1-1
' . CHAPTER 1

INTRODUCTION

The introduction of high-speed digital computers in the last few decades
has provided a very powerful tool for solving a diverse class of problems. The
computer, of course, was not the first tool for general purpose problem solving.
For centuries people have been developing tools to solve problems. For example,
the abacus, the slide rule, and the desk calculator. However, due to the high
speed and capacity of modern computers, problems that would have required days,
months, or even years to solve can be solved in seconds, minutes, or hours,

In ordsr to use a tool, it is necessary to learn the operating characteristics
and conventions of the tool. This is true whether the tool is the abacus, the
slide rﬁle, the desk calculato: or the computer. It is relatively easy to learn
to use an abacus, slide rule or desk calculator. The computer, however, is much
more complex and requires the knowledge of a large ﬁumber'of charaqteristics
and conventions.

In ordar to use a computer as a tool, it is necessary to communicate
withuthe computer in its operation., This is analogous to
depressing the addition, subtraction, multiplication, or division key of a
desk calculator. For exaﬁple, by depressing the addition key, you are in-'
structing the calculator to form and display the sum of the value keyed on the
calculator and a current value accumulated by the calchlator. The computer
also needs this type of insfruction. In fact, computers provide all of the
arithmetic operations of the desk calculator, as well‘as providing many more
operatio;s. |

Instructions are communicated to a'computer via aﬁ internal language thaf
the computer 1nterpret§ and reacts to according to its operating characteristics
and conventions. This internal language is generally termed a machine language.

A program is an ordered collection of instructions that performs the solution of

j¢]
1.2 x
a problem. Again, this 1is analogous to the sequehce and ordering of steps

in using a desk calculator to achieve a desired value. The person who writes (”3

a program 18 called a programmer. We shall consider the components and

machine language of a simplified computer here in the introduction. However,

first let us consider some of the basic characteristics of programming.

O

1-3
1-1 'CHARACTERISTICS OF PROGRAMMING

Programming occurs very frequently in our everyday life, That is,

we program our activities for certain time periods such as seconds, minutes,

hours, days, weeks, months, years, or even for the remainder of our life

time, 'In essence, programming involves developing a plan of action,
Frequently, we program our own activities in a very informal manner,
Sometimes we take the time to write down the steps of our plan, In most
plans, we try to think of contingencies that may arise in the execution
of the plan, and in this case, develop alternative plans, The programming
of a computer involves the development of a plan, However, this plan,
(i,e. the program) mué; be stated in a formal manner where provisions are
made for all contingencies, Before we discuss computer programming, let

us consider a program for a process which 1s well known to all college

students, The plan in this case involves preparing for academic course

reglistration,

‘Assuming that we have.thg appropriate brochures and registration
m&térinl, let us consider writing down some steps of a simplified plan for
selecting the courses for a semester, As all college students know, many
contingencies and frustrations usually arise in the registration process,

1, Are there any required courses for this semester? If yes
continue at step,2,otherwise continue at géep 10, |

2, Examine the list of required courses,

3. Are there any prerequisites for the required courses? If yes,

continue at step &, otherwise continue at step 6,
4. Have I completed the prerequisites? If yes, continue at astep 6,
otherwise continue at step 5,

5, . Make a note to discuss prerequisites with an adviser,

10,
11.
12,
13.
14,
15.
16.
17.

18.

19.

In

1-4
Are there any course time conflicts for the required courses?
If yes, continue at step 7, otherwise continue at step 5.
ﬁake a note to discuss course time conflicts with an adviser,
Post the registration for required courses which can be taken,
May I take any electives this gsemester? If yes, continue at

step 10, otherwise continue at step 17,

" Examine list of elective courses,

Select elective courses,

Have I completed the prerequisites? If yes, continue at step 13,
otherwise return to step 10.

Are there any course time conflicts for the elective courses?

If yes, continue at step 14, otherwise continue #t step 16,

Do I wish to consult an adviser about conflicts? ‘If yes,
continue at step 15, otherwise return to step 10,

Make & note to discuss elective courses with an adviser.

Post the registration for elective courses which can be taken.

Is an adviser needed? If yes, continue at step 18, otherwise
continue at step 19,

Rectify scheduling problems with the adviser and post regisyration
for all courses, ’
Submit registration forms to the Registrar's Office.

this simplified step by step plan, we have considered several

contingencies in the registration process. It is by no means exhaustive,

The writing of this step by step procedure, is & program. This program is

not in the form that would be acceptable for processing By'a computer,

However, we shall learn that this step by step specification is requiréd

at a more detailed level in constructing programs.

O

@)

1-5

As an alternative to writing the above step by step procedure, we

~can construct an annotated diagram which shows the basic step by step

process, This diagram is called a flowchart. In a flowchart, we use:

- certain geometric objects to represent various types of activities of

the steps of a program. A flowchart of the registration process appears
in Figure 1-1, In this flowchart, a diamond shape is used to denote a
decision, and a rectangle is used to show some action to be executed.

Each object in the flowchart has been identified with the corresponding

step in the written procedure. Where lines are not directly connécted,

the next step is clearly indicated. You will also notice that the paths -

leading from all decisions are clearly labeled as "YES" and "NO".
Now that we have considered the basic nature of programming activities, .
let us consider the characteristics of a simplified computer and a program

for the computer.

REQUIRED
COURSES

EXAMINE
REQUIRED
COURSES

STEP 10

5
NOTE:
~PREREQUISITE | DISCUSS
“\COMPLETED PREREQUISITES
YES
7
\\\‘\\, NOTE:
YES | DpISCUSS
CONFLICTS
NO
8
POST
REQUIRED
COURSES

ELECTIVES
AVATLABLE

STEP 17

REGISTRATION PROCESS

STEP 10

Figure 1-

1-6

10

EXAMINE
ELECTIVE
LIST

11

SELECT
ELECTIVE
COURSES

STEP 10 .

