MID-TERM EXAM CE 412/512 Hydrology - Spring 2013

Exam is **open book** and **open notes**. For all problems, write the equations used, show your calculations, include units, and box your answers.

(25 pts) A watershed has an area of 150 square miles, a length to divide of 20 miles, and an average slope of 2%. The watershed is 70% good condition open space/lawn, 40% of which is soil group C and 60% is soil group A. The remaining 30% of the watershed is poor covered forest land with soil group C. Use the SCS Method to <u>develop</u> and <u>plot</u> a unit hydrograph for a 2-hr duration rainfall.

SOLUTION:

Find CNs from Table 2-1:

Land Use	Soil Group	% of Area	CN
Good condition open space/lawn	С	0.7*0.4 = 0.28	74
Good condition open space/lawn	A	0.7*0.6 = 0.42	39
Forest land with poor cover	С	0.3*1 = 0.3	77

Calculate Weighted CN: (0.28) * 74 + (0.42) * 39 + (0.3) * 77 = 60.2 = 60.2L = length to divide $L = 20 \ mi * \left(\frac{5280 \ ft}{mi}\right) = 105,600 \ ft$ y = average watershed slope (in percent) = 2% D = rainfall duration (hr) = 2 hr S (in inches) $S = \left(\frac{1000}{CN}\right) - 10 = \left(\frac{1000}{60.2}\right) - 10 = 6.61 \ in$ $t_p = lag time (hr)$ $t_p = \frac{L^{0.8}(S+1)^{0.7}}{1900 \sqrt{y}} = \frac{(105600)^{0.8} * (6.61+1)^{0.7}}{1900 \sqrt{2}} = 16.09 \ hr$ $T_R = time of rise (hr)$ $T_R = \frac{D}{2} + \ t_p = \left(\frac{2}{2}\right) + 16.09 \ hr = 17.09 \ hr$ A = watershed area (mi²) = 150 mi² $Q_P = \text{peak flow (cfs)}$ $Q_P = \frac{484*A}{\pi} = \frac{(484)*(150)}{1900} = 4248.1 \ cfs$

B = time to fall (hr)

$$Vol = (150 \ mi^2) \left(\frac{5280 \ ft}{mi}\right)^2 \left(\frac{ac}{43,560 \ ft^2}\right) * (1 \ in) = 96,000 \ ac - in$$

$$Vol = 96,000 \ ac - in \approx 96,000 \ cfs - hr$$

$$Vol = 96,000 \ cfs - hr = \frac{Q_P * T_R}{2} + \frac{Q_P * B}{2} = \frac{4248.1 * 17.09}{2} + \frac{4248.1 * B}{2}$$

$$B = 28.11 \ hr$$

2. (25 pts) A small watershed is made up of an upper area (sub-basin A) and a lower park area (subbasin B), as pictured below. The upper sub-basin (A) has recently been developed. The 0.5-hr unit hydrographs for each sub-basin are given in the table below and the travel time between point 1 and 2 is 1 hr. Determine the storm hydrograph at the outlet (point 2) for the rainfall intensity *i* and infiltration *f* given in the table below.

Time (hr)	0-0.5	0.5-1	1-1.5
<i>i</i> (cm/hr)	6	10	7
<i>f</i> _A (cm/hr)	1	0.5	0.5
<i>f_B</i> (cm/hr)	2	1	0.5

0.5-hr Unit Hydrographs	for sub-basins A and B
-------------------------	------------------------

Sub-basin A - developed				
Time (hr)	Q (m3/s)			
0	0			
0.5	5			
1	13			
1.5	23			
2	15			
2.5	10			
3	5			
3.5	0			

Sub-basin B - park					
Time (hr)	Q (m3/s)				
0	0				
0.5	12				
1	28				
1.5	20				
2	6				
2.5	0				
3					
3.5					

SOLUTION:

	Sub-basin A			9	Sub-basin l	В
	0-0.5 hr	0.5-1 hr	1-1.5 hr	0-0.5 hr	0.5-1 hr	1-1.5 hr
<i>i</i> (cm/hr)	6	10	7	6	10	7
f (cm/hr)	1	0.5	0.5	2	1	0.5
Net rainfall intensity (cm/hr) (= i -f)	5	9.5	6.5	4	9	6.5
Net rainfall depth, P (cm) (=Rain Intensity*0.5hr)	2.5	4.75	3.25	2	4.5	3.25

Calculate P_1 , P_2 , and P_3 for each sub-basin:

P_A = [2.5, 4.75, 3.25] cm P_B = [2, 4.5, 3.25] cm

Calculate hydrograph for each sub-basin:

	Sub-basin A					
Time (hr)	Q (m3/s)	$Q^*P_1 = Q^*2.5$	Q*P ₂ = Q*4.75	Q*P ₃ = Q*3.25	Q _A = SUM	
0	0	0			0	
0.5	5	12.5	0		12.5	
1	13	32.5	23.75	0	56.25	
1.5	23	57.5	61.75	16.25	135.5	
2	15	37.5	109.25	42.25	189	
2.5	10	25	71.25	74.75	171	
3	5	12.5	47.5	48.75	108.75	
3.5	0	0	23.75	32.5	56.25	
4			0	16.25	16.25	
4.5				0	0	

