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3.1 Introduction

- General equations of motion in fluid flow are very
difficult to solve.

Need simplifying assumptions.
In some cases viscosity can be neglected.




3.2 Description of Fluid Motion

3.2.1 Lagrangian and Eulerian Descriptions of Motion (Cont.)
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3.2 Description of Fluid Motion
3.2.2 Pathlines, Streaklines and Streamlines

{,HoA‘b
Pathline is the locus of points traversed by a given particle
as it travels in a field of flow. The pathline provides us with

a “history” of the particle’s locations.
y P 4 /

» Streakline is defined as an instantaneous line whose
points are occupied by all particles originating from some
specified point in the flow field. StreakILnes tell us where the
particles are “right now.”

Streamline is a line in the flow possessing the following

property: the velocity vector of each particle occupying a
point on the streamline is tangent to tW
In a steady flow, pathlines and streamlines are all coincident.

https://www.youtube.com/watch?v=Dqga1ldG 6c¢s
















































































































































































































Flow Visualization: Photo

(a)

Seeding

Spanwise flow structure

and mixing field are
examined using LIF

y CCD can

Fig. 13.23

o) 0:17/1:09

Laser sheet

Uy = 10 em/s

Req = 100

Up
~ Ug

2 Laser

)

Upper free-stream oscillates

sinusoidally at F = 6 Hz and

rms amplitude 10% of free-
), stream speed

Laser Induced Fluorescence (LIF): (a) experimental layout

3477e+005

https://youtu.be/hxIx70ONEfQq
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Fig. 13.21 Particle Image Velocimetry (PIV): (a) photograph of particle pathlines;

(b) scaled velocity vectors. (Courtesy of R. Bouwmeester.)
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3.2 Desgriptiop of Fluid Motion
3.2.3 Acceleration X, 3, | S (U\\R\-qry Vuv{-ou)

- Acceleration is the derivative of velocity (with respect to

time). - A
z Av dv Vsuz.'-vs.\-W\"

/ V(1)
,‘@ ZZ V(t + dr) l : ’
V(1)
// V(t + dr) u - A x ) \/ : am—
. . Th fluid particl ‘ >
FlL;ld ipa.gtlcle © S:tnt]iineutl +IZ‘2 o d ‘b t’














































































































































































































































































































































































































































































































































































































































































































































3.2.3 Acceleration

7z dV

V(1)
V(t+drt)
l(f/ V(t + dt)

. . The same fluid particle
i partlcle at time 7 + dt
at time ¢

Fig. 3.4 Velocity of a fluid particle.

- The acceleration is:  The scalar components of the
above equation in rectangular
coordinates are:

57= 'b\’ +U'3V +V'b\l \U’bv Qux =“¢\lx.;u‘§__; .W'W,H
At o 'Dj Az 2t w3





































































































































































































































































O
3.2.3 Acceleration O @
&"\'\'\ d.houng,y

If the observer’s reference frame is accelerating: ?)ane\-
Acceleration of a particle relative to a fixed reference frame is needed

Q=T
A_ O+ 35 3% 4+ 28XV 4 ﬂx(ﬁ’"') + o
~ . — 3k
e. G’ﬂ\ sq,kon No ma\ Tr quﬁf

acsleraion
oc on

'F an\ec'celeration given by the equation in previous slide
V: Velocity vector of the particle
r: Position vector of the particle
Q: Angular velocity of the observer’s reference frame

If A = a, the reference frame is inertial: a reference frame that moves with
constant velocity without rotating.

If A # a, the reference frame is noninertial.




























































































































































































































































































































































































































































































































































3.2.4 Angular Velocity and Vorticity

ok

Particle

SLAB': Va-VA = Y

Y

y

dy

As a fluid particle moves it may rotate
or deform. In certain flows or regions,
fluid particles do not rotate. These are
called irrotational flows

- Angular Velocity (): The average
velocity of two perpendicular line
segments of a fluid particle.

= Sapt Sta
c 2

orticity (w): Twice the angular
velocity.
w=2 .

