Florida International University Optimization in Water Resources Engineering Spring 2020

# **Genetic Algorithms**



Arturo S. Leon, Ph.D., P.E., D.WRE

Part of the material presented herein was adapted from:

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing; Aleksandra Popovic et al.; Wendy Williams (Metaheuristic Algorithms); S. J. Van Vuuren, University of Pretoria; Mostafa Ranjbar (Yildirim Beyazit University)

### What is GA?



https://www.youtube.com/watch?v=XcinBPhgT7M



Herein, evolution means climbing a fitness-hill

# **Evolution in Biology**

Organisms produce a number of offspring similar to themselves but can have variations due to:

Mutations (random changes)





Sexual reproduction (offspring have combinations of features inherited from each parent)



# **Evolution in Biology (Cont.)**

- □ Some offspring survive, and produce next generations, and some don't:
  - The organisms adapted to the environment better have higher chance to survive
  - Over time, the generations become more and more adapted because the fittest organisms survive





### **GA Brief Introduction**



https://www.youtube.com/wateh?v=1i8muvzZkPw

### **Nature Vs Computer - Mapping**

Nature Population Individual Fitness Chromosome Gene Reproduction

#### Computer

Set of solutions. Solution to a problem. Quality of a solution. Encoding for a Solution. Part of the encoding of a solution. Crossover

# **GA: Population operators**

### **SELECTION:**

- Identify the good solutions in a population
- Make multiple copies of the good solutions
- Eliminate bad solutions from the population so that multiple copies of good solutions can be placed in the population

### **CROSSOVER:**

- Randomly exchange genes of different parents
- Many possibilities: how many genes, parents, children ...

#### **MUTATION:**

- Randomly flip some bits of a gene string
- Used sparingly, but important to explore new designs

# **GA: Population operators**

#### **CROSSOVER:**



□ MUTATION:



### **GA Flow Chart**



Characterizing a GA Via an Example  $\Box \text{ maximize } F(x) = x^2$ s.t.  $x \in [0, 31]$ 

#### **Binary String Representation of an Integer Number**

Any integer number can be written in decimal system

x = 2,765 can be written as 2 2,765 = 2 × 10 + 7 × 10 + 6 × 10 + 5 × 10

□ It is also possible to code a number in **binary form** x = 39 = 122 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022 + 022

or simply x can be represented by a string of 6 bits as

x = (\00\1)

#### **Binary String Representation of an Integer Number**

Estimation on the length of the binary string for an integer number an integer variable  $x \in [a, b]$ Length of binary string  $> \log_2(b-a)$ **•** For example,  $x \in [0, 31]$  $|en>\log (31-0) = \log 31 = 4.96$  $31 = 12 + 1 \times 2 + 1 \times 2 + 1 \times 2 + 1 \times 2$ 31 = (1111)

#### **Binary String Representation of a Continuous Function**

□ For functional optimization

Maximize F(x) where  $x \in [a, b]$ 

Generate a bit string of length k, say 22.
For instance, this gives x' = (01011 ... 0110), hence

$$x' \in [0, 2^{22} - 1]$$

 $\Box \text{ Translate } x' \text{ into } x \in [a, b]$ 

$$\frac{b-a}{2^{22}-1}$$

□ precision or accuracy=  $x = a + x' \times \frac{b - a}{2^{22} - 1}$ 

#### **Binary String Representation of a Continuous Function**

Accuracy estimation

A continuous variable  $x \in [a, b]$ Length of binary string = m Accuracy =  $(b-a)/(2^m-1)$ 

Estimation on the length of the binary string

$$length > \log_2 \frac{b-a}{accuracy required}$$

□ For example,  $x \in [4.1, 6.8]$ , accuracy required=10<sup>-4</sup> len> log<sub>2</sub>[(6.8-4.1)/10<sup>-4</sup>]= log<sub>2</sub>17000 = 14.1

