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• General equations of motion in fluid flow are very 
difficult to solve.

• Need simplifying assumptions.
• In some cases viscosity can be neglected.

3.1 Introduction

Turbine flow



3.2 Description of Fluid Motion

3.2.1 Lagrangian and Eulerian Descriptions of Motion (Cont.)



 Pathline is the locus of points traversed by a given particle 
as it travels in a field of flow. The pathline provides us with 
a “history” of the particle’s locations.

 Streakline is defined as an instantaneous line whose 
points are occupied by all particles originating from some 
specified point in the flow field. Streaklines tell us where the 
particles are “right now.”

 Streamline is a line in the flow possessing the following 
property: the velocity vector of each particle occupying a 
point on the streamline is tangent to the streamline

In a steady flow, pathlines and streamlines are all coincident. 
https://www.youtube.com/watch?v=Dqa1ldG_6cs

3.2 Description of Fluid Motion
3.2.2 Pathlines, Streaklines and Streamlines



Flow Visualization: Photography and Lighting

https://youtu.be/hxlx70NEfQg



• Acceleration is the derivative of velocity (with respect to 
time).

3.2 Description of Fluid Motion
3.2.3 Acceleration



• The acceleration is:

3.2.3 Acceleration

• The scalar components of the 
above equation in rectangular 
coordinates are:



3.2.3 Acceleration

• If the observer’s reference frame is accelerating:
• Acceleration of a particle relative to a fixed reference frame is needed.

a: Acceleration given by the equation in previous slide
V: Velocity vector of the particle
r: Position vector of the particle
Ω: Angular velocity of the observer’s reference frame

• If A = a, the reference frame is inertial: a reference frame that moves with 
constant velocity without rotating.

• If A ≠ a, the reference frame is noninertial.



3.2.4 Angular Velocity and Vorticity

As a fluid particle moves it may rotate 
or deform. In certain flows or regions, 
fluid particles do not rotate. These are 
called irrotational flows

• Angular Velocity (Ω): The average 
velocity of two perpendicular line 
segments of a fluid particle.

• Vorticity (ω): Twice the angular 
velocity.

• An irrotational flow has no 
vorticity





Example: The velocity field in a flow is given by V = 2x𝚤̂ + 2y𝚥̂ m/s. Find 
the acceleration, the angular velocity and the vorticity vector at the point 
(2,-1,3) at t = 2 s. 



Example: For the flow shown in the figure below, relative to a fixed reference 
frame, find the acceleration of a fluid particle at:
(a) Point A
(b) Point B
The water at B makes an angle of 45° with respect to the ground and the 
sprinkler arm is horizontal.

10 rad/s







• A fluid flow can either be a viscous flow or an inviscid flow.
• Inviscid flow: Viscous effects do not significantly influence the flow.
• Viscous flow: Effects of viscosity are important.  

3.3.2 Viscous and Inviscid Flows

• Any viscous effects that (may) exist are confined to a thin boundary 
layer.

• The velocity in this layer is always zero at a fixed wall (due to 
viscosity). 

The inviscid flow outside the 
boundary layer in an external 
flow is called the free stream. 



• Laminar flow: Flow with 
no significant mixing of 
particles but with 
significant viscous shear 
stresses.

• Turbulent flow: Flow 
varies irregularly so that 
flow quantities 
(velocity/pressure) show 
random variation. 
• A “steady” turbulent 

flow is one in which the 
time-average physical 
quantities do not 
change in time.

3.3.3 Laminar and Turbulent Flows
Viscous flow is either laminar or turbulent.



• Whether a flow is laminar or turbulent depends on The Reynolds 
Number:  

3.3 Classification of Fluid Flows

3.3.3 Laminar and Turbulent Flows

L: Characteristic Length
V: Characteristic Velocity
: Kinematic Viscosity 

• If the Reynolds number is greater than the critical Reynolds 
number (Re > Recrit) then the flow is turbulent:

• Pipe flow: Recrit≈ 2000
• Rivers and canals: Recrit≈ 500



The Bernoulli equation states that for 
an inviscid fluid flow, an increase in 
fluid velocity causes a decrease in 
pressure

3.4 The Bernoulli Equation

Between two points on the same streamline: Assumptions
• Inviscid flow (no shear stress)

• Steady flow డ
డ௧
ൌ 0

• Along a streamline
• Constant density
• Inertial reference frame



• Another form of the equation (by dividing by g) is:

3.4 The Bernoulli Equation

1. Pressure p, is called the static pressure (gage pressure).
2. Piezometric head is 

ఊ
 ℎ and the total head is 

ఊ
 ℎ  మ

ଶ
3. The total pressure at a stagnation point (local fluid velocity is 

zero) is the stagnation pressure. 𝑝  𝜌 మ

ଶ
ൌ 𝑝்



3.4 The Bernoulli Equation

1. A piezometer (left) is used to measure 
static pressure.

2. A pitot probe (center) is used to measure 
total pressure.
a) Point 2 is a stagnation point.

3. A pitot-static probe (right) is used to 
measure the difference between total and 
static pressure.



3.4 The Bernoulli Equation

• The equation above shows how the pressure 
changes normal to the streamline.

