Definitions and Basic Principles

Arturo S. Leon, PhD, PE, D.WRE

Videos of Open Channel Flows

• Explosive Breach of Condit Dam:

https://www.youtube.com/watch?v=4LxMHmw3Z-U

• Road Collapse - Maine 2008 https://www.youtube.com/watch?v=NTbhyHNA1Vc

 Deep tunnel Geyser (Minnesota) (Mixed flow: open channel – pressurized flow):

http://www.youtube.com/watch?v=NDy3fBLfhYQ

Types of Open-channel

- Canal
- Chute
- Drop
- Culvert
- Natural channel

<u>Canal</u>: A canal is usually a long and mild-sloped channel built in the ground

Types of Open-channel (Cont.) Chute: A chute is a channel with a steep slope. Chute

Drop: A drop is a channel with a sudden change in elevation

<u>Culvert</u>: A culvert is a covered channel flowing usually partly full.

Culvert with "sediments"

Natural channel: A natural channel has irregular geometry. Examples include, rivers and creeks.

Classification of open-channel flows (Spatial criteria)

Figure 10.1 © John Wiley & Sons, Inc. All rights reserved.

Rapidly varied flow

Gradually varied flow

Dry Meadow Creek, Calif., USA.

Velocity Distribution

- In a macro-analysis, we are concerned with the major component velocity only, viz., the longitudinal component, v_x .
 - The other two components being small are ignored and v_x is designated as v.

https://www.sciencedirect.com/science/article/pii/S0169555X15002159

Velocity Distribution

• Observations in rivers and canals have shown that the average velocity at any vertical v_{av} , occurs at a level of $0.6y_0$ from the free surface, where $y_0 =$ depth of flow.

