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LECTURE: CLASSICAL OPTIMIZATION OVERVIEW



Optimization problem
 Design variables: variables with which the design problem is 

parameterized:

 Objective: quantity that is to be minimized (maximized)
Usually denoted by:
( “cost function”)

 Constraint: condition that has to be satisfied
 Inequality constraint:

 Equality constraint:







































































































































Solving optimization problems

 Optimization problems are typically solved using an iterative algorithm:

Model

Optimizer

Design
variables

Constants Responses

Derivatives of
responses
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Defining an optimization problem

1. Choose design variables and their bounds

2. Formulate objective

3. Formulate constraints (restrictions)

4. Choose suitable optimization algorithm






Example – Design of  a SODA Can
5  Design a SODA can to hold an specified 

amount of SODA and other requirements.

 The cans will be produced in billions, so it 
is desirable to minimize the cost of 
manufacturing. 

 Since the cost is related directly to the 
surface area of the sheet metal used, it is 
reasonable to minimize the sheet metal 
required to fabricate the can. 






Example – Design of  a SODA Can (Cont.)
6

Requirements: 
1. The diameter of the can should be no 

more than 8 cm and no less than 3.5 
cm.

2. The height of the can should be no 
more than18 cm and no less than 8 cm.

3. The can is required to hold at least 
400 ml of fluid.
















































































































































Example – Design of  a SODA Can (Cont.)
7

Design variables
D = diameter of the can (cm)
H = height of the can (cm)

Objective function

The design objective is to minimize the surface area



































































































Example – Design of  a SODA Can (Cont.)
8 The constraints must be formulated in terms of design variables. 

The first constraint is that the can must hold at least 400 ml of fluid.

The problem has two independent design variables and five explicit 
constraints. 

The other constraints on the size of the can are:























































































































































































Optimization Problem Characteristics 
Linearity

 Nonlinear objective functions can have multiple 
local optima:

f

x1

x2

x
x1

x2

f

● Challenge: finding the global optimum.



















































Unimodality

 Bracketing and sectioning methods work best for unimodal functions:
“An unimodal function consists of exactly one monotonically increasing and 
decreasing part”


























































































Convexity

 Convex set:

“A set S is convex if for every two points x1, x2 in S, the 
connecting line also lies completely inside S”



















































Lagrange Multipliers
12

 The method of Lagrange multipliers gives a set of 
necessary conditions to identify optimal points of 
equality constrained optimization problems.

 This is done by converting a constrained problem to an 
equivalent unconstrained problem with the help of 
certain unspecified parameters known as Lagrange 
multipliers.









Finding an Optimum using Lagrange Multipliers

13  The classical problem formulation
minimize f(x1, x2, ..., xn)
Subject to h1(x1, x2, ..., xn) = 0
can be converted to
minimize L(x, ) = f(x) -  h1(x)

where
L(x, ) is the Lagrangian function
 is an unspecified positive or negative constant called the 

Lagrangian Multiplier



Lagrange Multipliers Method
14

1. Original problem is rewritten as:     

minimize L(x, ) = f(x) -  h1(x)

2. Take derivatives of L(x, ) with respect to  xi and set them equal to zero.
• If there are n variables (i.e., x1, ..., xn) then you will get n equations with n + 1 

unknowns (i.e., n variables xi and one Lagrangian multiplier )

3. Express all xi in terms of Langrangian multiplier 
4. Plug x in terms of  in constraint h1(x) = 0 and solve .

5. Calculate x by using the just found value for .

 Note that the n derivatives and one constraint equation result in n+1 equations 
for n+1 variables!



Multiple constraints
15

 The Lagrangian multiplier method can be used for any number of equality 
constraints.

 Suppose we have a classical problem formulation with k equality constraints

minimize f(x1, x2, ..., xn)

Subject to h1(x1, x2, ..., xn) = 0
......

hk(x1, x2, ..., xn) = 0

This can be converted in

minimize L(x, ) = f(x) - T h(x)

Where T is the transpose vector of Lagrangian multpliers and has length k



EXAMPLE
16 A factory manufactures HONDA CITY and HONDA CIVIC cars. Determine the optimal 

number of HONDA CITY and HONDA CIVIC cars produced if the factory capacity is 
90 cars per day, and the cost of manufacturing is  C (x, y)= 6x2 + 12y2, where x is 
the number of HONDA CITY cars and y is the number of HONDA CIVIC cars 
produced. 



