Florida International University CWR 3201 - Fluid Mechanics, Fall 2018

Fluid Flow in Pipes (Single-pipe)

Arturo S. Leon, Ph.D., P.E., D.WRE

Learning Objectives

- (1) Identify and understand various characteristics of flows in pipes
- (2) Discuss the main properties of laminar and turbulent flows
- (3) Calculate losses, flow rates and pipe diameters in a single piping system

Video of pipe flows

3D Petrochemical Refinery

https://www.youtube.com/watch?v=tkmozP-97M4

General Characteristics of pipe flow

Laminar or Turbulent Flow?

(http://www.youtube.com/watch?v=WG-YCpAGgQQ)

Laminar or Turbulent Flow?

Fully Developed Flow

Example: P7.21. A laboratory experiment is designed to create a laminar flow in a 2-mm diameter tube shown in Fig.P7.21. Water flows from a reservoir through the tube. If 18 liters is collected in 2 hours can the entrance length be neglected?

Fig. P7.21

Turbulent Flow in a Pipe

7.6.2 Velocity Profile

Fig. 7.10 (a) A smooth wall and (b) a rough wall.

e or ε = Average wall roughness height

 δ_v = Viscous wall layer thickness

- **Hydraulically smooth:** The viscous wall thickness (δ_v) is large enough that it submerges the wall roughness elements \rightarrow Negligible effect on the flow (almost as if the wall is smooth).
- If the viscous wall layer is very thin → Roughness elements protrude off the layer → The wall is rough.
- The relative roughness e/D (or e/D) and Reynolds number can be used to find if a pipe is smooth/rough.

Energy considerations

Major losses

Unnumbered 8 p429a Photograph courtesy of CorrView

Major Losses in Developed Pipe Flow

- Most calculated quantity in pipe flow is the head loss.
 - Allows pressure change to be found \rightarrow pump selection.

- Head loss from wall shear in a developed flow is related to the friction factor(f).
- $f = f(\rho, \mu, V, D, \varepsilon)$
- Darcy-Weisbach equation

Table 8.1

Equivalent Roughness for New Pipes [Adapted from Moody (Ref. 7) and Colebrook (Ref. 8)]

	Equivalent Roughness, ε				
Pipe	Feet	Millimeters			
Riveted steel	0.003-0.03	0.9-9.0			
Concrete	0.001-0.01	0.3-3.0			
Wood stave	0.0006-0.003	0.18-0.9			
Cast iron	0.00085	0.26			
Galvanized iron	0.0005	0.15			
Commercial steel					
or wrought iron	0.00015	0.045			
Drawn tubing	0.000005	0.0015			
Plastic, glass	0.0 (smooth)	0.0 (smooth)			

The Moody diagram

Fig. 7.13 Moody diagram. (From L. F. Moody, Trans. ASME, Vol. 66, 1944. Reproduced with permission of ASME.) (Note: If e/D = 0.01 and Re = 10^4 , the dot locates f = 0.043.)

 $\frac{e}{D}$ Relative roughness

Major Losses in Developed Pipe Flow

- Moody diagram is a plot of experimental data relating friction factor to the Reynolds number.
- For a given wall roughness → There is a large enough Re to get a constant friction factor → Completely turbulent regime.
- For smaller relative roughness → As Re decreases, friction factor increases → Transition zone → Friction factor becomes like that of a smooth pipe.
- For Re < 2000→ The critical zone couples the turbulent flow to the laminar flow and may represent an oscillatory flow that alternately exists between turbulent and laminar flow.
- Assume new pipes → As a pipe gets older, corrosion occurs changing both the roughness and the pipe diameter.

Friction factor for the entire nonlaminar range (smooth + completely turbulent regime)

Empirical equations for Re > 4000

Colebrook formula

Haaland formula (To avoid trial-and-error

Major Losses in Noncircular Conduits

- Can approximate for conduits with noncircular cross sections:
 - Using hydraulic radius R

A: Cross-sectional area P: Wetted perimeter → Perimeter where the fluid is in contact with the solid boundary

- E.g., for a circular pipe:
 - Hydraulic radius R =
- The head-loss then becomes:

Example: P.7.112. Water at 20°C is transported through a 2 cm x 4 cm smooth conduit and experiences a pressure drop of 80 Pa over a 2-m horizontal length. What is the flow rate?

