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2.1 INTRODUCTION

Fluid Statics: Study of fluids with no relative motion between fluid
particles.

* No shearing stress (no velocity gradients)

* Only normal stress exists (pressure)

A\
\/
e

a

(a) (b) (c)

Fig. 2.1 Examples included in fluid statics: (a) liquids at rest; (b) linear acceleration;
(c) angular rotation.









MOTIVATION

Source: , Youtube

( )


https://www.youtube.com/channel/UCi99tuZyEMu4mt8Eakdy-7g
https://www.youtube.com/watch?v=jqpl4ME6rRY

MOTIVATION (CONT.)



https://www.youtube.com/watch?v=Zip9ft1PgV0
https://www.youtube.com/watch?v=Zip9ft1PgV0
https://www.youtube.com/watch?v=Zip9ft1PgV0

MOTIVATION (CONT.)

Youtube ( )


https://www.youtube.com/watch?v=9jLQx3kD7p8
https://www.youtube.com/watch?v=9jLQx3kD7p8
https://www.youtube.com/watch?v=9jLQx3kD7p8

2.2 PRESSURE AT A POINT

Pressure is an infinitesimal normal compressive force divided by the infinitesimal
area over which it acts.

From Newton’s Second Law (for x- and
y-directions):

ZTx=Mdx

p Ay

&)

L , Y Z
Fig. 2.2 Pressure at a point in a fluid. N (P)( _P - bx ax
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2.2 PRESSURE AT A POINTZ'

/pAs « As the element goes to a point (Ax, Ay -0)
= = lpgAv " 9/ PX "? — O
TR\.AX \ ’Pj —-"(P _; O

Fig. 2.2 Pressure at a point in a fluid.
Y = ?j =7
am =

Pressure In a fluid Is constant at a point.

Pressure Is a scalar function.

It acts equally in all directions at a point for both static and dynamic
fluids.


















































































































2.3 DERIVATION OF GENERAL FORM OF PRESSURE VARIATION

Newton’s Second Law in “x”, “y”
and “Z’-directions:

(p+1 P dz )d x dy

dy U (,_1& d )d“l‘?""a?bl?g ?—@f S‘}S_
pg dx dy dz /2}1 "E' l ( R 2

Fig. 2.3° Forces acting on an infinitesimal element that is at rest in the xyz-reference ®
frame. The reference frame may be accelerating or rotating.
































































































































































































































































































































































































































































































































































Fig. 2.3 Forces acting on an infinitesimal element that is at rest in the xyz-reference
frame. The reference frame may be accelerating or rotating.
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2.4 FLUIDS AT REST
* The pressure differential (from the
previous slide) Is:

\,
12— —PAsdX - 30._945- (Qz-\—‘j) A
At rest, there Is no acceleration (a = O). >'/ |
EZN
cl")? = - 3)3 dz

Free surface

- 2y

p =0 gage

Z=-

A‘P - —X 4 Z Fig. 2.4 Pressure below a free surface.

No pressure variation in the x- and y-directions (horizontal plane). Pressure varies
In the z-direction only (dp Is negative if dz is positive).

Pressure decreases as we move up and increases as we move down.
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2.4 FLUIDS AT REST
2.4.1 Pressure in Liquids at Rest

P =h :

Free surface

JPs "B AL A \ A S E N
Liquid ?

o {:7{?"& ¥

>

« At a distance h below a free surface, the pressure is: <

p=0ath=0.

" Fig. 2.4 Pressure below a free surface.










































































































































2.4.3 Manometers
Manometers are instruments that
use columns of liquid to measure
pressures.

12

(a) displays a U-tube manometer
used to measure relatively small
pressures

(b): Large pressures can be
measured using a liquid with large

12

(c): Very small pressures can be
measured as small pressure
changes in p,, leading to a
relatively large deflection H.

2.4 FLUIDS AT REST

"
0@

Pipe

(a)

Fig. 2.7 Manometers: (a) U-tube manometer (small pressures); (b) U-tube manometer
(large pressures); (¢) micromanometer (very small pressure changes).












