QUIZ 5 SOLUTION CE 412/512 Hydrology - Spring 2013

Quiz is closed book and closed notes. For all problems, write the equations used, show your calculations, include units, and box your answers.

 (40 pts) A levee has been built to protect a development located in the floodplains until a major flood control project can be completed. The levee was built to protect the development from a 10year flood. The flood control project will take 5 years to complete. What is the probability that the levee will be overtopped:

Equations:
$$P = \frac{1}{T}$$
 $Risk = 1 - \left(1 - \frac{1}{T}\right)^n$ $Reliability = 1 - Risk$
 $P(x) = C_x^n * P^x (1 - P)^{n-x} = \frac{n!}{(n-x)! * x!} * P^x (1 - P)^{n-x}$

a. At least once during the 5-year project?

$$Risk = 1 - \left(1 - \frac{1}{T}\right)^{n}$$
$$= 1 - \left(1 - \frac{1}{10}\right)^{5} = 1 - 0.5905 = 0.4095$$

n

b. Not at all during the project?

Reliability =
$$1 - Risk$$

= $1 - 0.4095 = 0.5905$

c. In the first year only?

$$= P(1-P)^{n-1}$$
$$= \frac{1}{T} \left(1 - \frac{1}{T} \right)^{n-1}$$
$$= (0.1) * (1 - 0.1)^4$$
$$= 0.0656$$

d. Exactly three times during the 5-year project?

$$P(x) = C_x^n * P^x (1-P)^{n-x} = \frac{n!}{(n-x)! * x!} * P^x (1-P)^{n-x}$$
$$= \frac{5!}{2! * 3!} * P^3 (1-P)^2 = \frac{5!}{2! * 3!} * \left(\frac{1}{10}\right)^3 \left(1-\frac{1}{10}\right)^2 = \mathbf{0.0081} = \mathbf{0.81\%}$$

2. (30 pts) Given the data below for the Sandy River, find the following. Assume the data are normally distributed.

	Data (cfs)
Mean	15,682
Standard Deviation	4,612
Station Skewness	1.127

Equations:
$$F(z) = 1 - \left(\frac{1}{T}\right)$$
 $Q = \mu + z\sigma$

See Normal Distribution Tables on the following page.

a. Peak flow of the 50-year flood.

$$F(z) = 1 - \left(\frac{1}{T}\right) = 1 - \left(\frac{1}{50}\right) = 0.98$$

From Table D-1 and by interpolation $\rightarrow z = 2.054$

 $Q = \mu + z\sigma = 15,682 + 2.054(4,612) = 25,155 cfs$

b. Probability that a flood will be less than or equal to 5,000 cfs.

$$Q = \mu + z\sigma$$

5,000 = 15,682 + z(4612)

$$z = -2.316$$

From Table D-1 \Rightarrow F(2.316) = 0.9897
F(-z) = 1 - F(z) = 1 - 0.9897 = 0.0103
Probability \leq 5,000 cfs = **0.0103** = **1.03**%

c. Return period of the 5,000 cfs flood.