	Sub-basin B					
Time (hr)	Q (m3/s)	$Q^*P_1 = Q^*2 cm$	Q*P ₂ = Q*4.5 cm	Q*P ₃ = Q*3.25 cm	$Q_{B} = SUM$	
0	0	0			0	
0.5	12	24	0		24	
1	28	56	54	0	110	
1.5	20	40	126	39	205	
2	6	12	90	91	193	
2.5	0	0	27	65	92	
3			0	19.5	19.5	
3.5				0	0	

9	Sub-basin A and B					
Time (hr)	Q _B	Q _A	SUM			
0	0		0			
0.5	24		24			
1	110	0	110			
1.5	205	12.5	217.5			
2	193	56.25	249.25			
2.5	92	135.5	227.5			
3	19.5	189	208.5			
3.5	0	171	171			
4		108.75	108.75			
4.5		56.25	56.25			
5		16.25	16.25			
5.5		0	0			

Combine the hydrographs for A and B with the lag time of 1 hr:

3. (25 pts) The 10 minute unit hydrograph (UH) for a watershed is presented below. You have been asked to size a stormwater treatment facility to capture the runoff from the watershed at the outlet. If rain falls over the watershed with a constant intensity of 4 in/hr for a week, find the maximum flow discharge (cfs) that can be measured at the outlet of the watershed. Assume a constant infiltration rate of 1.5 in/hr and baseflow rate of 5 cfs.

Time (min)	0	10	20	30	40	50	60
Q (cfs)	0	5	11	17	12	6	0

SOLUTION:

Note that because the rainfall duration is very long (i.e., one week) and the problem asks for the maximum flow discharge only, it is not necessary to shift the developed S-curve and subtract from the original one. You still can do this but the results will be the same. The reason is that in the S-curve after about one hour (1 hour << 1 week), the flow discharge is constant and this maximum flow discharge in the original S-curve is not affected at all by the shifted S-curve.

t (min)	Q (cfs)	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5	Lag 6	SUM
0	0							0
10	5	0						5
20	11	5	0					16
30	17	11	5	0				33
40	12	17	11	5	0			45
50	6	12	17	11	5	0		51
60	0	6	12	17	11	5	0	51
70		0	6	12	17	11	5	51
80			0	6	12	17	11	46
90				0	6	12	17	35
100					0	6	12	18
110						0	6	6
120							0	0
130								0

10-min UH means that the precipitation is 1 in for the 10 minutes, therefore the intensity is

$$\frac{1 in}{\left(\frac{10}{60} hr\right)} = 6\frac{in}{hr}$$

$$Q_{max} = Q_{sum} * \left[\frac{(i-f)}{i_{UH}}\right] + Q_{baseflow}$$

$$Q_{max} = 51 \, cfs * \left[\frac{\left(4 \frac{in}{hr} - 1.5 \frac{in}{hr}\right)}{6 \frac{in}{hr}} \right] + 5 \, cfs = 26.25 \, cfs$$

4. (25 pts) A reservoir has a storage-discharge relationship of

S = kQ,

where k = 2.5 hr. The inflow hydrograph for a storm event is given in the table below. Determine the flow hydrograph at the outlet of the reservoir using $\Delta t = 1$ hr and assume that $Q_0 = 0$ and $\underline{S_0 = 9,000 \text{ ft}^3}$. *Provide the first 5 ordinates of the flow hydrograph.*

Time (hr)	Inflow (cfs)
0	0
1	15
2	30
3	40
4	35
5	20
6	5
7	0

SOLUTION:

Initial conditions:

$$\frac{2S_n}{\Delta t} - Q_n = \frac{2*(9000ft^3)}{3600\,s} - 0 = 5\,cfs$$

$$\frac{2S_{n+1}}{\Delta t} + Q_{n+1} = (I_n + I_{n+1}) + \left(\frac{2S_n}{\Delta t} - Q_n\right)$$

Find Q_{n+1} from Storage-Indication Curve or from storage-discharge relationship

$$\frac{2S_n}{\Delta t} - Q_n = \left(\frac{2S_n}{\Delta t} + Q_n\right) - 2Q_n$$

Time (hr)	I _{n+1} (cfs)	I _n + I _{n+1} (cfs)	2S_n/Δt - Q _n (cfs)	2S _{n+1} /Δt + Q _{n+1} (cfs)	Q _{n+1} (cfs)
0	0	0	5	5	0
1	15	15	5	20	3.333
2	30	45	13.333	58.333	9.722
3	40	70	38.889	108.889	18.148
4	35	75	72.593	147.593	24.599
5	20	55	98.395	153.395	25.566
6	5	25	102.263	127.263	21.211
7	0	5	84.842	89.842	14.974
8	0	0	59.895	59.895	9.982