE

The simplex method for solving linear programs is but one of a number of methods, or algorithms, for solving
optimization problems. By an algorithm, we mean a systematic procedure, usually iterative, for solving a class
of problems. The simplex method, for example, is an algorithm for solving the class of linear-programming
problems. Any finite optimization algorithm should terminate in one, and only one, of the following possible
situations:

1. by demonstrating that there is no feasible solution;
2. by determining an optimal solution; or
3. by demonstrating that the objective function is unbounded over the feasible region.
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We will say that an algorithm solves a problem if it always satisfies one of these three conditions. As we shall
see, a major feature of the simplex method is that it solves any linear-programming problem.

Most of the algorithms that we are going to consider are iterative, in the sense that they move from one
decision pointx1, x2, . . . , xn to another. For these algorithms, we need:

i) a starting point to initiate the procedure;
ii) a termination criterion to indicate when a solution has been obtained; and

iii) an improvement mechanism for moving from a point that is not a solution to a better point.

Every algorithm that we develop should be analyzed with respect to these three requirements.
In the previous section, we discussed most of these criteria for a sample linear-programming problem.

Now we must extend that discussion to give a formal and general version of the simplex algorithm. Before
doing so, let us first use the improvement criterion of the previous section iteratively to solve a complete
problem. To avoid needless complications at this point, we select a problem that does not require artificial
variables.

Simple Example.∗ The owner of a shop producing automobile trailers wishes to determine the best mix for
his three products: flat-bed trailers, economy trailers, and luxury trailers. His shop is limited to working 24
days/month on metalworking and 60 days/month on woodworking for these products. The following table
indicates production data for the trailers.

Usage per unit of trailer Resources

Flat-bed Economy Luxury availabilities

Metalworking days 1
2 2 1 24

Woodworking days 1 2 4 60
Contribution ($× 100) 6 14 13

Let the decision variables of the problem be:

x1 = Number of flat-bed trailers produced per month,

x2 = Number of economy trailers produced per month,

x3 = Number of luxury trailers produced per month.

Assuming that the costs for metalworking and woodworking capacity are fixed, the problem becomes:

Maximizez = 6x1 + 14x2 + 13x3,

subject to:
1
2x1 + 2x2 + x3 ≤ 24,

x1 + 2x2 + 4x3 ≤ 60,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Letting x4 and x5 be slack variables corresponding to unused hours of metalworking and woodworking
capacity, the problem above is equivalent to the linear program:

Maximizez = 6x1 + 14x2 + 13x3,

subject to:
1
2x1 + 2x2 + x3 + x4 = 24,

x1 + 2x2 + 4x3 + x5 = 60,

∗ Excel spreadsheet available athttp://web.mit.edu/15.053/www/Sect2.3_Simple_Example.xls
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x j ≥ 0 ( j = 1, 2, . . . , 5).

This linear program is in canonical form with basic variablesx4 andx5. To simplify our exposition and to
more nearly parallel the way in which a computer might be used to solve problems, let us adopt a tabular
representation of the equations instead of writing them out in detail. Tableau 1 corresponds to the given
canonical form. The first two rows in the tableau are self-explanatory; they simply represent the constraints,
but with the variables detached. The third row represents thez-equation, which may be rewritten as:

(−z) + 6x1 + 14x2 + 13x3 = 0.

By convention, we say that(−z) is the basic variable associated with this equation. Note that no formal
column has been added to the tableau for the(−z)-variable.

The data to the right of the tableau is not required for the solution. It simply identifies the rows and
summarizes calculations. The arrow below the tableau indicates the variable being introduced into the basis;
the circled element of the tableau indicates the pivot element; and the arrow to the left of the tableau indicates
the variable being removed from the basis.

By the improvement criterion, introducing eitherx1, x2, or x3 into the basis will improve the solution.
The simplex method selects the variable with best payoff per unit (largest objective coefficient), in this case
x2. By the ratio test, asx2 is increased,x4 goes to zero beforex5 does; we should pivot in the first constraint.
After pivoting,x2 replacesx4 in the basis and the new canonical form is as given in Tableau 2.

Next,x3 is introduced in place ofx5 (Tableau 3).

Finally, x1 is introduced in place ofx2 (Tableau 4).
Tableau 4 satisfies the optimality criterion, giving an optimal contribution of $29,400 with a monthly

production of 36 flat-bed trailers and 6 luxury trailers.
Note that in this example,x2 entered the basis at the first iteration, but does not appear in the optimal

basis. In general, a variable might be introduced into (and dropped from) the basis several times. In fact, it
is possible for a variable to enter the basis at one iteration and drop from the basis at the very next iteration.
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Variations

The simplex method changes in minor ways if the canonical form is written differently. Since these modi-
fications appear frequently in the management-science literature, let us briefly discuss these variations. We
have chosen to consider the maximizing form of the linear program (maxz) and have written the objective
function in the canonical form as:

