SIMPLE/360 COMPUTER SIMULATOR

1.0 INTRODUCTION

SIMPLE is a fast simulator which duplicates the actions of a very simple
computer. It is especially designed for student use, with most jobs using
well under one second of computer time. To the user, SIMPLE is an imaginary
computer which can be accessed by means of a SIMPLE Assembly Language (SAL).
For each new job, the SIMPLE Assembler is called in, which will read the SAL
program. After the program is read in it will be loaded into the SIMPLE
memory automatically and executed until ndrmal completion is reached or an

error occurs.,

1.1 PREPARING INPUT FOR SIMPLE

| All input to SIMPLE must consist of 80 column cardé punched on a keypunch.l
These cards are stacked into a card deck which is read by SIMPLE in sequence.
These cards can be grouped into three categories: 1) Control cards which
control the translation and execution of a job; 2) Program cards through which
the user can direct SIMPIE's actions; 3) Data cards which contain numbers to
be read by the user's program during execution.

1.2 SYSTEM INPUT

SIMPLE reads cards off of a high speed card reader, with certain columns
being used for each of the three types of cards. Information for control cards
may be punched between columns 1 and 72;>with the user free to use columns 73
through 80 as he desires. The exact formats of the control cards are giveﬁ in
sections 2.0 through 2.3 below. Information for SIMPLE Assembly Language pro-
gram cards may be punched between columms 1 and 72, once again with the user
free to use columns 73 through 80 as he desires. Tﬁe‘format for program cards

is given in section 3.0 below. Data cards use all 80 columns and therefore

See Appendix A for a keypungh description

1-2

the entire card is scanned for input data. Furthermore, numbers to be read
as data are not confined to any particular columns, but instead may be spaced
freely across the card, with blanks separating the numbers.

1.3 SYSTEM OUTPUT

All SIMPLE output is directed to a high speed printer. The printer is

used for program card listings, program execution output, and error messages.

2.0 CONTROL CARDS AND JOB STRUCTURE

Running a job on SIMPLE requires the use of only three system control
cards, which are identified by a dollar sign ($) in column one bf the card.
Every job must utilize all three of the control cards described below. The
dollar sign in column one is always immediately followed by a control keyword.
No intervening spaces are allowed. Over each of the following figures of
card descriptions, numbers appear stating in which columns the informétion
must start and end.

1 2 6 8 15 17

$ BEGIN account # name

Figure 1 Format of a $BEGIN control card.

2.1 SBEGIN CARD

The $BEGIN card serves two purposes: 1) It tells SIMPLE thaﬁ a new job
is coming up in the card reader and starts the appropriate initialization |
processes; 2) It identifies the programmer as a valid user of the system
through the account number. The $BEGIN card follows the standard control card
format of a dollar sign in column one followed by the keyword BEGIN. An eight
character account nuﬁber issued tothe user by the computer center is contained

in columns 8 through 15. The user's name then appears, starting in column 17.

12 5
$SDATA »
Figure 2. Format of a $DATA card.

("

2.2 SDATA CARD
The SDATA card serves three purposes: 1) It tells SIMPLE that it has

read in all of the program cards; 2) It has SIMPLE load the SAL prograﬁ
into the SIMPLE memory, with execution starting at location zero; 3) It
indicates that data cards to be scanned for input numbers may be following.
The $DATA card has the standard control card format of a dollar sign in
column one followed by the keywofd DATA in columns 2 through 5. The rest
of the card is ignored and should be left blank.

12 4

S$END

Figure 3 Format of a $ END card.

2.3 SEND CARD

The $END card is used to indicate the end of the user's deck and
therefore should always be the last card in the deck. It has a dollar sign

in column one followed by the keyword END in columns 2 through 4.

2.4 SUMMARY
All SIMPLE jobs should be set up in the order given below:
1. It contains the account number starting in column 8 and the
programmer's name starting in column 17,
2. Next come program cards containing the SAL program.
3. The program is followed by a $DATA card.
4, Data cards, if necessary, come next.

5. A SEND card is always the last card in the deck.

1-4

A pictorial diagram of an input deck is given in Figure 4.

$BEGIN . EES536500 Doucette

SAL Program Cards
$DATA -
Optional Data Cards

$END

Figure 4. Input deck form.

3.0 THE STMPLE ASSEMBLY LANGUAGE
| The operations of a computer can be reduced to a step by step execution
of a relatively few basic instructions. To understand the way in which a

computer works, consider Figure 5 below:

 Figure 5 Block Diagram of a Typical Computer.

1-5

Figure 5 represents a typical computer in block diagram form. In the
case of SIMPLE all of these components are present. The input unit would be
the card reader. The output unit would be the high speed printer.