Example: P.2.40. Find the gage pressure in the water pipe shown in Fig. P2.40

P +1000¥q-31x0:054 1:59¢1000¥431x0-0F  ° P=7
= P, +63c1000x3-31 x 04

A\5°l ” @ ‘ * Tsc®‘

Water I 7 em gl_()cm
?”z )36 x1000%9-3) PP A “

0:0S +
e @ D . 531.59

=5t (P=se ra T
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Example: P.2.41. For the inclined manometer containing mercury, shown in Fig.
P2.41, determine the pressure in pipe B if the pressure in pipe A is 10 kPa. Pipe A
has water flowing through it, and oil is flowing in pipe B.

TB'= 7 ?A =] 0, 000 ?G\ Oil

)0,000fa+ 100079-31x0-0F
Ty 1 043 100093120+ 1 +

Eﬁzﬂlls Yo A T

PB: 2]l K?o\

— —
5 % Fig. P2.41
















































































































































































































































































































































































































































































































































































































Example: P.2.42. The pressure in pipe B in Problem P2.41 is reduced slightly.
Determine the new pressure in pipe B if the pressure in pipe A remains the same and
the reading along the inclined leg of the manometer is 11 cm (Tip: See problems
2.41 and 2.42)

M . O+9em+ A= L an o

qo o @ (S =0.87)
/z/ ; ‘Z]? Snd = 7/y :

=

10 cm

16 Fig. P2.41





































































































































































































































































































































































































































































































































































































































































RO RPN +9Qem + Ay — A4 s
snyO
A= 0333 em

L\n—— 02-‘63 ™

10,900 4 1500¢a-3 1434 0-333) ?BT 0-3}#1000x9-3 [

\

@,: S19. ) ?&7 0% U0 — 0:383sinyg)

100
=02 )(?q +13-6x1000%9- 31y ) \nUD’
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2.4 FLUIDS ATREST S\n QA — h/‘j

h po 35‘“0& o 2
{a

2.4.4 Forces on Plane Areas

Free surface p =0

The total force of a liquid on
a plane surface is:

[Fﬂ SA?AAW

After knowing the equation
for pressure (P = yh):

F::SAK hdA

(side view)

F
Yh dA
Inclined plane area

3 A
? ¢
\\\ / y _\'
\\ / /dA /
. Centroid ‘
W eC =

\

\ 4

18F-= SA §9Snal SA

Inclined plane area
(view from above)

Fig. 2.8 Force on an inclined

















































































































































































































































































































































2.4.4 Forces on Plane Areas  Freesurface p =0 -R/..\-:.: Q\r\dA R
~— o I )
= ( ShIA=F WA | W=,

A

?C Inclined plane area

F=¥osmA |

g

-~

3\
\ N\
=

h: Vertical distance from the Inclined plane area
free surface to the centroid of \Hlewriten: d0ore)
the area Fig. 2.8 Force on an inclined plane area.

pc: Pressure at the centroid
The centroid or geometric center of a plane figure is the arithmetic
19 mean ("average") position of all the points in the shape.







































































































































































































































= \xP A/W igg A
" /(P § xjﬁ\A\

The center of pressure Is

the point where the resultant I\ T 3 g
force acts: | L 9

Inclined plane area .
_SlfJ_m_tof morlnents of all (side view) _dy )
Infinitesimal pressure 7 __dA |
B CentrOId /
equals the moment of the st \ (
resultant force. | \ /
— ot j and d ,-\

forces on an area, A,
Inclined plane area
a A (view from above)
P= -
20 S Y o A Fig. 2.8 Force on an inclined plane area.


















































































































































































































































































































































































































































































Free surface p =0 1) ,
X

Inclined plane area
(side view)

\
i

N \\\ Centroid
' ‘\\ oC y
c.p. \\ (/ /
y. Measured parallel to the plane ; \\/
area to the free surface ?

Inglined plane area \Q .
The moments of area can be found iy fagallel —axts
Fig. 2.8 Force on aj_inclined plane ar

Fown Sfex Hozovem

using: "I SQjZA/.\
X = 1 :"“ A_Z

centroids and moments

21














































































































































































































































































































































































22

,GY\ZQ SUT,FOl ¢

57 !

<

9P’J35A
jgdA

- 03)563 _

4 pA=bdy

Fig. 2.9 Force on a plane area with top edge in a free surface.
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Example: P.2.56. Determine the force P needed to hold the 4-m wide gate in the
position shown in Fig. P2.56.