(−z) + c1x1 + c2x2 + · · · + cnxn = −z0,

so that the current solution hasz = z0. We argued that, if allc j ≤ 0, thenz = z0+c1x1+c2x2+· · ·+cnxn ≥ z0
for any feasible solution, so that the current solution is optimal. If instead, the objective equation is written
as:

(z) + c′

1x1 + c′

2x2 + · · · + c′
nxn = z0,

wherec′

j = −c j , thenz is maximized if each coefficientc′

j ≥ 0. In this case, the variable with the most
negative coefficientc′

j < 0 is chosen to enter the basis. All other steps in the method are unaltered.
The same type of association occurs for the minimizing objective:

Minimize z = c1x1 + c2x2 + · · · + cnxn.

If we write the objective function as:

(−z) + c1x1 + c2x2 + · · · + cnxn = −z0,

then, sincez = z0 + c1x1 + · · · + cnxn, the current solution is optimal if everyc j ≥ 0. The variablexs to
be introduced is selected fromcs = minc j < 0, and every other step of the method is the same as for the
maximizing problem. Similarly, if the objective function is written as:

(z) + c′

1x1 + c′

2x2 + · · · + c′
nxn = z0,

wherec′

j = −c j , then, for a minimization problem, we introduce the variable with the most positivec j into
the basis.

Note that these modifications affect only the way in which the variable entering the basis is determined.
The pivoting computations are not altered.

Given these variations in the selection rule for incoming variables, we should be wary of memorizing
formulas for the simplex algorithm. Instead, we should be able to argue as in the previous example and as in
the simplex preview. In this way, we maintain flexibility for almost any application and will not succumb to
the rigidity of a ‘‘formula trap.’’

2.4 FORMAL PROCEDURE

Figure 2.3 summarizes the simplex method in flow-chart form. It illustrates both the computational steps of
the algorithm and the interface between phase I and phase II. The flow chart indicates how the algorithm is
used to show that the problem is infeasible, to find an optimal solution, or to show that the objective function
is unbounded over the feasible region. Figure 2.4 illustrates this algorithm for a phase I–phase II example



by solving the problem introduced in Section 2.2 for reducing a problem to canonical form.∗ The remainder
of this section specifies the computational steps of the flow chart in algebraic terms.

At any intermediate step during phase II of the simplex algorithm, the problem is posed in the following
canonical form:

x1 + a1, m+1xm+1 + · · · + a1sxs + · · · + a1nxn = b1,

x2 + a2, m+1xm+1 + · · · + a2nxn = b2,
. . .

...
...

...

xr + ar, m+1xm+1 + · · · + ars xs + · · · + arnxn = br ,

. . .
...

...
...

xm + am, m+1xm+1 + · · · + amsxs + · · · + amnxn = bm,

(−z) + cm+1xm+1 + · · · + csxs + · · · + cnxn = −z0,

x j ≥ 0 ( j = 1, 2, . . . , n).

∗ Excel spreadsheet available athttp://web.mit.edu/15.053/www/Fig2.4_Pivoting.xls
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Figure 2.1 Simplex phase I–phase II maximization procedure.
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Originally, this canonical form is developed by using the procedures of Section 2.2. The dataai j , bi , z0, w0,
andc j are known. They are either the original data (without bars) or that data as updated by previous steps
of the algorithm. We have assumed (by reindexing variables if necessary) thatx1, x2, . . . , xm are the basic
variables. Also, since this is a canonical form,bi ≥ 0 for i = 1, 2, . . . , m.

Simplex Algorithm (Maximization Form)

STEP (0) The problem is initially in canonical form and allbi ≥ 0.

STEP (1) Ifc j ≤ 0 for j = 1, 2, . . . , n, thenstop; we are optimal. If we continue then
there exists somec j > 0.

STEP (2) Choose the column to pivot in (i.e., the variable to introduce into the basis)
by:

cs = max
j

{c j |c j > 0}.∗

If ais ≤ 0 for i = 1, 2, . . . , m, thenstop; the primal problem is unbounded.
If we continue, thenais > 0 for somei = 1, 2, . . . , m.

STEP (3) Choose rowr to pivot in (i.e., the variable to drop from the basis) by the
ratio test:

br

ars
= min

i

{
bi

ais

∣∣∣∣ ais > 0

}
.

STEP (4) Replace the basic variable in rowr with variables and re-establish the
canonical form (i.e., pivot on the coefficientars).

STEP (5) Go to step (1).

These steps are the essential computations of the simplex method. They apply to either the phase I or
phase II problem. For the phase I problem, the coefficientsc j are those of the phase I objective function.

The only computation remaining to be specified formally is the effect that pivoting in step (4) has on the
problem data. Recall that we pivot on coefficientars merely to isolate variablexs with a +1 coefficient in
constraintr . The pivot can be viewed as being composed of two steps:

i) normalizing ther th constraint so thatxs has a+1 coefficient, and
ii) subtracting multiples of the normalized constraint from the order equations in order to eliminate variable

xs.

