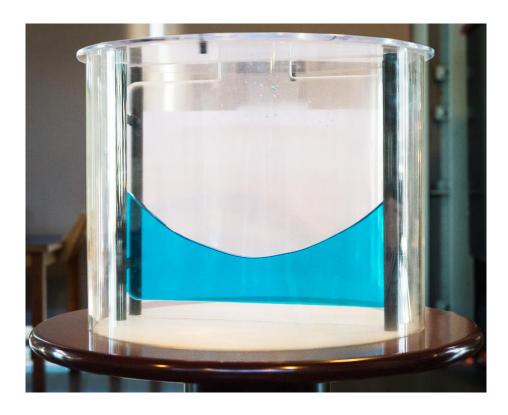
Florida International University, Department of Civil and Environmental Engineering

CWR 3201 Fluid Mechanics, Fall 2018 Fluid Statics



Arturo S. Leon, Ph.D., P.E., D.WRE

2.1 INTRODUCTION

Fluid Statics: Study of fluids with no relative motion between fluid particles.

- No shearing stress (no velocity gradients)
- Only normal stress exists (pressure)

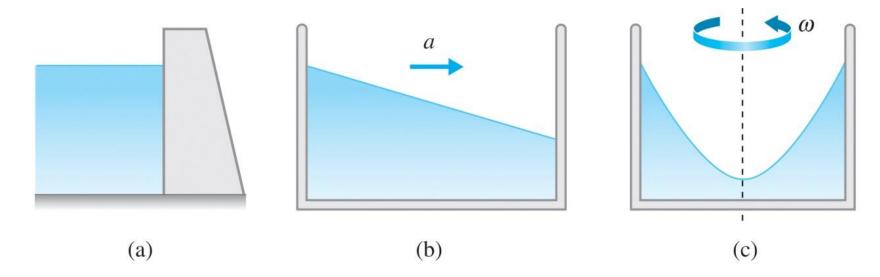


Fig. 2.1 Examples included in fluid statics: (a) liquids at rest; (b) linear acceleration; (c) angular rotation.

MOTIVATION

Source: asciencecom, Youtube (https://www.youtube.com/watch?v=jqpl4ME6rRY)

MOTIVATION (CONT.)

Youtube (https://www.youtube.com/watch?v=Zip9ft1PgV0)

MOTIVATION (CONT.)

Youtube (https://www.youtube.com/watch?v=9jLQx3kD7p8)

2.2 PRESSURE AT A POINT

 Pressure is an infinitesimal normal compressive force divided by the infinitesimal area over which it acts.

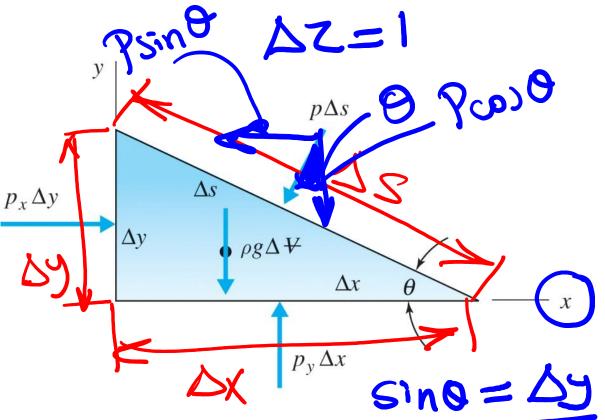


Fig. 2.2 Pressure at a point in a fluid.

 $\Delta S = \Delta \frac{y}{\sin \theta}$

From Newton's Second Law (for x- and y-directions):

$$P_{X} \triangle y - P \sin \theta \triangle S = \frac{9}{2} \triangle x \triangle y \ Q_{X}$$

$$P_{X} \triangle y - P \sin \theta \triangle y = \frac{9}{2} \triangle x \triangle y \ Q_{X}$$

$$P_{X} - P = \frac{9}{2} \triangle x \triangle x$$

$$P_{Y} - P = \frac{9}{2} (2y + 9) \triangle y$$

2.2 PRESSURE AT A POINT 2

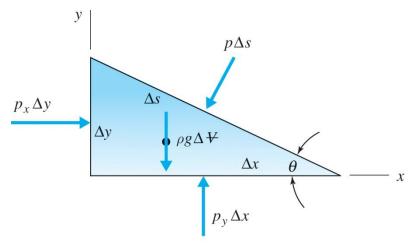


Fig. 2.2 Pressure at a point in a fluid.

• As the element goes to a point $(\Delta x, \Delta y \rightarrow 0)$

$$P_{x}-P=0$$

$$P_{y}-P=0$$

$$P_{x}=Py=P$$

- Pressure in a fluid is constant at a point.
- Pressure is a scalar function.
- It acts equally in all directions at a point for both static and dynamic fluids.

2.3 DERIVATION OF GENERAL FORM OF PRESSURE VARIATION

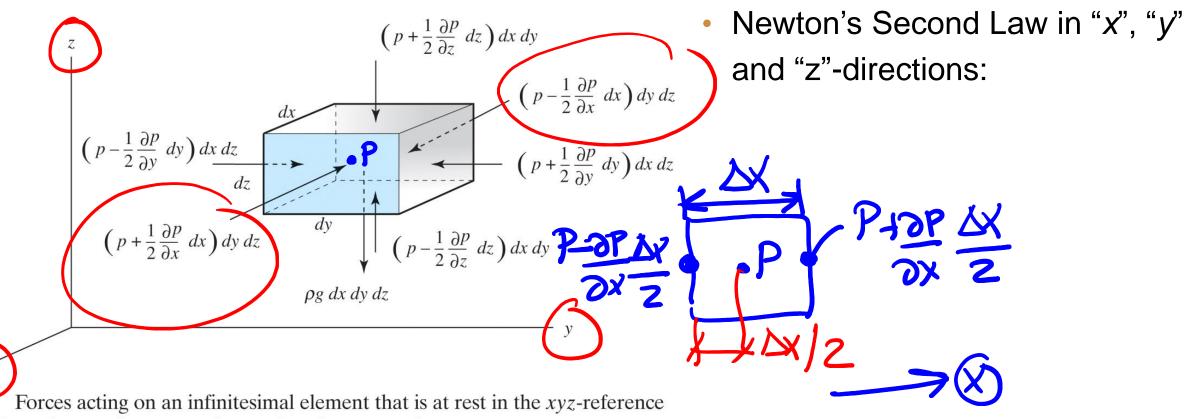
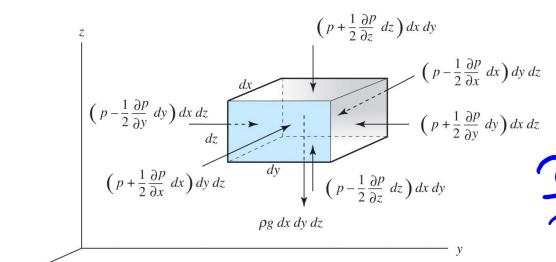


Fig. 2.3 Forces acting on an infinitesimal element that is at rest in the xyz-reference frame. The reference frame may be accelerating or rotating.



Using the Chain rule, the pressure change in any direction can be calculated as:

$$\frac{\partial f}{\partial y} = -\int dy$$

Fig. 2.3 Forces acting on an infinitesimal element that is at rest in the *xyz*-reference frame. The reference frame may be accelerating or rotating.

Then the pressure differential becomes.

$$dP = \partial P dx + \partial P dy + \partial P dz$$

$$dP = -paxdx - paydy - p(dz+9)dz$$

• The pressure differential (from the previous slide) is:

• At rest, there is no acceleration (a = 0):

$$dp = -ygdz$$

$$dp = -ydz$$

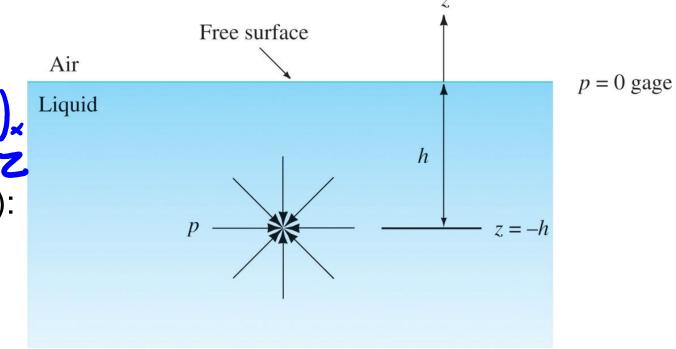


Fig. 2.4 Pressure below a free surface.

No pressure variation in the x- and y-directions (horizontal plane). Pressure varies in the z-direction only (dp is negative if dz is positive).

Pressure decreases as we move up and increases as we move down.

2.4.1 Pressure in Liquids at Rest

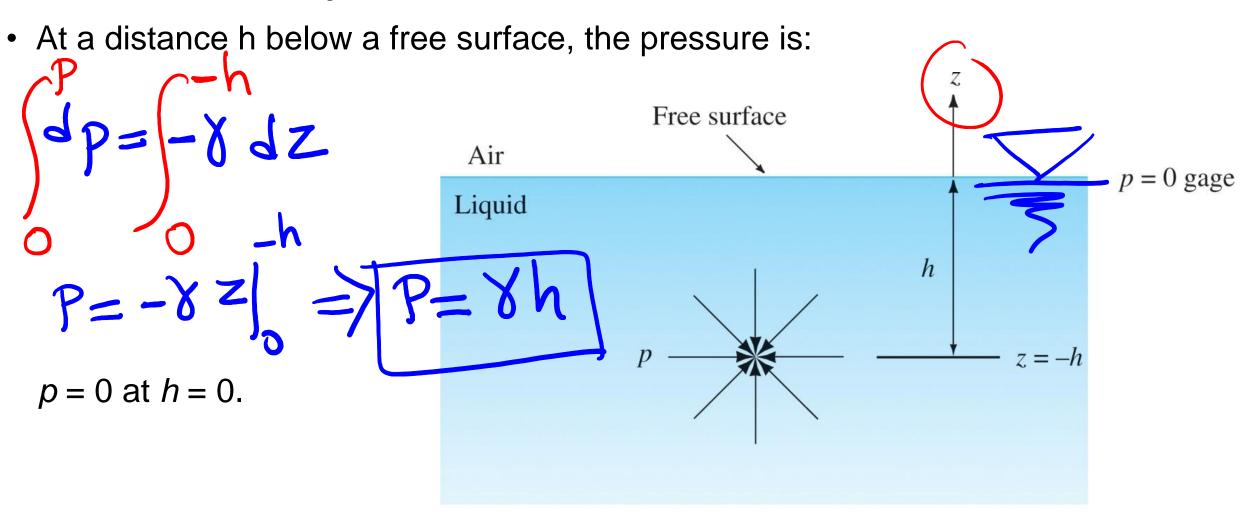


Fig. 2.4 Pressure below a free surface.

