
Florida International University CWR 3201 Fluid Mechanics, Fall 2022 Final Exam

Instructor: Arturo S. Leon, Ph.D., P.E., D.WRE

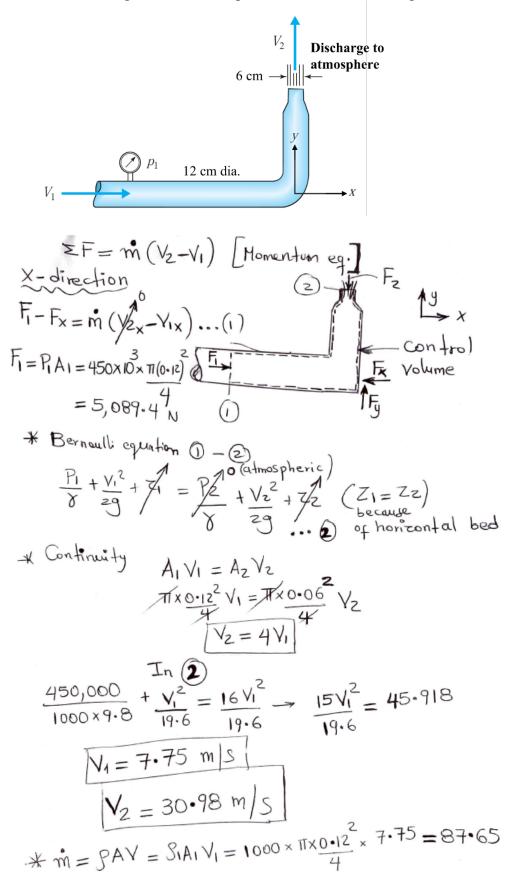
 Student Name:

 Arturo Leon
 Panther ID:

- \checkmark You will have 2 hours to complete the exam. The exam is closed book and closed notes
- ✓ Only two pages with handwritten equations are allowed (no photocopies or artificially reduced text will be allowed)
- \checkmark No cell phones or any type of communication device will be allowed.
- ✓ The final exam consists of five questions; however, the **grading will be based on four questions only**. If five problems are solved, the grading will consider the 4 solutions with the highest scores.
- 1. (25 points) Determine the magnitude of the horizontal and vertical components of the hydrostatic force acting on the curved surface *AB* shown in the figure below, which has a radius of 2 m and a width of 4 m. The specific gravity of the liquid is 4.0.

$$F_{H} = \chi h A = 4 \times 9800 \times (12 + 1) (2 \times 4) = 4,076,800 \times 10^{-1} \text{ M}$$

$$= 4,076 \cdot 8 \text{ KN}$$

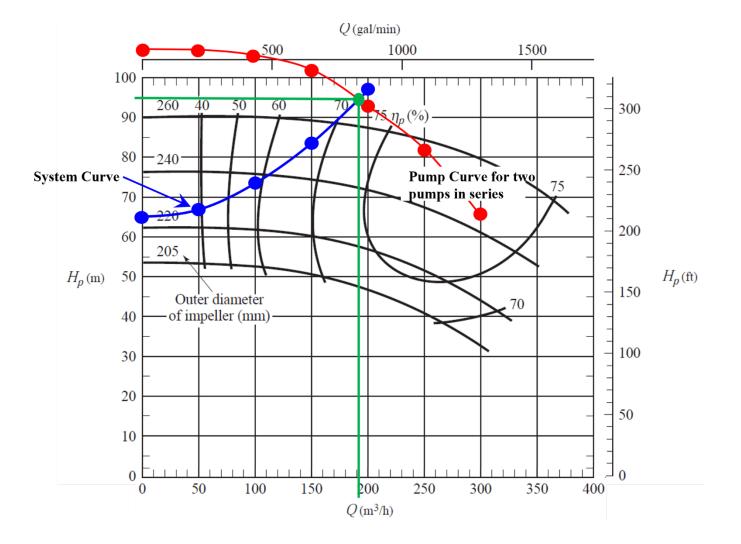

$$F_{V} = \chi + \frac{1}{2} \times 14 - \frac{\pi R^{2}}{4} = 4 \left(28 - \frac{\pi (2)^{2}}{4}\right)$$

$$\forall = 4 \left(28 - \pi\right) = 99 \cdot 43 \text{ m}^{3}$$


$$F_{V} = 4 \times 9800 \times 99 \cdot 43 = 3,897,656 \text{ N}$$

$$= 3,897 \cdot 7 \text{ KN} + \frac{1}{2} \text{ KN} + \frac{$$

2. (25 points) Determine the horizontal force components (F_x and F_y) of the water on the horizontal bend shown in the figure below if the pressure P_1 is 450 kPa. Neglect head losses.



