Gradually varied flow dy << 1

Arturo S. Leon, PhD, PE, D.WRE

Gradually varied flow (GVF)

- Steady non-uniform flow in a prismatic channel with gradual changes in its water surface elevation
- For example,
 - backwater produced by a dam or weir across a river
 - drawdown produced at a sudden drop in a channel
- In GVF
 - velocity varies along the channel
 - bed slope, water surface
 slope, and energy slope will
 all differ from each other

Gradually varied flow (GVF)

- Two basic assumptions in GVF analysis
 - Pressure distribution at any section is assumed to be hydrostatic
 - Gradual changes in the surface curvature give rise to **negligible normal accelerations**
 - Resistance to flow at any depth is assumed to be given by the corresponding uniform flow equation, such as the Manning's formula
 - with the condition that the slope term to be used in the equation is the energy slope (S_e) and not the bed slope

Hence, S_e is often replaced by S_f $S_f = \frac{n^2 V^2}{R^{4/3}}$ (SI units)

Differential equation of GVF 2~1·0 $H = Z + Y + \lambda V^2$ dHVelocity $\alpha V^2/2g$ Slope of EGL, Se EGL $S_0 = \frac{Z_1 - Z_2}{\chi_2 - \chi_1}$ JX V $e = \underbrace{H_1 - H_2}_{S_f = \frac{\tau_o}{\gamma R} X_2 - X_1} = -\underbrace{dH}_{dX}$ dx no Bed Bed slope, So Datum $S_e \approx S_f$ 2

Where:

 $S_e = energy grade line slope$

 $S_f = friction slope$

 $S_o = bed slope$

Q2 $z+y+\underline{v}^{\prime}=z+y$ H= Δ 29A 9(X, 94 $\frac{\varphi^2}{29} \frac{d}{dx} \left(A^{-2}\right)$ dx Δ So So 4 d dx 9 dA≈ Tdy

A \approx 9A Ĵı In ,Z So \bigcirc 9A3 $S_o \frac{dy}{dx} = \frac{S_o - S_f}{1 - F^2}$ $\frac{dy}{dx}$ αQ gA³

Classification of Water Surface Profiles $\frac{dy}{dx} = \underbrace{S_0 - C_f}_{1 - F^2}$

- Process of identification of possible flow profiles as a prelude to quantitative computations
- As $y \rightarrow y_0$, $dy/dx \rightarrow 0$, i.e. the water surface approaches the normal depth line asymptotically.
- As $y \rightarrow y_c$, $dy/dx \rightarrow \infty$, i.e. the water surface meets the critical depth line vertically.
 - high curvatures at critical depth zones violate the assumption of gradually-varied nature of the flow
 - Hence, GVF computations have to end or commence a short distance away from the critical-depth location.

Classification of Water Surface Profiles

Туре	Symbol	Definition	Sketches	Examples			
STEEP (normal flow is supercritical)	S1	$h > h_c > h_n$	h _c	Hydraulic jump upstream with obstruction or reservoir controlling water level downstream.			
	S 2	$h_c > h > h_n$	h _n	Change to steeper slope.			
	83	$h_c > h_n > h$		Change to less steep slope.			
CRITICAL (undesirable; undular unsteady flow)	C1	$h > h_c = h_n$	$h_c = h_n - C_1$				
	C3	$h_c = h_n > h$	- C3				
MILD (normal flow is subcritical)	M1	$h > h_n > h_c$	h _n — M ₁	Obstruction or reservoir controlling water level downstream.			
	M2	$h_n > h > h_c$	h _c M ₂	Approach to free overfall.			
	M3	$h_n > h_c > h$	M ₃	Hydraulic jump downstream; change from steep to mild slope or downstream of sluice gate.			
HORIZONTAL (limiting mild slope; $h_n \rightarrow \infty$)	H2	$h > h_c$	H ₂	Approach to free overfall.			
	Н3	$h_c > h$	h _c H ₃	Hydraulic jump downstream; change from steep to horizontal or hownstream of sluice gate.			
ADVERSE (upslope)	A2	$h > h_c$	A ₂	<u> </u>			
	A3	$h_c > h$	hc A3	2 yn y			
Sou	rce : Hydro	aulic notes, D	avid Apsley	3			
			777				

slope

Examples of Gradually Varied Flows (Cont.)

Typical surface configurations for nonuniform depth flow with a critical slope (C) $g_n = g_c$

Typical surface configurations for nonuniform depth flow with a steep slope (S)

Typical surface configurations for nonuniform depth flow with a horizontal slope (H)

Typical surface configurations for nonuniform depth flow with adverse slope

Control Sections

- Section in which a fixed relationship exists between the discharge and depth of flow.
- Weirs, spillways sluice gates are some typical examples of structures which give rise to control sections.
- Critical depth is also a control point.
 - However, it is effective in a flow profile which changes from subcritical to supercritical flow.
- Control sections provide a key to the identification of proper profile shapes.
 - Subcritical flows have controls in the downstream end
 - Supercritical flows have controls in the upstream end
 - Hence, the direction of computation of subcritical profiles is upstream, and for supercritical, it is downstream.