An irrotational flow has no
x vorticity





















































































































































































































































































































































































Table 3.1 The Substantial Derivative, Acceleration, and Vorticity in Cartesian, Cylindrical, and
Spherical Coordinates

Substantial Derivative Vorticity
Cartesian
D _ u = + v 9 + wi
Dt 0x ay 0z
Cylindrical 1{d(rvg) 0
D T 9 30 )

— =9, — v
Dt Tor r o0 oz

Acceleration
Cartesian Cylindrical
o o ou ou 90, o, Vg IV, Y
Be=" T U= "Fl—— Clr=,'+0r,—' _6_’ z.—’__e
ot 0x ay 0z ot Jar 1 df dz r
Jv Jo Jdo dv Jdv Jo Vo 07, Jdu V0,0
a,="—tu_—+o——t+w_— a9=,—8+v,.,—6+—9,—6 UZ,8+'G
ot ax ay dz ot aor r o6 0z r
ow ow Jdw Jw Jdo Jdo Vg dU Jdv
a;=——tu_—_—+to__—+tw_— a,=—=+up,—=+2L—F% 49 —=
ot 0x ay 02 Ot ar r o6 102
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Example: The velocity field in a flow is given by V = 2xi + 2yj m/s. Find -
the acceleration, the angular velocity and the vorticity vector at the point

(2,-1,3)att=2s.
. \/ 2x 1 33 o2
.é_v\! U'BV -}V ‘aVJ- 2 N = z:)
cll:,



































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Example: For the flow shown in the figure below, relative to a fixed reference
frame, find the acceleration of a fluid particle at:
(a) Point A
(b) Point B
The water at B makes an angle of 45° with respect to the groun@d the
sprinkler arm is horizontal. A

A

=10 kK
10 rad/s S‘-‘Z. :) 3
'@) . Ae  —pI12 fisec L X @
' 4.5 ft ~ 45 fi 13 V\P‘\' Qc<e

F_, 60 tt/sec 5 + 25 *V*SL*(SL%T)
A Os-\'
h / % *?
JN
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A = zgl.x_\'/’ } Slx(ﬁx?)

N A N
A <2 (10Ex 1)+ 10K (loR<as%)

A= :quj-z.\soi‘ IS
A > -
Ay

) G0 Sin 60 Cos 4§ ﬁ
\p = LS ‘ CA

Op =0

AB = 2.( 10 ,l:- x(— 60 co) 453-\-603'“" a3 @ 4 5{, ,((Sl x-;fb
= 848'52 - quf - _s\.s:/

























































































































































































































































































































































































































































































































































































































































































































































































































































































































































3.3.2 Viscous and Inviscid Flows

A fluid flow can either be a viscous flow or an inviscid flow.

Inviscid flow: Viscous effects do not significantly influence the flow.
Viscous flow: Effects of viscosity are important.

Any viscous effects that (may) exist are confined to a thin boundary
layer.

The velocity in this layer is always zero at a fixed wall (due to

viscosity). <
—_— '—"7|
Tiver I
Bound Edge of
Inviscid olgge?ry boundary —
flow layer

_.__-—/ The inviscid flow outside the
i B boundary layer in an external
e flow is called the free stream.

Fig. 3.10 Flow around an airfoil.






































































































3.3.3 Laminar and Turbulent Flows

Viscous flow is either laminar or turbulent.

V(1) A V(t) A

~

o ol Honey

Fig. 3.11 Velocity as a function of time in a laminar flow: (a) unsteady flow;
(b) steady flow. —

S

V(1) ) ‘ | W\l | Vo) |

(a) WQ¥f ,G\OWJ (b) k

Laminar flow: Flow with
no significant mixing of
particles but with
significant viscous shear
stresses.

Turbulent flow: Flow
varies irregularly so that
flow quantities
(velocity/pressure) show
random variation.

A “steady” turbulent
flow is one in which the
time-average physical
quantities do not
change in time.