EXAMPLE (Cont.)
17

 VARIABLES
x = No. of HONDA CITY cars produced

y = No. of HONDA CIVIC cars produced

 COST of Manufacturing;  
C (x, y)= 6x2 + 12y2

 OBJECTIVE:
MINIMIZE COST

 CONSTRAINT: 90 cars per day
x + y = 90

 Original problem is rewritten as: 
minimize L(x, ) = f(x) -  h1(x)






















































































































































































































































EXAMPLE (Cont.)
18






















































































































































































































































































































































































































































Unconstrained optimization algorithms
 Single-variable methods

 0th order (involving only f )
 1st order (involving f and f ’ )
 2nd order (involving f,  f ’ and f ” )

 Multiple variable methods
 Gradient Descent Methods 

 Simplex Method

 Sequential Linear Programming

 Sequential Quadratic Programming

 Etc.




































































































































Single-variable methods
Bisection method

 Optimality conditions: minimum at stationary point

 Root finding of  f ’
● Similar to sectioning methods, but uses derivative:

f f ’

Interval is halved in each iteration. Note, this is 
better than any of the direct methods






Newton’s method
 Again, root finding of f ’
 Basis: Taylor approximation of f ’:
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Newton’s method (cont.)
 Best convergence of all methods:

● Unless it diverges

xk

f ’

xk+1

xk+2

f ’
xk

xk+1 xk+2



Summary single variable methods
 Bracketing +

 Dichotomous sectioning

 Fibonacci sectioning

 Golden ratio sectioning

 Quadratic interpolation

 Cubic interpolation

 Bisection method

 Secant method

 Newton method

● And many, many more!

0th order

1st order

2nd order



MATLAB DEMO: Single variable Minimization

Function: xcos(2x)

This demo will show a number of ways to minimize f(x) starting at multiple initial points. 
Demo Folder: Single_variable_Classical_Optimization (Download file from Canvas)
Demo File: Main_File_Single_Variable.m






Single variable Minimization (cont.)

(1) Change starting points
(2) Discuss and show sensitivity of solutions



Multiple variable methods
GRADIENT DESCENT METHODS

 Consider a function

 The gradient of J(x) at a point x0 is a vector of length n.

 Each element in the vector is evaluated at the point x0.
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GRADIENT DESCENT METHODS (cont.)
 Linear Programming

 Simplex Method

 Newton-Raphson Method

 Secant Method

 Bisection Method

 Line Search Methods

 Sequential Linear Programming

 Sequential Quadratic Programming

 Karush-Kuhn-Tucker Conditions (KKT)



SIMPLEX METHOD

 Solutions at the “vertices” of the design
space are called basic feasible
solutions.

 The Simplex algorithm moves from BFS to
BFS so that the objective always
improves.



SEQUENTIAL LINEAR PROGRAMMING

 Consider a general nonlinear problem linearized via first order Taylor series:

 This is an LP problem with the design variables contained in δx. The functions and
gradients evaluated at x0 are constant coefficients.



SEQUENTIAL LINEAR PROGRAMMING (Cont.)

1. Initial guess x0

2. Linearize about x0 using first order Taylor series

3. Solve resulting LP to find δx
4. Update x1=x0 + δx
5. Linearize about x1 and repeat:

xq=xq-1 + δx
Where δx is the solution of LP (model linearized about xq-1.



SEQUENTIAL QUADRATIC PROGRAMMING

 Create a quadratic approximation to the Lagrangian
 Create linear approximations to the constraints
 Solve the quadratic problem to find the search direction, S
 Perform the 1-D search
 Update the approximation to the Lagrangian



Newton method 
Expand f(x) by its Taylor series about the point xk

where the gradient is the vector

and the Hessian is the symmetric matrix































































Newton method (Cont.) 
For a minimum we require that         , and so

with solution . This gives the iterative update

 If f(x) is quadratic, then the solution is found in one step.

 The method has quadratic convergence (as in the 1D case).

 The solution  is guaranteed to be a downhill direction.

 Rather than jump straight to the minimum, it is better to perform a line minimization which ensures 
global convergence



Summary of MATLAB Multiple 
Variable Methods
• Fminsearch: Find minimum of unconstrained multivariable function 

using derivative-free method

• Fminunc: Nonlinear programming solver. Finds minimum of 
unconstrained multivariable function. Gradient and Hessian may 
be supplied. 

• Lsqnonlin: Solves nonlinear least-squares curve fitting problems 
of the form



MATLAB DEMO: Banana Function Minimization
Minimize Rosenbrock's "banana function"

 f(x) is called the banana function because 
of its curvature around the origin.

 It is notorious in optimization examples 
because of the slow convergence most 
methods exhibit when trying to solve this 
problem

 f(x) has a unique minimum at the point x 
= [1, 1] where f(x) = 0



Banana Function Minimization (cont.)
This demo will show a number of ways to minimize f(x) starting at 
multiple initial points. 
Demo Folder: BananaFunction_Classical_Optimization (Download file 
from Canvas)
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