QUIZ 3 CE 412/512 Hydrology - Spring 2013

Quiz is closed book and closed notes. For all problems, write the equations used, show your calculations, include units, and box your answers.

1. (30 pts) Given the 1-hr unit (for 1 in. of net rainfall) hydrograph (UH) below, compute the storm hydrograph for a 3-hr precipitation with a constant net rainfall intensity of 0.5 in/hr.

SOLUTION:

Use hydrograph convolution (add and lag) to solve this. The precipitation is constant at 0.5 in/hr, so $P_n = [0.5, 0.5, 0.5]$ in. To compute the storm hydrograph for a 3-hr precipitation, the UH must be multiplied by each precipitation value (P_n) and lagged.

Time (hr)	UH (1 hr) (cfs)	P₁*UH	P₂*UH	P₃*UH	3-Hr Storm Hydrograph (sum)
0	0	0	0	0	0
1	20	10	0	0	10
2	35	17.5	10	0	27.5
3	15	7.5	17.5	10	35
4	0	0	7.5	17.5	25
5	0	0	0	7.5	7.5

2. (30 pts) Given the S-curve below (developed from a 1-hr unit hydrograph), find the 2-hr unit hydrograph.

SOLUTION:

To calculate the 2-hr UH, the S-curve is lagged by 2 hours and then subtracted from the original S-curve. Then this value is multiplied by D/D'.

D = 1 hr

D' = 2 hr

D/D' = 1 hr/ 2 hr = 1/2

Time (hr)	S-curve (cfs)	Lagged S-curve (lag 2 hrs)	Difference (S-curve - Lagged S-curve)	2-hr UH (Diff*1/2)
0	0	0	0	0
1	55	0	55	27.5
2	145	0	145	72.5
3	260	55	205	102.5
4	335	145	190	95
5	365	260	105	52.5
6	385	335	50	25
7	385	365	20	10
8	385	385	0	0

3. (40 pts) A reservoir has the following storage-indication curve (S = 1.5*Q, where Q is in cfs and S is in cfs-hr). Given $\Delta t = 1$ hr., and initial conditions of $Q_0 = 0$ and $S_0 = 0$, route the inflow hydrograph given below through the reservoir using the storage-indication method. (HINT: fill in the table below). Show sample calculations for partial credit.

Storage-Indication Equation:
$$(I_n + I_{n+1}) + \left(\frac{2S_n}{\Delta t} - Q_n\right) = \left(\frac{2S_{n+1}}{\Delta t} + Q_{n+1}\right)$$

SOLUTION:

Time	I _{n+1}	I _n + I _{n+1}	2S _n /Δt - Q _n	$2S_{n+1}/\Delta t + Q_{n+1}$	Q _{n+1}
(hr)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
0	0	0	0 (initial conditions)	0	0
1	10	10+0 = 10	0-2*0 = 0	10+0 = 10	2.5 (from S-I Curve)
2	20	10+20 = 30	10-2*2.5 = 5	30+ 5 = 35	8.75 (from curve)
3	30	20+30 = 50	35-2*8.75 = 17.5	50+17.5 = 67.5	16.875 (from curve)
4	20	30+20 = 50	67.5-2*16.875 = 33.75	50+33.75 = 83.75	20.938
5	10	30	41.875	71.875	17.969
6	0	10	35.938	45.938	11.484
7	0	0	22.969	22.969	5.742

Solution Procedure:

 $(I_n + I_{n+1})$ column is found by adding I_{n+1} with the value before it. For the first row, this is 10+0 = 10.

 $(2S_n/\Delta t - Q_n)$ for the first row is calculated from the initial conditions, $Q_0 = 0$ and $S_0 = 0$.

$$\frac{2*0\,cfs-hr}{1\,hr}-0\,cfs=0\,cfs$$

 $(2S_{n+1}/\Delta t + Q_{n+1})$ column is found by using the Storage-Indication equation (summing the previous columns). Row 1 example below.

$$\left(\frac{2S_{n+1}}{\Delta t} + Q_{n+1}\right) = (I_n + I_{n+1}) + \left(\frac{2S_n}{\Delta t} - Q_n\right) = 10 + 0 = 10 \ cfs$$

 (\mathbf{Q}_{n+1}) column is found from the Storage-Indication Curve. For row 1, $(2S_n/\Delta t + Q_n) = 10$ cfs, therefore Q (from the curve) = 2.5 cfs.

 $(2S_n/\Delta t - Q_n)$ for the remaining rows is calculated by twice subtracting the flow from the known value of $(2S_n/\Delta t + Q_n)$ at the time step n (previous row). Row 1 example below.

$$\frac{2S_n}{\Delta t} - Q_n = \left(\frac{2S_n}{\Delta t} + Q_n\right) - 2Q_n$$
$$= 10 \ cfs - 2 * 2.5 \ cfs$$
$$= 5 \ cfs$$