STEP 16
14
WITH R STEP 10
" (ADVISER-~
”
15 \\]YES
NOTE:
DISCUSS
CONFLICTS
16
POST
ELECTIVE
COURSES
18
RECTIFY
| AND POST
REGISTRATION
19 ¥ |
SUBMIT
REGISTRATION

O

1-7

1-2 BASIC COMPUTER COMPONENTS AND OPERATION

A digital computer is an electronic device composed of seyeral inter-
connected units. A modern computer system is pictured in_Figure 12,

The basic components of the computer system may be illustrated in a
diagram form in order to understand the interrelationship of the various
component units. These interrelationships are portrayed in Figure 1-3. Let
us consider the usage of each of the components in the diagram.

There may be one or more input devices which will provide the data to be

processed. For exémple, there may be punched card readers, magnetic tapq\

units, disk units, teletypewriters, etc. 1In the diagram, a

dotted line connects the input unit to the memory unit. Through the execution

of an input instruction, data is transmitted from the input device into a

portion of the computer memory unit. Wheﬁ the data valuesoare in the computer
memory, instructions may be used to calculate the desired results. After the
desired results have been obtained, data ﬁay bé'traqsmitted via output instructions

to an output device as illustrated by the dotted line connecting the memory

unit to an output device. The output device may be a card punch, printer,
magnetic tape unit, drum unit, disk unit, teletypewri;er, etc. As with input
devices, there may be more ;hen one éutput device conmnected to the computer,

In perfqrming the Qesired calculations with data value in the computer
memory, instructions are utiltized which cause the data to be used to bé trans-

mitted from the memory unit into the arithmetic unit as denoted by the data

, F

(To BE %9 pPLIED)

Figure 1-2
The IBM System/360 Computer

1-8

MEMO RY

-————q ON T - — - -

INPUT
DEvICES

T

T

L] ARITHMETIE
1 omr €

Figure 1-3 ’
Components of & Computer System

' CONTROL .
K— umr /) pevices

S>> CoNTROL

RAT\IITIES

———3 INSTRUELTION

FLow
" === DATA FLOW

D

O

1-9
flow connection. By the issuance of arithmetic instructions such as add,
subtract, multiply, divide, etc. a calculated value is created in the
arithmetic unit. The calculated results mey then be transmitted beck to
the computer memory unit ready for further processing or to be placed onto

an output device.

At the center of the computer system is a control unit. This unit

interprets the instructioms of the program and activates the various units
in the computer system to execute the instructions of the program, This control
activation activity is denoted by the double solid lines.
The.instructions of the program as well as the data to be processed
are contained in the memory unit. The control unit obiiéns the program
80

instructions from the memory as denoted by the single/line. These are the five

basic computer components. Now we shall take a closer look at the components

for a computer which we shall call SIMPLE.
THE SIMPLE COMPUTER

A computer memory may be thought of as a series of pigeon holes similar

to a series of post office boxes. In the computer memory, each box is called

a memory location and it is capable of containing some finite data value, Each

box is identified by a number'called the memory address. The number of memory

locations in the computer varies quite widely. Very large computers have
thousands, even millions of memory locations. For illustration purposes let

us consider a computer with only 32 memory locations as follows:

(0) (1) (2) 3) -
(4) (5) (6))
(8) 9 (10) (11)
(12), (13) (14) (15)
1 (16) 7 (18) (19)
(50) (21) (22) (23)
24) (25) (26) (27)
(28) (29) (30) (31)

1-10
The numbers in parentheses (0 through 31) are the addresses of each
of the 32 memory locations., Let us assume that in the SIMPLE computer, ;ach
memory location is capablé of containing one program instructioa or one data'
value. Further, we shall assume that each instrﬁction is composed of two

parts, that is,an operation code and an operand., The operation code specifies

which instruction from the machine's instruction repitoire is to be executed.
The operand specifies what memory location is to be used in executing the

instruction, We may view the format of an instruction as follows:

CODE | LOCATION

Computers store data and instructions in the computer memory ié in a
binary coded format., The ferm EEBEEX refers to a base two number system where
the values the number system are 0 and 1 as opposed to the familiar decimal
base ten number system where the values/can range from 0 to 9. The binary
numﬁer system is describéd in detail in a later chapter. By grouping binary
numbers, it is possible to creats numbers of a different base, including |
decimal numbers, We shall use decimal numbers to demonstr#ﬁe the computers
6peration since‘this is a familiar nuﬁber system.

The arithmetic unit, contains what 1s called a accumulator which is

used for various arithmetic operations, Also, the accumulator may be used to

make decisions concerning the values of various data. We shall assume that

the accumulator is the same size as a memory location.

The control unit contains a location counter which is inigially set
to zero. This location counter is used by the control unit to access the
{instructions of the program., Let us say that a program'ig stored in memory
location O through 12. The instruction in memory location O is accessed and
executea, then the control unit increments the locafion counter to 1, accesses

the instruction in location 1 and executes that instruction. This process

1-11

continues (i.e. 2, 3, 4, ... 12). However an instruction may be executed

which causes the location counter to be set to identify a memory location

other than the next sequential instruction. This is called a transfer of

control which causes program to resume execution at the instruction identified

by the new contents of the location counter,

Now let us consider a small set of instruction operation codes for our

'STMPLE Compﬁte:.

Arbitrary decimallhumbers have been assigned. Of course

for any given computer, a fixed set of codes are used for particular instructions.