Fig. 3.12 Velocity as a function of time in a turbulent flow: (a) unsteady flow;
(b) “steady” flow.












































































































3.3 Classification of Fluid Flows

3.3.3 Laminar and Turbulent Flows L - ']2
Whether a flow is laminar or turbulent depen%on The Reynolds
Number:
Pr—— P

L: Characteristic Length
V L=D V: Characteristic Velocity

Re € Re it (Laminar clow): Kinemati Viscosit

If the Reynolds number is greater than the critical Reynolds
number ; flow is turbulent:

ivers and canals: Re_,. = 500 >















































































































































































































































































































































































































































































ALO .4 The Bernoulli Equation
A4

d A veaw Lina
The Bernoulli equation states that for
an inviscid fluid flow, an increase in
fluid velocity causes a decrease in
pressure

VZ ‘\. £ +3M — Cﬂ'l-"\‘ﬂ" Fig. 3.17 Particle moving along a streamline.
L]

Streamline

dh= (9_11 ds

f ds

R (radius of curvature)

1n

X

Assumptions
Inviscid flow (no shear stress)

)4
— =0
Along a streamline
Constant density

Inertial reference frame

Steady flow






































































































































































































































































































































































































3.4 The Bernoulli Equation

o
Anoffier Pn: oi?t eué’cruatlon (by dividing by g) iS:

Sta ¢ prevy ”
‘ \ = \/2. 4 Pz 4 hZ
deu "”w‘
h«f’ L—Ji—-/.
e

1. Pressure p, is called the static pressure (gage pressure).
2
2. Piezometric head is % + h and the total head is % +h+ :—g
3. The total pressure at a stagnation point (local fluid velocity is

2
zero) is the stagnation pressure. p + P =Dr





























































































































































































































































































































































































































































































































































































3.4 The Bernoulli Equation

P

9O Qéy =)
e
V —p—e —p— — Static pressure

2. . \/ opening

—.,
Fig. 3.18 Pressure probes: (a) piezometer; (b) pitot probe; (c) pitot-static probe\ \%
ol @

1. A piezometer (left) is used to measure \
static pressure. Y‘l X \’z ¥ ..?..2_ +Y

2. A pitot probe (center) is used to measure 3
total pressure.

a) Point 2 is a stagnation point.

3. A pitot-static probe (right) is used to
measure the difference between total an
static pressure.








































































































































































































































































































































3.4 The Bernoulli Equation

Streamline
dh = @ ds
ds

R (radius of curvature)

The equation above shows how the pressure
changes normal to the streamline.

Ap: Incremental pressure change
An: Short distance
R: Radius of curvature

Pressure decreases in the n-direction.
Decrease is directly proportional to p and V2
Decrease is inversely proportional to R




























































































































































































































Example: P.3.70. In the pipe contraction shown in Fig. P3.70, water flows
steadily with a velocity of V, = 0.5 m/s and V, = 1.125 m/s. Two
piezometer tubes are attached to the pipe at sections 1 and 2. Determine
the height H. Neglect any losses through the contraction.

Bemw\\ 3 Ly =z7.? Sheawmbing
(
._‘P_l-‘\'.v.:.!-z‘* ‘stz:-l'vz, 4 W? :_H_
| ?ﬁ w ‘% ater — V; g
Il_ — 0'25m
¥
925+ 05 = B4 1128 2/
19-6 19-6















































































































































































































































































































































































































































































































13.2 Measurement of Local Flow Parameters

Pressure
Manometer

e No burrs

Wall tap/yF ! L\ Manometer

tubing

(a)

Fig. 13.1 Manometer used to measure pressure: (a) inclined tube manometer;
(b) piezometer opening.



13.2 Measurement of Local Flow Parameters

Velocity

- Pitot-Static Probe

Total

pressure w Static
pressure
Static pressure = :J
holes (
T 7z T | y

/

/L

&k\“

1\

&Y

Tube aligned with
flow direction

Fig. 13.4 Pitot-static probe.