These steps are summarized pictorially in Fig. 2.5.
The last tableau in Fig. 2.5 specifies the new values for the data. The new righthand-side coefficients,

for instance, are given by:

b
new
r =

br

ars
and b

new
i = bi − ais

(
br

ars

)
≥ 0 for i 6= r .

Observe that the new coefficients for the variablexr being removed from the basis summarize the computa-
tions. For example, the coefficient ofxr in the first row of the final tableau is obtained from the first tableau
by subtractinga1s/ars times ther th row from the first row. The coefficients of the other variables in the
first row of the third tableau can be obtained from the first tableau by performing this same calculation. This
observation can be used to partially streamline the computations of the simplex method. (See Appendix B
for details.)

∗ The vertical bar within braces is an abbreviation for the phrase ‘‘such that.’’
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Figure 2.5 Algebra for a pivot operation.
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Note also that the new value forz will be given by:

z0 +

(
br

ars

)
cs.

By our choice of the variablexs to introduce into the basis,cs > 0. Sincebr ≥ 0 andars > 0, this implies
thatznew

≥ zold. In addition, ifbr > 0, thenznew is strictly greater thanzold.

Convergence

Though the simplex algorithm has solved each of our previous examples, we have yet to show that it solves
any linear program. A formal proof requires results from linear algebra, as well as further technical material
that is presented in Appendix B. Let us outline a proof assuming these results. We assume that the linear
program hasn variables andm equality constraints.

First, note that there are only a finite number of bases for a given problem, since a basis containsm
variables (one isolated in each constraint) and there are a finite number of variables to select from. A standard
result in linear algebra states that, once the basic variables have been selected, all the entries in the tableau,
including the objective value, are determined uniquely. Consequently, there are only a finite number of
canonical forms as well. If the objective valuestrictly increases after every pivot, the algorithm never repeats
a canonical form and must determine an optimal solution after afinite number of pivots (any nonoptimal
canonical form is transformed to a new canonical form by the simplex method).

This argument shows that the simplex method solves linear programs as long as the objective value strictly
increases after each pivoting operation. As we have just seen, each pivot affects the objective function by
adding a multiple of the pivot equation to the objective function. The current value of thez-equation increases
by a multiple of the righthand-side coefficient; if this coefficient is positive (not zero), the objective value
increases. With this in mind, we introduce the following definition:

A canonical form is callednondegenerateif each righthand-side coefficient is strictly positive. The
linear-programming problem is called nondegenerate if, starting with an initial canonical form, every
canonical form determined by the algorithm is nondegenerate.

In these terms, we have shown that the simplex method solves every nondegenerate linear program using
a finite number of pivoting steps. When a problem is degenerate, it is possible to perturb the data slightly
so that every righthand-side coefficient remains positive and again show that the method works. Details are
given in Appendix B. A final note is that, empirically, the finite number of iterations mentioned here to solve
a problem frequently lies between 1.5 and 2 times the number of constraints (i.e., between 1.5m and 2m).

Applying this perturbation, if required, to both phase I and phase II, we obtain the essential property of
the simplex method.

Fundamental Property of the Simplex Method. The simplex method (with perturbation if necessary)
solves any given linear program in a finite number of iterations. That is, in a finite number of iterations,
it shows that there is no feasible solution; finds an optimal solution; or shows that the objective function
is unbounded over the feasible region.

Although degeneracy occurs in almost every problem met in practice, it rarely causes any complications.
In fact, even without the perturbation analysis, the simplex method never has failed to solve a practical
problem, though problems that are highly degenerate with many basic variables at value zero frequently take
more computational time than other problems.

Applying this fundamental property to the phase I problem, we see that, if a problem is feasible, the
simplex method finds a basic feasible solution. Since these solutions correspond to corner or extreme points
of the feasible region, we have the
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Fundamental Property of Linear Equations. If a set of linear equations in nonnegative variables is
feasible, then there is an extreme-point solution to the equations.

2.5 TRANSITION FROM PHASE I TO PHASE II

We have seen that, if an artificial variable is positive at the end of phase I, then the original problem has no
feasible solution. On the other hand, if all artificial variables are nonbasic at value zero at the end of phase
I, then a basic feasible solution has been found to initiate the original optimization problem. Section 2.4
furnishes an example of this case. Suppose, though, that when phase I terminates, all artificial variables are
zero, but that some artificial variable remains in the basis. The following example illustrates this possibility.

Problem. Find a canonical form forx1, x2, and x3 by solving the phase I problem (x4, x5, and x6 are
artificial variables):

Maximizew = −x4 − x5 − x6,

subject to:

x1 − 2x2 + x4 = 2,

x1 − 3x2 − x3 + x5 = 1,

x1 − x2 + ax3 + x6 = 3,

x j ≥ 0 ( j = 1, 2, . . . , 6).