01

02

03

05

06

SIMPLE Machine Instruction Repitoire

k
[
oes]

addresﬂ
addres%]
addres{]
addres:]

OPERATION PERFORMED

Stop the computer. If the computer is restarted
address will be placed in the location counter
so that the next instruction executed will be

in the memory location identified by address,

Place the contents of the memory location
identified by address into the accumulator,

Add the contents of the memory location
identified by address to the contents of the
accumulator, and leave the sum in the
accumulator,

Subtracts the contents of the memory location
identified by address from the contents of the
accumulator, and leaves the difference in the
accumulator,

Multiplies the contents of the memory location
identified by address by the contents of the
accumulator and leaves -the produce in the
accumulator,

Set the location counter to contain address if the
contents of the accumulator is zero. Otherwise
continue execution of the instruction in the

next memory location,

Set the location counter to contain address if the
contents of the accumulator is negative.
Otherwise, continue execution of the instruction
in the next memory location,

07

08

09

10

'b‘

a

Med

a

Mo |

Mo

ddres

ddres

ddres

ddres

|(D|I(DI

1-12

Set the location counter to contain address so
that the next instruction to be executed

will be the instruction in the memory location
identified by address.

Get a data value from an input device
and place it in the memory location
identified by address.

Put a data value from the memory location
identified by address onto an output device.

Store the contents of the accumulator in the.
memory location identified by address.

O

1-13

Now let us consider a simple program which uses the SIMPLE instructiors.
THE PROBLEM

We wish to get avseries of values from the input device and calculate
the sum of the valués, until we encounter a value which is zero. In addition,
we wish to count the number of non-zero values processed. When a zero value
is encountered we wish to put the sum and the count (N) onto an output device.

As an aid to understanding the logic of this program we shall create a

as introduced in the previous section

flowchart.The flowchart/uses geometric objects to show various types of operations
and the order in which the operations are performed. It is generally a good
préctice to create a flowchﬁrt prior to encoding a program. Flowcharting

;eghniquéa are discussed in detail in a later chapter. The comments in the

flowchart épecify the type of process performed by each instruction.

START
SUM = 0 INITIALIZING
(“\ : , . N =0 S OPERATTONS
- TRANSFER OF = -
CONTROL - .
f VALUE ' INPUT OPERATION
VALgE = IES DECISION OPERATION
NO
SUM
| COUNT . OUTPUT OPERATION
CALCULATION SUM =
SUMHVALUE
STOP
CALCULATION N = N+l

C

1-14

The program is contained in memory location O through 14, We shall

use memory location 29 for the values acquired from the input device;'locations.

30 and 31 for accumulating the SyM and count (N), respectively., Two locations
15 and 16 are used to contain two constant values, 0 and 1, respectively.
Instead of picturing the instructioa in a pigeon hole memory, we shall
simply 1list the addresses and contents of each of the 32 locations of our
SIMPLE computer memory unit,
MEMORY CODE AND COMMENTS
ADDRESS LOCATION ; ' ‘
(0) 0115 Place a zero value in the accumulator.
(1) 1030 Place a zero in SUM location, ‘
(2) 1031 Place a zero in count location (N).
(3) 0829 Get a value and place in location 29,
%) 0120 , "~ Place contents of location 29 in accumulator.
(5) 0512 Resume execution at location 12 if accumulator
S is zero,
(6) 0230 : Add SUM location to the accumulator.
(7) 1030 Store the new SUM.
(8) 0131 Place contents of count (N) in accumulator.
(9 0216 Add one to the accumulator,
(10) 1031 , Store the new count (N).
(11) 0703 Transfer back to get the next inpat value,
(12) 0930 ‘ Put the SUM onto an output device. '
(13) 0931 Put the count (N) onto an output device,
(14) 0000 Stop the computer.
(15) 0000 Constant 0,
(16) 0001 Constant 1,
(17) not used
(28) not used
(29) Used for Input Values
- (30) SUM location
(31) N location

To demonstrate the execution of this program, let us consider the

following set of input values:

23 -6 O

The following table summarizes the result of executing the program,

showing the location-counter, the instruction executed and the contents of memory

locations 29, 30 and 31 after the execution of the instruction. An asterisk

18 used to denote the affect of executing each instruction, where a new value

18 crea

ted in the accumulator or in a memory location,

O

1-15

Instead of using the numeric operation codes, we shall use a three
letter code which is representation of the type of operation. This letter
representation is called a mnemonic name. Mnenonic means "aiding the memory".

For our ten operation codes, the following mnemonics are used.

00 STP Stop 06 BMI Branch 1f accumulator
01 FET Fetch to accumulator is negative

02 ADD Add to accumulator 07 TRA Transfer

03 SUB Subtract from accumulator 08 GTI Get Input

04 MUL Multiply by accumulator 09 PTO Put Output

05 BZE Branch if accumulator = 0 10 sT0 Store accumulator

Referenced footnotes point out some significant factors about the

program execution, The reader should examine this table closely.

Location :

Counter Instruction Accumulator Location 29 Location 30 Location 31 Footnote
0 FET 15 O* ? ? ? (1)
1 STO 30 0 ? o* ?

2 STO 31 0 ? 0 o>

3 GTI 29 0 23% , 0 0

4 FET 29 23% 23 0 0

5 BZE 12 23 23 0 0 (2)
6 ADD 30 23* 23 0 0

7 STO 30 23 23 23% 0.

8 FET 31 0% 23 23 0

9 - ADD 16 1% 23 23 0

10 STO 31 1 23 23 1

11 TRA 03 1 23 23 1 (3)
3 GTI 29 1 -6% 23 1

4 FET 29 -6% -6 23 1

5 BZE 12 -6 -6 23 1 :

6 - ADD 30 17% -6 23 1 %)
7 STO 30 .17 -6 17% 1

8 FET 31 : 1% . -6 17 -~ 1

9 ADD 16 2% -6 17 1

10 STO 31 2 -6 17 2%

11 TRA 03 2 -6 17 2

3 GTI 29 2 o* 17 2

4 FET 29 0* 0 17 2

5 BZE 12 0 0 17 2 (5)
12 PTO 30 0 0 17 2

13 PTO 31 0 0 17 2

14 STP 00 0 0 17 2

(1) Tﬁe location counter is initially set to zero, so that is the first

instruction to be executed. The activities of the control unit may be

1-16

thought of as those‘a 51355 who is handed a labeled set of instructions on
cards- numbered O through 14, He looks at card 0, executes that operation, | | (ﬁ}
then card 1, etc. When he finds a card which asks him to make a decision,
he will either go to the next card or go to the card indicated in the instruction
based uponrthe outcome of the decision. Also an instruction card may tell him
to 8o to another instruction and resume his work at that point,