Control Sections

Due to curvature of the streamlines, critical depth actually occurs at a distance of about 4.0 y_c upstream of the drop

Bold squares show the control sections Very long and is Normal depth is also an option not affected by boundaries

Sketch the water surface profile for the two-reach open-channel system below. A gate is located between the two reaches and the second reach ends with a sudden fall.

Sketch the water surface profile for the open-channel system below.

Sketch the water surface profile for the

Sketch the water surface profile for the open-channel system below.

Lake Discharge Problem

Difficult to know discharge, because it is **unclear whether slope is mild or steep**

trial-error approach

Lake Discharge Problem (Cont.)

Lake Discharge Problem (Cont.)

Water surface profile computation

 $S_e = S_e$

- $\frac{dy}{dx} = \frac{\$_0 \$_e}{1 F^2}$
- Two types of methods
 - 1. Explicit or direct step method: distance is determined for specified depth change
 - Mostly for prismatic channels where cross-section
 properties don't change with distance x.
 - 2. Implicit methods: depth is computed from distance changes
 - Unknown appears on both sides of the equation dy = f(y)dx
 - For natural channels for which cross-sectional properties are determined beforehand at particular locations.
- Assumptions
 - slope of the energy grade line, S_e, can be evaluated from Manning's or Chezy's equation using the local value of depth.

Standard Step Method Supercritical Dx 1-20 m

Subcritical

- This method is used in **most** practical **GVF** solvers.
- This method solves sequentially for y₁, y₂, y₃, ...
 starting at the control section (upstream or downstream end) with known water depth y₀.
- <u>Step size</u> (∆x) must be small enough so that changes in water depth aren't very large. Otherwise estimates of the friction slope and the velocity head are inaccurate
 - 1. For subcritical flows, calculations start downstream.
 - 2. For supercritical flows, calculations start upstream.

Ax 100-1000m

Standard Step Method (cont.)

Where:

 \bar{S}_e = mean slope of the energy grade line

 $\Delta x = \text{reach length}$

Mean slope of the energy grade line:

• Average conveyance:
$$\bar{S}_e = \frac{Q^2}{\left[\frac{K_1+K_2}{2}\right]^2}$$
 Default in HEC-2 and HEC-RAS
• Average EGL slope: $\bar{S}_e = \frac{s_{e_1}+s_{e_2}}{2}$ Most accurate for M1 profiles
• Geometric mean slope: $\bar{S}_e = \frac{Q^2}{K_1K_2}$ Default in WSPRO
• Harmonic mean slope: $\bar{S}_e = \frac{2s_{e_1}s_{e_2}}{s_{e_1}+s_{e_2}}$ Most accurate for M2 profiles

$$\left(\frac{Qn_j}{kA_jR_j^{2/3}}\right) \qquad \begin{array}{l} k = 1 \ (S) \\ k = 1.4 \\ n = Ma \end{array}$$

Where: $S_{ej} =$

k = 1 (SI units)
k = 1.49 (English units)
n = Manning's roughness

Mixed-flow regime:

- When there is occurrence of both supercritical and subcritical depths in a river reach
 - For example, a hydraulic jump in a reach
- Intersection of the momentum function for upstream supercritical and downstream subcritical profile determines the location of hydraulic jump.
- Several programs are available for modeling mixed flow regimes
 - Annel2 (Arturo Leon)
 - HEC-RAS (USACE)
 - WSPRO (USGS)

A rectangular concrete-lined channel (n = 0.015) has a constant bed slope of 0.0001 and a bottom width of 40 m. A control gate at the dam increased the depth at the dam to **12 m** when the discharge is 300 m³/s. Compute the water surface profile from the dam up to 200 km upstream of the dam. (See Excel spreadsheet in Canvas).

el spreadsheet $Q = 300 \text{ m}^3/3$ N = 0.015S = 0.0001b = 40 m

Normal depthManning's eq.
$$Q = E AR^{2/3} S_0^{1/2} k=1.0 (SI)$$
 $y = E AR^{2/3} S_0^{1/2} k=1.0 (SI)$ $y = 4.6443 m$ $y = 4.6443 m$ $F = 1$ $Q^2 T = 1 \sqrt{Yc} = 1.7899 m$ $Q^3 A^3 \sqrt{C} = 1.7899 m$ $y > Yn > Yc$ $Subcritical flow$ M1 profile

