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Videos of optimization

Genetic Algorithm. Learning to walk - OpenAl Gym
https: / /www.youtube.com /watch?2v=uwz8JzrEwWY

Genetic algorithms - evolution of a 2D car in Unity

https: / /www.youtube.com /watchev=FKbarpAIBkw




Optimization in nature

Source: P. Perona, IHW —ETH



Optimization in nature

Source: P. Perona, IHW —ETH



Optimization in rivers

Braided river, Denali National Park, Alaska

Source: http://www. sormipietosrdeadlyphoto/2457635320/















































































Optimization in rivers

A meandering river (The meandering Tigre River, Argentina)

Source: http://www.scienceclarified.com/landforms/Ocean-Basins-to-Volcanoes/Stream-and-River.html










































Optimization of Flow networks

® Flow network optimization (Klarbring et al, 2003)
Ground structure approach
Minimize dissipation / pressure drop
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WHAT IS OPTIMIZATION?

“Making things better”
“Generating more profit”
“Determining the best”

“Do more with less”
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Why OPTIMIZATION?
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Why OPTIMIZATION? (Cont.)

Is there one aircraft which is the fastest, most efficient, quietest, most
inexpensive, most light weight ¢

Maintenance group

Aircraft design
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Weight group

https: / /b-reddy.org /how-much-will-your-weight-matter-when-going-to-mars-spacex-style /














































Why OPTIMIZATION? (Cont.)

D

Structures: minimize

Marketing: maximize structural mass
passenger volume - Wing-root moment

- Cabin diameter
BPR
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. Propulsion: minimize
Aero: maximize L/D specific fuel consumption

- Aspect Ratio (SFC)-> Bypass Ratio



HISTORICAL PERSPECTIVE

0 Lagrange (1750):

0 Cauchy (1847):

0 Dantzig (1947):

0 Kuhn, Tucker (1951):

0 Karmakar (1984):

0 Bendsoe, Kikuchi (1988):

Constrained minimization
Steepest descent

Simplex method (LP)
Optimality conditions
Interior point method (LP)

Topology optimization



OPTIMIZATION

min J (x,p) — Objective Function

s.t. g(x,p)<0 Inequality Constraints

h(x,p)=0 Equality Constraints

Xi 1B < X; < X UB ! Bounds
where J = [Jl (x) - J. (x)_T

7 Design

X=[y ceox X, ' Variables




LOCAL AND GLOBAL OPTIMA
(Maximization)

Local optimum _ _— Globadl
- optimum





































Optimization Problems

Global

Multi-Objective

Constrained Un-Constrained

Gradient Based Non-Gradient







Constrained Optimization

Feasible Design Space Constraint
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https: //designinformaticslab.github.io /productdesign tutorial /2016/11/20/ansys.html




























LINEAR PROGRAMMING
Maximization Problem

0 Example The Beaver Creek Pottery Company produces bowls and mugs. The two
primary resources used are special pottery clay and skilled labour. The two
products have the following resource requirements for production and profit per
item produced (that is, the model parameters).

Clay
1201b. per day

Resource Requirements \
Product Labor Clay Profit o \Vva
(hr/unit)  (Ib/unit) ($/unit) L 3
1 4 40 y kgmm per day
Mug 2 3 50

-l O

0 Resouyrce avqiloble:ours of labour per day and 120 pounds of clay per day.

How many bowls and mugs should be produced to maximizing profits give these
labour resources?















LP Model Formulation
A Maximization Example

o Product mix problem - Beaver Creek Pottery Company

o How many bowls and mugs should be produced to maximize
profits given labor and materials constraints?

o Product resource requirements and unit profit:

Resource Requirements

Labor Clay Profit
(hr/unit)  (Ib/unit)  ($/unit)

Bowl O 4 40

Mug @ 3 50

Product










A Maximization Example (Cont.)

Let xi be denoted as xi product to be produced,

and
i=1, 2
or ,
Let (1 ' Decision
and be numbers of product 2 to, be produced variables
T m&ﬂJ
T
function
subject to

| X 42X, S 40 Yo of Labor
Constraints
4X, 431120 1o o €% —

Yo, %y S0







































































































































































































































































































































A Maximization Example (Cont.)