This first instruction causes the contents of location 15 to be placed
in the accumulator. You will n&tice that a ? appears in locations 29, 30 and
31. The programmer should make no assumptions about tﬁe initial conditions
of memory 1ocationa. If he.wiahea to place ;nitial valges in particular
ldcations, he must explicitly perform instructioﬁs to do this task, Not
initializing variables properly isva common programming error. The instructions
in lééationa 0, 1 and 2 are used for this purpose.

When a value is placed into a location via a STO or GTI, it replaces
the previous contents of that location. This is referred to as a destructive
write operation. The previous contents are lost. When a location is referenced
such as FET to accumulator,the contents of the location are not changed, this is

called a nondestructive read,

(2) Notice that a decision is made and since the accumulator is not zero;
execution continues with the next instruction. In either case, the accumulétor
and memory location values are not chaﬁged.

(3) Control is transferred back to the instruction at location 3, where the
next data value is acquired.

(4) Notice that the addition is an algebraic addition (i.e. 23 + -6 = 17).

(5) The zero value has been encountered in the 1nput data so we transfer to the
1nltruction for placing the desited values onto the output device, and stop the

program.

1-.17
Although this program is quite trivial it does demonstrate several of
(ﬁ\‘ the basic processes in computing. These can be summarized and related back
/

to program instructions as follows:

Basic Process Instructions

1, Initializing Key Locations 0, 1, 2

2. Value Acquidition (Input) 3

3. Value Calculation . 4, 6, 7, 8, 9, 10
4. Decision Maki 5

5. Value Disposition (Output) : 12, 13

6. Transfer of Control 11

7. Program Termination , 14

These processes are inherent in most programs, whether written in

machine language, or in a more convenient language such as PL/I, the subject

of this book. Through the usage of transfer of control, we can perform
iterations in the program. Without
this capability, the machine would be almost useless. By using iteration,

we are able to utilize the same program segments for processiqg many data
1tems which is the primary purpose of the digital computer, If we add three
(:) «ore basic processes to this list, we shall have the entire complement of

basic programming activities.

8. Value Declaration and Allocation

9. Exception Conditions

10. Program Segmentation

Value declaration and allocation is a means of specifying what‘data is to
be stored in the computer memory and the characteristics of the data. When
some conditions arise during the execution of the program (such as creating a
value which is too large to be contained in an accumulator), an exception
condition is detected and the prograh must be prepared to handle the condition.
The manner in which the program is structured is called program segmentation.
The details of how these basic processes are carried out may differ due to
various alternative facilities available in the computer and the programming

language. Many of the discussions of PL/I programming will refer to these

W, basic processes,

1-18
1-3 HISTORICAL COMPUTER DEVELOPMENTS

The computer structure presented in the previous section is an example

of a stored program computer., That is, the program as well as the data are

contained in the computer memory., The first computer to use a stored program
was the EDVAC developed at the University of Pennsylvania in 1949 under the
direction of John Mauchly and J. Presper Eckert with the advice of John von

Neumann., In fact a stored program computer is frequently classified as a

von Neumann type computer. Let us take a brief look at some of the developments

in computing prior to and since the development of the EDVAC.
The forerunner of the modern day computer was developed in 1822 by

Charles Babbage, a British mathematician. His first invention in this area

was a mechaniqal_device‘callgd the . difference engine which had the capability
of adding numbers and,displaying results. This device used a series of gears -

and levers. Ihen Babbage conceived of an analytical engine which he designed

to perform a11 of the basic arithmetic operations. Unfortunately mechanical
skills of that time weré not sufficient to develop reasonable components for
this type of device. If it had been possible, the device would have undoubtedly
weighed several tons. However, many of Babbages ideas were reiﬁvented during
the twentieth centu;y in the early developments in electronic computefs.

The next major developments in computing came about due to the needs of
the U.S. Bureau of Census.‘ In 1890, Hollerith proposed a system involving the
usage of punched cards processed by an electromechanical device which could
Qdd and sort. From that time up to World War II, these devices were developed
by the International Business Machines Corporation and Remington Rand, Several
ingenious methods were found for performing more complex operations on these
devices, however, their primary usage was 1n'bﬁsiness data processing. In the
late 1930's, Stibitz and several others at the Bell Telephone Laboratofies

- developed an electromechanical relay computer to perform complex mathematical

computations.

@

1-19

International wars seem to provide a strong stimulus for technological
advances. World War II brought about many new developments in the field of
electronics, including radar and sonar as well as the advent of the electronic
computers. The main electronic technological advance was the development of
reliable components. During the war, Howard Aiken at Harvard, in conjunction
with IBM developed an extremely sophisticated electromechanical computer called
MARK I, which was first demonstrated in 1944, Eckert and Mauchly, taking
advantage of the new reliable electronic components, constructed an all electronic
computer called the ENIAC in 1946. Then this same group,with von Neumann,
developed the EDVAC with the stored program concept. Eckert and Maychly formed
a corporation supported through government contracts and in 1951, delivered
theUNIVAC I to the U. S. Bureau of the Census. The UNIVAC I was the first
computer to be comercially marketed.