$$T = \frac{1}{1 - F(z)}$$
$$T = \frac{1}{1 - 0.0102}$$
$$T = 1.01 years$$

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.5000	.5040	.5080	.5120	.5160	.5199	5239	5270	5310	5250
.1	.5398	.5438	.5478	.5517	.5557	.5596	5636	5675	5714	.3339
.2	.5793	.5832	.5871	.5910	.5948	.5987	6026	6064	.3714	.3/33
.3	.6179	.6217	.6255	.6293	.6331	6368	6406	6443	.0103	.0141
.4	.6554	.6591	.6628	.6664	.6700	.6736	6772	.0443	.0460	.031/
.5	.6915	.6950	.6985	.7019	.7054	7088	7123	7157	.0844	.08/9
.6	.7257	.7291	.7324	.7357	7389	7422	7454	7404	.7190	./ 224
.7	.7580	.7611	.7642	.7673	.7704	7734	7761	7701	./31/	./349
.8	.7881	.7910	.7939	.7967	7995	8023	8051	0070	./ 823	./852
.9	.8159	.8186	.8212	.8238	8264	8280	9215	0100.	.8106	.8133
1.0	.8413	.8438	.8461	.8485	8508	8531	9551	.8340	.8365	.8389
1.1	.8643	.8665	.8686	8708	8729	8740	0770	.03//	.8599	.8621
1.2	.8849	.8869	.8888	.8907	8925	8011	.0//0	.8/90	.8810	.8830
1.3	.9032	.9049	.9066	9082	9000	0115	.0902	.8980	.8997	.9015
1.4	.9192	.9207	.9222	9236	0251	0265	.9131	.914/	.9162	.9177
1.5	.9332	.9345	.9357	9370	0382	0301	.92/9	.9292	.9306	.9319
1.6	.9452	.9463	9474	9484	0/05	.7374	.9400	.9418	.9429	.9441
1.7	.9554	.9564	9.573	9582	0501	.9303	.9315	.9525	.9535	.9545
1.8	.9641	.9649	9656	9661	0671	.7377	.9008	.9616	.9625	.9633
1.9	.9713	9719	9726	0722	.70/1	.90/8	.9686	.9693	.9699	.9706
2.0	.9772	9778	9783	0799	.9/38	.9/44	.9/50	.9756	.9761	.9767
2.1	.9821	9826	0830	.7/00	.9/93	.9798	.9803	.9808	.9812	.9817
2.2	.9861	9864	9868	.7034	.9838	.9842	.9846	.9850	.9854	.9857
2.3	9893	9896	0808	.70/1	.98/3	.98/8	.9881	.9884	.9887	.9890
24	9918	0020	.7070	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.5	9938	0010	.7722	.9923	.992/	.9929	.9931	.9932	.9934	.9936
2.6	9953	0055	.7741	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.7	9965	.7755	.9930	.995/	.9959	.9960	.9961	.9962	.9963	.9964
2./	.7705	.9900	.990/	.9968	.9969	.9970	.9971	.9972	.9973	.9974

(continued)

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

*For more extensive tables, see National Bureau of Standards, *Tables of Normal Probability Functions,* Washington, D.C., U.S. Government Printing Office, 1953 (Applied Mathematics Series 23). Note that they show

-	F(z) z 0		
400	$F(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2}} dz$	$\frac{1}{2\pi} e^{-z^2/2} dz$	
F(z)	Z	F(z)	z
.0001	-3.719	.500	.000
.0005	-3.291	.550	.126
.001	-3.090	.600	.253
.002	-2.878	.650	.385
.005	-2.576	.700	.524
.010	-2.326	.750	.674
.020	-2.054	.800	.842
.025	-1.960	.850	1.036
.040	-1.751	.900	1.282
.050	-1.645	.950	1.645
.100	-1.282	.960	1.751
.150	-1.036	.975	1.960
.200	842	.980	2.054
.250	674	.990	2.326
.300	524	.995	2.576
.350	385	.998	2.878
.400	253	.999	3.090
.450	126	.9995	3.291
.500	.000	.9999	3.719

Table D-2. Percentiles of the Normal Distribution*

*For a normally distributed servicely a service to an a transmission of the service of the servi

3. *(20 pts)* Given the normal probability plot for Kentucky River data below, use the fitted line to determine:

a. What is the 10-yr flow?

94,000 cfs

b. What is the return period of a flow of 30,000 cfs? Interpolate between 1.01 and 1.11 \rightarrow 1.04 years

Or F(x) = 3.8% = 0.038
$$T = \frac{1}{1 - F(z)} = \frac{1}{0.962} = 1.04 \text{ years}$$

c. What is the probability (in percent) that the annual peak discharge will be between 40,000 cfs and 100,000 cfs?

4. (10 pts) Briefly describe (a couple of sentences) what caused the Missoula floods?