The Differential Pressure Flow Measuring Principle
(Orifice-Nozzle-Venturi)

http://www.youtube.com/watch?v=o0Ud4WxjoHKY




The Ultrasonic Flow Measuring Principle

http://www.youtube.com/watch?v=Bx2RnrfLkQqg







13.3 Flow Rate Measurement

Plane of vena contracta

Differential Pressure Meters witharea A,  \JQWA \o
Downstream of the restriction, the e l """
’ pressure Downstream
streamlines converge to form a minimal R P2 pressure
I

flow area A, texed the vena contractq. 1:' l.C %
Ny Al =V c(c‘m\w‘b — -

10 _ S~
—t-‘p “' !‘, +Z\ = YS_ "’vo + Z C ® c. Orifice plate with area A

U 6 X 6 Fig. 13.8 Flow through an orifice meter.
\\ \ = 'Y‘ + 'Z.;
b

3
\\c—:f&.\,za

4

Combining these two Equations and solving for V. yields

29 (hi-he (deal v?baly at






























































































































































































































































































































































































































































































































































































13.3 Flow Rate Measurement (Cont.)

\,O W ¥ Q Plane of vena contracta
with area A,
Q = Vc, Ae

Upstream [

Fig. 13.8 Flow thro rifice meter

W(Qa dhoal ) Ce = Ac C,A=QCv

, _ C('. ..cpnx-'gg-\‘ow CQC,H.
d.d- CJ Ao ?—3("\\- l Cv:\ldor.d? ol

V \ - ?“ CJAKSQM@.? c.oq@ du\-‘

\_. (AC) '00/ Orifice plate with area A,















































































































































































































































































































































































































































































































































































































































































































































































13.3 Flow Rate Measurement (Cont.

Qactool = KAo 29(l- he

’ n D and D/2 taps k
|-r ang®

— (.01 to 0.02D

Orifice Meter

|
| —

Do—)—

OEE——

Fig. 13.9

.
v o

~—— Flange taps

}<~ 25 mm

~<~— 25 mm

Details of a thin-plate orifice meter. (FLUID MECHANICS MEASURE-

MENTS by G. E. Mattingly. Copyright 1996 by Taylor & Francis Group LLC-Books.
Reproduced with permission of Taylor & Francis Group LLC-Books in the format

Textbook via Copyright Clearance Center.)





























































































































































































13.3 Flow Rate Measurement (Cont.)

Venturi Meter

The venturi meter has a shape
that attempts to mimic the flow
patterns through a streamlined
obstruction in a pipe.

Flow Nozzle

The flow nozzle consists of a
standardized shape with pressure
taps typically located one
diameter upstream of the inlet and
one-half diameter downstream.

QHL&”I/W:-

) 15 to 30°
Pipe with o Wi Pipe with
diameter D tameter Lo diameter D
Fig. 13.11 Venturi meter.
E D | D/2 o
P P2
= { | —m
— DO D

Fig. 13.12 Flow nozzle.



Venturi meters
and nozzles
|

Measurement : / \

(Cont.)

Flow
coefficient K ~

Do=0Swm

0.9

]
(]
'
= ' Orifices

B=0.80

(]
B=0.40 \\\ '|
N
/ e
o = p=0.70

B=0.60

P \ . 0 101 2 103
P q 4
and = y
-
Vo Do OFig. 13.10 efficl versus the Qeynolds numbg
e L — ot meters. (Ad#ple @ mneering Fluid Mg [Coeif
a® / o ’ - g . = 3
v, Inc., New York. Reproduced with permission of John Wiley & Sons, Inc.)











































































































































































































































































































































































































































































Uy 1
Exainple of application: Water flows through the Venturi

metgr shown in the figure below. The specific gravity of the
manpmeter fluid is 1.52. Determine the flowrate. g o