Aftér the war, there were several groups gettingvinto the computer
meliu. The extremely fast Whirlwind computer developedbat MIT was operational
in 1949. Some experimental computers were developed in England during tﬁis
time beriod. In 1952, a series of comﬁuters started to appear with such
interesting names as ORDVAC, ILLIAC, and JOHNIAC.

‘Most of the postwar computers were using electrostatic tubeé as componants,
until Forrester at MIT developed a magnetic core storage for the Whirlwind.

Since then, prgctically all computers have utilized this type of memory unit.
It is forecasted that sometime in the future, the 1mpact of lgser technology
will affect the manner of étoring information in computer memories.

" The International Business Machines Corporation, which by far has been the
most successful computer manufacturing firm, completed its first computer the.
701 in 1953. The 701 was then modified to use magnetic core storage and became
the 764 which was the first widely available scienfific computér. In addition,

IBM developed the 650 in the early 1950's which uses a rotating magnetic drum

1-20
memory unit, The Eckert-Manchly Corporation was purchased by Remington Rand
and went on to develop the UNIVAC II which utilized magnetic core memoxy.
Remington Rand then merged with the Sperry Gyroscope Corﬁﬁration to create the
Sperry Rand Corporation. Following IBM's success with the 650, they developed
the Solid Stame780 and 90 which also used-a rotating drum memory.

Many corporations, domestic and foreign, becams eager to get into this
dynamic new industry. Many have entered and failed due to the large capital
reqﬁirements for starting in the industry. .Today there are several hundred
different computers in the market place, with the rapid pace not showing any . .
signs of dwindliﬁg, Computers have become larger, faster and more flexible,
and this-trend will undoubtedly continue coupled with development of better

computer components.

1-4 THE USAGE OF PROGRAMMING LANGUAGES

In the past decade, considerable attention has been directed towards
autométing the manner of.communicatioh'with a cbmputér. These efforts have

resulted in the creation of programming 1angdages. By utilizing'a programming

language, if is possibie to avoid many of the detailed éspects of utilizing

a computer. This enables the programmer to concentrate more on the'soiutiQn

of fhe problem, rather than the characteristics and conventions of the computer.
“Sbme éfogramming laﬁgﬁages reflect computer characteristics more than

others, Iﬂ general, these progréﬁming languaées that reflect computer character-

istics in a direct fashion are termed aésemblzflanguages. Programming languages

have/also been deveioped that require little or no khowledgé of computer

characteristics. This fype of langhage is called a procedure-oriented language.

All of the languages mentioned have conventions and operating charaéteristics‘
associated with their usage. They simply represent tools that utilize the
computer as a tool. This again is analogous to using the arﬂthmetié functions

of the desk calculator to provide a new tool. For example, consider adding a

O

N
N

1-21
key and set of conventions to the desk calculator that permit the determination
of a square root, The calculator would probably use its existing arithmetic

capabilities in proper sequence to provide the square root, but the user of the

- calculator would have a new tool at his disposal.

The term program as previously defined is still appropriate in the
context of a programming language. The ordered collection of instructions
representing a program that solves the problem are simply stated in the
programming language. Again, the person who writes a program may bé called
a programmer. In the usage of procedure-oriented languages, the programmer
may be a physicist, chemist, mathematician, psychologist, soliologist, econ-
omist, accountant, etc. This is due to the fact that the procedure-oriented
language permits the programmer to specify the solution of his problem in
terms with which he is familiar.

Mary procedure-oriented languages have been developed in the relatively
brief history of computers. Three of the best known languages are FORTRAN,
COBOL, and ALGOL. The FORTRAN language (FORMULA TRANSLATOR) was developed
primarily for usage in the solution of matﬁematical probleﬁs. COBOL (COMMON
BUSINESS ORIENTED LANGUAGE) was developed primarily for the solution of
commercial-type problems. These two languages, by far, have been the most
heavily used procedure-oriented languages. ALGOL (ALGORITHMIC LANGUAGE) was
primarily developed as a convenient language for the natural expression of
problems, ALGOL has not been used as widely as the other languages. However,
many universities, pgrticularly in Europe, use ALGOL. The three procedure-
oriented languages mentioned previously have many common characteristics, as
well as providing unique characteristics that are orienteq.towards the goals
of the rgspective laﬁguages. For several years authorities in the field of
programming languages have proposed a single all-purpose procedure-oriented

language. .Representatives of the International Business Machines Corporation

» 1-22
cooperated with representatives of the SHARE and GUIDE organizations® and
specified a procedure-oriented language called PL/I. The PL/I programming
language provides the basic characteristics that are common to a large number
vof procedure-oriented languages, as well as offering many of the unique character-
istics provided by predecessor procedure-oriented languages. PL/I will be used
in this textbook as thg basis fér illustrating problem solving using a prog-
ramming language.

The programming language and its usage in the framework of a particular
computer 15 the vehicle which is used in problem solving, The user of the
programming language should not look for any mystic powers inherent in the
programming language or computer to automatically provide problem solution.

The engineer, physicist, economist, accountant, etc,, must understand the basic .
nature of the problem he is solving. He must then be able to formulate the
steps necessary to compute a solution to the problem., At this poiﬁt the
programming language is used to express the formulation of the problem soiution.

The general theme of the book will Be the usage of the PL/I programming
language as a tool to solve problems from a variety of subject areas, Many
examples and exercises have been extracted from textbooks in common usage in
many colleges and universities. Inlutliizing thié approach, the student will
learn to express the solution of problems (using PL/I as a tool) in terms that
reflect the type of problem with which thé student is familiar,

The textbook is organized into two parts, Part I introduces the
conventions and operating characteristics of the PL/I programming language.

