FINAL EXAM CE 412/512 Hydrology - Spring 2013

Exam is **open book** and **open notes**. For all problems, write the equations used, show your calculations, include units, and box your answers.

- 1 Point of analysis A 1600 308 1700 9 stin 0
- 1. (10 pts) Delineate the watershed at the "Point of Analysis A"

SOLUTION:

2. *(30 pts)* Assume that the peak flows for a stream near Corvallis fit a Log Pearson 3 distribution. Assuming that the following statistics holds for this stream, find:

Description	Log ₁₀ Data (log cfs)		
Mean	$\mu = 4.2165$		
Standard Deviation	$\sigma = 0.2019$		
Skewness	$C_{s} = -1.3$		

a. Peak flow of the 100-year flood

From Table 3-4
$$\rightarrow$$
 K = 1.383
log(Q_{100}) = $\mu + K\sigma = 4.2165 + 1.383 * 0.2019 = 4.496$
 $Q_{100} = 10^{4.496} = 31,333 \, cfs$

b. The probability that the peak flow will fall between 25,000 and 30,000 cfs.

 $Log_{10}(Q) = \mu + K\sigma$ $Log_{10}(25,000) = 4.2165 + K(0.2019)$ $K_{25,000} = 0.8987$

$$Log_{10}(30,000) = 4.2165 + K(0.2019)$$

 $K_{30,000} = 1.2908$

Using Table 3-4, for $C_s = -1.3$, find 1-F for $K_{25,000}$ and $K_{30,000}$: $K_{25,000}$: 0.838 = 20 % $0.8987 = x \rightarrow x = 17.32 \%$ 1.064 = 10 % $K_{30,000}$: 1.240 = 4 % $1.2908 = x \rightarrow x = 2.79 \%$ 1.324 = 2 % $1 - F_{25,000} = 0.1732 \rightarrow F_{25,000} = 0.827$ $1 - F_{30,000} = 0.0279 \rightarrow F_{30,000} = 0.9721$ $P_{25,000-30,000} = F_{30,000} - F_{25,000} = 0.972 - 0.827 = 0.145 = 14.5\%$

c. Return period of a flow of 30,000 cfs

$$K = \frac{Log_{10}(Q) - \mu}{\sigma} = \frac{Log_{10}(30,000) - 4.2165}{0.2019} = 1.2908$$

Interpolate from Table 3-4: $1 - F = 2.79\% = 0.0279$
 $F = 1 - 0.0279 = 0.9721$
 $T = \frac{1}{1 - F} = \frac{1}{0.0279} = 35.8 \text{ years}$

d. The probability that the peak flow will exceed 30,000 cfs at least twice in the next 5 years.

$$P = 1 - P_0 - P_1$$

$$P = 0.0279 \rightarrow 1 - P = 0.9721$$

$$P = 1 - (1 - P)^5 - \frac{5!}{4! * 1!} P^1 (1 - P)^4$$

$$P = 1 - 0.8681 - \frac{5 * 4!}{4!} (0.0279) * (0.9721)^4 = 1 - 0.8681 - 0.1246$$

$$P = 0.0073 = 0.73\%$$

3. *(10 pts)* A basin in Corvallis has been developed into a 1-acre park (C=0.3) and 2 acres of residential use (C=0.9). The times of concentration (T_c) for the park and residential area are 25 and 10 minutes, respectively. Using the Intensity-Duration-Frequency (IDF) curve provided on the following page, what is the 25-year design peak flow at the basin outlet?

SOLUTION:

Find the weighted runoff coefficient:

	Area (ac)	Area Ratio	с	Ratio * C
Park	1	0.333	0.3	0.1
Residential	2	0.667	0.9	0.6
Total	3			0.7

Use the rational method to find the discharge for each section separately and combined:

	Area (ac)	Tc (min)	<i>i</i> (in/hr)	С	Q = CiA (cfs)
Park	1	25	1.35	0.3	0.405
Residential	2	10	2.05	0.9	3.690
Both	3	25	1.35	0.7	2.835

The peak flow from the residential area is the greatest.

Q = 3.69 cfs

- 4. *(20 pts)* A pedestrian path runs along a stream channel. The stream can carry the peak flow of the 25-year storm event of the watershed, which is 400 cfs. Find the following:
 - a. The probability that the path will flood next year.

$$= P = \frac{1}{T} = \frac{1}{25}$$
$$P = 0.04$$

b. The probability that the path will flood at least once in the next 10 years.

$$Risk = 1 - \left(1 - \frac{1}{T}\right)^{n}$$
$$= 1 - \left(1 - \frac{1}{25}\right)^{10} = 1 - 0.6648 = 0.3352$$

c. The probability that the path will **not** flood at all in the next 10 years.

$$Reliability = 1 - Risk = 1 - 0.3352 = 0.6648$$

d. The probability that the path will flood exactly 4 times in the next 10 years.

$$P(x) = C_x^n * P^x (1-P)^{n-x} = \frac{n!}{(n-x)! * x!} * P^x (1-P)^{n-x}$$
$$= \frac{10!}{6! * 4!} * P^4 (1-P)^6 = \frac{10!}{6! * 4!} * \left(\frac{1}{25}\right)^4 \left(1 - \frac{1}{25}\right)^6 = \mathbf{0.000421} = \mathbf{0.042\%}$$

e. The probability that the path will flood at least three times in the next 200 years

$$P = 1 - P_0 - P_1 - P_2$$

= 1 - (1 - P)²⁰⁰ - C₁²⁰⁰P¹(1 - P)¹⁹⁹ - C₂²⁰⁰P²(1 - P)¹⁹⁸
= 1 - (1 - 0.04)²⁰⁰ - C₁²⁰⁰(0.04)(1 - 0.04)¹⁹⁹ - C₂²⁰⁰(0.04)²(1 - 0.04)¹⁹⁸
= 1 - (0.96)²⁰⁰ - \frac{200!}{199! * 1!}(0.04)^1(0.96)^{199} - \frac{200!}{198! * 2!}(0.04)^2(0.96)^{198}
= **0.9875 = 98.75** %

5. (30 pts) Given the 2-hr unit hydrograph (UH) below, develop the 3-hr UH.

Time (hr)	Q (cfs)
0	0
1	15
2	35
3	50
4	40
5	10
6	0

SOLUTION:

Time (hr)	Q (cfs)	2 hr lagged UH			S-curve
0	0				0
1	15				15
2	35	0			35
3	50	15			65
4	40	35	0		75
5	10	50	15		75
6	0	40	35	0	75
7		10	50	15	75

Time (hr)	S-curve	S-curve Lagged 3 hrs	Difference	3-hr UH (Diff*D/D')
0	0		0	0
1	15		15	10
2	35		35	23.33
3	65	0	65	43.33
4	75	15	60	40
5	75	35	40	26.67
6	75	65	10	6.67
7	75	75	0	0