• Δp: Incremental pressure change
• Δn: Short distance
• R: Radius of curvature

• Pressure decreases in the n-direction.
• Decrease is directly proportional to ρ and V2

• Decrease is inversely proportional to R



Example: P.3.70. In the pipe contraction shown in Fig. P3.70, water flows 
steadily with a velocity of V1 = 0.5 m/s and V2 = 1.125 m/s. Two 
piezometer tubes are attached to the pipe at sections 1 and 2. Determine 
the height H. Neglect any losses through the contraction. 



Pressure
• Manometer

13.2 Measurement of Local Flow Parameters
Flow measurement



Velocity

• Pitot-Static Probe

13.2 Measurement of Local Flow Parameters



The Differential Pressure Flow Measuring Principle 
(Orifice-Nozzle-Venturi) 

http://www.youtube.com/watch?v=oUd4WxjoHKY

Flow Rate Measurement



The Ultrasonic Flow Measuring Principle

http://www.youtube.com/watch?v=Bx2RnrfLkQg



Differential Pressure Meters
Downstream of the restriction, the 
streamlines converge to form a minimal 
flow area Ac, termed the vena contracta.

13.3 Flow Rate Measurement

Combining these two Equations and solving for Vcyields



13.3 Flow Rate Measurement (Cont.)



Orifice Meter

13.3 Flow Rate Measurement (Cont.)



13.3 Flow Rate Measurement (Cont.)

Venturi Meter
The venturi meter has a shape 
that attempts to mimic the flow 
patterns through a streamlined 
obstruction in a pipe.

Flow Nozzle
The flow nozzle consists of a 
standardized shape with pressure 
taps typically located one 
diameter upstream of the inlet and 
one-half diameter downstream.



13.3 Flow Rate 
Measurement 
(Cont.)

Flow 
coefficient K



Example of application: Water flows through the Venturi
meter shown in the figure below. The specific gravity of the 
manometer fluid is 1.52. Determine the flowrate. 







The Integral Forms of the 
Fundamental Laws

Arturo S. Leon, Ph.D., P.E., D.WRE



• The integral quantities in fluid mechanics are contained in the three 
laws:

• Conservation of Mass
• First Law of Thermodynamics
• Newton’s Second Law

• They are expressed using a Lagrangian description in terms of a 
system (fixed collection of material particles).

4.2 The Three Basic Laws



• CONSERVATION OF MASS: Mass of a system remains constant.

4.2 The Three Basic Laws

Integral form of the mass-conservation equation. 
ρ = Density; dV = Volume occupied by the 
particle

• FIRST LAW OF THERMODYNAMICS: Rate of heat transfer to a system 
minus the rate at which the system does work equals the rate at which 
the energy of the system is changing.

Specific energy (e): Accounts for kinetic 
energy per unit mass (0.5V2), potential 
energy per unit mass (gz), and internal 
energy per unit mass (𝜇).



• NEWTON’S SECOND LAW: Resultant force acting on a system equals 
the rate at which the momentum of the system is changing.

4.2 The Three Basic Laws

In an inertial frame of reference



• Control Volume: A region of space into which fluid enters 
and/or from which fluid leaves.

4.2 The Three Basic Laws



• Interested in the time rate of change of an extensive property to be 
expressed in terms of quantities related to a control volume.

• Involves fluxes of an extensive property in and out of a control 
volume.

• Flux is the measure of the rate at which an extensive property 
crosses an area.

4.3 System-to-Control-Volume Transformation



• The flux across an element dA is:

4.3 System-to-Control-Volume Transformation

• Only the normal component of 
𝑛ො .V contributes to this flux.

Control surface: The surface 
area that completely encloses
the control volume.

𝑛ො: Unit vector normal to dA
(always points out of the control 
volume)
η: Intensive property



• The Reynolds transport theorem is a system-to-control-volume 
transformation.

4.3 System-to-Control-Volume Transformation

Reynolds Transport Theorem

• This is a Lagrangian-to-Eulerian transformation of the rate of change of an 
extensive quantity.

• First part of integral: Rate of change of an extensive property in the 
control volume.

• Second part of integral: Flux of the extensive property across the 
control surface (nonzero where fluid crosses the control surface).



• An equivalent form of the control volume is:

4.3 System-to-Control-Volume Transformation

• The time derivative of the control volume is moved inside the integral:
• For a fixed control volume, the limits on the volume integral are 

independent of time. 

Reynolds Transport Theorem



4.3.1 Simplifications of the Reynolds 
Transport Theorem

• Steady-state (time derivative is zero):

• Often one inlet (A1), and one outlet (A2):

• For uniform properties over a plane area:



4.3.1 Simplifications of the Reynolds Transport Theorem (cont.)

• Unsteady flow with uniform flow properties:



• For a steady flow, this simplifies to:

4.4 Conservation of Mass

• Uniform flow with one entrance and one exit:

Mass of a system is fixed.

For constant density, the continuity equation is only dependent on A and V



• If the density is uniform over each area, with nonuniform velocity profiles:

4.4 Conservation of Mass (Cont.)

• Where Vn is the normal component of velocity.