Minor losses

Swing check valve video

http://www.youtube.com/watch?v=Krp6pOnaNsk

Minor losses (Cont.)

- Sometimes *minor losses* (from fittings that cause additional losses) can exceed frictional losses.
- Expressed in terms of a loss coefficient K.

• K can be determined experimentally.

(b)

Minor Losses in Pipe Flow

A loss coefficient can be expressed as an equivalent length L_e of pipe:

 For long segments of pipe, minor losses can usually be neglected.

Entrance flow conditions and loss coefficient

Exit flow conditions and loss coefficient

Well rounded (d)

Loss coefficients for Pipe Components

Table 8.2

Loss Coefficients for Pipe Components $\left(h_L = K_L \frac{V^2}{2g}\right)$ (Data from Refs. 5, 10, 27)

Component	K _L		
a. Elbows			
Regular 90°, flanged	0.3		
Regular 90°, threaded	1.5		
Long radius 90°, flanged	0.2	V	90° elbow
Long radius 90°, threaded	0.7		
Long radius 45°, flanged	0.2		
Regular 45°, threaded	0.4	-	
b. 180° return bends		v	45° elbow
180° return bend, flanged	0.2		
180° return bend, threaded	1.5		
a Toos			
Line flow flanged	0.2		1900 pature
Line flow, threaded	0.9		bend
Branch flow flanged	1.0	V	
Branch flow, threaded	2.0		
d. Union, threaded	0.08	V	Tee
*e. Valves		\rightarrow	
Globe, fully open	10	and proceeded in the proceeding	
Angle, fully open	2		
Gate, fully open	0.15	V	Tee
Gate, $\frac{1}{4}$ closed	0.26		100
Gate, $\frac{1}{2}$ closed	2.1	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE	
Gate, $\frac{3}{4}$ closed	17		
Swing check, forward flow	2	V	
Swing check, backward flow	00	\rightarrow \rightarrow	Union
Ball valve, fully open	0.05	Statement of the statem	
Ball valve, $\frac{1}{3}$ closed	5.5		
Ball valve, $\frac{2}{3}$ closed	210		

Threaded elbow

Flanged elbow

*See Fig. 8.32 for typical valve geometry.

Table 8.2

© John Wiley & Sons, Inc. All rights reserved.

Example:

Water flows from the container shown in Fig. 8.59. Determine the loss coefficient needed in the valve if the water is to "bubble up" 3 in above the outlet pipe. The entrance is slightly rounded.

Example: P.7.129. What is the maximum flow rate through the pipe shown in Figure P.7.129 if the elevation difference of the reservoir surfaces is 80 m.

Fig. P7.129

Example:

A 40-m long, 12-mm diameter pipe with a friction factor of 0.020 is used to siphon 30° C water from a tank as shown in Fig. 8.50. Determine the maximum value of *h* allowed if there is to be no cavitation within the hose. Neglect minor losses.

Florida International University CWR 3201 - Fluid Mechanics, Fall 2018

Pipe Networks

Bronchiole

Arturo S. Leon, Ph.D., P.E., D.WRE

Pipe networks

Fig. 11.1 Pipe systems: (a) single pipe; (b) distribution network; (c) tree network.

Frictional Losses in Pipe Elements

Frictional losses in piping are commonly evaluated using the **Darcy–Weisbach** or **Hazen–Williams** equation. The Darcy–Weisbach formulation provides a more accurate estimation.