#### **Binary String Representation of a Continuous Function**

In the example of the continuous function optimization

maximize  $F(x) = x^2$  where  $x \in [0, 31]$ 

we use a binary coding, set accuracy=1, then the string length is



# x<sup>2</sup> example: selection 0x2+1x2+1x2+0x2 Rounded +1x2<sup>9</sup> to 100

| String  | Initial             | x Value | Fitness      | $Prob_i$ | Expected               | Actual |
|---------|---------------------|---------|--------------|----------|------------------------|--------|
| no.     | population          |         | $f(x) = x^2$ |          | $\operatorname{count}$ | count  |
| 1       | 01101               | 13      | 169          | 0.14     | 0.58                   | 1      |
| 2       | $1\ 1\ 0\ 0\ 0$     | 24      | 576          | 0.49     | 1.97 💳                 |        |
| 3       | $0\ 1\ 0\ 0\ 0$     | 8       | 64           | 0.06     | 0.22                   | 0      |
| 4       | $1 \ 0 \ 0 \ 1 \ 1$ | 19      | 361          | 0.31     | 1.23                   |        |
| Sum     |                     |         | 1170         | 1.00     | 4.00                   | 4      |
| Average |                     |         | 293          | 0.25     | 1.00                   | 1      |
| Max     |                     |         | 576          | 0.49     | 1.97                   | 2      |

# X<sup>2</sup> example: crossover

| String  | Mating          | Crossover              | Offspring           | x Value | Fitness      |
|---------|-----------------|------------------------|---------------------|---------|--------------|
| no.     | pool            | $\operatorname{point}$ | after xover         |         | $f(x) = x^2$ |
| 1       | $0\ 1\ 1\ 0\ 1$ | 4                      | $0\ 1\ 1\ 0\ 0$     | 12      | 144          |
| 2       | 11000           | 4                      | $1\ 1\ 0\ 0\ 1$     | 25      | 625          |
| 2       | 11000           | 2                      | $1\ 1\ 0\ 1\ 1$     | 27      | 729          |
| 4       | 10 011          | 2                      | $1 \ 0 \ 0 \ 0 \ 0$ | 16      | 256          |
| Sum     |                 |                        |                     |         | 1754         |
| Average |                 |                        |                     |         | 439          |
| Max     |                 |                        |                     |         | 729          |

# X<sup>2</sup> example: mutation

| String  | Offspring       | Offspring       | x Value | Fitness      |   |
|---------|-----------------|-----------------|---------|--------------|---|
| no.     | after nover     | after mutation  |         | $f(x) = x^2$ |   |
| 1       | 01100           | 11100           | 26      | 676          |   |
| 2       | $1\ 1\ 0\ 0\ 1$ | $1\ 1\ 0\ 0\ 1$ | 25      | 625          |   |
| 2       | 11011           | 11 <u>0</u> 11  | 27      | 729          |   |
| 4       | 10000           | 1 0 1 0 0       | 18      | 324          |   |
| Sum     |                 |                 |         | 2354         |   |
| Average |                 |                 |         | 588.5        |   |
| Max     |                 |                 |         | 729          |   |
|         |                 |                 | Land    | ling         |   |
|         |                 | : jeep          | ILDIM   | <b>T D</b>   |   |
|         |                 | ool             |         | <u> </u>     | 6 |
|         |                 |                 |         | λ 🦢 '        |   |

# Advantages and disadvantages

#### Advantages:

- □ Always an answer; answer gets better with time
- □ Good for "noisy" environments
- Inherently parallel; easily distributed

#### <u>lssues</u>:

- Performance
- Solution is only as good as the evaluation function
- Termination Criteria

# **GENETIC ALGORITHM IN MATLAB**

### SYNTAX

- x = ga(fitnessfcn,nvars)
- x = ga(fitnessfcn,nvars,A,b)
- x = ga(fitnessfcn,nvars,A,b,Aeq,beq)
- x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB)
- x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon)
- x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)