In (i) $5089.4 - F_x = 87.65(-7.75)$ $F_x = 5769 N = 5.8 KN$ y - direction $F_y - F_2^{-1} = \dot{m}(V_{2y} - V_{1y})$ $F_z = P_z^{-1}A_z = 0$ $F_y = 87.65(30.98)$ $F_y = 2715.4 N = 2.7 KN$ 3. (25 points). The canal shown below is to be widened so that the water flow discharge can be increased. If the additional width, *L* is 3 ft, by what percentage will the flow discharge increase with respect to the initial flow discharge. All other parameters (i.e., flow depth, bottom slope, surface material, side slope) are to remain the same.

4. (25 points) The 205-mm-outer impeller diameter pump represented in the figure below is used to move water in a piping system. The pipeline has the following characteristics: D = 100 mm, L = 50 m, f = 0.02, $\Sigma K = 3.2$. Determine the actual flow discharge (m³/s) and pump head (m) when two pumps in series (205-mm-impeller diameter pump) are used. The elevation difference between the reservoirs is 65 m ($z_2 - z_1 = 65$ m).

$$\begin{array}{l} (4) \\ D = 0.10 \text{ m, } L = 120 \text{ m, } f = 0.02, \quad \Sigma \text{ k} = 3.2 \\ Q =?, \quad H =?, \quad Z_2 - \mathbb{Z}_1 = 65 \text{ m} \\ \text{System curve} \\ \text{Hp} = Z_2 - \mathbb{Z}_1 + \left(\frac{fL}{D} + \Sigma \text{ k}\right) \frac{Q^2}{Q} \\ Hp = 65 + \left(\frac{0.02 \times 50}{0.10} + 3.2\right) \frac{Q^2}{19.6} \left(\frac{\pi \times 0.1^2}{4}\right)^2 \\ \text{Hp} = 65 + 10917.9 \quad Q^2 \\ Q \text{ is in } \frac{m^3/s}{2} \end{array}$$

*Two pumps in series we draw pump curve for two pumps in series Hp=a+bQ+CQ² (one pump)

Plot of system curve		Hp=za+zbQ+zcQTwo pumps Hp(m)	
$Q(m^3/h)$	$Q(m^3/s)$	$H_{P}(m)$	
0	0	65	From the graph above
50	0.0138	67.1	H = 95 m
100	0.0277	73.4	$Q = 190 \text{ m}^{3}/\text{h}$
150	0.0416	83.9	$Q = 110 \dots 11$
200	0.0277 0.0416 0.0556	98.7	Q = 0.0528 m/s

5. (25 points) The channel below carries a discharge of 10 m^3 /s of water with a velocity of 1.0 m/s. If the channel is designed for **maximum hydraulic efficiency** conditions, what should be the bottom (*b*) and the side slope (*Z*) of the channel?

Derivative rule for a power function: $\frac{dx^n}{dm} = nx^{n-1}\frac{dx}{dm}$ v = 2 mZ = ?h = ?Maximum hydraulic efficiency: Prinimum $A = by + \underline{z} y^{2}$ $P = y + b + \sqrt{1 + z^{2}} y$ y = 2m y = 1 z = 1A = 2b + 2ZP= b+2+2V1+2 $P = 6 + 2 + 2\sqrt{1+z^{2}} \qquad -\sqrt{2}$ $\frac{\partial P}{\partial b} = 0 \rightarrow 0 = 1 + z(\frac{1}{2})(1+z^{2})(2z) dz$ $-1 = \frac{2z}{4b} = \frac{dz}{4b} \rightarrow \frac{dz}{4b} = -\sqrt{1+z^{2}}$ $\frac{dz}{4b} = -\sqrt{1+z^{2}}$ $\frac{\partial A}{\partial b} = 0 \quad 0 = 2 + 2 \frac{dZ}{db}$ $-2 = \frac{z}{\left(-\sqrt{1+z^{2}}\right)} \xrightarrow{-2} 2Z = \sqrt{1+z^{2}}$ $\frac{dZ}{dz} = 1 + \frac{z^{2}}{z^{2}}$ 37=1 $3\vec{z} = 1$ $\vec{z} = \sqrt{\frac{1}{3}}$

$$A = 10 \text{ m}^{2}$$

$$10 = 2b + 2\sqrt{\frac{1}{3}}$$

$$b = 4.42 \text{ m}$$