(averages can also 
be used)

• The mass flux 𝑚ሶ (kg/s or slug/s) is the mass rate of flow:



• The flow rate (or discharge) Q (m3/s or ft3/s) is the volume rate of flow:

• Mass flow rate is often used in compressible flow. The flow rate is 
often used to specify incompressible flow.

4.4 Conservation of Mass (Cont.)



Example: P.4.63. A 1-m diameter cylindrical tank initially contains liquid fuel 
and has a 2-cm diameter rubber plug at the bottom as shown in the figure 
below. If the plug is removed, how long will it take to empty the tank.







• This equation is required if heat is transferred (boiler/compressor) or work is 
done (pump/turbine).

• Can relate pressures/velocities when Bernoulli’s equation cannot be 
used.

4.5 Energy Equation

Where e is the specific energy and consists of the specific kinetic energy, 
specific potential energy, and specific internal energy.

• In terms of a control volume:

• 𝑄ሶ : Rate-of-energy transfer across the control surface due to a temperature 
difference.

• 𝑊ሶ : Work-rate term due to work being done by the system.



4.5 Energy Equation

• The work-rate term is from the work being done by the system.
• Rate of work (Power) is the dot product of force with its velocity.

4.5.1 Work-Rate Term

The velocity is measured with 
respect to a fixed inertial 
reference frame. Negative sign 
is because work done on the 
control volume is negative. 

• If the force is from variable shear stress over a control surface:

•  is a stress vector acting on an elemental area dA



4.5 Energy Equation
4.5.1 Work-Rate Term



4.5 Energy Equation

• From the previous equation, the energy equation can be rewritten as:

4.5.2 General Energy Equation

• Losses are the sum of all terms for unusable forms of energy.

• Can be due to viscosity (causes friction resulting in increased internal 
energy).

• Or due to changes in geometry resulting in separated flows.



4.5 Energy Equation

• For steady-flow with one inlet and one outlet (with uniform profile) and no 
shear work, the following energy equation is used:

4.5.3 Steady Uniform Flow

• Where hL is the head loss (dimensions of length).

•
మ

ଶ
is the velocity head, and 

ఊ
is the pressure head. 

Where K is the loss 
coefficient



4.5 Energy Equation

• For steady-flow with one inlet and one outlet (with uniform profiles) and no 
shear work, negligible losses, and no shaft work:

4.5.3 Steady Uniform Flow

Identical to Bernoulli’s equation for a constant density flow.



4.5 Energy Equation

• If a turbine/pump is used, the efficiency of a device is needed, ηT

• The power generated by the turbine is:

4.5.3 Steady Uniform Flow

• The power required by a 
pump is:

The power is calculated in 
Watts, ft-lb/s, or horsepower 
(1 Hp = 746 W = 550 ft-lb/s)

• The pump head, HP is the energy term associated for a pump [ௐೄሶ
ሶ 
ሿ. If a 

turbine is involved, the energy term is called the turbine head (HT). 



4.5 Energy Equation

• If a uniform velocity profile assumption 
cannot be used, the velocity 
distribution should be corrected:

• Using a kinetic-energy 
correction factor α

4.5.4 Steady Nonuniform Flow

• The final equation that account for this nonuniform velocity distribution is:



Example: P.4.74. Find the velocity V1 of the water in the vertical pipe shown 
in Figure P4.74. Assume no losses. 





4.6 Momentum Equation

• Newton’s second law (momentum equation): The resultant force acting on a 
system equals the rate of change of momentum of the system in an inertial 
reference frame.

4.6.1 General Momentum Equation

• For a control volume:



4.6 Momentum Equation

• If flow is uniform and steady, for N number of entrances and exits, the 
previous equation can be simplified to:

4.6.2 Steady Uniform Flow

The momentum equation simplifies to:

With continuity:

Horizontal nozzle with one entrance and one 
exit



4.6 Momentum Equation
4.6.2 Steady Uniform Flow

As (V1)x = V1 and (V2)x = 0

Horizontal nozzle with one entrance and 
one exit

• To determine the x-component of the force 
of the joint on the nozzle:

• To determine the y-component of the force of the joint on the nozzle:



4.6 Momentum Equation

4.6.2 Steady Uniform Flow
• To find the force of the gate on the flow:



Example: P4.124. Assuming hydrostatic pressure distributions, uniform 
velocity profiles, and negligible viscous effects, find the horizontal force 
needed to hold the sluice gate in the position shown in Fig. P4.124. 







4.7 Moment-of-Momentum Equation

• Needed to find the line of action of a given force 
component.

• Needed to analyze flow situations in devices with rotating 
components (to relate rotational speed to other flow 
parameters)



4.7 Moment-of-Momentum Equation

• The general equation with attached inertial forces is:

MI is the inertial moment that accounts for the noninertial reference frame.



4.7 Moment-of-Momentum Equation

• When a system-to-control volume transformation is applied, 
the moment-of-momentum equation becomes:



Example: Water flows out the 6-mm slots as shown in Fig. P4.166. 
Calculate Ω if 20 kg/s is delivered by the two arms.