Step 1: define decision variables
Let x;=number of bowls to produce /day

X,= number of mugs to produce/day

Step 2: define the objective functi
maximize Z = # oxl 'l' SO x&

where Z= profit per day

Step 3: state all the resource constraints

|x| sz& S qo hours of labor (resource constraint 1)
ds of clay (resource constraint 2)
4| ¥3xp, SRP P

Step 4: define non-negativity constraints

Complete Linear Programming Model: Y
r

Muswize Z= 40X +S€
Snba‘c“' o

lx\+?,¥1__<. 40
9y 430 S 120













































































































































































































































































































































































































































A FEASIBLE SOLUTION

A feasible solution does not violate any of the constraints:

Example x; = 5 bowls v

x, = 10 mugs v~
z=4o(s) +so(lo) !7'00

Labor constraint check:
1(s) +2.(10) =25 < 4O

within conshraznd

Clay constraint check:

































































































































































































































































































































An INFEASIBLE SOLUTION

An infeasible solution violates at least one of the
constraints:

Example x, = 10 bowls
X, = 20 mugs

Z= #1400

Labor cc;n(s’r;;i)n’r;?zc{:?; -~ s0< q ®) (NQ)

violales womshraind











































































































































































Graphical Solution of Maximization

Labor Constraint Area

Maximize Z = $40x, + $50x,
subject to:
1x, + 2x,< 40
4x, + 3x,< 120
Xy, Xp 2 0

Labor Constraint Area

























































Clay Constraint Area

Maximize Z = $40x, + $50x,
subject to:
1x, + 2x,< 40
4x, + 3x,< 120
Xy, Xp 2 0

60

50

40

30

20

10

4x, + 3x, = 120

L‘l XI +3XZ: j2a

Clay Constraint Area


























































Graph of Both Model Constraints

Maximize Z = $40x, + $50x,
subject to:
1x, + 2x,< 40
4x, + 3x,< 120
Xy, Xp 2 0

60

50

40

30

20

10

Area common to
both constraints

10 20 30 40 50 60 x,

Graph of Both Model Constraints































Feasible Solution Area

Maximize Z = $40x, + $50x,
subject to:
1x, + 2x,< 40
4x, + 3x,< 120
Xy, Xp 2 0

50

40 K 4x, +3x, =120 @

X, +2x, =40
~. | |

10 20 30 40 50 60

X

Feasible Solution Area






















Objective Function Solution = $800

Maximize Z = $40x, + $50x,
subject to:
1x, + 2x,< 40
4x, + 3x,< 120
Xy, Xp 2 0

60

20 800 = 40x, + 50x,

10

Objection Function Line for Z = $800




Alternative Objective Function Solution Lines

X5
40 |-
Maximize Z = $40x, + $50x, 30 800 = 40x, + 50x,
subject to: 1,200 = 40x, + 50x,
1x, + 2x,< 40 20 1,600 = 40x; + 50x,
4x, + 3x,< 120
Xy, Xp 2 0 10
0] |

10 20 30 40  x,

Alternative Objective Function Lines



Identification of Optimal Solution

Maximize Z = $40x, + $50x,
subject to:
1x, + 2x,< 40
4x, + 3x,< 120
Xy, Xp 2 0

30

20

10

800 = 40x, + 50x,

Optimal
point

|
10 20 30 40  x,

Identification of Optimal Solution







Optimal Solution Coordinates

X2
40 |-
AN
N\ 4x, + 3x, = 120
30_ \\ 1 2

Maximize Z = $40x, + $50x,
subject to:
1x, + 2x,< 40
4x, + 3x,< 120
Xy, Xp 2 0

0 | | +
10 20 5, 30 40 X,

Optimal Solution Coordinates



Extreme (Corner) Point Solutions

Maximize Z = $40x, + $50x,
subject to:
1x, + 2x,< 40
4x, + 3x,< 120
Xy, Xp 2 0

30

20

10

x, = 0 bowls
X, = 20 mugs
Z = %$1,000

X, = 24 bowls
X, = 8 mugs
Z=$%$1,360

x, = 30 bowls

x, = 0 mugs
/Z: $1,200

Solutions at All Corner Points







Solution with Excel (Show in class)

Product mix problem - Beaver Creek Pottery

Number

Profit
Optimal x

Benefit

Constraints:
1x1 + 2x2 <40

4x1 + 3x2< 120
x1,x2=>0




ROBUST DESIGN

Example: We want to pick x to maximize F 3 ma.:j

"(’.)c?n" Jo (A-l'l"“’

optimize the value of F would

Simply doing a trade study tg
lead the designer to pick thi point

What if | pick this
point instead?

This means that
values of F as low

as this can be
expected!

RN

Robust design: a design whose performance is insensitive to variations.












































































