The SIMPLE memory is a device in which numbers are stoped for calculations
and other purposes; Obviously, a memory containing numbers with no method of
accessing them for processing would.notbbe a useful device. ‘Therefore a means
must be created for getting at these numbers. First, it must be decided how
many digits a number must be and in what number system the memory (and the
rest of the computer) will operate.. SIMPLE operates in the decimal number
system with all numbers being four digits long. Second, a means must be
found for accessing a particular number in the memory. One method is shown

in Figure 6. The four digit numbers can be considered to be arranged one

behind the other in memory. Each number is then assigned a location number
or address, with the first number having address zero, the second number
address one, and so on up through thevlast number which will have the highest
address. The SIMPLE memory has a capacity of 100 numbers, having addresses
from O to 99. 1In addition, all addresses have two digits, with zeroes put

on the front of the number if necessary. Therefore, the SIMPLE memory has

addresses ranging from 00 to 99,

Figure 6 SIMPLE Memory Arrangement.

g

1-6

The arithmetic unit is where all of the computer's calculations are per-

formed, In addition to the electronic circuitry necessary to do these
caiculations, places are needed for numbers which are to be acted upon to be
placed and results made available. These places are called registers,

which may be thought of as being similar to the cash register where the re-
sults of intermediate calculations (the figuring of the bill) are displayed.
SIMPLE ha;”one register, which is called the accumulator, sometimes abbrevi-
ated as AC. It is only through the accumulator that the arithmetic unit can
communicate with the rest of the computer.

The control unit is the heart of the computer, for it is the control

unit which directs every action that the computer performs. The entire sub-
ject of computer programming then reduces to having the control unit issue
the proper commands to obtain the desired results. The control unit is
designed to direct certain basic actions. The SIMPLE control unit can direct
oniy 11 such.actions. Each action has a two digit numeric code associated

with it called the operation code or opcode for short. This means that

SIMPIE has 11 such codes (one’for each basic action) running from 00 to 10
(note that two digits are needed for all opcodes since the opcode 10 is a

two digit number). For example, if the control unit receivesvan dpcode of
00, it will stop SIMPIE. - The next question that arises is how does the

control unit receive opcodes. The answer is that the control unit fetches

a four digit number from the memory and uses the first two digits as an opcode.

The second two digits are used as a memory address for memory accesses during
the action being performed and is called the operand part of the number.

Numbers which are fetched by the control unit and used to direct operations

through their opcodes are called instructions. The control unit fetches

instructions sequentially from-the memory unit and keeps track of which

@

()

1-7

instruction it is supposed to fetch next by means of its instruction counter.

For eéch instruction, the control unit goes through the following steps:
1. Tetch the instruction from memory into the control unit. (Location
of the instruction is specified by the location counter.)
Add one to the location counter.
2. Interpret the instruction and route the required data.
3. Execute the instruction.

4, Store the results and return to step one.

At this point the basic actions of SIMPLE, also known as the SIMPLE

instruction repetoire or instruction set will be examined.

3.1 THE STMPLE INSTRUCTION SET

FEach instruction in the SIMPLE instruction set ié identified by a two digit
opcode. As an aid to the programmer, each instruction also has an abbreviation
called a MNEMONIC which describes in a compact way what the instruction does.
In the list below, the opcode and mnemonic is given first, followed by a
brief description of the action performed:

0 0 STP STOP THE COMPUTER

On encountering this opcode, the SIMPLE control unit would stop fetching

instructions from memory and all activity would cease. Intervention by

the computer operator would be required to restart the machine. In the

SIMPLE simulator, this opcode would terminate egecution of the job and

would have SIMPLE go on to the next job. The operand field of the

instruction is not used.
0 1 FET FETCH TO ACCUMULATOR

This opcode has the control unit fetch the number from memory at th;

address in the operand field and put it in the accumulator. The number

in the memory is not changed, but the old number in the accﬁmulator is

erased and replaced by the number from memory.

- 1-8

0 2 ADD ADD NUMBER TO ACCUMULATOR

0

The control unit fetches the number at the operand address in the memory
and has the arithmetic unit add it to the number in the accumulator,
putting the result back in the accumulator. The old value of the accumu-
latof is destroyed when it is replaced by the sum. Memory remains
unchanged.

SUB SUBTRACT NUMBER FROM ACCUMULATOR

The éontrol unit fetches the number at the operand address and has the

arithmetic unit subtract it from the number in the accumulator, putting

. the difference back in the accumulator. The old value of the accumu-

lator is destroyed when it is replaced by the difference. Memory 1is

unchanged.

0 4 MUL MULTIPLY ACCUMULATOR BY NUMBER

The control unit fetches the number at the operand address and has the
arithmetic unit multiply the number in the accumulator by it, putting
the product back in the accumulator. The old value of the accumulator

is destroyed when in it is replaced by the product. Memory is unchanged.