M:m Q\N\S - P(S) - Water

! Fig. P2.56

























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Example: P.2.62. At what height H will the rigid gate, hinged at a central point as
shown in Fig. P2.62, open if h is:

a) 0.6 m?b)0.8m?c)1.0m? l

a) W=0'6m Water A

Jp= H_‘”-%_m 5-—\-\-\0'9 H

9p=9+L p-treb —n_
AY 3= b""xs IZ 1.2m

NS 3 I Hinge

Fig. P2.62

\_ ___%‘
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2.4.5 Forces on Curved Surfaces

surface.

Direct integration cannot find the force due to the hydrostatic pressure on a curved

« Afree-body diagram containing the curved surface and surrounding liquid needs to

be identified.

27

Water
F,
| Center
Y Y \L * Y \ ‘
Stop
Fy
. F
Hinge I Jr F
\ \ H
Curved T
k surface Fy

(a) (b) (c)

Fig. 2.11 Forces acting on a curved surface: (a) curved surface; (b) free-body diagram of water and gate;
(c) free-body diagram of gate only.


https://www.youtube.com/watch?v=zV-JO-l7Mx4

Example: P.2.72. Find the force P required to hold the gate in the position shown in
Fig. P.2.72 . The gate is 5-m wide.

FH = \6_\:\-0 A = 1000x9-3 | ¥

}+OY IO
FH=93+] kn = 93,100 N

§ O 2¥'P=?,oo03r 9N,
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Example: P.2.77. Find the force P if the parabolic gate shown in Fig. P.2.77 Is

a) 2-mwideand H=2m
b) 4-ft wide and H = 8 ft.

= @ \Hinge
FE YA Ty

A=2x2=4 e Fig. P2.77
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Fu=asloxixy= 39290 N - volume

¥'Fv—— \“QAS\/\‘\’ 0_(_ wq-‘Qy =¥ - = \65 AN

31

Fv= %lojzx(q,qax _ C,X,OS 8% X

= ?8]0 %.x:s, — 2,6 ]60”
3 /0


























































































































































































































































































































































































































































































































































































¥ \(P'FV = )X.dF,

b "__‘

> |
Yo Fy— (% ¥ (8% )X = AP 4
= fxx(el) onqx = \6/;
Y?—_: 9310 = 0.-335m

26[e0

() $=13,93SN

@: 3:99 KN )

32 4

















































































































































































































































































































































































































































2.4 FLUIDS AT REST
2.4.6 Buoyancy (Archimedes’ principle)

« Buoyancy force on an object equals the weight of displaced liquid.

= l& l T FE‘H_JW

ey B
.

T
A T T T T T A T
F, F
: ” V is the volume of
(a) (b) © displaced fluid and W is

Fig. 2.12 Forces on a submerged body: (a) submerged body; (b) free-body diagram; (c) free body the Welght of the

showing the buoyant force Fj. floating object.
33



https://www.youtube.com/watch?v=2RefIvqaYg8














































2.4 FLUIDS AT REST

2.4.6 Buoyancy (Archimedes’ principle) ‘
QQMx yotA - IR

—

Fig. 2.13 Forces on a floating object.

* The buoyant force acts through the centroid of the displaced liquid volume.
* An application of this would be a hydrometer that is used to measure the specific
gravity of liquids.

., ° FoOrpure water, thisis 1.0































































































































































































































































2.4 FLUIDS AT REST Q ? Ah
2.4.6 Buoyancy (Hydrometers) - (l'o T
Water E g T
/_\ y €
Heavy
substance
TFB - -
sy re () (b)

Fig.2.13 Forces on a floating object.

Y (V-1
A Sx

Fig. 2.14 Hydrometer: (a) in water; (b) in an unknown liquid.

Where Ah is the displaced height
A: Cross-sectional area of the stem

_ W S A4 C vﬂ» 0
RS o

For a given hydrometer, ¥ and A






















































































































































































































Example: P.2.78. The 3-m wide barge shown in Fig. P.2.78 weighs 20 kN empty. It is
proposed that it carry a 250-kN load. Predict the draft in:

a) Fresh water
b) Salt water (S =1.03)

A) S=)-0
W=3m
WNeight =230 KN D ?B'Draft::@

g = 220,000 |

Fa= \64(»:""4*‘5?’“%" 230 k)

SeSwr9 ¥ JJJ?\cho( Fig. P2.78
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}-Q ¥ 1000%¥9- 3

| x M= 230,000

1>/2

1>/2
Y (+é>+b D@%m / j

@1?) (3)