Solution with Excel Spreadsheet

Gradually Varied Flow for rectangular channels, Arturo S. Leon

Q (m3/s) =	300
So (Slope)	0.0001
n Manning =	0.015
b (m) =	40
Initial depth (m) :	12
delta X (m) =	10000
tolerance =	0.0000001

Write energy equation in flow direction

х	depth y	Z (m)	A (m^2)	P (m)	R (m)	V (m/s)	WSE (z + y)	H = z + y + v^2/(2g)	Sf	average Sf	F(y) = 0
0	12.000	0.000	480.000	64.000	7.500	0.625	12.000	12.020	5.98679E-06		0.000000
10000	11.064	1.000	442.565	62.128	7.123	0.678	12.064	12.088	7.54314E-06	6.76497E-06	0.000000
20000	10.146	2.000	405.831	60.292	6.731	0.739	12.146	12.174	9.6742E-06	8.60867E-06	0.000000
30000	9.252	3.000	370.068	58.503	6.326	0.811	12.252	12.285	1.26394E-05	1.11568E-05	0.000000
40000	8.392	4.000	335.670	56.783	5.911	0.894	12.392	12.433	1.68143E-05	1.47269E-05	0.000000
50000	7.580	5.000	303.206	55.160	5.497	0.989	12.580	12.630	2.27056E-05	1.976E-05	0.000000
60000	6.837	6.000	273.466	53.673	5.095	1.097	12.837	12.898	3.08857E-05	2.67956E-05	0.000000
70000	6.186	7.000	247.443	52.372	4.725	1.212	13.186	13.261	4.17165E-05	3.63011E-05	0.000000
80000	5.654	8.000	226.152	51.308	4.408	1.327	13.654	13.744	5.47855E-05	4.8251E-05	0.000001
90000	5.256	9.000	210.232	50.512	4.162	1.427	14.256	14.360	6.8436E-05	6.16107E-05	0.000002
100000	4.988	10.000	199.524	49.976	3.992	1.504	14.988	15.103	8.03141E-05	7.4375E-05	0.000003
110000	4.826	11.000	193.048	49.652	3.888	1.554	15.826	15.949	8.88782E-05	8.45962E-05	0.000002
120000	4.737	12.000	189.465	49.473	3.830	1.583	16.737	16.865	9.41499E-05	9.15141E-05	0.000001
130000	4.690	13.000	187.604	49.380	3.799	1.599	17.690	17.821	9.70553E-05	9.56026E-05	0.000000
140000	4.667	14.000	186.674	49.334	3.784	1.607	18.667	18.799	9.85532E-05	9.78042E-05	0.000000
150000	4.655	15.000	186.218	49.311	3.776	1.611	19.655	19.788	9.9298E-05	9.89256E-05	0.000000
160000	4.650	16.000	185.998	49.300	3.773	1.613	20.650	20.783	9.96615E-05	9.94798E-05	0.000000
170000	4.647	17.000	185.891	49.295	3.771	1.614	21.647	21.780	9.98373E-05	9.97494E-05	0.000000
180000	4.646	18.000	185.840	49.292	3.770	1.614	22.646	22.779	9.99219E-05	9.98796E-05	0.000000
190000	4.645	19.000	185.816	49.291	3.770	1.615	23.645	23.778	9.99625E-05	9.99422E-05	0.000000
200000	4.645	20.000	185.804	49.290	3.770	1.615	24.645	24.778	9.9982E-05	9.99723E-05	0.000000
										SUM	0.00001

Solution with Excel Spreadsheet (Cont.)

Show Annel2 demo

Download software from: https://web.eng.fiu.edu/arleon/Annel2.html

Spatially Varied Flow (Lateral Weir)

Lateral weirs

Source: https://www.youtube.com/watch?v=WayG2RgOwT8

Lateral inflow

• For the case of lateral inflow, such as a side channel spillway, the general unsteady momentum equation can be simplified (for perpendicular entry of lateral flow) to 0 = 9.2

Spillway

where S_f = friction slope and q_L = lateral inflow rate per unit of channel length. In the case of the side channel spillway, q_L is a constant, such that the channel discharge $Q(x) = q_L x$, where x = 0 at the upstream end of the channel.

- The equation above is solved numerically.
- Critical conditions can occur anywhere, with subcritical upstream and supercritical downstream of critical point.

Lateral inflow (cont.)

• Location of the critical section can be shown

to be given by (Henderson, 1966)

$$x_{C} = \frac{8q_{L}^{2}}{gB^{2}\left[S_{o} - \frac{gP}{C^{2}B}\right]^{3}}$$

in which $x_c =$ location of critical section; $q_L =$ lateral inflow per unit channel length; B =channel top width; $S_0 =$ bed slope; P = wetted perimeter; and C = Chezy resistance coefficient

Froude number is equal to unity at the critical section:

$$F^2 = \frac{Q^2(x)B_c}{gA_c^3} = 1 \quad \text{where } Q(x) = q_L x.$$

 If x_c > L, the channel side length, the control is at the downstream end of the channel with subcritical flow in the entire channel.

