## CWR 5235 Open Channel Hydraulics Homework 4, Spring 2021

**Instructor:** Arturo S. Leon, PhD, PE, D.WRE

- 1. (Taken from Apsley, **10 points**) Assuming a friction coefficient  $c_f$  = 0.005, estimate the velocities V at which:
  - (a) incipient motion;
  - (b) incipient suspended load;

occur in water for sand particles of density 2650 kg/m<sup>3</sup> and diameter 1 mm.

- 2. (Taken from Apsley, **30 points**) A long rectangular channel contracts smoothly from 5 m width to 3 m width. The bed is composed of gravel with a median grain size of 10 mm and a density of 2650 kg/m<sup>3</sup>. The friction coefficient  $c_f$  is 0.01 and the critical Shields parameter is 0.05. If the flow rate is 5 m<sup>3</sup>/s and the upstream depth is 1 m:
  - (a) show that the bed is stationary in the 5 m width and mobile in the 3 m width by assuming that the bed is initially flat;
  - (b) determine the depth of the scour hole that results just after the contraction.
- 3. (Taken from Apsley, **60 points**) A wide channel of slope 1:800 has a fine sandy bed with  $d_{50} = 0.5$  mm. The discharge is 5 m<sup>3</sup>/s per meter width. The specific gravity of the bed material is 2.65.
- (a) Estimate Manning's *n* using Strickler's formula.
- (b) Find the depth of flow; (assume normal flow).
- (c) Find the bed shear stress.
- (d) Show that the bed is mobile and calculate the bed-load flux (per meter width) using:
  - (i) Meyer-Peter and Müller; (ii) Nielsen models.
- (e) Find the particle settling velocity and show that suspended load will occur.
- (f) Estimate the suspended-load flux (per meter width), explaining your method and stating any assumptions made.