? ® Vis'e =122x10 /3

/K -~——{3in. & W aley

i \ =1
Z‘ i® ¥ —‘QSG—152 N
_' — 3w = 0S5

heve 2)==
W= Tia (‘t. =T2) Y [ 64
M'Lr.?}‘\'Zz < h=he = ’\H}





























































































































































































































































































































































































































































































































































































































































































* ‘FW&\ W ANOwe Jer ’PA 'PAl

?l-)'\‘)v(’ 2 + Xw()( _\ -\*\SZXw ‘}%)
h "?z = —?—W"/+ 2| sszf

YU )z.y
hi-he = T-P2 _ 0.08664

=\ 2(90:0
k=10, Qm\d‘u_ \MET{] 24322 (
Ocale= 0-U16 .H;/_S












































































































































































































































































































































































































































































































































































































































































































































































































































































































P_,_o Q - Yy¢0-16 s = {8425
3-1416X 3 X |-22X10
12

PV
\-O Becou ):3«.:) = knew)
. 3
Thn Qaupak = 0N £

Le.-‘ Yoy L-O‘M—..\a ng Jiwn
|+00 (j\ ’Gﬁb
@ 0°‘15}6 e
©-9
096G @“'®
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The Integral Forms of the
Fundamental Laws

Arturo S. Leon, Ph.D., P.E., D.WRE



4.2 The Three Basic Laws

- The integral quantities in fluid mechanics are contained in the three
laws:

Conservation of Mass
First Law of Thermodynamics
Newton’s Second Law

- They are expressed using a Lagrangian_description in terms of a

System at
time ¢ + At

Fig. 4.1 Example of a system in fluid mechanics.
















































































































































4.2 The Three Basic Laws 3=

CONSERVATION OF MASS: Mass of a system remains consgnt
Sc; Va) :'.jg AV’
Integral form of the mass-conservation equation.
Dﬂ d p = Density; d¥~= Volume occupied by the
- O particle

Dt 'pg =0

FIRST LAW OF THERMODYNAMICS: Rate of heat transfer to a system
minus the rate at which the system does work equals the rate at which
the energy of the system is changing.

® o p
Q - w =_P. e i , Specific energy (e): Accounts for kinetic
’D‘b energy per unit mass (0.5V?), potential

o energy per unit mass (gz), and internal

Q 'LQ.\." of kgq,l- _\r“,P_;nergy per unit mass ({).
L to e syt

W = The yale at which the sgslew does werk



























































































































































































































































































































































































































































































































4.2 The Three Basic Laws

NEWTON’S SECOND LAW: Resultant force acting on a system equals
the rate at which the momentum of the system is changing.

In an inertial frame of reference d
momeniumn 0_[ @ _‘:lm

SF= D (SZEAVL Povhcle is given
Dt bj vdwn















































































































































































































4.2 The Three Basic Laws

Control Volume: A region of space into which fluid enters
and/or from which fluid leaves.

System and control T I System at
volume identical time 1 + At

at time ¢ Control volume
\ BEET at time ¢ + At
I |

e T )

Fig. 4.2 Example of a fixed control volume and a system: (a) time #; (b) time ¢ + At.











































































4.3 System-to-Control-Volume Transformation

Interested in the time rate of change of an extensive property to be
expressed in terms of quantities related to a control volume.

Involves fluxes of an extensive property in and out of a control
volume.

Flux is the measure of the rate at which an extensive property
crosses an area.

Exensive rtyy Inlendive 9 VOP“'\'Y
Nehitere

































































































































































































































































































Control surface: The surface
area that completely encloses
the control volume.

7. Unit vector normal to dA
(always points out of the control
volume)

n: Intensive property

A E -\-}b‘\'

The flux across an element dA is: D D

“\"""SWQNM " ey +42ntk

Only the normal component of CIQ\WP\& .

-V contributes to this flux. -—)

mom W





















































































































































































































































































































































































































4.3 System-to-Control-Volume Transformation

Reynolds Transport Theorem

The Reynolds transport theorem is a system-to-control-volume
transformatiop

This is a Lagrangian-to-Eulerian transformation of the rate of Change of an
extensive quantity.

First part of integral: Rate of change of an extensive property in the
control volume.