We learned earlier in this section that a programming language such as PL/I

*SHARE and GUIDE are groups of custoﬁers of the International Business Machines
Corporation who make recommendations to IBM concerning their needs as users of
IBM equipment, -

()

[
N

1-23

is simply a tool that utilizes the computer as a tool. The existence of

a translator (which is a program) that translates PL/I instructions into
machine language instructions, gffectively converts a general purpose
computer into a PL/I Machine. Consequently, in Part I, we shall, in fact,
be learning the conventions and operating characteristics of the PL/I
Machine. Many problems will be presented and solved for the PL/I Machine
in Part I. 1In the discussion of the problems, interesting programming
techniques will be presented. By examining the problems carefully, the
reader shall not only learn how to use the PL/I Machine, he will learn how

to use the PL/I Machine effectively. Programming technique is important.

The problems and the exercises of Part I are very general in nature,
and in most cases should be understood by all readers whether they can be
engineers, mathematicians, students of business, social sciences, or any
other academic discipline. 1In Part II of the textbook, problems from
several specialized subject areas will be discussed in depth. The reader
should study the chapters of Part II which are applicable to his computing
needs. Readers who would like to consider the aspects of assembly language
programming prior to considering the PL/I Machine should study the material
in Appendix I prior to starting Part I. However, this is not necessary.

An assembly language called SAL, for the SIMPLE computef discussed earlier
in the introduction is presented in this Appendix. A PL/I program is also
presented which simulatesAthe translation and execution of programs written

in the SAL assembly language for the SIMPLE computer. In addition, there

are several suggested exercises to be programmed in the SAL assembly language.

Hopefully, you will have access to a computer center Qhere this simulator can
be utilized so that you may gain some basic assembly lanéuage programming
experiénce. If not, the encoding of the exercises using the SAL assembly
language will be a beneficial experience and add to your appreciation of the

future use of a procedure-oriented language.

()

()

PART I
CONVENTIONS AND OPERATING CHARACTERISTICS

OF THE PL/I MACHINE

»

O

2-1
CHAPTER 2

CONCEPTS and DEFINITIONS

In order to demonstrate the structure of a PL/I program, let us consider
the simple program we constructed in section 1-2, as it would be encoded using
the PL/I programming language.

(1) SUMMATION: PROCEDURE OPTIONS (MAIN);

(2) SUM, N = 0;

(3) NEXT: GET LIST (VALUE); ,

(%) IF VALUE = 0 THEN GOTO FINAL;
(5) . SUM = SUM + VALUE;

(6) : N =N+ 1;

(7 GOTO NEXT;

(8) FINAL: PUT DATA (SUM, N);

(9 STOP;

(10) END SUMMATION;

The numbers to the left of the program are not part of the program;
they are for reference purposes.

The reader should refer to the flowchart of this problem in section 1-1
and compare the machine language program with this PL/I program, Thé basic
instructional unit of a PL/I program is called a statement. Each line (1)

except line (4) which contains two statements.
through (10) contains a statement / Each statement specifies one or more of
the tem basic programming activities mentioned in chapter 1.

The computer does not.understand a programming language such as PL/I
directly. The computer only understands its machine language. Consequently,
the statements of the program must be translated into mahcine language instruc-
tions, The manner in which this translationbis accoéplished will be considered
later in this chapter, For now let us consider as the result of translating

this program, the equivalences between the PL/I program statements and the

SIMPLE machine language instructions discussed in section 19,

2-2

MEMORY MNEMONIC : - PL/I PROGRAM STATEMENT
ADDRESS CODE LOCATION
E?g FET 15 (2) SUM, N = 0
, STO 30 -
(2) STO 31 '
3) . GTI 29 (3) NEXT: GET LIST (VALUE);
(4) FET 29 %) IF VALUE = O THEN
(5) BZE 12 GOTO FINAL;
gg; ADD 30 (5) SUM = SUM + VALUE;
STO 30 : ’ : .
%) DD TR
(10) STO 31 - :
(11) TRA 03 Ne¢) GOTO NEXT;
gig; ::8 gg (8) , FINAL: PUT LIST (SUM, N);
(14) STP 00 9 STOP;
Eig; 0000 } constants created by the
0001 translator
(17) not used
: H
(28) not used
Egg; XQ;PE The translator relates these
(31) N names to particular memory
' addresses

Statements (1) aad (10) are not included in the program, These
statements, the PROCEDURE and END statememts are used for the purpose of
segmenting.the program (i.e. specifying the beginning and ending).

The translator related three names (i.e. VALUE, SUM and N) to three
memory address (i.e. 29, 30 and 31). Theﬁe names in programming language
lingo are called identifiers. In thié céae, the identifiers name what are
called Qariables. A variable is a data item in the computé} memory whose
contents may change during the execution of the program; Identifiers are

also used to identify parts of the program which are called statement-labels

as in the case of NEXT and FINAL. In this translation, the statement-label
NEXT is associated with the memory address 3, and FINAL is associated with the
memory address 12, The naﬁe that appears prior to the PROCEDURE statement and

following the END statement is called a procedure-identifier. This is the name

of the program. For this program, we have chosen the identifier SUMMATION.

O

2-3

In lines 2, 4 and 6 of the PL/I program the values 0 and 1 were utilized.

These values in programming language lingo are called constants. That is,

their value will not change during the execution of the program. The trans-

lator has placed these constant values in memory locations 15 and 16.

The individual statements of the program have in many cases been trans-

lated into more than one machine language instruction. This is quite typical,

As you examine the PL/I program in relationship to the machine language program

you will see why a procedire-oriented language is easier to utilize., It frees

_the programmer from the burden of understanding the details of the machine

language. The particular PL/I translator used assumes the burden of knowing

the machine language. The reader should tracc through the PL/I program to be

satisfied that these two programs perform the same activities. In performing

this trace, consider the following basic programming activities which are

performed by the various PL/I statements,

STATEMENT PL/1 STATEMENT TYPE
(1) Program Segmentation PROCEDURE

(2) Initialization of Variables assignment¥
(3) Value Acquisition = ' GET

(4) Decision Making IF _
(5) Value Calculation assignment*
(6) Vvalue Calculation assignment*
(7) Transfer of Control GOTO

(8) value Disposition PUT

(9) Program Termination STOP
(10) Program Segmentation END

* The assignment statement specifies that the contents of the variables
to the left of the = sign are to be replaced by the valuelgreated on the right
of the = sign in a destruc;ive write operation.