2.4.3 Manometers

Manometers are instruments that use columns of liquid to measure pressures.

- (a) displays a U-tube manometer used to measure relatively small pressures
- (b): Large pressures can be measured using a liquid with large γ₂.
- (c): Very small pressures can be measured as small pressure changes in p₁, leading to a relatively large deflection H.

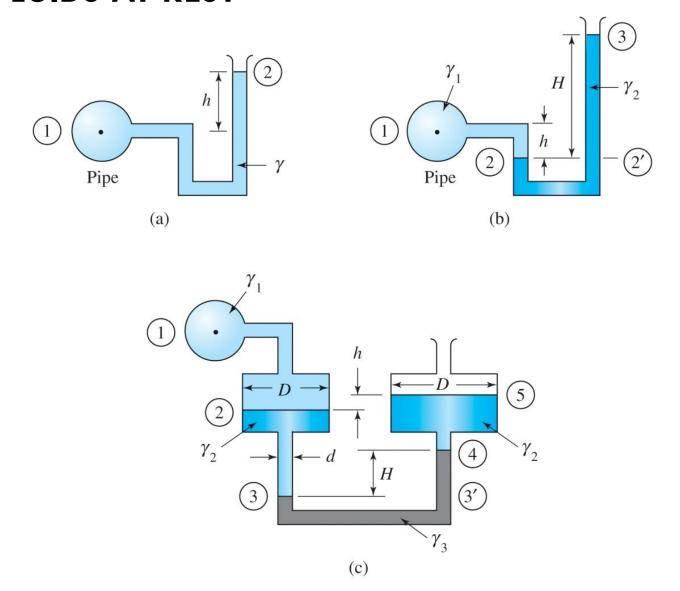
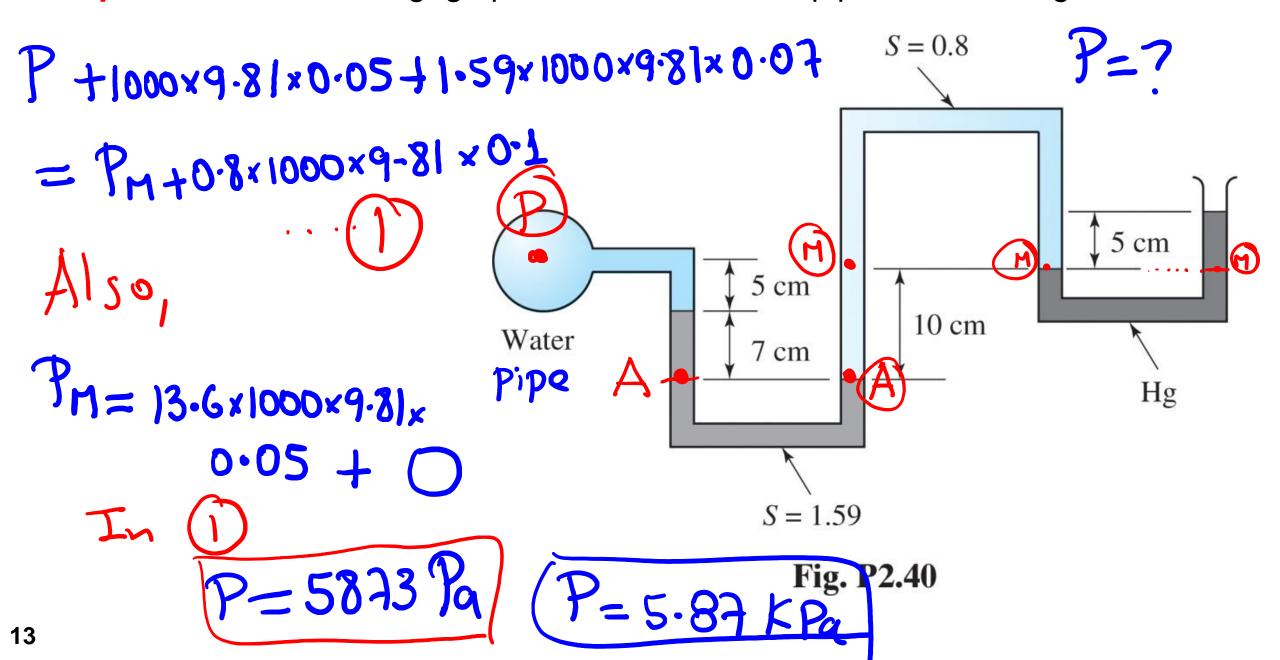
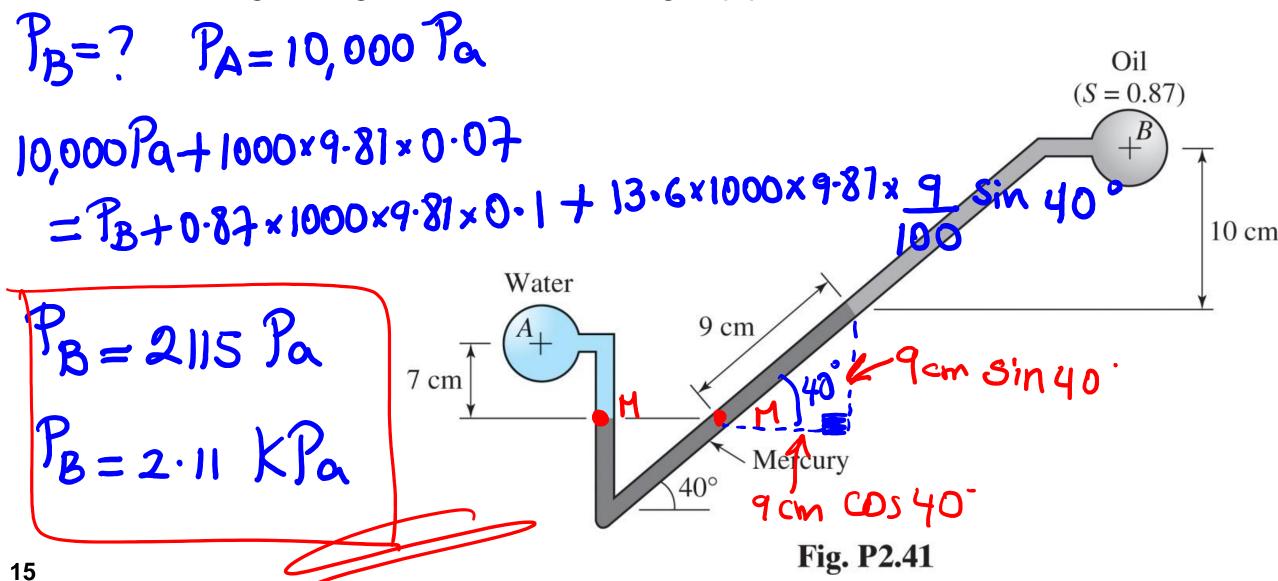


Fig. 2.7 Manometers: (a) U-tube manometer (small pressures); (b) U-tube manometer (large pressures); (c) micromanometer (very small pressure changes).

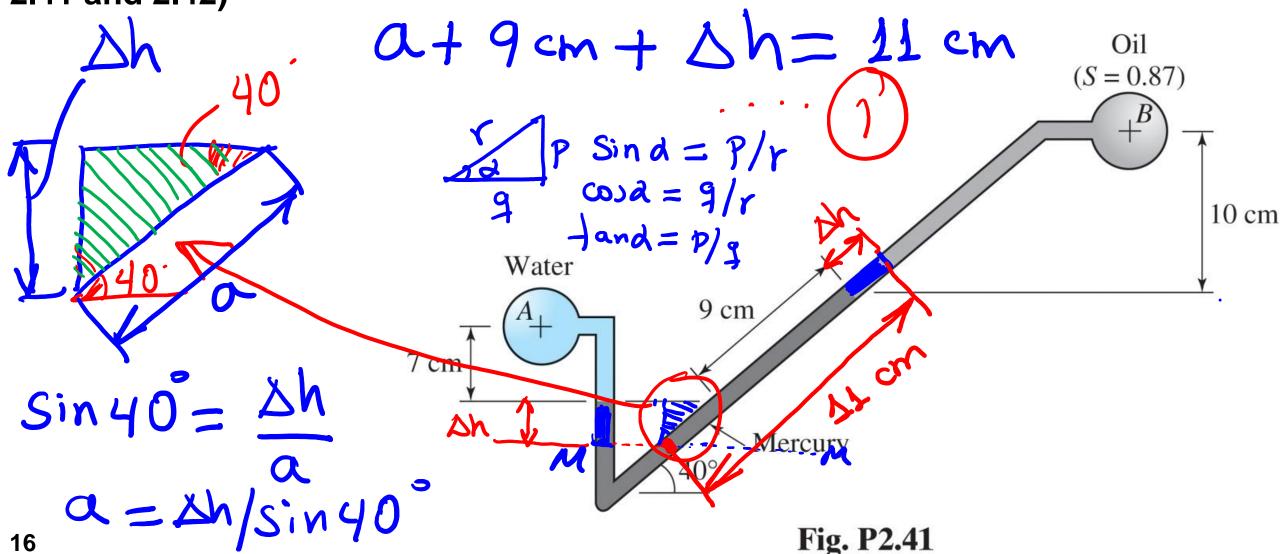
Example: P.2.40. Find the gage pressure in the water pipe shown in Fig. P2.40



Example: P.2.41. For the inclined manometer containing mercury, shown in Fig. P2.41, determine the pressure in pipe *B* if the pressure in pipe *A* is 10 kPa. Pipe *A* has water flowing through it, and oil is flowing in pipe *B*.



