Florida International University

 CWR 3201 Fluid Mechanics, Fall 2023

 CWR 3201 Fluid Mechanics, Fall 2023}

Mid-term \# 2

Instructor: Arturo S. Leon, Ph.D., P.E., D.WRE

 Student Name: \qquad Panther ID: $\qquad$$\checkmark$ You will have 1 h 15 minutes to complete the exam. The exam is closed book and closed notes.
Only one page (front and back) with handwritten equations are allowed

1. (35 points) Water flows at $10.2 \mathrm{~m} / \mathrm{s}$ in a $10-\mathrm{cm}$-diameter stem of a horizontal T-section that branches into $5-\mathrm{cm}$ diameter pipes as shown in the figure below. Find the force of the water on the T-section if the branches (e.g., $5-\mathrm{cm}$ diameter pipes) discharge to the atmosphere (e.g., air). Neglect viscous effects.

2. ($\mathbf{3 0}$ points) For the pipeline below, the friction factor f is 0.029 , the pipe diameter is 1.2 m , and the flow rate through the pipe is $4.4 \mathrm{~m}^{3} / \mathrm{s}$. Determine the reservoirs elevation difference.

3. ($\mathbf{3 5}$ points) The $\mathbf{2 0 5}-\mathbf{m m}$-outer diameter of impeller pump represented in the figure below is used to move water between two reservoirs through a pipeline with the following characteristics: $D=125 \mathrm{~mm}$, $L=70 \mathrm{~m}, f=0.018, \Sigma K=1.7$. Determine the actual discharge and pump head when two pumps in parallel are used (each pump is $\mathbf{2 0 5} \mathbf{- m m}$ outer diameter of impeller). The elevation difference between the reservoirs is $30 \mathrm{~m}\left(z_{2}-z_{1}=30 \mathrm{~m}\right)$.