2
\

L 23 Sz—-- K SD(\?—“'1>>
D=1-332w

37 b\ D:\~33GM





















































































































































































































































































































































































































































































































2.4.7 Stability

W

Rotation /
oG
a @

FB
(a)

Fig. 2.15 Stability of a submerged body: (a) unstable; (b) neutral; (c) stable.
e

G above C /’gs\lg

38

(b)

2.4 FLUIDS AT REST

Rotation Y/ I—\
G
G

4

1%
()

ot

In (a) the center of gravity of the
body is above the centroid C
(center of buoyancy), so a small
angular rotation leads to a moment
that increases rotation: unstable.

(b) shows neutral stability as the
center of gravity and the centroid
coincide.

In (c), as the center of gravity is
below the centroid, a small angular
rotation provides a restoring
moment and the body is stable.











































































2.4 FLUIDS AT REST
Metacentric height

=

—

»>e o¢
a Q

SRR

&

(a) (b)
Fig. 2.16 Stability of a floating body: (a) equilibrium position; (b) rotated position.

- The metacentric height GM is the distance from G to the point of intersection of the
buoyant force before rotation with the buoyant force after rotation.

- If GM is positive: Stable

39 « |f GM is negative: Unstable


https://www.youtube.com/watch?v=QUgXf2Rj2YQ












































































GC

’_@jf;cr\ -&C
GM= X —

-_—N
Length of bady =/ ; Q‘\d; ‘* l
| Waterline area = X
L 3
Waterline E . I—: -E—\_A_L J
Added wedge EO) Z O
9
\ . M-
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Length of body = / S = 9 d A

Waterline area = A ‘Lﬂ“ d\:__ i
R
IJ= A yand












































































































































































































































































































































































































































































































































































































































































Example: P.2.94. The barge shown in Fig. P2.94 is loaded such that the center of
gravity of the barge and the load is at the waterline. Is the barge stable?

Gn: _lg .-GC G U_\q.‘mraj“Q
VA | & g
GHA =/_K§<_§3.\‘5
V233 )0 3mv C L |
- 8 m A
Fﬂ =023+t m ! 1’%“)’
Fig. P2.94 "

7oL p=









































































































































































































































































































































































































Example: P.2.92. For the object shown in Fig. P2.92, calculate S, for neutral stability

when submerged.

8 cm
G“:C % S=0.5 lcm

9. A= Z &j‘,AJ A=32om® — o
= a =G
N (?,?_} = |6xY 4+ 8% 854 8x 95 AT ;C' 8 om
Y= 6-5SM J
N = 5.?W9v /_y__:_‘?Q_Fz\-ﬂmq

3 W= Z W] 8’/"9' ZW,j' 2 cm

W Fig. P2.92

43








































































































































































































































































































































































































































































+A ~ S L
5= Sax S04+ 235 o535 )
sA%(;e)»r%@)J, 0535 (%)

G'SOQSA—}Qﬁl—; 64Sa+ 134

- ™

k SA:'::\".
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Linearly Accelerating Gontainers

Source: , Youtube ( )


https://www.youtube.com/channel/UCi99tuZyEMu4mt8Eakdy-7g
https://www.youtube.com/watch?v=jqpl4ME6rRY

DEMONSTRATION

acceleration (m/s?) b 0

density of fluid (kg/m?) J 1000

Pressure within an
AGGEIerating container Depth of point=29m  Gage pressure = 28. kPa

Drag the ball to see the pressure change.

Source: Jon Barbieri and Peter Hassinger, "Pressure within an Accelerating Container”

46


http://demonstrations.wolfram.com/PressureWithinAnAcceleratingContainer/

2.5 LINEARLY ACCELERATING CONTAINERS

The derived pressure differential
equation is:

o IR CTT)
Sax Ax S)G:j Y 6,7—)

Fig. 2.18 Linearly accelerating tank.