Second part of integral: Flux of the extensive property across the
control surface (nonzero where fluid crosses the control surface).














































































































































































































































































4.3 System-to-Control-Volume Transformation

Reynolds Transport Theorem

An equivalent form of the control volume is: AW\“,mD ‘“\0. \ﬁ\k\\;“z
vvle

-3
Dt [ FSUTYH Jrp-von
Dt -V C-S

The time derivative of the control volume is moved inside the integral:

For a fixed control volume, the limits on the volume integral are
independent of time.

























































































































































































































































4.3.1 Simplifications of the Reynolds
Transport Theorem

Device

Steady-state (time derivative is zero): D ”JSS‘\’ 5 y“ .V A A
\aady siale)

Often one inlet (A,), and one outlet (A2)
Dist = §,To oVedh - 5 15V dA
DL Al

For uniform propertles over a plane area:

_N-“-:\-&\ = V]Zszz.AZ,"‘ N 5V Ay
DL





























































































































































































































































































































































































4.3.1 Simplifications of the Reynolds Transport Theorem (cont.)

Device

DNugs} — V v. (Yly) i
Dt Y'zszz'Az' nlglvl A






































































































































































4.4 Conservation of Mass

DMay _ dv  (oh.VdA
Dt a%. 5 53

Mass of a system is fixed.

C-v: Cs:
For a steady flow, this simplifies to: @
N —
D4 C-S @
Uniform flow with one entrance and one exit: /

Svia = e Az

For constant den;ity the continuity equation is only dependent on A and V

\h AL = Ve AL (°“\J when
u) ? 1 ans-\-cm'\')
rale


































































































































































































































































































































































































































































4.4 Conservation of Mass (Cont.)

\/

— V|

s

=4

Fig. 47 Nonuniform velocity profiles.

If the density is uniform over each area, with nonuniform velocity profiles:

S\ A\V| = .Yz_ AL—V—Z: (averages can also

be used)

The mass flux m (kg/s or slug/s) is the mass rate of flow

Where V, is the normal component of velocity.




































































































































4.4 Conservation of Mass (Cont.)

V)

\/

— Vl f——

‘\

/

Fig. 4.7 Nonuniform velocity profiles.

The flow rate (or discharge) Q (m3/s or ft3/s) is the volume rate of flow:

_ Vs A= \VIA
Q“'V [\

Mass flow rate is often used in compressible flow. The flow rate is
often used to specify incompressible flow.

























































Example: P.4.63. A 1-m diameter cylindrical tank initially contains liquid fuel
and has a 2-cm diameter rubber plug at the bottom as shown in the figure
below. If the plug is removed, how long will it take to empty the tank.

’V“::'ﬂxé)-g'\"\) Ae = -‘-‘}%9-2;

































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































M =564 X

St = |33 e<owdl




















































































































































4.5 Energy Equation ‘] =e

This equation is required if heat is transferred (boiler/compressor) or work is
done (pumpl/turbine).

Can relate pressures/velocities when Bernoulli’'s equation cannot be

used
¥
~W = SQS’

Where e is the specific energy and consists of the specific kinetic energy,
specific potential energy, and specific internal energy.

C= _y_24— 9 + J Y : wmlemal eneyy
2

In terms of a control volume:

=
N
o
Q-w=2 (e§¥ +S°’5’“°V A
d C-V- C-$
Q: Rate-of-energy transfer across the control surface due to a temperature
difference.

W: Work-rate term due to work being done by the system.







































































































































































































































































































































4.5 Energy Equation
4.5.1 Work-Rate Term

The work-rate term is from the work being done by the system.
Rate of work (Power) is the dot product of force with its velocity.

* e The velocity is measured with
W = ? = = F.Vv respect to a fixed inertial

reference frame. Negative sign
IS because work done on the
control volume is negative.

If the force is from variable shear stress over a control surface:
-
[ ]
W = —5 T-vdA

CeS.