To illustrate the various terminal conditions, the coefficient ofx3 is unspecified in the third constraint. Later
it will be set to either 0 or 1. In either case, the pivoting sequence will be the same and we shall merely carry
the coefficient symbolically.

Putting the problem in canonical form by eliminatingx4, x5, andx6 from the objective function, the
simplex solution to the phase I problem is given in Tableaus 1 through 3.

For a = 0 or 1, phase I is complete sincec3 = a − 1 ≤ 0, but withx6 still part of the basis. Note that
in Tableau 2, eitherx4 or x6 could be dropped from the basis. We have arbitrarily selectedx4. (A similar
argument would apply ifx6 were chosen.)
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First, assumea = 0. Then we can introducex3 into the basis in place of the artificial variablex6, pivoting
on the coefficienta − 1 or x3 in the third constraint, giving Tableau 4.

Note that we have pivoted on a negative coefficient here. Since the righthand-side element of the third
equation is zero, dividing by a negative pivot element will not make the resulting righthand-side coefficient
negative. Droppingx4, x5, andx6, we obtain the desired canonical form. Note thatx6 is now set to zero and
is nonbasic.

Next, suppose thata = 1. The coefficient(a−1) in Tableau 3 is zero, so we cannot pivotx3 into the basis
as above. In this case, however, dropping artificial variablesx4 andx5 from the system, the third constraint
of Tableau 3 readsx6 = 0. Consequently, even thoughx6 is a basic variable, in the canonical form for the
original problem it will always remain at value zero during phase II. Thus, throughout phase II, a feasible
solution to the original problem will be maintained as required. When more than one artificial variable is in
the optimal basis for phase I, these techniques can be applied to each variable.

For the general problem, the transition rule from phase I to phase II can be stated as:

Phase I–Phase II Transition Rule. Suppose that artificial variablexi is thei th basic variable at the
end of Phase I (at value zero). Letai j be the coefficient of the nonartificial variablex j in thei th constraint
of the final tableau. If someai j 6= 0, then pivot on any suchai j , introducingx j into the basis in place of
xi . If all ai j = 0, then maintainxi in the basis throughout phase II by including thei th constraint, which
readsxi = 0.

As a final note, observe that if allai j = 0 above, then constrainti is a redundant constraint in the original
system, for, by adding multiples of the other equation to constrainti via pivoting, we have produced the
equation (ignoring artificial variables):

0x1 + 0x2 + · · · + 0xn = 0.

For example, whena = 1 for the problem above, (constraint 3) = 2 times (constraint 1)–(constraint 2), and
is redundant.

Phase I–Phase II Example

Maximizez = −3x1 + x3,
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subject to:

x1 + x2 + x3 + x4 = 4,

−2x1 + x2 − x3 = 1,

3x2 + x3 + x4 = 9,

x j ≥ 0 ( j = 1, 2, 3, 4).

Adding artificial variablesx5, x6, andx7, we first minimizex5 + x6 + x7 or, equivalently, maximize
w = −x5− x6− x7. The iterations are shown in Fig. 2.6.∗ The first tableau is the phase I problem statement.
Basic variablesx5, x6 andx7 appear in the objective function and, to achieve the initial canonical form, we
must add the constraints to the objective function to eliminate these variables.

Tableaus 2 and 3 contain the phase I solution. Tableau 4 gives a feasible solution to the original problem.
Artificial variable x7 remains in the basis and is eliminated by pivoting on the−1 coefficient forx4. This
pivot replacesx7 = 0 in the basis byx4 = 0, and gives a basis from the original variables to initiate phase II.

Tableaus 5 and 6 give the phase II solution.

∗ Excel spreadsheet available athttp://web.mit.edu/15.053/www/Fig2.6_Pivoting.xls
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2.6 LINEAR PROGRAMS WITH BOUNDED VARIABLES

In most linear-programming applications, many of the constraints merely specify upper and lower bounds on
the decision variables. In a distribution problem, for example, variablesx j representing inventory levels might
be constrained by storage capacitiesu j and by predetermined safety stock levels` j so that̀ j ≤ x j ≤ u j .
We are led then to consider linear programs withbounded variables:

Maximizez =

n∑
j =1

c j x j ,

subject to:
n∑

j =1

ai j x j = bi , (i = 1, 2, . . . , m) (3)

` j ≤ x j ≤ u j , ( j = 1, 2, . . . , n). (4)

The lower bounds̀ j may be−∞ and/or the upper boundsu j may be+∞, indicating respectively that
the decision variablex j is unbounded from below or from above. Note that when each` j = 0 and each
u j = +∞, this problem reduces to the linear-programming form that has been discussed up until now.