'For example:

SUM, N = 0; Places a zero value in SUM and N.

SUM = SUM + VALUE; Adds the contents of SUM to the contents of VALUE and
stores the result in SUM. The contents of VALUE are

unchanged after the statement is executed. The previous

contents of SUM are destroyed.

2-4

The portion of the assignment statement to the right of the equal sign
1s called an expression. Basicly, an expression is a formula which specifies
how a value.is created as in SUM +\VALUE. Expressions are extremely important
in the programming language and they will be discussed in detail in the next
chapter. |

The various types of statements in the PL/I program with the exception
of the assignment statement are identified by various names (i.e. PROCEDURE,

GET, IF, GOIO, PUT, STOP and END). These names in programming language lingo

are called statement-identifiers. As you undoubtedly have observed, the statement-

identifiers are closely associated with the basic programming activity they
perform; Now let us consider some of the factors in preparing a PL/I program

for translation and execution.

2-1 SOME BASIC SYNTAX ELEMENTS

After the problem has been analyzed, and a fléwéhart has been created,
the program must be written in terms of the programmihg language. As with
natural languages, suchvas English, Frénch, German, Spanish, etc,, the prog-
ramming language has established rules and conventions concerning the usage
of the language. The rules of a programming language or a natural language

are referred to as the syntax rules of the language. The basic components

of a natural language are the symbols used in the‘formulation of words and
meanings. Further, in most natural languages there are rules concerning the
construction of groups of words to form a meaningful sentence or expression.
The programming 1anguage‘alao specifies rules equivalent to the rules for
symbols, wordslnnd sentences. However, in the programming language, the
terms characters, identifiers and statements are utilized.

CHARACTERS

The symbols used in constructing a program are called characters.

g

O

@

G

2=5

The PL/I_programming language character set contains 60 graphic characters,

These symbols form the basis for constructing programs using the programming

language. The.special pﬁrposas for which the characters are utilized iﬁ thé”

characters are as follows:

The English upper-case letters

. programming languages are introduced as required throughout the book. The 60

A,B,C,D,E,F,G,H,I1,J,K,L,M,N,0,P,Q,R,S,T,U,V,W,X,Y,2

The decimal digits

0,1,2,3,4,5,6,7,8,9

"The following.additional.characters

"Equal ‘symbol 1
Plus symbol
Minus symbol l
Asterisk >
Slash <

Left Parenthesis

Right Parenthesis

Comma

Period or Daecimal Point
Quotation Mark

Per Cent symbol
Semicolon

Colon

RIS R A |

we °\°
SAC R m B

e

Not symbol
Ampersand

Vertical stroke
Greater Than symbol
Less Than symbol
Break Character
Question Mark

Blank (no graphic)
Dollar sign
Commercial At symbol
Number symbol

The character blank which does not have a graphic character will be

denofed throughout the book by a rectangular box 0. The graphic symbo ls

used in the programming language must be conveyed to the computer in a coded

form.‘vThe most common encoded form of graphic characters is the familiar

punched card which was invented by Hollerith as discussed in the previous

chéptex. The punched card in Figure 2-1 illustrates the encoding of the 60

characters that may be used in the programming 1anguagg.' This card is preparéd

using a standard IBM 029 key punch machine, Notice tﬁat there are 80 columné

on the card, each of which may be used to represent a single character, The holes

punched in each column represent the encoding for the characters displayed at

the top of the column with the exception of the blank character in column 57.

2-6

ABCDEFGHIKLMNOPRRRTLUVUNYZ N1 224 TETRG=4-0,)y (P HF 1212 {7 S
s ' 1P 11 ni

s | . | (N | i
soseonannnacnsao s o BRRNRRRREs v nonononanoBooBoaRBecoooBolBoocvonnonoooas00n00000d
123468870000 nnuuununn:xnnunlnanunuuuuuuununwuannuuunuuuuuuumwnuuuuvuunnnnuunn nisn
||||||||||1||||1|1|||||1|1|||||||ltllll|||llllllllIllll!llIlllllllllllllllllllll

zlzz:zzzzzl!zzzzzzlzzzzzzz7z|zzzzzzzzzzzzzzzzzzzlzzzzzzgzzzzzzzzzzzzzzzzzzzzzzzz
::l::a::s:sls::::::l:::3as::sl:s:1ai:as:::all:saai:s:a:a:l:laaisa::a:saaa:sa::as
444l4t444444|4444ncn|4t4¢¢444;|¢a.4n144l44n44dl4tA444I44n4l44t444t444444444(4444
sossBosse s lusasssalasssnssslasesssssMlsalesssssasMsss9s585856555555555555%5
O O OO O o o o O R RN Y
RRRRR] ERRRRRRR) EERRRRRT ERRRRRRRR] IRERRRERRRERRRRY 21 NRRA IRRRRRRRRRRARRRRRNRRAREE
tnnlonuboaonubouoDILDHITHHINEIEIID It rsartsress
ll!l!gellltlll!llls 093 e oo dnasnaa o000 ee090960999°08908909998309959983030983909

L I | [IR R R RERT A N RN ”]2 R R R R R R R R R R Rt R N R R S R T S R R TR LR N N G N T P R T I RO TR SO R L I]
dotamesdia - anal Lo