0 5 BZE BRANCH IF ACCUMULATOR ZERO

The control unit tests the value of the accumulator. If the accumulator
is zero, the instrucfion counter is set to the address in the operand
field. Therefore, the next instruction to be executed will be at this
address, and execution will proceed sequentially again starting from

this location. This is called branching or a transfer of control. If

the accumulator is not zero, no branching takes place and execution
continues with the next sequential instruction. The numbers in the

accumulator and memory remain unchanged.

o

1-9

0 6 BMI BRANCH IF ACCUMULATOR MINUS
The control unit tests the value of the accumulator. If it is negative
(minus), the instruction counter is set to the addresskin the operand
field and execution continues from the new address. If the accumulator
is non-negative, no branching takes place and execution continues from
the next sequential address. Memory and'accumulator vélues are unchanged.

0 7 TRA TRANSFER CONTROL
The. control unit sets the instruction counter to the operand field and
execution continues from the new address. Memory and accumulator
contents are unchanged.

08 GTI GET INPUT
A number is read from a data card and is stored into the memory address
specified by the operand. All 80 columns of the data card are scanned
left to right, with blanks separating different numbers. The numbers
may have a sign in front if desired. If no sign is given, a positive
sign is assumed. When all the numbers on a data card have been read the
next data card is read and scanned until execution ends normally through
the execution of a STP instruction, an error occurs which abnormally
stops execution, or the end of input data is encountered. The only valid
characters for input data are the arithmetic signs in front of the

*

numbers and the decimal characters zero through nine.

0 9 PTO PUT OUTPUT
The number in the location specified by the operand is transmitted to the
printer for output. In the SIMPIE simulator the message:

LOCATION nn =

ot

“The old value of the memory location referenced by the operand is erased and the
new value read from the data card is substituted. The rest of the memory and the

accumulator remain unchanged.

1-10

appears on the output printout, where nn is the opérand address whose value
is being printed. This is immediately followed by the value itself. The

memory and accumulator are unchanged.

1 0 STO STORE ACCUMULATOR
The number in the memory location specified by the operand is erased and
is replaced by the value of the accumulator. The rest of the memory and the

accumulator are unchanged.

3.2 LOADING PROGRAMS INTO SIMPLE

All programs written for SIMPLE comsist of the eleven instructions de-
scribed above. The next step is to put this program into the SIMPLE memory.

This is accomplished by program cards which are read by SIMPLE and stored into

its memory. The program cards have a fixed format, which means that certain

columns on the card must contain specific pieces of information. FEach program
card contains one instruction to be loaded into the SIMPLE memory. No assump-
tions may be made regarding the numbers in the various locations in the SIMPLE
hemory, also referred to as the contents of these locations. The contents of
any location not loaded by a program card is unpredictable when exectuion first
starts.

The first piece of information needed is in what location in memory to put
the instruction constructed from this program card. This two digit location
is specified in columns two and three of the card.

' The second piece of information is the first two digits of the number to
be stored. This can be specified in one of two ways: 1) As an optional sign
followed by the first two digits to be stored (if the sign is omitted, a
positive sign is assumed) which could represent a two digit opcode if the
‘instrucﬁion counter ever reaches this location; 2) As a three letter

mnemonic given in the list above which will be translated into a two digit

1-11

opcode with positive sign (which could also be the first two digits of a
number to be stored as a constant in the memory unit). TIf the numeric form
is used the optional sign appears in column 5, with the two digits in columns
six and seven. If the mnemonic form is used the three letter mnemonic appears
in columns five, six, and seven.

The thira item to be determined is the last two digits of the number,
which would correspond to the operand field if the number werec to be executed
as an instruction. These two digits are placed in columns nine and ten.

The rest of the card is ignored and may be used to contain comments for
usc in remembering the purpose of the instruction, The number has now Eeen
successfully constructed from the program card and is stored in the memory at

the appropriate location.

3.3 ADDITIONAL PROGRAM CARD FEATURES

Certain features have been included in the SIMPLE simulator for easier
programming.

The first feature is automatic location numbering. If the location field
(columns 2 and 3) on the program card are left blank, the location to be loaded
is considered to be one greater than the location loaded from the preceding
program card. The first program card, if the location field is blank, will
automatically be loaded into locat#on zero. .