The bounded-variable problem can be solved by the simplex method as discussed thus far, by adding
slack variables to the upper-bound constraints and surplus variables to the lower-bound constraints, thereby
converting them to equalities. This approach handles the bounding constraints explicitly. In contrast, the
approach proposed in this section modifies the simplex method to consider the bounded-variable constraints
implicitly. In this new approach, pivoting calculations are computed only for the equality constraints (3) rather
than for the entire system (3) and (4). In many instances, this reduction in pivoting calculations will provide
substantial computational savings. As an extreme illustration, suppose that there is one equality constraint
and 1000 nonnegative variables with upper bounds. The simplex method will maintain 1001 constraints in
the tableau, whereas the new procedure maintains only the single equality constraint.

We achieve these savings by using a canonical form with one basic variable isolated in each of the equality
constraints, as in the usual simplex method. However, basic feasible solutions now are determined by setting
nonbasic variables to either their lower or upper bound. This method for defining basic feasible solutions
extends our previous practice of setting nonbasic variables to their lower bounds of zero, and permits us to
assess optimality and generate improvement procedures much as before.

Suppose, for example, thatx2 andx4 are nonbasic variables constrained by:

4 ≤ x2 ≤ 15,

2 ≤ x4 ≤ 5;

and that

z = 4 −
1
4x2 +

1
2x4,

x2 = 4,

x4 = 5,

in the current canonical form. In any feasible solution,x2 ≥ 4, so−
1
4x2 ≤ −1; also,x4 ≤ 5, so that

1
2x4 ≤

1
2(5) = 21

2. Consequently,

z = 4 −
1
4x2 +

1
2x4 ≤ 4 − 1 + 21

2 = 51
2

for any feasible solution. Since the current solution withx2 = 4 andx4 = 5 attains this upper bound, it
must be optimal. In general, the current canonical form represents the optimal solution whenever nonbasic
variables at their lower bounds have nonpositive objective coefficients, and nonbasic variables at their upper
bound have nonnegative objective coefficients.
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Bounded Variable Optimality Condition. In a maximization problem in canonical form, if every
nonbasic variable at its lower bound has a nonpositive objective coefficient, and every nonbasic variable
at its upper bound has a nonnegative objective coefficient, then the basic feasible solution given by that
canonical form maximizes the objective function over the feasible region.

Improving a nonoptimal solution becomes slightly more complicated than before. If the objective coef-
ficient c j of nonbasic variablex j is positive andx j = ` j , then we increasex j ; if c j < 0 andx j = u j , we
decreasex j . In either case, the objective value is improving.

When changing the value of a nonbasic variable, we wish to maintain feasibility. As we have seen, for
problems with only nonnegative variables, we have to test, via the ratio rule, to see when a basic variable first
becomes zero. Here we must consider the following contingencies:

i) the nonbasic variable being changed reaches its upper or lower bound; or
ii) some basic variable reaches either its upper or lower bound.

In the first case, no pivoting is required. The nonbasic variable simply changes from its lower to upper
bound, or upper to lower bound, and remains nonbasic. In the second case, pivoting is used to remove the
basic variable reaching either its lower or upper bound from the basis.

These ideas can be implemented on a computer in a number of ways. For example, we can keep track of
the lower bounds throughout the algorithm; or every lower bound

x j ≥ ` j

can be converted to zero by defining a new variable

x′′

j = x j − ` j ≥ 0,

and substitutingx′′

j + ` j for x j everywhere throughout the model. Also, we can always redefine variables
so that every nonbasic variable is at its lower bound. Letx′

j denote the slack variable for the upper-bound
constraintx j ≤ u j ; that is,

x j + x′

j = u j .

Wheneverx j is nonbasic at its upper boundu j , the slack variablex′

j = 0. Consequently, substitutingu j − x′

j
for x j in the model makesx′

j nonbasic at value zero in place ofx j . If, subsequently in the algorithm,x′

j
becomes nonbasic at its upper bound, which is alsou j , we can make the same substitution forx′

j , replacing
it with u j − x j , andx j will appear nonbasic at value zero. These transformations are usually referred to as
theupper-bounding substitution.

The computational steps of the upper-bounding algorithm are very simple to describe if both of these
transformations are used. Since all nonbasic variables (eitherx j or x′

j ) are at value zero, we increase a variable
for maximization as in the usual simplex method if its objective coefficient is positive. We use the usual ratio
rule to determine at what valuet1 for the incoming variable, a basic variable first reaches zero. We also must
ensure that variables do not exceed their upper bounds. For example, when increasing nonbasic variablexs
to valuet , in a constraint withx1 basic, such as:

x1 − 2xs = 3,

we require that:

x1 = 3 + 2t ≤ u1

(
that is, t ≤

u1 − 3

2

)
.

We must perform such a check in every constraint in which the incoming variable has a negative coefficient;
thusxs ≤ t2 where:

t2 = min
i

{
uk − bi

−ais

∣∣∣∣∣ais < 0

}
,
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anduk is the upper bound for the basic variablexk in thei th constraint,bi is the current value for this variable,
andais are the constraint coefficients for variablexs. This test might be called theupper-bounding ratio test.
Note that, in contrast to the usual ratio test, the upper-bounding ratio uses negative coefficientsais < 0 for
the nonbasic variablexs being increased.