Example: P.2.42. The pressure in pipe B in Problem P2.41 is reduced slightly. Determine the new pressure in pipe B if the pressure in pipe A remains the same and the reading along the inclined leg of the manometer is 11 cm (**Tip: See problems 2.41 and 2.42**)



In (1)
$$\Delta h + 9 cm + \Delta h = 11 cm$$
sin40°

$$\Delta h = 0.783 \text{ m}$$

$$P_{B} = 519.1 P_{a}$$
 P_{a} $P_{B} = 519.1 P_{a}$ $P_{B} = 519.1 P_{a}$

2.4.4 Forces on Plane Areas

 The total force of a liquid on a plane surface is:

• After knowing the equation for pressure $(P = \gamma h)$:

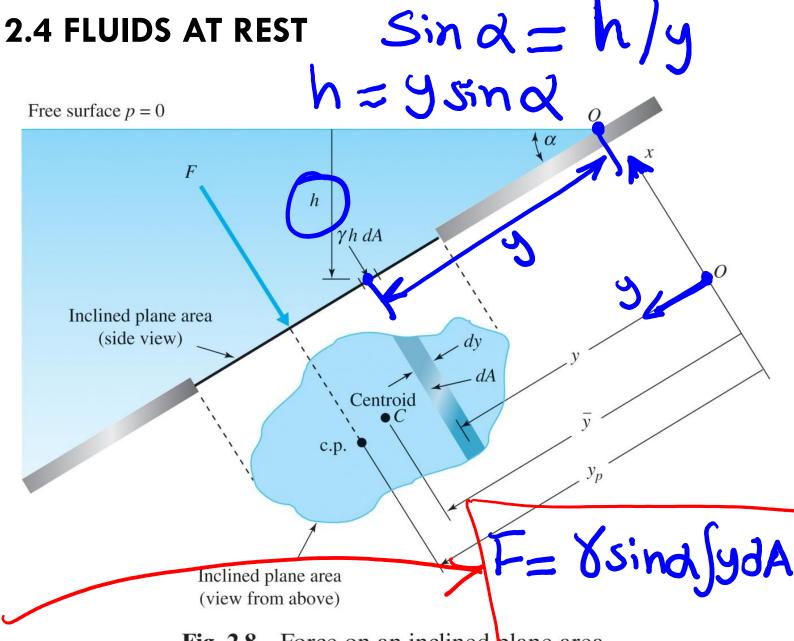
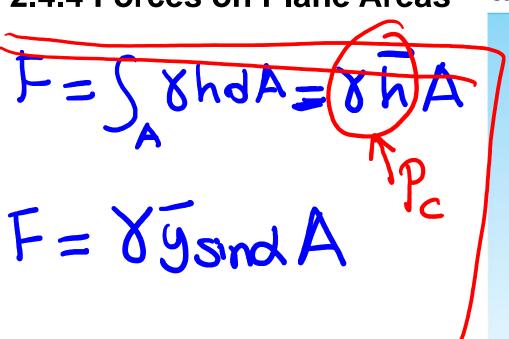


Fig. 2.8 Force on an inclined plane area.

2.4.4 Forces on Plane Areas



 \bar{h} : Vertical distance from the free surface to the centroid of the area

 $p_{\rm C}$: Pressure at the centroid

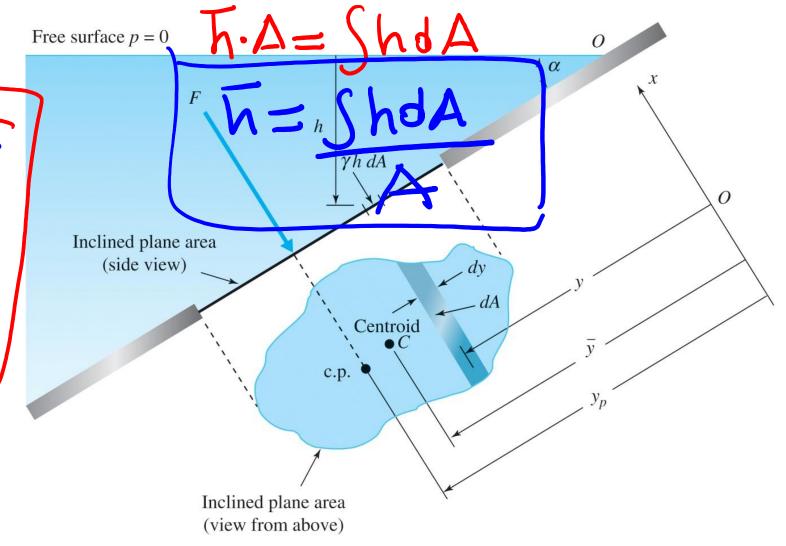
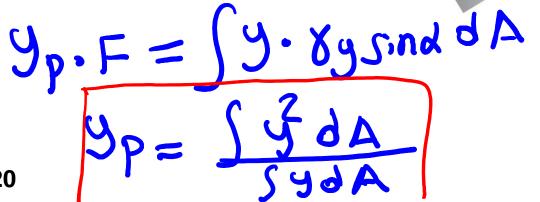


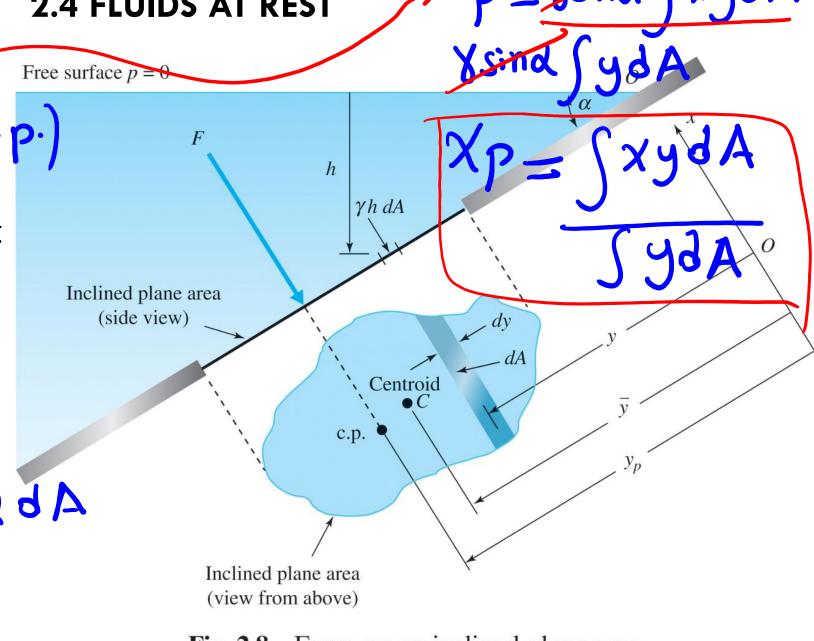
Fig. 2.8 Force on an inclined plane area.

The **centroid** or geometric center of a plane figure is the arithmetic mean ("average") position of all the points in the shape.

 $P = \begin{cases} x P dA \\ x P = \begin{cases} x & \text{otherwise} \end{cases}$ Sysind $A = \begin{cases} x & \text{otherwise} \end{cases}$ Free surface p = 0

- The center of pressure is the point where the resultant force acts:
 - Sum of moments of all infinitesimal pressure forces on an area, A, equals the moment of the resultant force.





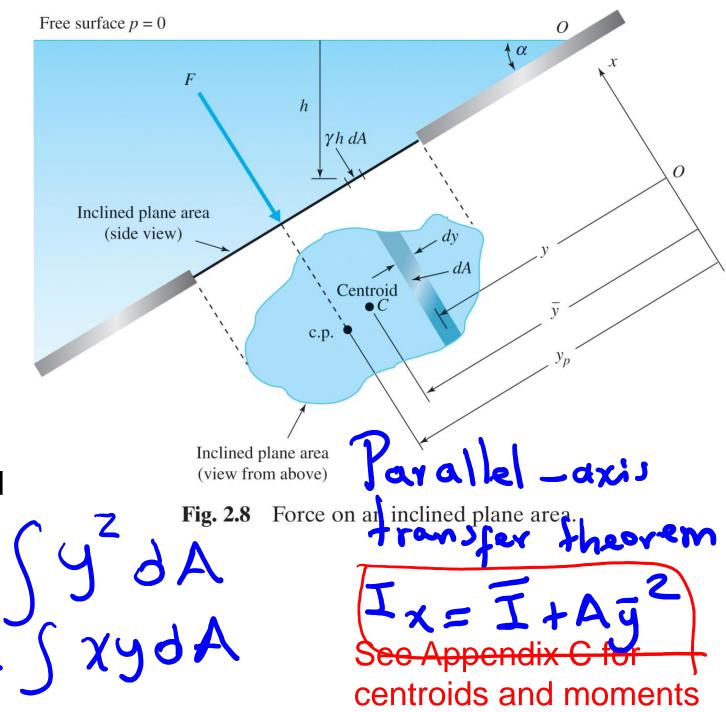
Force on an inclined plane area.

$$X_{p} = X + \frac{1}{A9}$$

$$Y_{p} = 9 + \frac{1}{A9}$$

 \bar{y} : Measured parallel to the plane area to the free surface

 The moments of area can be found using:



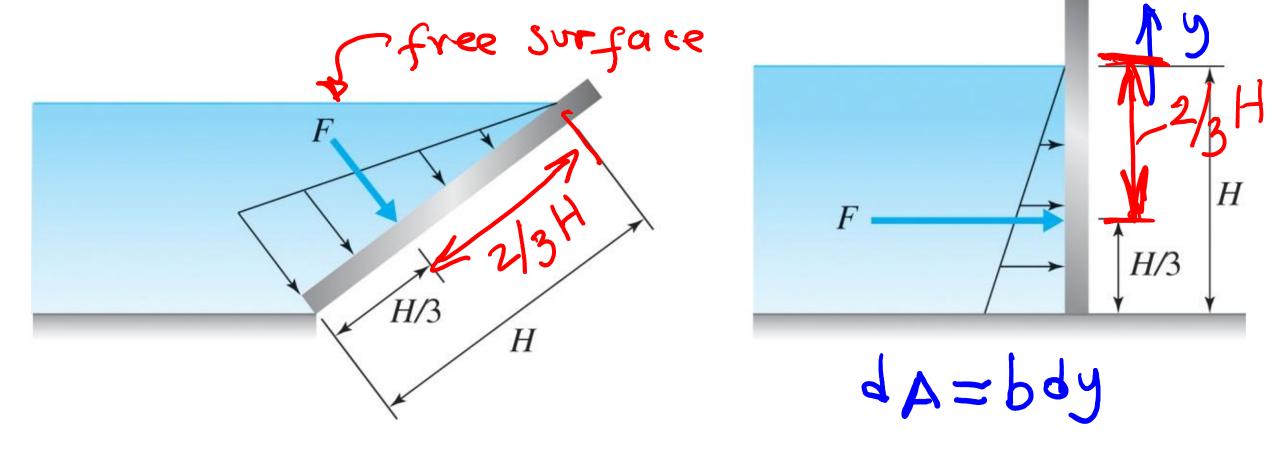
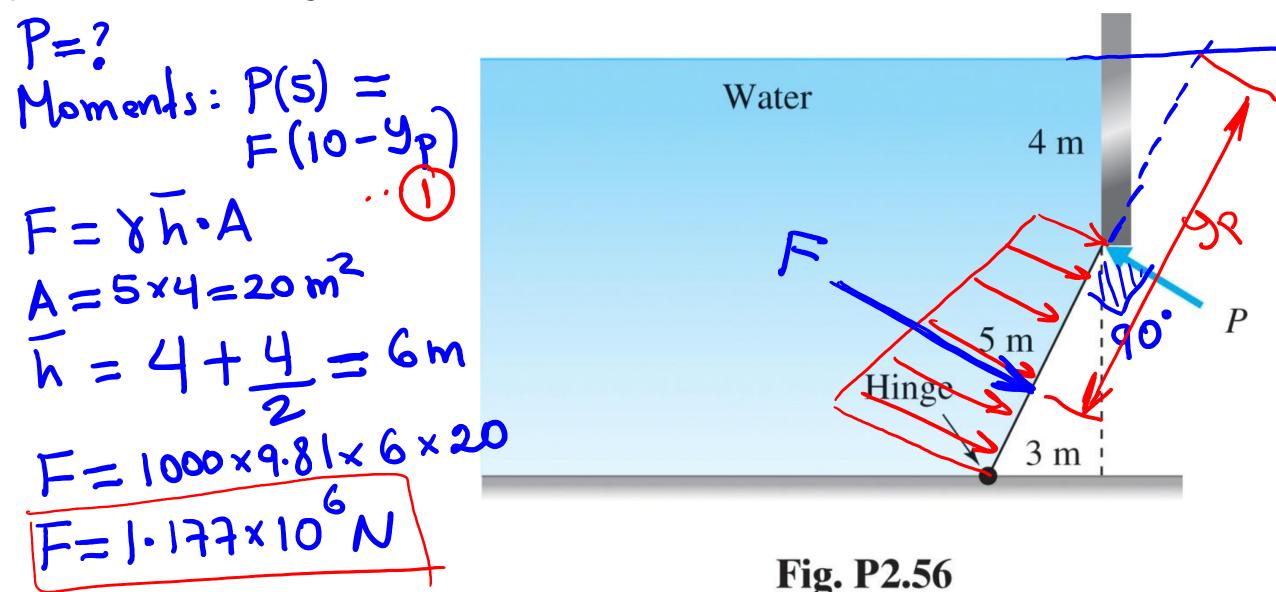


Fig. 2.9 Force on a plane area with top edge in a free surface.

$$9P = \frac{\int 9^{2} dA}{\int 9 dA} = \frac{\int 9^{2} k dy}{\int 9^{2} k dy} = \frac{9^{3} / 3}{9^{2} / 2} = \frac{H^{3} / 3}{3} = \frac{2}{3} + \frac{1}{3}$$

Example: P.2.56. Determine the force *P* needed to hold the 4-m wide gate in the position shown in Fig. P2.56.



23

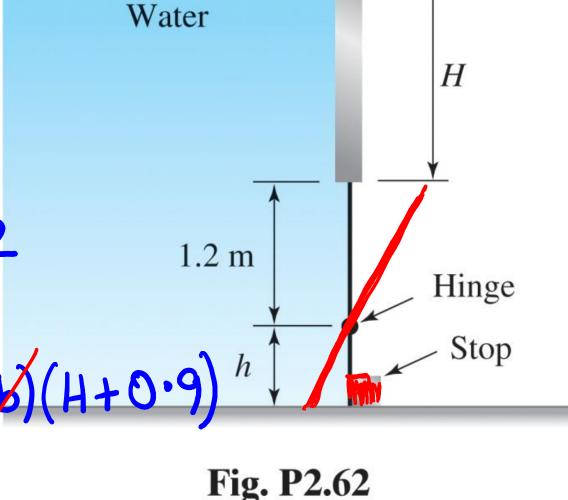
Example: P.2.62. At what height *H* will the rigid gate, hinged at a central point as

shown in Fig. P2.62, open if *h* is:

a)
$$h = 0.6 \text{ m}$$

 $9p = H + 1.2 \text{ m}$
 $9p = H + 1.2 \text{ m}$
 $9p = H + 1.8 \text{ m}$
 $9p = 1.8 \text{ m}$

$$H+1.2 = H+0.9+ 6+1.8^{3}$$
 $(1-86)(H+0.9)^{h}$



if H>Om, gate will rotate c) h=1.0 m Yp=1.2m+H yp= >+ I

2.4.5 Forces on Curved Surfaces

https://www.youtube.com/watch?v=zV-JO-I7Mx4

 Direct integration cannot find the force due to the hydrostatic pressure on a curved surface.

A free-body diagram containing the curved surface and surrounding liquid needs to

be identified.

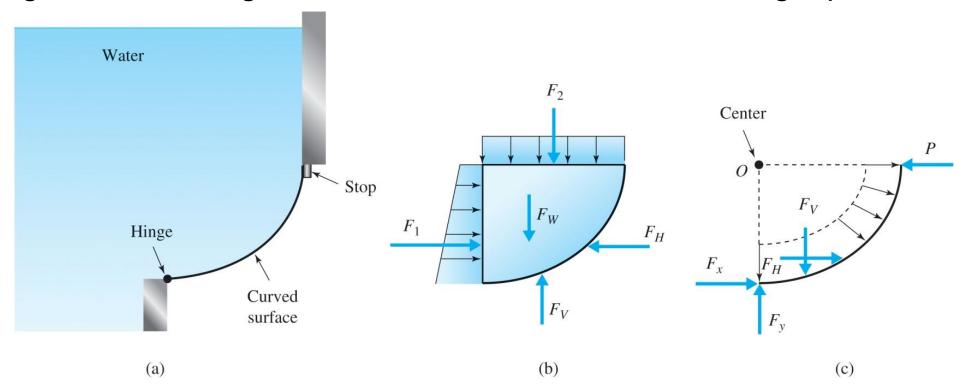


Fig. 2.11 Forces acting on a curved surface: (a) curved surface; (b) free-body diagram of water and gate; (c) free-body diagram of gate only.

Example: P.2.72. Find the force *P* required to hold the gate in the position shown in Fig. P.2.72. The gate is 5-m wide.

$$P=77 \text{ W}=5m$$
 $P(2.8) = F_{H} \times 2.0 \text{ Water} = 0$
 $F_{H} = 8 \text{ h} \cdot A = 1000 \times 9.81 \times 1.00 \text{ N}$
 $F_{H} = 98.1 \text{ KN} = 98,100 \text{ N}$
 $A = 2 \times 5 = 1.00 \times 9.72 \times 1.00 \times$

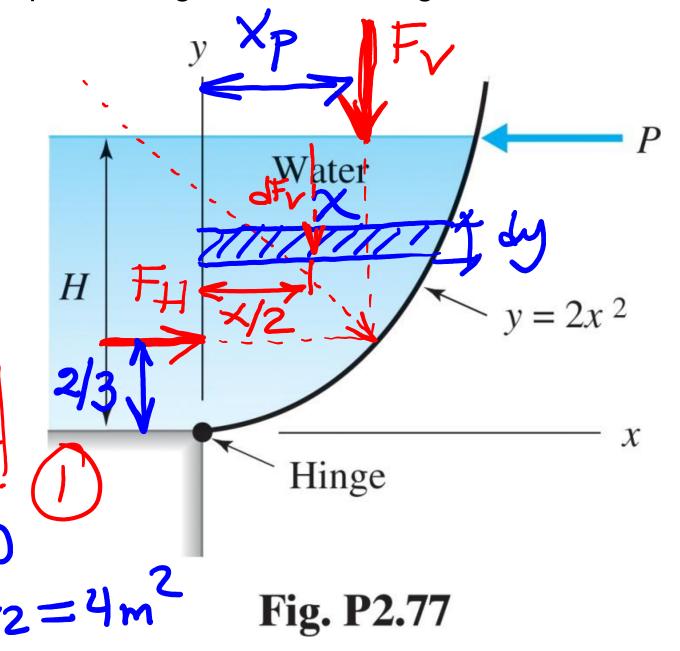
Example: P.2.77. Find the force *P* if the parabolic gate shown in Fig. P.2.77 is

- a) 2-m wide and H = 2 m
- b) 4-ft wide and H = 8 ft.

$$P = ??$$
a) $H = 2m$, $W = 2m$
 $E = 2m$
 $E = 2m$
 $E = 2m$

$$P(2) = F_{\mu}(\frac{2}{3}) + F_{\nu} \chi_{p}$$

$$*F_{H} = \lambda h \cdot A \qquad h = 1.0$$



$$F_{H}=9810 \times 1 \times 4 = 39,240 \text{ N}$$
 volume
 $*F_{V}=\text{weight of water} = 8 + = 8 \text{ d} + 2 \text{ d$

*
$$\forall p \cdot F_{V} = \int_{\frac{X}{2}}^{X} \cdot dF_{V}$$
 $\forall p \cdot F_{V} = \int_{\frac{X}{2}}^{X} 8(8x^{2})dX = 8 \int_{0}^{4} 4x^{3}dX = 8 \frac{4x^{4}}{4} \int_{0}^{1} 4x^{2}dx = 8 \frac{4x^{4}}{4} \int_{0}^{1}$

2.4.6 Buoyancy (Archimedes' principle)

https://www.youtube.com/watch?v=2ReflvqaYg8

Buoyancy force on an object equals the weight of displaced liquid.