=3
T is a stress vector acting on an elemental area dA












































































































4.5 Energy Equation

4.5.1 Work-Rate Term

W =

. ?G.V&A ¥ wS\near + WS Wy

C-§. \pressure

The terms are summarized as follows:

[pn+V dA

Work rate resulting from the force due to pressure moving at
the control surface. It is often referred to as flow work.

Work rate resulting from rotating shafts such as that of a
pump or turbine, or the equivalent electric power.

Work rate due to the shear acting on a moving boundary, such
as a moving belt.

Work rate that occurs when the control volume moves rela-
tive to a fixed reference frame.



















































































































































4.5 Energy Equation
4.5.2 General Energy Equation

rom.the previQus eguation.the energy equation can be rewritte
C.Q—'V.\Is— 5\”@ W]'_= d e\y&’v‘ _\,5 (e_\-i):gﬂ Vcl\
c.v C.s-

Losses are the sum of all terms for unusable forms of en

Can be due to viscosity (causes friction resulting in increased internal

energy).
Or due to changes in geometry resulting in separated flows.































































































































































































































































































































































4.5 Energy Equation

4.5.3 Steady Uniform Flow

For steady-flow with one inlet and one outlet (W|th uniform profile) and no
shear work, the foIIowmg energy equation is use V
dA

Q—-wssj(v 92+ P+u)yvs

y;\syAV
-WS = V2 _.V\z'_\, PZ -" -l'Zz,—Z\ ¥
™9 29 By % h hea
losse )
There 7, 1s TeHead TosstdMensIons of leng
~s S e
\'\L = UZ"UA — _9_. ZjWhereKisthe loss

hL:: kV e
3 ‘V;\ 2'—. coefficient
y, 9

vZ, D).
410 a,and;lsLm'E'meum'n?a'd.










































































































































































































































































































































































































































































































4.5 Energy Equation
4.5.3 Steady Uniform Flow

For steady-flow with one inlet and one outlet (with uniform profiles) and no
shear work, negligible losses, and no shaft work:

]

|dentical to Bernoulli's equation for a constant density flow.













































































































































4.5 Energy Equation

4.5.3 Steady Uniform Flow

If a turbine/pump is used, the efficiency of a device is needed, n;
The power generated by the turbine is:

Wy =YQ Ny 7 T :ﬁ-r:e:?e

The power is calculated in
Watts, ft-Ib/s, or horsepower
(1 Hp = 746 W = 550 ft-Ib/s)

The power required by a
pump is:

The pump hedd; FiztsTthe energy term associated for a pump [1%]. If a
turbine is involved, the energy term is called the turbine head (H-).












































































































































































































4.5 Energy Equation
4.5.4 Steady Nonuniform Flow

If a uniform velocity profile assumption
cannot be used, the velocity
distribution should be corrected:

Using a kinetic-energy

correction factor 0 rFlg ol Nonunlform velocity profiles.
K
=) VA
ol = - V | average \jd.oa.b

VA

The final equation that account for this nonuniform velocity distribution is: *












































































































































































































































































































































































































Example: P.4.74. Find the velocity V, of the water in the vertical pipe shown
In Figure P4.74. Assume no losses.

Berneolli ) - @ 4

_Y_l_-\'\l\ta"f'\ =E€*\_Ig.z_'+zz. @ ”%
¥ Zs ¥ 23 I0cmdia. |4 o --- X

Bernou\\ ; O(Sh-\-n‘om

2m






















































































































































































































































































































































































































































































































































































































































































































¥ Manowelers Th = Pal

)

- @-'

‘L@ 2 % 13.6¢(04)
w 9 2 2-4 u
l’.l_ _"2413:6(09) -2-Y4
\
2x9- B Ny = 9-94 M/_S

































































































































































































































































































































































































































































































































































































4.6 Momentum Equation

4.6.1 General Momentum Equation

Newton’s second law (momentum equation): The resultant force acting on a
system equals the rate of change of momentum of the system in an inertial
reference frame.