In general, the incoming variablexs (or x′
s) is set to:

xs = min {us, t1, t2}.
If the minimum is

i) us, then the upper bounding substitution is made forxs (or x′
s);

ii) t1, then a usual simplex pivot is made to introducexs into the basis;
iii) t2, then the upper bounding substitution is made for the basic variablexk (or x′

k) reaching its upper bound
andxs is introduced into the basis in place ofx′

k (or xk) by a usual simplex pivot.

The procedure is illustrated in Fig. 2.7. Tableau 1 contains the problem formulation, which is in canonical
form with x1, x2, x3, andx4 as basic variables andx5 andx6 as nonbasic variables at value zero. In the first
iteration, variablex5 increases, reaches its upper bound, and the upper bounding substitutionx′

5 = 1 − x5
is made. Note that, after making this substitution, the variablex′

5 has coefficients opposite in sign from the
coefficients ofx5. Also, in going from Tableau 1 to Tableau 2, we have updated the current value of the basic
variables by multiplying the upper bound ofx5, in this caseu5 = 1, by the coefficients ofx5 and moving
these constants to the righthand side of the equations.

In Tableau 2, variablex6 increases, basic variablex2 reaches zero, and a usual simplex pivot is performed.
After the pivot, it is attractive to increasex′

5 in Tableau 3. Asx′

5 increases basic variablex4 reaches its upper
bound atx4 = 5 and the upper-bounding substitutionx′

4 = 5− x4 is made. Variablex′

4 is isolated as the basic
variable in the fourth constraint in Tableau 4 (by multiplying the constraint by−1 after the upper-bounding
substitution); variablex′

5 then enters the basis in place ofx′

4. Finally, the solution in Tableau 5 is optimal,
since the objective coefficients are nonpositive for the nonbasic variables, each at value zero.
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EXERCISES

1. Given:

x1 + 2x4 = 8,

x2 + 3x4 = 6,

x3 + 8x4 = 24,

−z + 10x4 = −32,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

a) What is the optimal solution of this problem?
b) Change the coefficient ofx4 in thez-equation to−3. What is the optimal solution now?
c) Change the signs on allx4 coefficients to be negative. What is the optimal solution now?

2. Consider the linear program:

Maximizez = 9x2 + x3 − 2x5 − x6,

subject to:

5x2 + 50x3 + x4 + x5 = 10,

x1 − 15x2 + 2x3 = 2,

x2 + x3 + x5 + x6 = 6,

x j ≥ 0 ( j = 1, 2, . . . , 6).

a) Find an initial basic feasible solution, specify values of the decision variables, and tell which are basic.
b) Transform the system of equations to the canonical form for carrying out the simplex routine.
c) Is your initial basic feasible solution optimal? Why?
d) How would you select a column in which to pivot in carrying out the simplex algorithm?
e) Having chosen a pivot column, now select a row in which to pivot and describe the selection rule. How does this

rule guarantee that the new basic solution is feasible? Is it possible that no row meets the criterion of your rule?
If this happens, what does this indicate about the original problem?

f) Without carrying out the pivot operation, compute the new basic feasible solution.
g) Perform the pivot operation indicated by (d) and (e) and check your answer to (f). Substitute your basic feasible

solution in the original equations as an additional check.
h) Is your solution optimal now? Why?

3. a) Reduce the following system to canonical form. Identify slack, surplus, and artificial variables.

−2x1 + x2 ≤ 4 (1)

3x1 + 4x2 ≥ 2 (2)

5x1 + 9x2 = 8 (3)

x1 + x2 ≥ 0 (4)

2x1 + x2 ≥ −3 (5)

−3x1 − x2 ≤ −2 (6)

3x1 + 2x2 ≤ 10 (7)

x1 ≥ 0, x2 ≥ 0.

b) Formulate phase I objective functions for the following systems withx1 ≥ 0 andx2 ≥ 0:

i) expressions 2 and 3 above.
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ii) expressions 1 and 7 above.
iii) expressions 4 and 5 above.

4. Consider the linear program

Maximizez = x1,

subject to:

−x1 + x2 ≤ 2,

x1 + x2 ≤ 8,

−x1 + x2 ≥ −4,

x1 ≥ 0, x2 ≥ 0.

a) State the above in canonical form.
b) Solve by the simplex method.
c) Solve geometrically and also trace the simplex procedure steps graphically.
d) Suppose that the objective function is changed toz = x1 + cx2. Graphically determine the values ofc for which

the solution found in parts (b) and (c) remains optimal.
e) Graphically determine the shadow price corresponding to the third constraint.