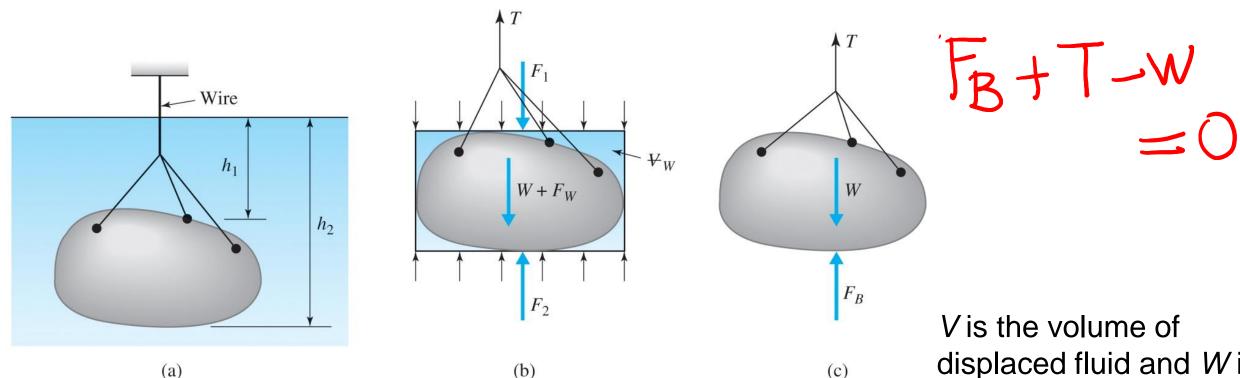


Fig. 2.12 Forces on a submerged body: (a) submerged body; (b) free-body diagram; (c) free body showing the buoyant force F_B .

V is the volume of displaced fluid and W is the weight of the floating object.

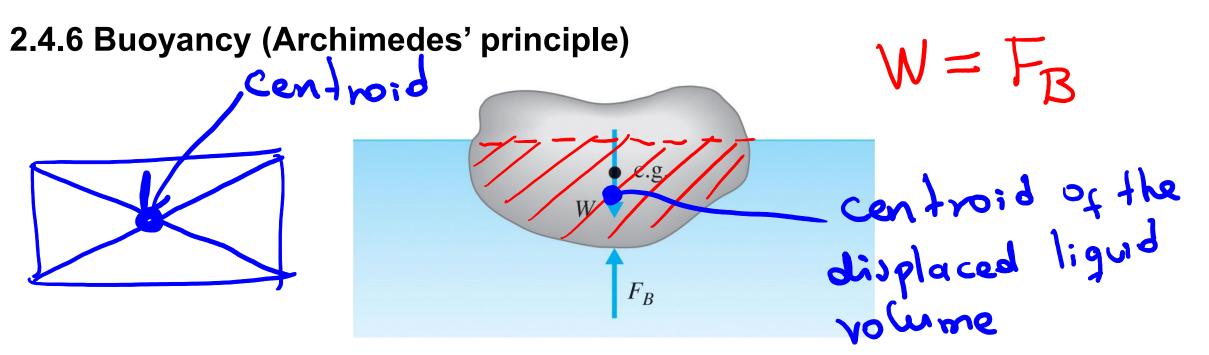


Fig. 2.13 Forces on a floating object.

- The buoyant force acts through the centroid of the displaced liquid volume.
- An application of this would be a hydrometer that is used to measure the specific gravity of liquids.
 - For pure water, this is 1.0

2.4.6 Buoyancy (Hydrometers)

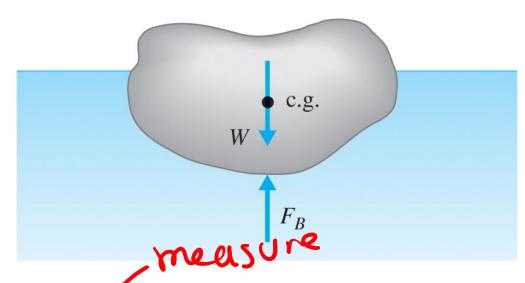
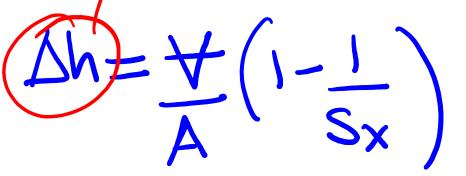


Fig. 2.13 Forces on a floating object.



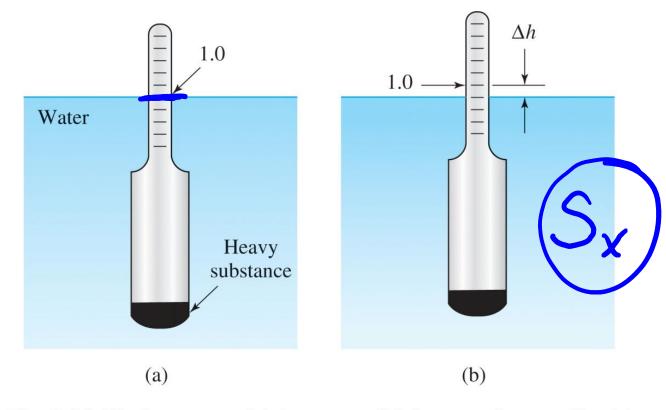
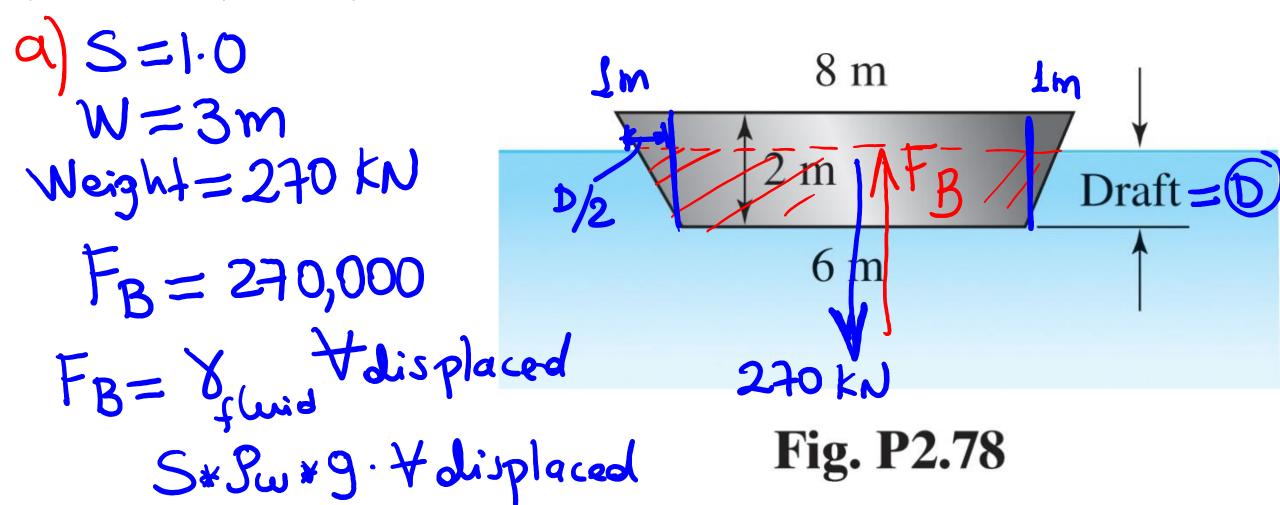


Fig. 2.14 Hydrometer: (a) in water; (b) in an unknown liquid.

- Where Δh is the displaced height
- A: Cross-sectional area of the stem
- $S_x = \frac{\gamma_x}{\gamma_{water}}$ (Specific gravity of

Example: P.2.78. The 3-m wide barge shown in Fig. P.2.78 weighs 20 kN empty. It is proposed that it carry a 250-kN load. Predict the draft in:

- a) Fresh water
- b) Salt water (S = 1.03)



$$1.0 \times 1000 \times 9.81 \times 4 = 270,000$$

$$4 = (6+6+D)D$$

$$2$$

$$3m$$

$$4 = (12+D)(3D)$$

$$27.52 = 1.5D(12+D)$$

$$D = 1.336 m$$

2.4 FLUIDS AT REST

2.4.7 Stability

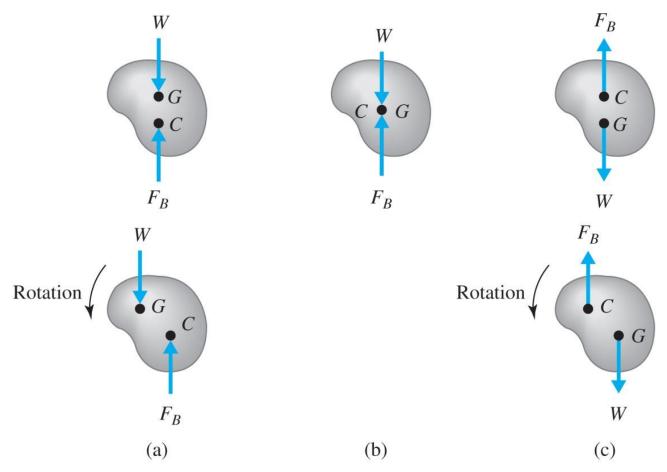


Fig. 2.15 Stability of a submerged body: (a) unstable; (b) neutral; (c) stable.