When the fluid is linearly accelerating with horizontal (a,) and vertical (a,)

con'Lpouaem;w

dF—- ~ 80y aX - 5’(@2—[—9}61

47































































































































































































































2.5 LINEARLY ACCELERATING CONTAINERS

— Z — -
’\va\ol — & 12 _ (%z-zl).___ -dz AS pOiﬂt@in on a
L

constant-pressure line:

6 — 7X<1xc\>< -/3/ (0z49)dz

ST _ _ OX
3L O:zﬁg

| ]L ,\-cm ol = /L Clx
a = angle that the constant-pressure line e
makes with the horizontal. | — y N q
land=3X_ | A&
on

48 _—


























































































































































































































































































































































































































































Example: P.2.97. The tank shown in Fig. P2.97 is accelerated to the right at 10 m/s?.
Find:

a)P,, b)Pg, C)P¢ &*_: ]0 " IS’L @ ? X

thd — 10 _ ® \egm OQ%// t > X
93| o 7 2. 45m f

Fig. P2.97 W
b= 2:3 m
2-
49 \-O\Qb ‘._’-B — \,\: 2%5\\/\ @

































































































































































































































































































































































































































































































































































































_\LAS)Um'?,\R‘DV\ OJ, (PC“J-'?OY\ D/,, \'J‘\“-"-r SU"(ch.L ')X'vnmr\&crj'.
A=ASST4y_(WA W45 )x2.S

- S?m\\ culj
W = 0-334

T = I/ ?A o jr\?\q
¥ clb~37<lx36 (02+49) —Z

,o)@(g-—%n\ 3(04 9 3\) <Z}/{%

50 :PPD:""OOO("O)( 7. 62@) O "':"62.60?‘1 =36 Z.FP





























































































































































































































































































































































































































































































































































































































































































































































































































































































































































Example: P.2.99. The tank shown in Fig. P2.99 is filled with water and accelerated.
Find the pressure at point Aifa=20 m/s?and L =1 m.

N30 0
? ?ax&x (a9 dz P 361‘,_4)“’5'
AR. Ak o &7 90 0 30

e,
?A%:—IOWOQ‘RXYA-'XR) 2
—Joso (1049:31) (ZA-TZp) |

‘tcm}:. \/7, @

Fig. P2.99
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?A: 5&5@5?@\ — S%5k/\>§
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2.6 ROTATING CONTAINERS

For a liquid in a rotating container (cross-section shown):
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Fig. 2.19 Rotating container: (a) liquid cross section; (b) top view of element.

In a short time, the liquid reaches static equilibrium with respect to the container
and the rotating rz-reference frame.
Horizontal rotation will not affect the pressure distribution in the vertical direction.
No variation in pressure with respect to the 6-coordinate.


https://www.youtube.com/watch?v=RdRnB3jz1Yw

2.6 ROTATING CONTAINERS

Between two points (r,,z,)
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Figure 2.19 Rotating container: (a) liquid cross section; (b) top view of element.

If two points are on a constant-pressure surface (e.g., free surface) with point 1 on
the z-axis [r,=0]:

O = w((z"'o =

55 The free surface is a paraboloid of r







































































































































































































































Example: P.2.106. For the cylinder shown in Fig. P2.106, determine the pressure at

point A for a rotational speed of 5 rad/s. r;
PA':.7 W= S Yq_d) < "‘—_9\2
A.\Y \lob.l\v\e b"‘OIL a,(-\tl' Malﬁcn t k | | /
. AN ) 20 cm
15 the Same - CASE . \1: A .
X Q)Z O‘Z — | 2 h Water -7 (
x Q-0 % "Z er.x Y @ 60 cm
PA \ ‘ (
Y?_\/\:()'\‘-I‘-r @ \\\ /I
2 1 A S '
KWh g (ze-0) PR
2 “ |
SZ YZ @ Fig. P2.106
Z — ig. P2.
56 = q-3 h @ 5


















































































































































































































































































































































































































































































































































































































































































































g_s_(gw%:):q-z\h = h= O-Lf?.zm&
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Y V= ool (% (2 < 0-6m
K A/ 3‘07% (G\)}/ﬂ—gg(z,\_zﬁ)

2. (A
?A: \0007_(_2_ (0-6 — 1000@'8\) <—-0-33,?,)

PA= 8149 Py = B3+ Pa o























































































































































































































































































































































































































































































































































































Example: P.2.107. The hole in the cylinder of Problem P2.106 is closed and the air
pressurized to 25kPa. Find the pressure at point A if the rotational speed is 5 rad/s.

P= 5000]7
Th=8l49Te - 1/ A
Alr 20 cm
25’ 000 ?q Water |
,P \ 60 cm
A=33 149 T, ,

Fig. P2.106
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