Where:

 h_L = head loss over length *L* of pipe

R = Resistance coefficient (This is not hydraulic radius)

Q = discharge in the pipe

 β = exponent

Darcy-Weisbach relation (β = 2)

Swamee-Jain

Haaland

Table 8.1

Equivalent Roughness for New Pipes [Adapted from Moody (Ref. 7) and Colebrook (Ref. 8)]

Equivalent Roughness, *E*

	Equivalent Roughness, e					
Pipe	Feet	Millimeters				
Riveted steel	0.003-0.03	0.9–9.0				
Concrete	0.001 - 0.01	0.3-3.0				
Wood stave	0.0006-0.003	0.18-0.9				
Cast iron	0.00085	0.26				
Galvanized iron	0.0005	0.15				
Commercial steel						
or wrought iron	0.00015	0.045				
Drawn tubing	0.000005	0.0015				
Plastic, glass	0.0 (smooth)	0.0 (smooth)				

Hazen-Williams equation (For Water)

Where:

C = Hazen–Williams roughness coefficient, m = 4.87, $\beta = 1.85$

Table 11.1Nominal Values of theHazen–Williams Coefficient C

Type of pipe	С
Extremely smooth; asbestos-cement	140
New or smooth cast iron; concrete	130
Wood stave; newly welded steel	120
Average cast iron; newly riveted steel; vitrified clay	110
Cast iron or riveted steel after some years of use	95–100
Deteriorated old pipes	60-80

11.2 Losses in Piping Systems

Fig. 11.2 Comparison of several approximate formulas with the original Colebrook formula.

Simple Pipe Systems

Series Piping System

Parallel Piping System

Branch Piping

Fig. 11.5 Branch piping systems: (a) gravity flow; (b) pump-driven flow.

Method for Analyzing pipe Networks Method used in *Flows in Pipe Networks*

Example (Proposed problems):

The three water filled-tanks shown in Fig P.8.114 are connected by pipes as indicated. If minor losses are neglected, determine the flow rate in each pipe. Use **Flows in Pipe Networks** (<u>http://web.eng.fiu.edu/arleon/Pipe_Network.html</u>)</u> or **EPANET** (<u>https://www.epa.gov/water-research/epanet</u>)

Example 11.7. For the piping system (**commercial steel**) shown below, determine the flow distribution and piezometric heads at the junctions. Use the **EPANET Model** (<u>https://www.epa.gov/water-research/epanet</u>).

Important Considerations in EPANET

EPANET defaults to gallons per minute and other Customary US units. To change to SI units do the following: Project > Analysis Options... > Flow Units > LPS (or LPM or other SI units for flow) (This also changes units for pipe lengths and head to meters and pipe diameters to mm.)

- Length: The actual length of the pipe in feet (meters)
- **Diameter:** The pipe diameter in inches (mm)
- Roughness: The roughness coefficient of the pipe. It is unitless for Hazen-Williams or Chezy-Manning roughness and has units of millifeet (mm) for Darcy-Weisbach roughness.
- Loss Coefficient: Unitless minor loss coefficient associated with bends, fittings, etc. Assumed 0 if left blank.
- Initial Status: Determines whether the pipe is initially open, closed, or contains a check valve. If a check valve is specified then the flow direction in the pipe will always be from the Start node to the End node

Results:

III Network Table - Links at 24:00 Hrs

Link ID	Length m	Diameter mm	Roughness mm	Flow LPS	Velocity m/s	Friction Factor	Status
Pipe C1	66	250	0.045	341.34	6.95	0.014	Open
Pipe C2	330	250	0.045	143.08	2.91	0.015	Open
Pipe C3	330	250	0.045	66.54	1.36	0.016	Open
Pipe C8	260	250	0.045	48.26	0.98	0.017	Open
Pipe C7	200	250	0.045	198.26	4.04	0.015	Open
Pipe C6	260	250	0.045	76.54	1.56	0.016	Open
Pipe C5	55	250	0.045	25.19	0.51	0.018	Open
Pipe C4	130	250	0.045	-41.34	0.84	0.017	Open

III Network Table - Nodes at 0:00 Hrs

Node ID	Elevation m	Base Demand LPS	Demand LPS	Head m	Pressure m
June N2	0	0	0.00	40.79	40.79
June N3	0	0	0.00	32.29	32.29
June N4	0	0	0.00	30.32	30.32
June N6	0	150	150.00	31.11	31.11
June N5	0	150	150.00	30.26	30.26
Resvr N1	50	#N/A	-341.34	50.00	0.00
Resvr N7	30	#N/A	41.34	30.00	0.00

Results (Cont.):

ጅ Profile Plot - Head at 0:00 Hrs