- In (a) the center of gravity of the body is above the centroid C (center of buoyancy), so a small angular rotation leads to a moment that increases rotation: unstable.
- (b) shows neutral stability as the center of gravity and the centroid coincide.
- In (c), as the center of gravity is below the centroid, a small angular rotation provides a restoring
 moment and the body is stable.

2.4 FLUIDS AT REST

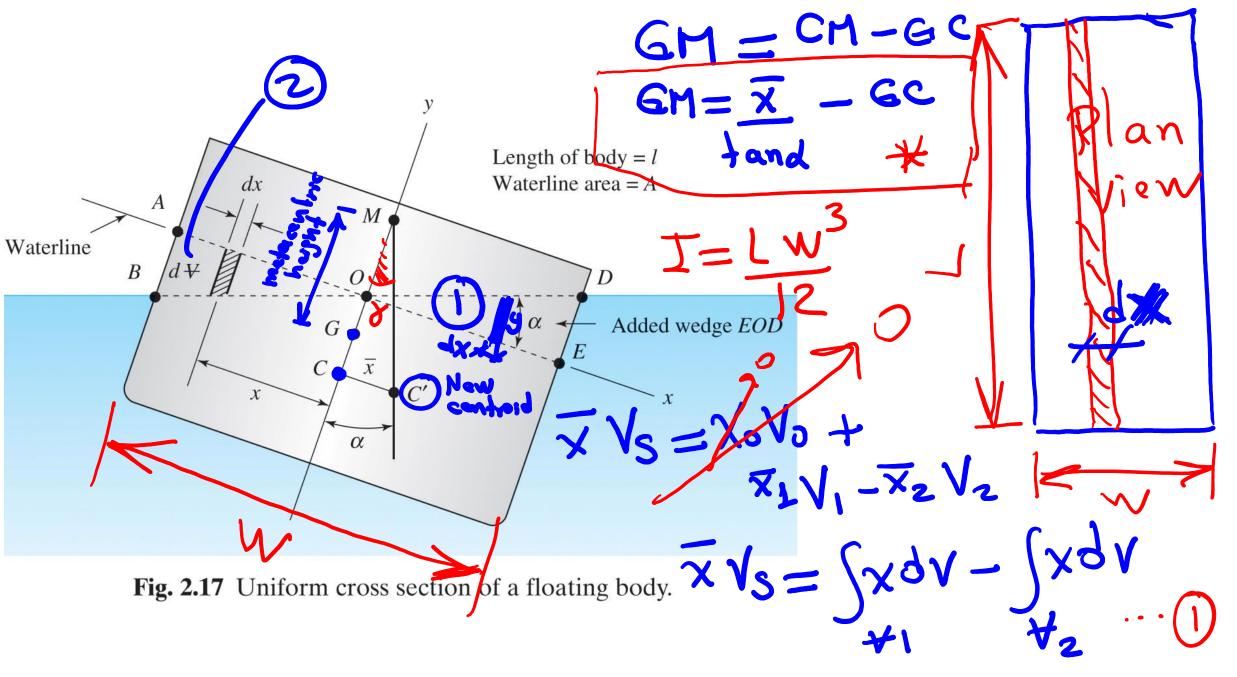
metacentric **Metacentric height** https://www.youtube.com/watch?v=QUgXf2Rj2YQ \overline{GM} WG F_B F_B

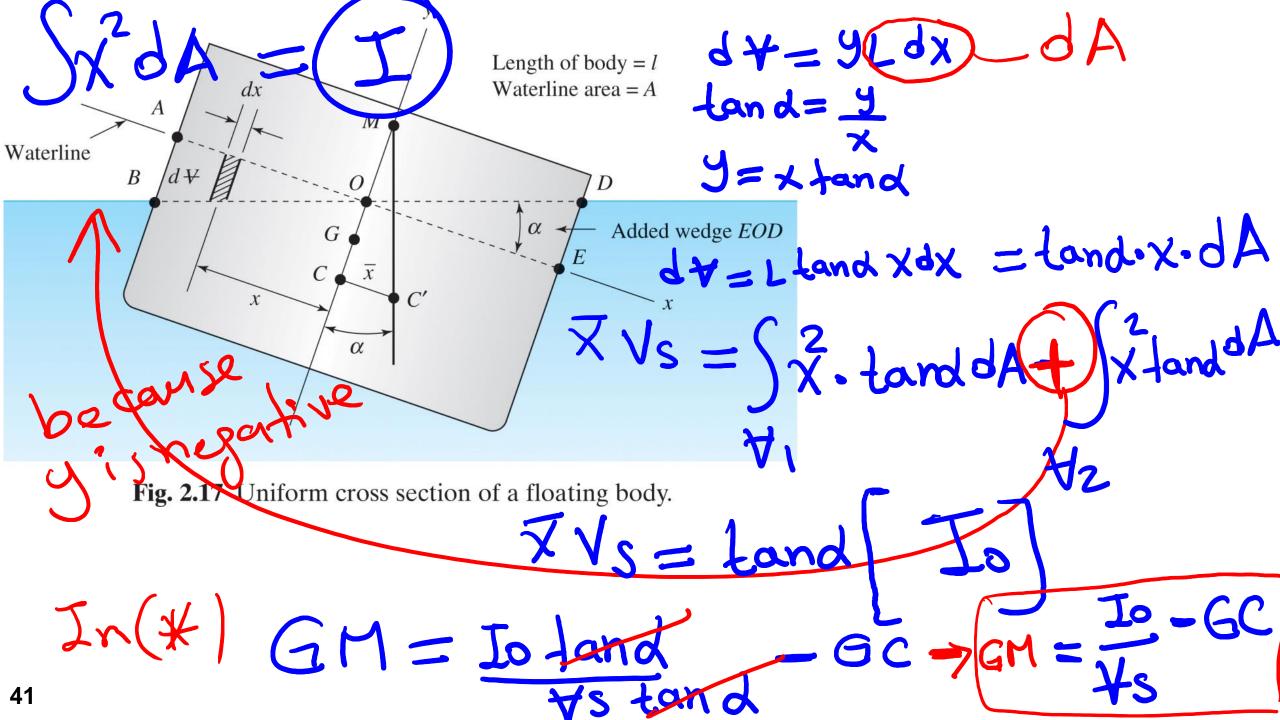
(a)

Fig. 2.16 Stability of a floating body: (a) equilibrium position; (b) rotated position.

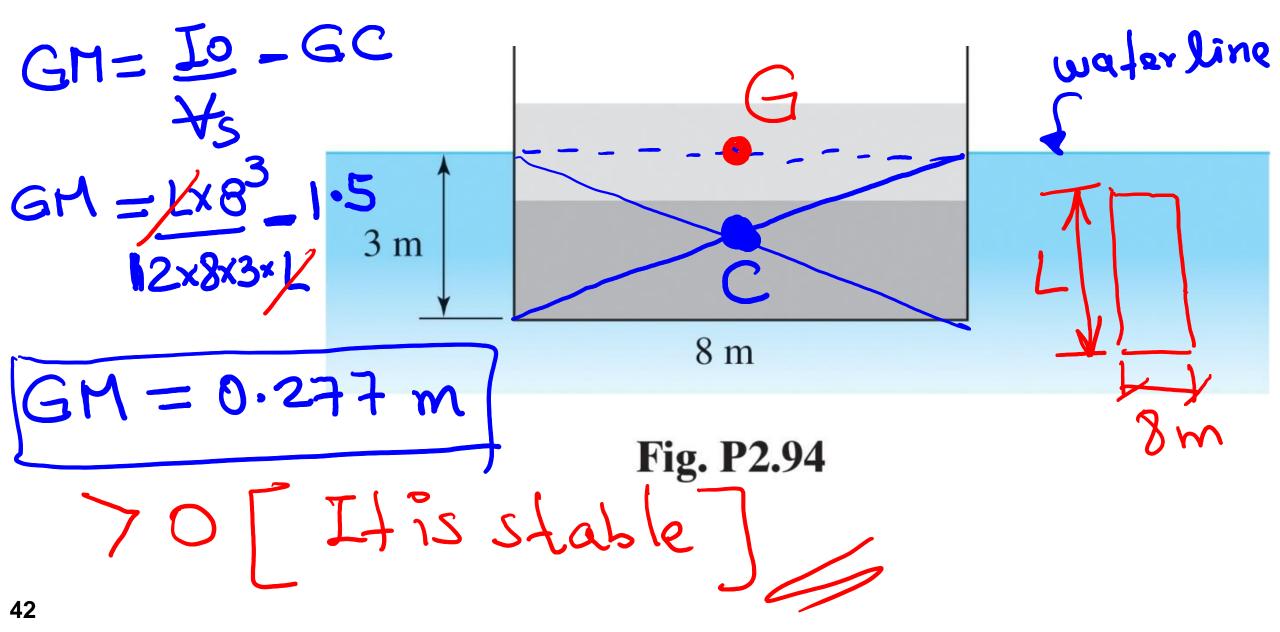
(b)

- The metacentric height \overline{GM} is the distance from G to the point of intersection of the buoyant force before rotation with the buoyant force after rotation.
- If \overline{GM} is positive: Stable
- If \overline{GM} is negative: Unstable

