Should have been: $F = f_c t + \frac{(f_0 - f_c)}{k} (1 - e^{-kt})$

QUIZ 2 CE 412/512 Hydrology - Spring 2013

Quiz is closed book and closed notes. For all problems, write the equations used, show your calculations, include units, and box your answer.

- 1. (30 pts) The initial rate of infiltration of a watershed is estimated as 2.1 in/hr, the final capacity is 0.2 in/hr, and the time constant, k, is 0.4 hr⁻¹. Use Horton's Equation to find:
 - A. The infiltration capacity at t = 2 hr and t = 6 hr; and
 - B. The total volume of infiltration over the 6-hr period.

Horton's Equation: $f = f_c + (f_0 - f_c)e^{-kt}$

$$F = f_c t + \frac{(f_0 - f_c)}{-k} (e^{-kt})$$

SOLUTION

A.
$$f = f_c + (f_0 - f_c)e^{-kt}$$
 (15 pts)
 $f = 0.2\frac{in}{hr} + (2.1 - 0.2)\frac{in}{hr} * e^{-0.4t}$
 $f = 0.2\frac{in}{hr} + 1.9(e^{-0.4t})\frac{in}{hr}$
At $t = 2$ hr:
 $f = 0.2\frac{in}{hr} + 1.9(e^{-0.4*2})\frac{in}{hr} = 1.05\frac{in}{hr}$
At $t = 6$ hr:
 $f = 0.2\frac{in}{hr} + 1.9(e^{-0.4*6})\frac{in}{hr} = 0.37\frac{in}{hr}$
B. $Volume = \int f \, dt = \int 0.2 + 1.9(e^{-0.4*t})dt$ (15 pts)
 $Volume = [0.2t + (\frac{1.9}{-0.4})(e^{-0.4*t})]_0^6$
 $Volume = 5.52 in$ Wrong equation (no points deducted for this solution)

$Volume = \int f dt = \int 0.2 + 1.9(e^{-0.4*t}) dt$			
<mark>Volume =</mark>	$[0.2t + (\frac{1}{2})]$	$\left(1-e^{-0.4*t}\right)\left(1-e^{-0.4*t}\right)\left[_{0}^{6}\right]$	
		Correct equation/answer	

NOTE: The infiltration volume (F) is calculated as the integral of the infiltration (f) equation, and it must be solved from time t = 0 to 6 hr. Simply plugging in t=6 hr into the F equation is not complete.

Due to confusion with the provided equation for F, full credit was given for the following solution as well (even though it is incomplete):

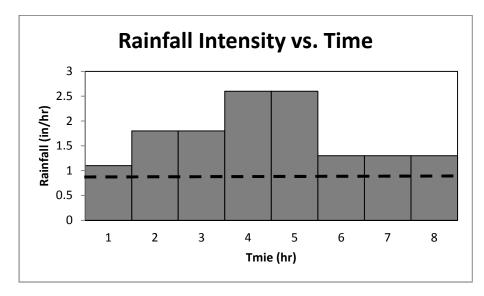
$$F = f_c t + \frac{(f_0 - f_c)}{-k} (e^{-kt}) = \left(0.2 \frac{in}{hr}\right) * (6 hr) + \frac{\frac{(2.1 - .02)in}{hr}}{-\frac{0.4}{hr}} \left(e^{-\frac{0.4}{hr} * 6 hr}\right) = 0.769 in$$

2. (20 pts) Use the rainfall data below to determine the ϕ index for the watershed if the runoff depth was 6.6 in.

Time (hr)	Rainfall (in/hr)
0-1	1.1
1-3	1.8
3-5	2.6
5-8	1.3

SOLUTION

Method 1:


Total rainfall = $1hr\left(\frac{1.1in}{hr}\right) + 2hr\left(1.8\frac{in}{hr}\right) + 2hr\left(2.6\frac{in}{hr}\right) + 3hr\left(\frac{1.3in}{hr}\right) = 13.8 in$ Runoff = 6.6 in Infiltration = 13.8 - 6.6 = 7.2 in $\phi * 8$ hr = 7.2 in

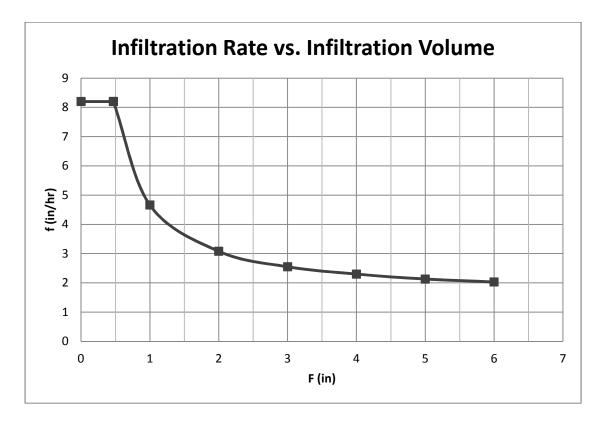
φ = 0.9 in/hr

Method 2: $1(1.1 - \phi) + 2(1.8 - \phi) + 2(2.6 - \phi) + 3(1.3 - \phi) = 6.6 \text{ in.}$ By trial and error: Try $\phi = 1$ $1(1.1 - 1) + 2(1.8 - 1) + 2(2.6 - 1) + 3(1.3 - 1) = 5.8 \text{ in.} \neq 6.6 \text{ in.}$ Try $\phi = 0.9$

1(1.1 - 0.9) + 2(1.8 - 0.9) + 2(2.6 - 0.9) + 3(1.3 - 0.9) = 6.6 in.

Therefore $\phi = 0.9$ in/hr

3. (50 pts) A soil has the following soil properties for use in the Green-Ampt equation:


K _s = 1.5 in/hr	$\theta_s=0.523$
ψ = -9.8 in	$\theta_i=\textbf{0.308}$
i = 8.2 in/hr	

Using the Green-Ampt infiltration method:

- A. Calculate the initial moisture deficit, M_d.
- B. Find the volume of water that will infiltrate before saturation is reached, F_s .
- C. Find the time to saturation.
- D. Plot the infiltration rate, *f*, vs. the infiltration volume, F, on the plot provided.

Green-Ampt Equations: $F_s = \frac{\psi M_d}{(1-i/K_s)}$ $f = K_s \left(1 - \frac{M_d \psi}{F}\right)$

You may use the back of this page to show your calculations and solutions.

SOLUTION

A.
$$M_d = \theta_s - \theta_i$$
 (10 pts)
 $M_d = 0.523 - 0.308 = 0.215$
B. $F_s = \frac{\psi M_d}{(1 - i/K_s)}$ (10 pts)
 $F_s = \frac{(-9.8 in)(0.215)}{(1 - \frac{8.2 \frac{in}{hr}}{1.5 \frac{in}{hr}})}$
 $F_s = 0.47 in$

C. Time to saturation
$$=\frac{F_s}{i} = \frac{0.47 \text{ in}}{8.2\frac{\text{in}}{hr}} = 0.057 \text{ hr}$$
 (10 pts)

D.
$$f = K_s \left(1 - \frac{M_d \psi}{F}\right)$$

 $f = 1.5 \frac{in}{hr} \left(1 - \frac{(0.215)(-9.8 in)}{F}\right)$
 $f = 1.5 \left(1 + \frac{2.107}{F}\right)$

F (in)	f (in/hr)
0	8.2
0.47	8.2
1	4.66
2	3.08
3	2.55
4	2.30
5	2.13
6	2.03

See final graph on previous page.

(20 pts)