# MATLAB (cont.)



| Fitness function                           |
|--------------------------------------------|
| Number of design variables                 |
| A matrix for linear inequality constraints |
| B vector for linear inequality constraints |
| A matrix for linear equality constraints   |
| b vector for linear equality constraints   |
| Lower bound on x                           |
| Upper bound on x                           |
| Nonlinear constraint function              |
| Optional field to reset rand state         |
| Optional field to reset randn state        |
| 'ga'                                       |
| Options structure created using gaoptimset |
|                                            |

| nvars = 17;                                                               | % NUMBER OF VARIABLES                           |
|---------------------------------------------------------------------------|-------------------------------------------------|
| fitnessFunction = $@MY_FUNCTION;$                                         |                                                 |
| options = gaoptimset; % %Start with default options                       | %Modify some parameters                         |
| options = gaoptimset(options, 'PopInitRange', [lb;ub]); % options = gaopt | timset(options,'InitialPopulation' ,[InitPop]); |
| options = gaoptimset(options,'PopulationSize' ,100);                      | % POPULATION SIZE                               |
| options = gaoptimset(options,'Generations' ,100);                         | % NUMBER OF GENERATIONS                         |
| options = gaoptimset(options,'StallGenLimit' ,50);                        | % STALL GENERATION LIMIT                        |
| options = gaoptimset(options,'StallTimeLimit' ,20000000);                 | % STALL TIME LIMIT                              |
| options = gaoptimset(options,'TolFun' ,1e-9);                             | % FUNCTION TOLERANCE                            |
| options = gaoptimset(options,'TolCon' ,1e-9);                             | % CONSTRAINT TOLERANCE                          |
| options = gaoptimset(options,'CrossoverFcn' ,@crossovertwopoint);         | % CROSSOVER TYPE                                |
| options = gaoptimset(options,'CrossoverFraction' ,0.8);                   | % CROSSOVER FRACTION                            |
| options = gaoptimset(options,'SelectionFcn', { @selectiontournament 4 }   | ); % SELECTION TYPE                             |
| options = gaoptimset(options,'MutationFcn', { @mutationuniform 0.2564     | 1 }); % MUTATION TYPE                           |
| options = gaoptimset(options,'Display' ,'iter');                          | % DISPLAY OPTIONS                               |

[X,FVAL,REASON,OUTPUT,POPULATION,SCORES] = ga(fitnessFunction,nvars,options); %Run GA

**MATLAB** (cont.)

# MATLAB (cont.)



The genetic algorithm uses the following conditions to determine when to stop:

- Generations The algorithm stops when the number of generations reaches the value of Generations.
- Time limit The algorithm stops after running for an amount of time in seconds equal to Time limit.
- Fitness limit The algorithm stops when the value of the fitness function for the best point in the current population is less than or equal to Fitness limit.
- Stall generations The algorithm stops when the weighted average change in the fitness function value over Stall generations is less than Function tolerance.
- Stall time limit The algorithm stops if there is no improvement in the objective function during an interval of time in seconds equal to Stall time limit.
- Function Tolerance The algorithm runs until the weighted average change in the fitness function value over Stall generations is less than Function tolerance.
- Nonlinear constraint tolerance The Nonlinear constraint tolerance is not used as stopping criterion. It is used to determine the feasibility with respect to nonlinear constraints

# **Example: Rastrigin's Function**

- Find the minimum of Rastrigin's function, a function that is often used to test a genetic algorithm.
- □ For two independent variables, the Rastrigin's function is defined as



# Rastrigin's Function (cont.)

#### Demo folder in Canvas:

GA\_Demo\_Rastrigin **Main file:** Main\_file\_Rastrigin.m **Plot file:** plotfun.m

Activities: Change population size, maximum number of generations, optimization tolerance. Generate plots of solution convergence.