The second feature of interest is the ability to give symbolic names to
program cards as well as specific addresses. For example, if a program is
written which transfers control to a specific address which contains a certain

instruction and the program is modified so that the instruction is at a new

address, then the entire program must be modified to transfer control to the

1-12

new address. Ithwould be far easier to give the‘program‘card a name and trans-
fer control to ﬁhis name. In the SIMPLE simulator, program cards may have a
single letter as a name. No two cards may have the same name, and it is not
necessary to give names to program cards. It is merely a feature for the
user's convenience. If a program card is to be named, the single letter name
must be put in column one of the card. If the program card is to remain un-
named, column one should be left blank.

The ‘use of automatic location numbering and symbolic names makes up a

primitive assembly language. Loosely speaking, an assembly language is

defined as a language in which one program card (also known as a statement)
will traﬁslate directly into one machine code'instructibn. The assembly
language described here is called the SIMPLE Assembly Language (SAL) since it
is the assembly language of the SIMPLE machine.

Another feature évailable is that if the operand field is left blank
the oéerand is assumed to be zero.

Finally, a symnolic name may be given to an address by merely putting .
the name in column one and the address in columns two and three. It should
be noted that the contents of the location specified in this manner is

unpredictable,

3.4 SIMPIE ASSEMBLY LANGUAGE SAMPLE PROGRAMS

Given below are three examples which are given to bring out some of the
features that SIMPIE has to offer. For each example a brief description of
the problem is given, followed by a listing of the deck to be run and the

output produced by the SIMPLE simulator for this deck.

1-13

(”\ Example 1: Read numbers from data cards and print them., Stop if a negative
number is read. Use specific locations and addresses

INPUT DECK

$BEGIN EES53€S00 DCUCETTE

0r GTI 99 READ THE CATA NUMBER INTO LOCATION 99
NlOFET 99 PUT THE NUMBER INTO THE ACCUMULATOR

22 RBMI 05 IF IT*S NEGATIVE,BRANCH TO STP INSTRUCTION
3 PTU 99 PRINT THE NUMBER g

N4 TRA Q0 START PROCESS FOR ANUT&ER NUMBER

s STP STOP THE MACHINE IF A NEGATIVE NUMBER IS READ (BMI AT 02}
$0ATA
1 12 15 231 16 -3
___$END

- . . L

COMPUTER PRINTOUT

$ACGIN ZES536S00 DOUCETTE

LABEL LOCATION OPERATICN OPERAND COMMENTS

8 J
—

0 GTI 99 REAC THE DATA NUMBER INTO LOCATION
1 FET 99 PUT THE NUMBER INTO THE ACCUMULATO
2 BMI ns IF IT'S NEGATIVE,BRANCH TC STP INS
3 PTO 99 PRINT THE NUMBER
4 TRA 0n START PROCESS FOR ANOTHER NUMBER
5 STP STOP THE MACHINE IF A NEGATIVE NUM
$DATA
LOCATION 99= 1
LOCATION 99= 10
LOCATION 99= 15
LOCATION 99= 231
LOCATION 99= 16

STOP AT LOCATION 5

' ASSEMBLY TIME= 0.283 TOTAL TIME= D.433
‘ $END»

b ol

1-14

Example 2: Repeat example 1, only use automatic location numbering where pos-
sible and symbolic names for'program cards.

INPUT DECK

$REGIN FES36507 SHOUOMAN

X GTI A :
FET A
BMI I

, PTD A
TRA X

I $TP

A99

$0ATA

1 % 2
1 -10
$TND

COMPUTER PRINTOUT

-
SREGIN EES26S$00 SHOOMAN

LABEL LOCATION OPERATICN OPERAND COMMENTS

- - -——— - - - —-— - - — - - -n s e = - o= o - - e -

X 0 GTI A
1 FET A
2 BMI I
3 PTO A
4 TRA X

I 5 STP

A 99

$DATA

LOCATION 99=
- LOCATION 99=
LOCATION
LOCATION 99=
LOCATION 99=

el
el
i
- W N -

STOP AT LOCATION 5

ASSEMBLY TIME= 0.367 TOTAL TIME= 0.533
+ND .

N
N

1-15
(“\ Example 3: Repeat example 1, using numeric opcodes instead of mnemonics.
/

$HEGIN FE336S500 SCHWARTYZ
M8 99

31 olog
o2 L6 08
o3 09 gy
Q4 CT7 QD
% 20 06
+DATA
¢ 4 1 =2

FEND

COMPUTER PRINTOUT

$BEGIN EES36SNC SCHWARTZ

LABEZL LOCATION OPFRATION OPERAND COMMENTS

- - el — —— . . - - - — - - . . - . -

o 18 ag

1 ol 99

2 NG .

, 3 oo 99
h 4 67)
(/ 5 0 a7

$DATA

LOCATION 99=
LOCATION 99=
LOCATION 99=

-~ o

STOP AT LGCATICN 5

ASSEMBLY TIME= (04300 TOTAL TIME= 0.400
$END