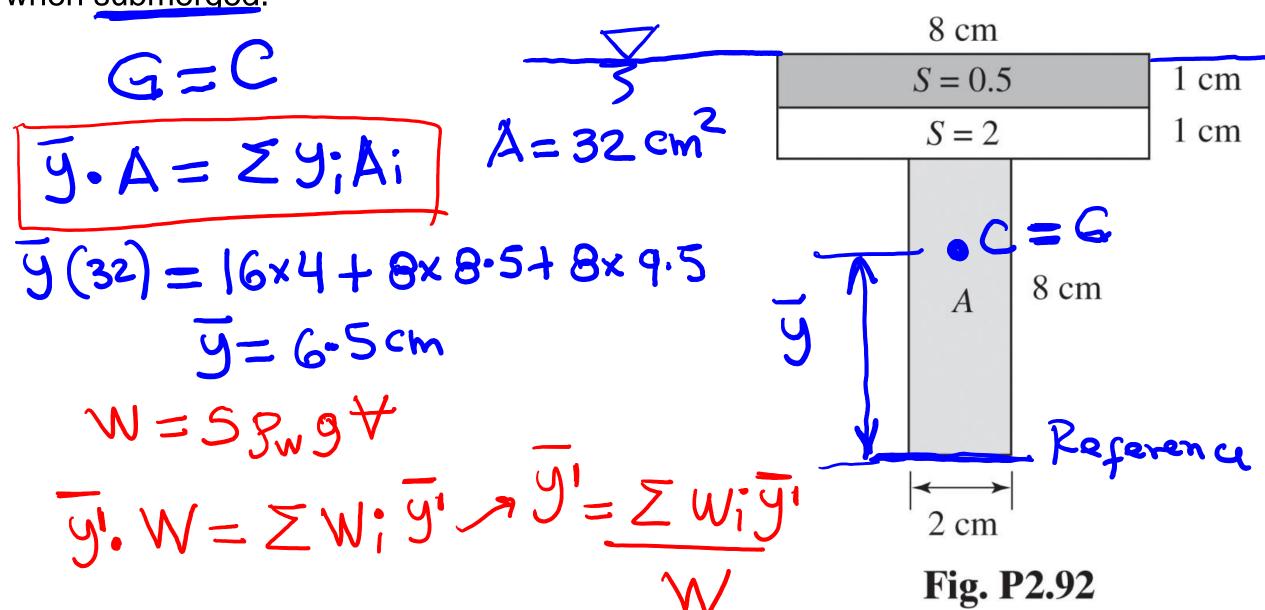




Example: P.2.94. The barge shown in Fig. P2.94 is loaded such that the center of gravity of the barge and the load is at the waterline. Is the barge stable?



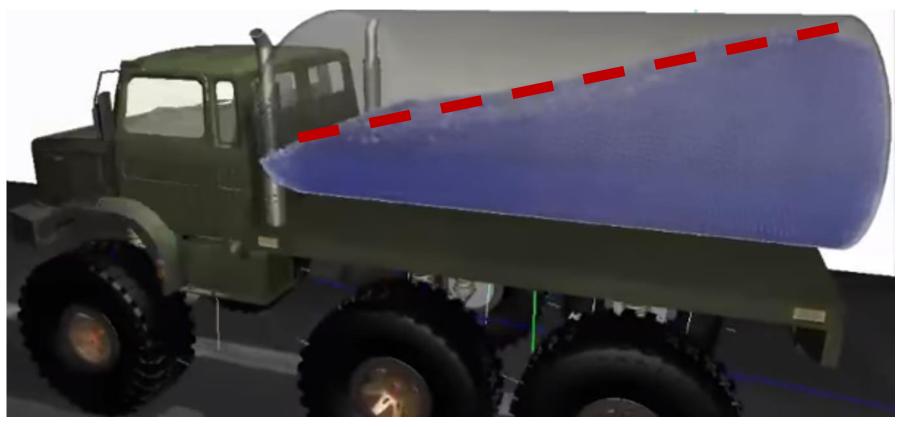
Example: P.2.92. For the object shown in Fig. P2.92, calculate S_A for neutral stability when submerged.



6.5 =
$$S_{A} \times S_{W}9(16)^{4} + 2S_{W}9(8)^{4} + 0.5S_{W}9(8)^{4}$$

 $S_{A}S_{W}9(16) + 2S_{W}9(8) + 0.5S_{W}9(8)$
 $G_{S}(16S_{A} + 20) = 64S_{A} + 174$
 $S_{A} = 1.1$

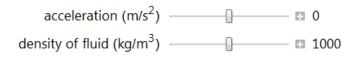
Linearly Accelerating Containers



Source: <u>asciencecom</u>, Youtube (<u>https://www.youtube.com/watch?v=jqpl4ME6rRY</u>)

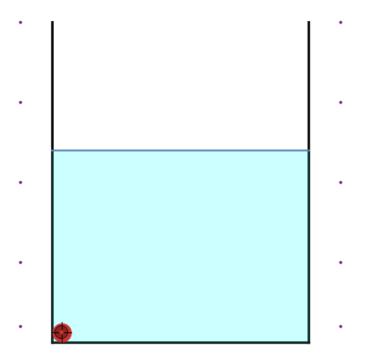
DEMONSTRATION

Pressure within an Accelerating Container



Depth of point = 2.9 m Gage pressure = 28. kPa

Drag the ball to see the pressure change.



2.5 LINEARLY ACCELERATING CONTAINERS

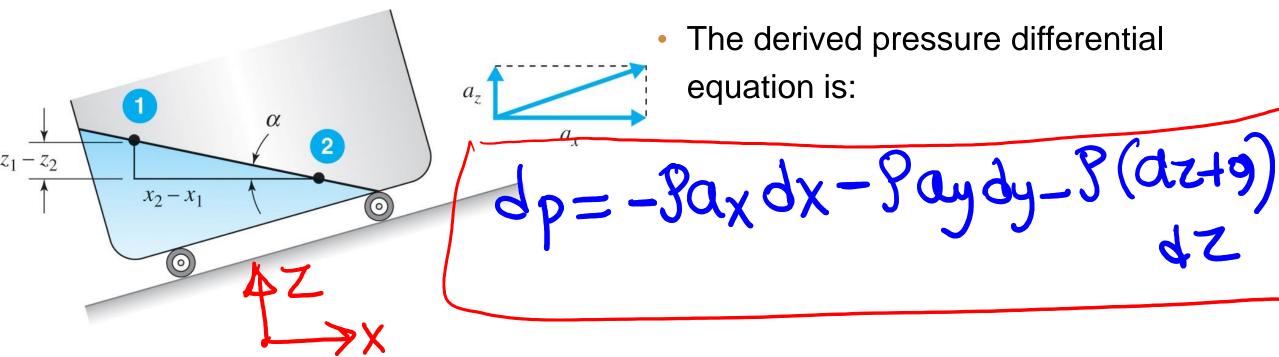
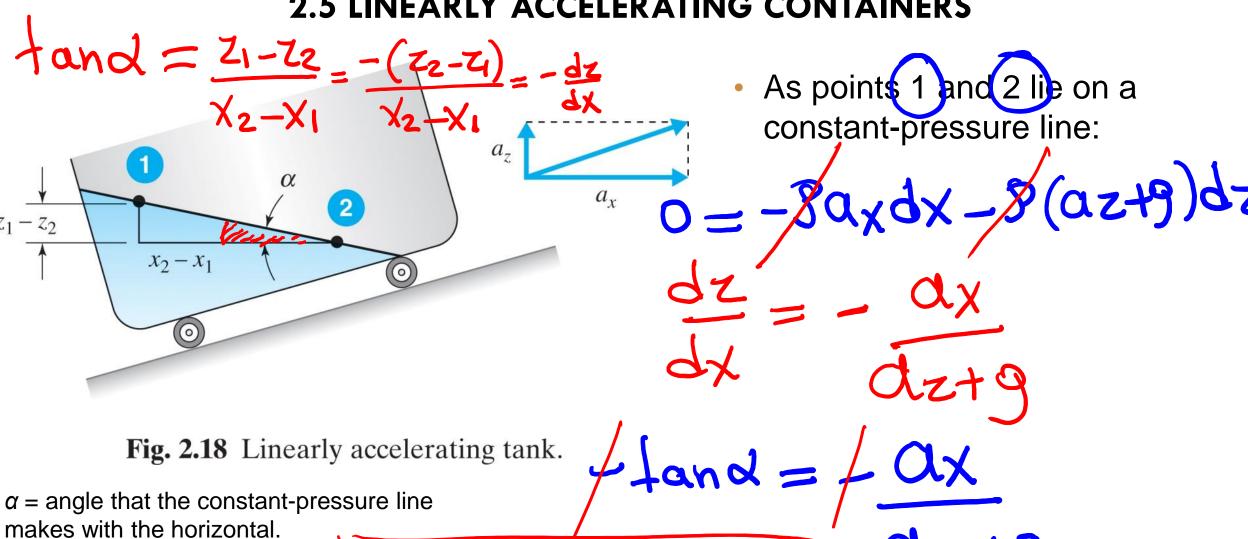


Fig. 2.18 Linearly accelerating tank.

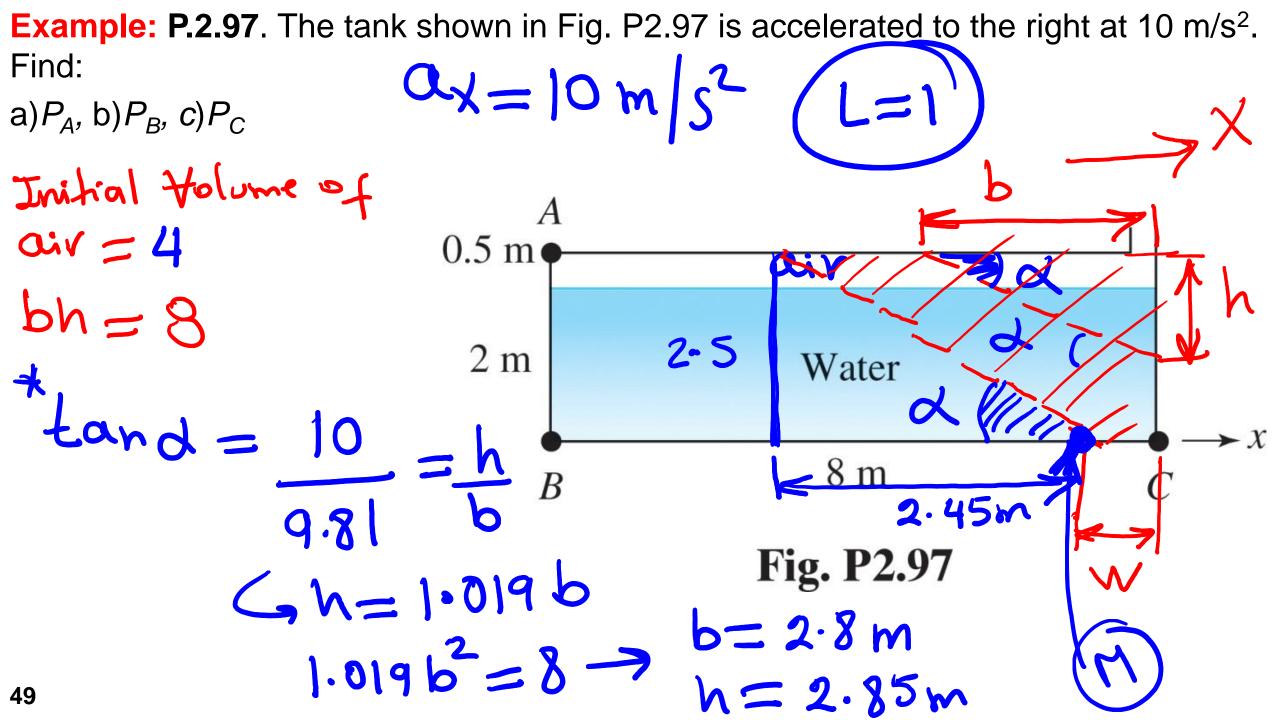
When the fluid is linearly accelerating with horizontal (a_x) and vertical (a_z) components:

$$dp = -3a_{x}dx - 3(a_{z+9})dz$$

2.5 LINEARLY ACCELERATING CONTAINERS



48



*Assumption of location et water surface is incorrect. $d = 45.6^{\circ}$ $4 = (N + W + 2.45) \times 2.5$ W = 0.374 m $P_{C} = 0$ $P_{B} = -30 \text{ m}$ $P_{B} = -30 \text{ m}$ $P_{B} - P_{A} = -9(10)(X_{B}-X_{M}) - 9(0+9.81)(Z_{B}-Z_{M})$ $P_{B} = -1000(10)(-7.626) - 0 = 76260Pa = 76.21Ra$

Example: P.2.99. The tank shown in Fig. P2.99 is filled with water and accelerated. Find the pressure at point A if $a = 20 \text{ m/s}^2$ and L = 1 m. 20 Sin 30 $= -3a_{x}d_{x} - 3(a_{z+9})d_{z}$ AR $P_A - P_R = -1000(17.32)(X_A - X_R)$ -1000 (10+9.81)(ZA-ZR) tan 3 = 1/2 = 26.56

Fig. P2.99

In (1)

$$P_{A-O} = -1000(17.32)(0-\sqrt{5}\cos 56.56)$$

 $-1000(19.81)(0-\sqrt{5}\sin 56.56^{\circ})$
 $P_{A} = 58,305$ $P_{A} = 58.3$ k P_{A}

2.6 ROTATING CONTAINERS

https://www.youtube.com/watch?v=RdRnB3jz1Yw

For a liquid in a rotating container (cross-section shown):

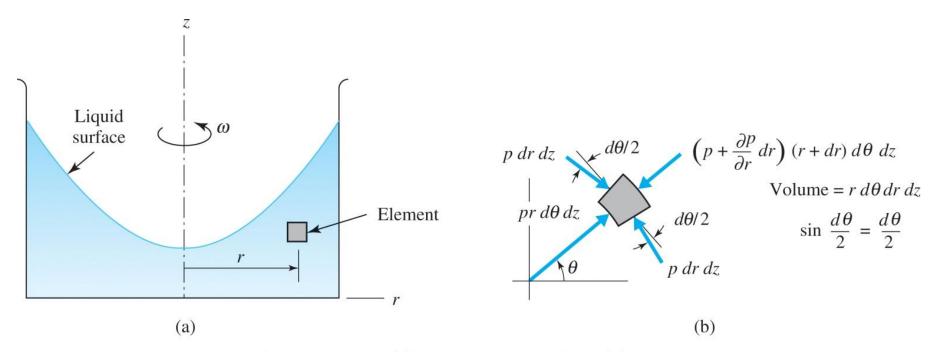
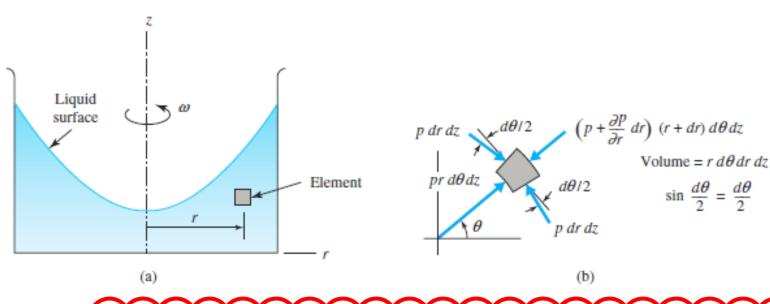


Fig. 2.19 Rotating container: (a) liquid cross section; (b) top view of element.

- In a short time, the liquid reaches static equilibrium with respect to the container and the rotating rz-reference frame.
- Horizontal rotation will not affect the pressure distribution in the vertical direction.
- No variation in pressure with respect to the θ -coordinate.

2.6 ROTATING CONTAINERS



 Between two points (r₁,z₁) and (r₂,z₂) on a rotating container, the static pressure variation is:

Figure 2. (9 Notating containor: (a) liquid cross section; (b) top view of element.

$$P_{Z} - P_{I} = 3 \frac{\omega}{z} \left(Y_{Z} - Y_{1} \right) - 99 \left(Z_{Z} - Z_{1} \right)$$

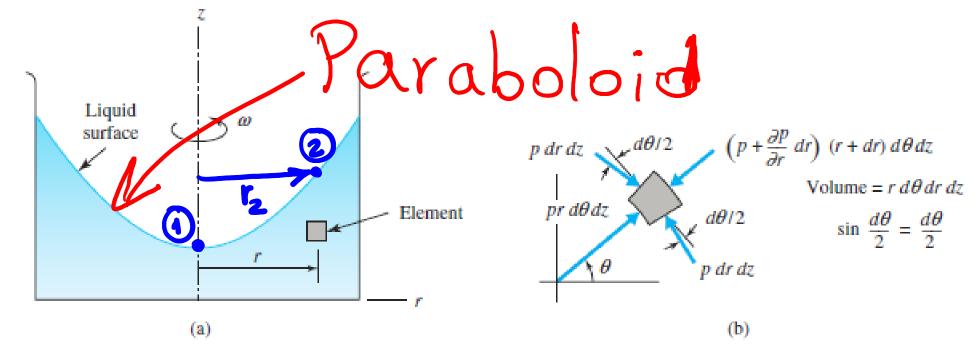


Figure 2.19 Rotating container: (a) liquid cross section; (b) top view of element.

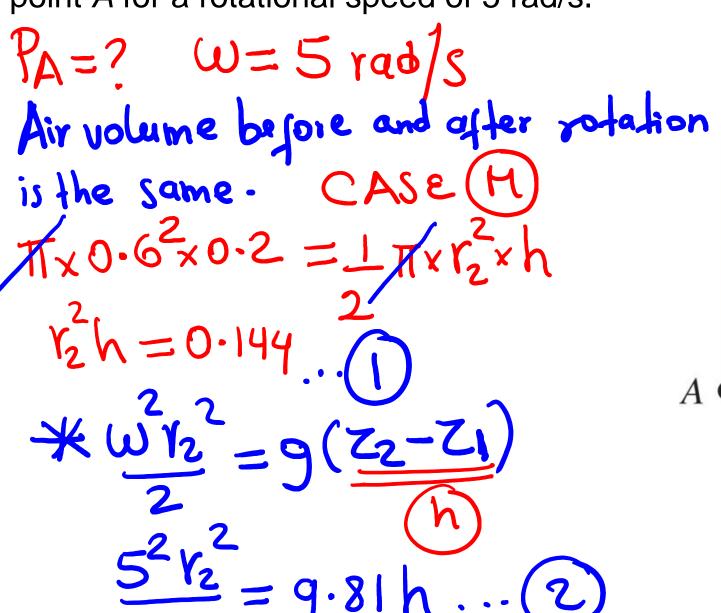
 If two points are on a constant-pressure surface (e.g., free surface) with point 1 on the z-axis [r₁=0]: / 2 2

$$0 = 8\omega(r_2 - 0) - 89(z_2 - z_1)$$

$$\omega^2 r_2^2 = 9(z_2 - z_1)$$
The free surface is a paraboloid of revolution.

55

Example: P.2.106. For the cylinder shown in Fig. P2.106, determine the pressure at point *A* for a rotational speed of 5 rad/s.



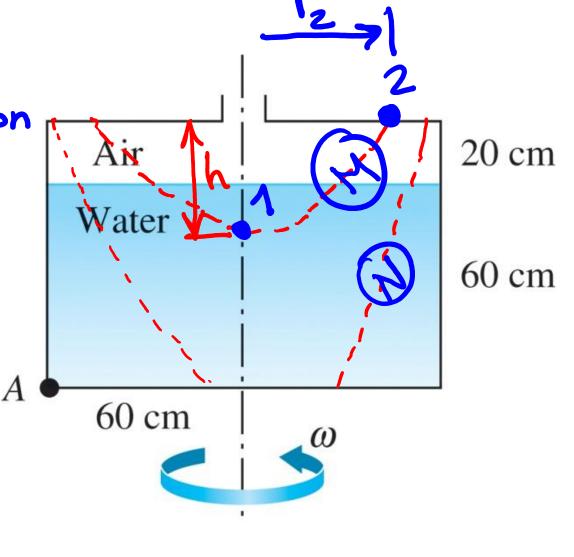


Fig. P2.106

$$\frac{25}{2} \left(\frac{0.144}{h} \right) = 9.81 h \implies h = 0.428 m$$

$$V_2 = 0.58 m$$

$$V_3 = 0.8m \text{ and}$$

$$V_4 - V_1 = 9 \frac{u^2}{(4^2 - v^2)^2} - 99 \left(\frac{v_2}{24 - 21} \right)$$

$$V_4 = 1000 \times \frac{5^2}{2} \left(0.6^2 \right) - 1000 \left(9.81 \right) \left(-0.372 \right)$$

$$V_4 = 8149 Pa = 8.1 Pa$$

Example: P.2.107. The hole in the cylinder of Problem P2.106 is closed and the air pressurized to 25kPa. Find the pressure at point *A* if the rotational speed is 5 rad/s.