• Otherwise, the flow is subcritical upstream of x_c and supercritical downstream.

Lateral Outflow

- In the case of lateral outflow the direction of the lateral momentum flux is unknown
- Since the weir is a local disturbance, energy losses along the weir are relatively small
 - the energy approach is used more often
 - if we assume that dE/dx = 0,
 then for a rectangular channel
 of width b

$$\frac{dy}{dx} = \frac{Q(x)y\left(-\frac{dQ}{dx}\right)}{gb^2y^3 - Q^2}$$

$$\frac{dy}{dx} = \frac{\frac{q_L V}{gA}}{1 - F^2}$$

• Where $q_l = -dQ/dx$ can be obtained from the discharge equation for a sharpcrested weir:

$$q_L = -\frac{dQ}{dx} = C_1 \sqrt{2g} (y - P)^{3/2}$$
$$C_1 = \frac{2}{3}C_d$$

Expression for C_d given by Hager (1999) that accounts for the lateral outflow angle and approach velocity

$$C_d = 0.636 \sqrt{\frac{1 - P/E}{3 - 2y/E - P/E}}$$

Lateral Outflow (Cont.)

 Because we assume the energy grade line to be horizontal, the energy equation gives the discharge at any section as

 $Q = by\sqrt{2g(E-y)}$

where b = width of the channel and E = known constant specific energy.

• Integrating equation for dy/dx, gives the result obtained by De Marchi (Benefield, Judkins, and Parr 1984)

$$\frac{xC_1}{b} = \frac{2E - 3P}{E - P} \sqrt{\frac{E - y}{y - P}} - 3 \sin^{-1} \sqrt{\frac{E - y}{E - P}} + \text{constant}$$

 C_1 = weir discharge coefficient; P = height of weir crest above channel bottom;

 Hager (1987) showed that the outflow equation used by de Marchi is exact only for small Froude numbers.

 $y_{2} = 0.52m$, $Q_{2} = 0.27m^{3}/s$ $L = ?? Q_{L} = 0.21 \text{ m/s}$ $Q_1 = Q_2 + Q_L = 0.21 + 0.27$ $Q_1 = 0.48 \text{ m}^3/\text{s}$. $* E = ?? E = specific energy = constant = <math>y + \frac{y}{2q}$ $E= y + Q^2$ At section Z, we know Yz and Q $E = \frac{y_2}{2g(by_2)^2} = 0.52 + \frac{0.27^2}{2\times9.8(0.7\times0.52)^2}$

$$E = 0.548 \text{ m}$$

$$V_{2} = \frac{Q_{2}}{A_{2}} = \frac{0.24}{0.4 \times 0.52} = 0.74 \text{ m/s}.$$

$$F_{2} = \frac{V_{2}}{\sqrt{9.9}} = \frac{0.74}{\sqrt{9.8 \times 0.52}} = 0.33$$

$$\sqrt{9.9} = \frac{0.74}{\sqrt{9.9}} = \frac{0.33}{(\text{subcritical flaw})}$$

$$= \frac{1}{\sqrt{9.9}} \text{ How fo get it?}$$

$$E \text{ is constant} \quad E_{1} = E_{2}$$

$$y_{1} + \frac{0.48^{2}}{29(0.79)^{2}} = 0.548$$

$$29(0.79)^{2}$$

$$y_{1} = 0.392 \text{ m} \text{ [subcritical flaw]}$$

$$(\text{highest positive [flow]})$$

$$Cd = 0.636 \sqrt{\frac{1 - P/E}{3 - \frac{24}{E}} - \frac{P}{E}}$$

$$Average Cd \\
Cd = Cd(91) + Cd(92)$$
For 91: Cd = 0.636 $\sqrt{\frac{2}{1 - \frac{0.35}{0.548}}}$

$$Cd = 0.39 \qquad \frac{2 \times 0.392}{0.548} - \frac{0.35}{0.548}$$
For 92: Cd = 0.636 $\sqrt{\frac{1 - \frac{0.35}{0.548}}}$

$$Cd = 0.636 \sqrt{\frac{1 - \frac{0.35}{0.548}}}$$

$$Cd = 0.56 \qquad \frac{1 - \frac{0.35}{0.548}}{0.548} - \frac{0.35}{0.548}}$$

 $\overline{C_d} = \frac{0.39 + 0.56}{2} = 0.475.$ $L = \underbrace{0.7}_{3} \times M = 3.9 \text{ m}$ = $\frac{2}{3}(0.475)$ In