5. The bartender of your local pub has asked you to assist him in finding the combination of mixed drinks that will
maximize his revenue. He has the following bottles available:

1 quart (32 oz.) Old Cambridge (a fine whiskey—cost $8/quart)
1 quart Joy Juice (another fine whiskey—cost $10/quart)
1 quart Ma’s Wicked Vermouth ($10/quart)
2 quarts Gil-boy’s Gin ($6/quart)

Since he is new to the business, his knowledge is limited to the following drinks:

Whiskey Sour 2 oz. whiskey Price $1

Manhattan 2 oz. whiskey $2
1 oz. vermouth

Martini 2 oz. gin $2
1 oz. vermouth

Pub Special 2 oz. gin $3
2 oz. whiskey

Use the simplex method to maximize the bar’s profit. (Is the cost of the liquor relevant in this formulation?)

6. A company makes three lines of tires. Its four-ply biased tires produce $6 in profit per tire, its fiberglass belted line
$4 a tire, and its radials $8 a tire. Each type of tire passes through three manufacturing stages as a part of the entire
production process.

Each of the three process centers has the following hours of available production time per day:

Process Hours

1 Molding 12
2 Curing 9
3 Assembly 16

The time required in each process to produce one hundred tires of each line is as follows:
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Hours per 100 units

Tire Molding Curing Assembly

Four-ply 2 3 2
Fiberglass 2 2 1

Radial 2 1 3

Determine the optimum product mix for each day’s production, assuming all tires are sold.

7. An electronics firm manufactures printed circuit boards and specialized electronics devices. Final assembly oper-
ations are completed by a small group of trained workers who labor simultaneously on the products. Because of
limited space available in the plant, no more then ten assemblers can be employed. The standard operating budget
in this functional department allows a maximum of $9000 per month as salaries for the workers.

The existing wage structure in the community requires that workers with two or more years of experience receive
$1000 per month, while recent trade-school graduates will work for only $800. Previous studies have shown that
experienced assemblers produce $2000 in ‘‘value added" per month while new-hires add only $1800. In order to
maximize the value added by the group, how many persons from each group should be employed? Solve graphically
and by the simplex method.

8. The processing division of the Sunrise Breakfast Company must produce one ton (2000 pounds) of breakfast flakes
per day to meet the demand for its Sugar Sweets cereal. Cost per pound of the three ingredients is:

Ingredient A $4 per pound

Ingredient B $3 per pound

Ingredient C $2 per pound

Government regulations require that the mix contain at least 10% ingredient A and 20% ingredient B. Use of
more than 800 pounds per ton of ingredient C produces an unacceptable taste.

Determine the minimum-cost mixture that satisfies the daily demand for Sugar Sweets. Can the bounded-
variable simplex method be used to solve this problem?

9. Solve the following problem using the two phases of the simplex method:

Maximizez = 2x1 + x2 + x3,

subject to:

2x1 + 3x2 − x3 ≤ 9,

2x2 + x3 ≥ 4,

x1 + x3 = 6,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Is the optimal solution unique?

10. Consider the linear program:

Maximizez = −3x1 + 6x2,

subject to:

5x1 + 7x2 ≤ 35,

−x1 + 2x2 ≤ 2,

x1 ≥ 0, x2 ≥ 0.
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a) Solve this problem by the simplex method. Are there alternative optimal solutions? How can this be determined
at the final simplex iteration?

b) Solve the problem graphically to verify your answer to part (a).

11. Solve the following problem using the simplex method:

Minimize z = x1 − 2x2 − 4x3 + 2x4,

subject to:

x1 − 2x3 ≤ 4,

x2 − x4 ≤ 8,

−2x1 + x2 + 8x3 + x4 ≤ 12,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

12. a) Set up a linear program that will determine a feasible solution to the following system of equations and inequalities
if one exists.Do not solvethe linear program.

x1 − 6x2 + x3 − x4 = 5,

−2x2 + 2x3 − 3x4 ≥ 3,

3x1 − 2x3 + 4x4 = −1,

x1 ≥ 0, x3 ≥ 0, x4 ≥ 0.

b) Formulate a phase I linear program to find a feasible solution to the system:

3x1 + 2x2 − x3 ≤ −3,

−x1 − x2 + 2x3 ≤ −1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Show, from the phase I objective function, that the system contains no feasible solution (no pivoting calculations
are required).

