

Videos of optimization

Genetic Algorithm. Learning to walk - OpenAl Gym https://www.youtube.com/watch?v=uwz8JzrEwWY

Genetic algorithms - evolution of a 2D car in Unity https://www.youtube.com/watch?v=FKbarpAlBkw

Optimization in nature

Source: P. Perona, IHW -ETH

Optimization in nature

Source: P. Perona, IHW –ETH

Optimization in rivers

Braided river, Denali National Park, Alaska

Source: http://www.nicki.com/photos/deadlyphoto/2457635320/

Optimization in rivers

A meandering river (The meandering Tigre River, Argentina)

Optimization of Flow networks

 Flow network optimization (Klarbring et al, 2003) Ground structure approach Minimize dissipation / pressure drop

WHAT IS OPTIMIZATION?

- "Making things better"
- "Generating more profit"
- "Determining the best"
- "Do more with less"

Why OPTIMIZATION?

Why OPTIMIZATION? (Cont.)

Is there one aircraft which is the fastest, most efficient, quietest, most inexpensive, most light weight ?

https://b-reddy.org/how-much-will-your-weight-matter-when-going-to-mars-spacex-style/

Why OPTIMIZATION? (Cont.)

HISTORICAL PERSPECTIVE

□ Lagrange (1750):

- □ Cauchy (1847):
- Dantzig (1947):
- **Kuhn, Tucker (1951):**
- Karmakar (1984):
- Bendsoe, Kikuchi (1988):

Constrained minimization

Steepest descent Simplex method (LP) **Optimality conditions** Interior point method (LP)

Topology optimization

OPTIMIZATION

LOCAL AND GLOBAL OPTIMA (Maximization)

https://kevinbinz.com/2015/08/05/an-introduction-to-natural-selection/

Optimization Problems

Constrained Optimization

https://designinformaticslab.github.io/productdesign_tutorial/2016/11/20/ansys.html

LINEAR PROGRAMMING

Maximization Problem

Example The Beaver Creek Pottery Company produces bowls and mugs. The two primary resources used are special pottery clay and skilled labour. The two products have the following resource requirements for production and profit per item produced (that is, the model parameters).

Resource available: 40 yours of labour per day and 120 pounds of clay per day. How many bowls and mugs should be produced to maximizing profits give these labour resources?

LP Model Formulation

A Maximization Example

- Product mix problem Beaver Creek Pottery Company
- How many bowls and mugs should be produced to maximize profits given labor and materials constraints?
- Product resource requirements and unit profit:

Product	Labor (hr/unit)	Clay (lb/unit)	Profit (\$/unit)
Bowl		4	40
Mug	2	3	50

Resource Requirements

A Maximization Example (Cont.)

Let xi be denoted as xi product to be produced, and

A Maximization Example (Cont.)

Step 1: define decision variables

Let

x₁=number of bowls to produce/day x₂= number of mugs to produce/day

Step 2: define the <u>objective function</u> maximize $Z = 7740X_1 + 50X_2$ where Z = profit per day

Step 3: state all the <u>resource constraints</u> $1 \times 12 \times 540$ hours of labor (resource constraint 1) $4 \times 13 \times 540$ pounds of clay (resource constraint 2)

Step 4: define non-negativity constraints

 $X_1 \ge 0, X_2 \ge 0$

Complete Linear Programming Model: Maximize $Z = 40X_1 + 50X_2$ Subject to: $1X_1 + 2X_2 \le 40$ $4X_1 + 3X_2 \le 120$ $X_1, X_2 > 0$

A FEASIBLE SOLUTION

• A **feasible solution** does not violate any of the constraints:

Example
$$x_1 = 5$$
 bowls $x_2 = 10$ mugs $Z = 40(5) + 50(10) = 700$

Labor constraint check:

$$1(5) + 2(10) = 25 < 40$$

within constraint

Clay constraint check:

$$4(5) + 3(10) = 70 < 120$$

within constraint

An INFEASIBLE SOLUTION

An infeasible solution violates at least one of the constraints:

Example $x_1 = 10$ bowls $x_2 = 20$ mugs $Z = 7/40^{\circ}$

Labor constraint check: l(10) + 2(20) = 50 < 40 (N0)Violates constraint

Graphical Solution of Maximization Labor Constraint Area

Maximize $Z = $40x_1 + $50x_2$ subject to:

$$1x_1 + 2x_2 \le 40 4x_1 + 3x_2 \le 120 x_1, x_2 \ge 0$$

Clay Constraint Area

Maximize $Z = $40x_1 + $50x_2$ subject to:

$$1x_{1} + 2x_{2} \le 40$$

$$4x_{1} + 3x_{2} \le 120$$

$$x_{1}, x_{2} \ge 0$$

Clay Constraint Area

Graph of Both Model Constraints

Maximize $Z = $40x_1 + $50x_2$ subject to:

$$1x_{1} + 2x_{2} \le 40$$

$$4x_{1} + 3x_{2} \le 120$$

$$x_{1}, x_{2} \ge 0$$

Graph of Both Model Constraints

Feasible Solution Area

Maximize $Z = $40x_1 + $50x_2$ subject to:

$$1x_{1} + 2x_{2} \le 40$$

$$4x_{1} + 3x_{2} \le 120$$

$$x_{1}, x_{2} \ge 0$$

Feasible Solution Area

Objective Function Solution = \$800

Maximize $Z = $40x_1 + $50x_2$ subject to:

$$1x_{1} + 2x_{2} \le 40$$

$$4x_{1} + 3x_{2} \le 120$$

$$x_{1}, x_{2} \ge 0$$

Objection Function Line for Z = \$800

Alternative Objective Function Solution Lines

Maximize $Z = $40x_1 + $50x_2$ subject to:

$$1x_1 + 2x_2 \le 40 4x_1 + 3x_2 \le 120 x_1, x_2 \ge 0$$

Alternative Objective Function Lines

Identification of Optimal Solution

Maximize $Z = $40x_1 + $50x_2$ subject to:

$$1x_{1} + 2x_{2} \le 40$$

$$4x_{1} + 3x_{2} \le 120$$

$$x_{1}, x_{2} \ge 0$$

Identification of Optimal Solution

Optimal Solution Coordinates

Maximize $Z = $40x_1 + $50x_2$ subject to:

$$1x_{1} + 2x_{2} \le 40$$

$$4x_{1} + 3x_{2} \le 120$$

$$x_{1}, x_{2} \ge 0$$

Optimal Solution Coordinates

Extreme (Corner) Point Solutions

Maximize $Z = $40x_1 + $50x_2$ subject to:

$$1x_1 + 2x_2 \le 40 4x_1 + 3x_2 \le 120 x_1, x_2 \ge 0$$

Solutions at All Corner Points

Solution with Excel (Show in class)

Product mix problem - Beaver Creek Pottery			
Number	1	2	
Profit	40	50	
Optimal x	24	8	
Benefit	1360.0		
Constraints:			
$1x1 + 2x2 \le 40$	0		
$4x1 + 3x2 \le 120$	0		
x1, x2 \ge 0			

ROBUST DESIGN

Robust design: a design whose performance is insensitive to variations.