QUIZ 1 CE 412/512 Hydrology - Spring 2013

1. (10 pts) The table below lists the cumulative rainfall data for a storm event in a 350 acre basin.

Time (min)	Accumulated Rainfall (in)
0	0
10	0.1
20	0.4
30	1.1
40	1.5
50	1.8
60	2.0

	Time Interval	Incremental Rainfall (in)	Rainfall Intensity (in/hr)
-	0-10	0.1	0.6
	10-20	0.3	1.8
	20-30	0.7	4.2
	30-40	0.4	2.4
	40-50	0.3	1.8
1	50-60	0.2	1.2

Which time period has the highest intensity rainfall (in inches/hr.)?

- a. 0-10 min
- b. 20-30 min
- c. 40-50 min
- d. 50-60 min
- 2. *(10 pts)* Urbanization changes the land use in a basin by creating more impervious areas, which can greatly affect stormwater runoff. Which graph below best shows the hydrograph change due to urbanization given the natural (before urbanization) hydrograph?

- b. Developed (B)
- c. Developed (C)

- 3. (10 pts) Overland flow is defined as:
 - a. All flows that contribute to runoff at the basin outlet
 - b. Flow in the most upstream sub-basin of a watershed
 - c. Sheet flow toward the nearest stream
 - d. Measured flow at a stream gage
- 4. (20 pts) Complete the delineation of the watershed area that contributes to the Oak Creek outlet (circled location)

5. (25 pts) Elk Lake has a surface area of 500 ac. Over a 10-day period, the average inflow was 27,648 in³/s and the average outflow was 20,736 in³/s. The total precipitation was measured as 1.8 inches and the total evaporation loss was 1.1 inches. Over the 10-day period, a +2 inch storage change (or increase in lake level) was recorded. Estimate the amount of seepage (in inches) over the 10-day period for the lake. (Note: 1 ac = 43,560 ft² = 6,272,640 in²).

Show your work/calculations and box your answer.

SOLUTION:

Storage Equation

 $\Delta S = Inflow - Outflow + Precip - Evap - Seepage$

Convert Inflow and Outflow to depth (in.)

$$Inflow = 27648 \frac{in^3}{s} \left(\frac{1}{500 \ ac}\right) \left(\frac{1 \ ac}{6,272,640 \ in^2}\right) \left(\frac{3600s}{hr}\right) \left(\frac{24 \ hr}{d}\right) (10 \ d) = 7.6 \ in$$

$$Outflow = 20736 \frac{in^3}{s} \left(\frac{1}{500 \ ac}\right) \left(\frac{1 \ ac}{6,272,640 \ in^2}\right) \left(\frac{3600s}{hr}\right) \left(\frac{24 \ hr}{d}\right) (10 \ d) = 5.7 \ in$$

Calculate Seepage with Storage Equation

 $\Delta S = Inflow - Outflow + Precip - Evap - Seepage$

$$2 in = 7.6 in - 5.7 in + 1.8 in - 1.2 in - S$$

S = 0.6 in

- 6. (25 pts) A small urban watershed has two rainfall gages as located in the Figure below. One grid square = 1 sq. mile. Total rainfall recorded at each gage during a storm event is listed in the table below. Compute the mean areal rainfall for this storm using:
 - a. arithmetic averaging, and
 - b. the Thiessen method

Please box your answers.

NOTE: 1 grid square = 1 square mile

Gage	Rainfall	
	(in)	
A	4.5	
В	3.7	

SOLUTION:

a. (5 pts) To calculate the arithmetic average only the gages that are present in the watershed boundary need to be taken into account which in this case is just gage B.

Rainfall = 3.7 in

b. (20 pts) Thiessen Method

Gage	Area (mi ²)	Area %	Rainfall (in.)	Weighted Rainfall (in)
А	8	15.7	4.5	0.706
В	43	84.3	3.7	3.120
SUM	51	100		3.825

Rainfall = 3.825 in