13. The tableau given below corresponds to a maximization problem in decision variablesx j ≥ 0 ( j = 1, 2, . . . , 5):

Basic Current
variables values x1 x2 x3 x4 x5

x3 4 −1 a1 1
x4 1 a2 −4 1
x5 b a3 3 1

(−z) −10 c −2

State conditions on all five unknownsa1, a2, a3, b, andc, such that the following statements are true.

a) The current solution is optimal. There are multiple optimal solutions.
b) The problem is unbounded.
c) The problem is infeasible.
d) The current solution is not optimal (assume thatb ≥ 0). Indicate the variable that enters the basis, the variable

that leaves the basis, and what the total change in profit would be for one iteration of the simplex method for all
values of the unknowns that are not optimal.
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14. Consider the linear program:

Maximizez = αx1 + 2x2 + x3 − 4x4,

subject to:

x1 + x2 − x4 = 4 + 21 (1)

2x1 − x2 + 3x3 − 2x4 = 5 + 71 (2)

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,

whereα and1 are viewed as parameters.

a) Form two new constraints as (1′) = (1) + (2) and (2′) = −2(1)+ (2). Solve forx1 andx2 from (1′) and (2′), and
substitute their values in the objective function. Use these transformations to express the problem in canonical
form with x1 andx2 as basic variables.

b) Assume1 = 0 (constant). For what values ofα arex1 andx2 optimal basic variablesin the problem?
c) Assumeα = 3. For what values of1 do x1 andx2 form an optimal basic feasible solution?

15. Let

(−w) + d1x1 + d2x2 + · · · + dmxm = 0 (∗)

be the phase I objective function when phase I terminates for maximizingw. Discuss the following two procedures
for making the phase I to II transition when an artificial variable remains in the basis at value zero. Show, using
either procedure, that every basic solution determined during phase II will be feasible for theoriginal problem
formulation.

a) Multiply each coefficient in (∗) by −1. Initiate phase II with the original objective function, but maintain (∗) in
the tableau as a new constraint with (w) as the basic variable.

b) Eliminate (∗) from the tableau and at the same time eliminate from the problem any variablex j with d j < 0.
Any artificial variable in the optimal phase I basis is now treated as though it were a variable from the original
problem.

16. In our discussion of reduction to canonical form, we have replaced variables unconstrained in sign by the difference
between two nonnegative variables. This exercise considers an alternative transformation that does not introduce as
many new variables, and also a simplex-like procedure for treating free variables directly without any substitutions.
For concreteness, suppose thaty1, y2, andy3 are the only unconstrained variables in a linear program.
a) Substitute fory1, y2, andy3 in the model by:

y1 = x1 − x0,

y2 = x2 − x0,

y3 = x3 − x0,

with x0 ≥ 0, x1 ≥ 0, x2 ≥ 0, andx3 ≥ 0. Show that the models are equivalent before and after these
substitutions.

b) Apply the simplex method directly withy1, y2, and y3. When are these variables introduced into the basis
at positive levels? At negative levels? Ify1 is basic, will it ever be removed from the basis? Is the equation
containingy1 as a basic variable used in the ratio test? Would the simplex method be altered in any other way?

17. Apply the phase I simplex method to find a feasible solution to the problem:

x1 − 2x2 + x3 = 2,

−x1 − 3x2 + x3 = 1,

2x1 − 3x2 + 4x3 = 7,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Does the termination of phase I show that the system contains a redundant equation? How?
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18. Frequently, linear programs are formulated withinterval constraintsof the form:

5 ≤ 6x1 − x2 + 3x3 ≤ 8.

a) Show that this constraint is equivalent to the constraints

6x1 − x2 + 3x3 + x4 = 8,

0 ≤ x4 ≤ 3.

b) Indicate how the generalinterval linear program

Maximizez =

n∑
j =1

c j x j ,

subject to:

b′

i ≤

n∑
j =1

ai j x j ≤ bi (i = 1, 2, . . . , m),

x j ≥ 0 ( j = 1, 2, . . . , n),

can be formulated as a bounded-variable linear program withm equality constraints.

19. a) What is the solution to the linear-programming problem:

Maximizez = c1x1 + c2x2 + · · · + cnxn,

subject to:
a1x1 + a2x2 + · · · + anxn ≤ b,

0 ≤ x j ≤ u j ( j = 1, 2, . . . , n),

with bounded variables and one additional constraint? Assume that the constantsc j , a j , andu j for j =

1, 2, . . . , n, andb are all positive and that the problem has been formulated so that:
c1

a1
≥

c2

a2
≥ · · · ≥

cn

an
.

b) What will be the steps of the simplex method for bounded variables when applied to this problem (in what order
do the variables enter and leave the basis)?

20. a) Graphically determine the steps of the simplex method for the problem:

Maximize 8x1 + 6x2,

subject to:

3x1 + 2x2 ≤ 28,

5x1 + 2x2 ≤ 42,

x1 ≤ 8,

x2 ≤ 8,

x1 ≥ 0, x2 ≥ 0.

Indicate on the sketch the basic variables at each iteration of the simplex algorithm in terms of the given variables
and the slack variables for the four less-than-or-equal-to constraints.

b) Suppose that the bounded-variable simplex method is applied to this problem. Specify how the iterations in the
solution to part (a) correspond to the bounded-variable simplex method. Which variables fromx1, x2, and the
slack variable for the first two constraints, are basic at each iteration? Which nonbasic variables are at their upper
bounds?

c) Solve the problem algebraically, using the simplex algorithm for bounded variables.