ZF=D2D (pVa¥
Dt sys+

For a control volume:

sr=4d (gvav + (v (V-n)dA
dt .S

C-V-












































































































































































































4.6 Momentum Equation
4.6.2 Steady Uniform Flow

If flow is uniform and steady, for N number of entrances and exits, the
previous equatlon can be simplified to:

ZF = z Y A, V\(V'“)

Horizontal nozzle with one entrance and one
exit

The momentum equation simplifies to:

SF = j’zAsz.(V?-) - S AV, (V.)

With continuity: S‘ A\ V' = ?Z szz:.";
=F=wm(V) -wW


















































































































































































































































































































































































































































































































































































4.6 Momentum Equation
4.6.2 Steady Uniform Flow

@t Horizontal nozzle with one entrance and

one exit

To determine the x-component of the force
of the joint on the nozzle:

Z.I:Xf-" N.\ (VL* — le,)
_F"’o‘m\' ""RA\ =‘°n(o-\l.)

— ( Feromt =NA + Vi
@ —7 As (Vi),=Vyand (Vy), =0
To determine the y-component of the force of the joint on the nozzle:
ZFD =WM (Vza - V\’)
F."Jo\w\ ~PA,=wm (\“L - 0)
3'50\“4 = YV.\ VZ. +?Z AZ.


















































































































































































































































































































































































































































































































































































































































































4.6 Momentum Equation

4.6.2 Steady Uniform Flow o
_ ZF =M (sz,"vpa
To find the force of the gate on the flow:

F, = _.\ghA-xlu(h.b) = *M-b F-F-Froke
Fa=ywh = Xhz(“zb) ’X\ﬂz b — ‘&(VL" \/“)

/..__

w2z MVI = ANz

Fig. 4.12 Force of the flow on a gate in a free-surface flow.





























































































































































































































































































































































































































































































































































































































































































Example: P4.124. Assuming hydrostatic pressure distributions, uniform
velocity profiles, and negligible viscous effects, find the horizontal force
needed to hole sluice gate in the position shown in Fig. P4.124.

. — Sluice gate F = _l_ \6 hzb »
v Foae ' 7T | (he0)(a91)6 (4)

:2:1—06,320 N
N \:zs_z\._.*&htb =284- 8N

= o (Vz:x;v")
Fi-Fo-Faale = M(VL_V‘) @

V&\:}(A\Vl :)%ALVL



























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































K &mou\\» Es- (—\-o? 5}mmmm}

_;_?'WA +Zh /34—\/3 + g

V'+Co Vz+6)2_ '
23 3 @

+* AWV, = Az\'z,C& =&)

6%\“ = 0-#\/2. ~ IVL:?’OW ! @
Z.

Vi = 0:3S6 m}
V2= 10:6Fm(s ™





















































































































































































































































































































































































































































































































































































































































































In @
Faq_\_e,: F\’FZ e Y\.I\. (VZ.""\,l )

ko = 306379 -384: 8 -
qu | QSUY (\6.6}'0'35 6)

Fan—Q-':- SEAICE

- =






















































































































































































































































































































































4.1 Moment-of-Momentum Equation

- Needed to find the line of action of a given force
component.

- Needed to analyze flow situations in devices with rotating
components (to relate rotational speed to other flow
parameters)



4.7 Moment-of-Momentum Equation
The general equation with attached inertial forces is:

ZM—H: = D ?xVSdV’

M, is the inertial moment that accounts for the noninertial reference frame.



































































































































































































































































































4.7 Moment-of-Momentum Equation

When a system-to-control volume transformation is applied,
the moment-of-momentum equation becomes:

















































































































































































Example: Water flows out the 6-mm slots as shown in Fig. P4.166.
Calculate Q if 20 kg/s is delivered by the two arms.

S cm 15 cm

- AVTQ'A — 1 Q ’4 T »‘
< -— < N —
2cmdia’(!'=0-o| V l l l
Q
EY eo.c\/\ aYmm Fig. P4.166

m =20 = 1o Ky N
A\/—woomo oNo [~

Vo = 31" 8!*/_5
* vav\-sw.db

Flc\u W = Ftow oul

[0 =
O-1S™
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