Figure 2-1. Punched Card of the Programming Language Characters.
NAMES
Now let us consider the syntax rules used in naming objects in a program.
The concept of a name is certainly well-known, Names are used to identify
people, actions, objects, concepts, values, etc. For example, when the name
JOE 1s introduced, one thinkq of a person, and probably of # particular person
with thgt nane. The name CAPITALISM is uéed to identify a type of economic
gystem, and the name BALL is used to identify a round object. Frequently, it
is desirable to use a special symbology rather than a name.- This 1is particularly
true in science and engineering. Symbols, like names, may be used to identify
actions, objects, concepts, values, etc. For éxample, consider the fplloﬁing
oymbqlogy qu’their aaséci&ted meaning:
£ summation symbol identifying an action
£ mean symbol identifying an average value
n pi symbol identifying a constant value (3.14)

Hp0 chemical symbol identifying water
v~ square root symbol identifying an action

O

()

2-7

In addition to names and symbols that are used for identification,
people frequently invent names to identify actions, objects, concepts, vdlues,
etc. These tﬁveﬁted names may be abbreviations of full names, initial letters
taken from several words or any other invented construction that caneys a
meaning. This type of name is réferred to as a mnemonic name. In chapter 1,
we used mnemonic names to identify the basic operations of the SIMPLE computer,
Some examples of mmemonic names are as follows:

QE . Quadratic Equation

DET Determinant
* SQRT - Square Root

CcoC Coefficient of Correlation

“GMT - Greenwich Mean Time

FICA Federal Insurance Compensation Act
1Q ~Intelligence Quotient

AGCT Army General Classification Tests
TAT - Thematic Apperception Test

SES Socio-Economic Status

ucs Unconditioned Stimulus

AFL American Federation of Labor

MTM Method Time Measurement

LIFO Last In, First Out

IDENTIFIERS
In the programming language, names are used for several purposes,

including the identification of variables in the computer memory, parts of a

- program, input and output devices, exception conditions and various other

program components., However, as was discussed previously, the term 1den§1fier
1s used in the programming language instead of name. The programming language
tool is utilized primarily to specify the manipulatibn of the values (via
thelr identifiers) in order to produce a desired result, 1In the SUH{ATIbN
program, the identifiers SUM, N and VALUE are used to identify values to be

manipulated by the program,

—

‘The construction of an identifier must conform to the conventions of the
programming language. Specifically, the following rules must be followed:

l. " The identifier cannot contain more than 31 characters.

- 2-8
2. The first character used in the identifier must be a letter,
i;eo, A,B,C......Z, or $’#, or@ o. ' . (I\
3. The remainder of the identifier may be composed of any letter, any
decimal digit, i.e. 0,1,2...9, the underscore character _ , §,

-
#, or (@ .

Erom the discussions earlier in the chapter, it should be obvious that
most of the names and mnemonic names can be written follow;ng the identifier
construction rules. However, the symbpls illustrated, such as :E , X, 7,
etc., may not be used directly in the programming language. Identifiers may
be constructed to represent these symbols, such as SUM, MEAN, PI, etc. The
programmer may use any idenfifier construction desifed, however, he should
attempt to have the identifier convey a meéning consistent with the nature of
the-objecf being identified. Some representative identifiers chosen from

various subject areas are as follows;

MENTAL_AGE - DETERMINANT . @
CHRONOLOGICAL_COEFFICIENT VELOCITY -
STANDARD DEVIATION HEAT_FACTOR
CORRELATION COEFFICIENT DISTANCE
POPULATION OHM
PERCEPTUAL_SPEED VECTOR
RORSCHACH _SCORE SLOPE_PROJECTION
HETEROGENEITY INDEX
DEBIT -

CREDIT
BALANCE

GROSS_NATIONAL_PRODUCT

MARGINAL_RATE

INTEREST_RATE

~ INVENTORY_ON_HAND
YEARLY PROFIT

LABOR_UTILIZATION

TURNOVER_RATE

IDENTIFIER-VALUE RELATIONSHIPS

The association of a value with a variable is specified in the program,
Values normally reflect some unit of measurement, For example, dollars and cents,
percentages, velocity, resistance, radians, degrees, number of consumers, : (u)

number of products, inches, yards, etc. To illustrate the identifier and value

()

(@]

2-9
of relationships, consider the following:

CHRONOLOGICAL_AGE 6 measurement of years
IQ 110 measurement in percentage
POPULATION 1506000 measurement in number of people
COLOR_SPECTRUM_MAX 700 measurement in millimicrons
SUMMATION_TONE 5500 measurement in frequency

(cycles per second)
MOBILITY_ INDEX 20.2 measurement in percentage
SIN 60 measurement in degrees
DETERMINANT ‘ .7 density factor of a matrix related to 1.0
DISTANCE .09 measurement in fraction of an inch
PROTON_MASS 1.00759 measurements in amu's (atomic mass units)
DEBIT 532.75 measurement in dollars and cents
INTEREST_RATE 6.5 measurement in percentage
NUMBER_CONSUMERS 1564 measurement in number of consumers
WORKING_CAPITAL 91965.35 measurement in dollars and cents

The computer does not associate particular units of measurement such
as dollars and cents, velocity, etc. with particular variables. -The computer

simply performs operations involving values. The association of a particular

unit of measurement is only known by the programmer and is dependent upon the

nature of the program. 1In the SUMMATION program, we did not specify the units
of measurement that were being summed. The values acquired as input could
represent population, salaries, amperes or any other unit of measurement.

The computer execution of the progrém is independent of the units of measure-
ment represented by the values.

STATEMENT-LABELS and PROCEDURE-IDENTIFIERS

When identifiers are used as statement-labels, the identifiers used
should be suggestive of the nature of the processing performed in by the
particular part of the prégram. In the SUMMATION program, the statement-labels
NEXT and FINAL were used, NEXT is used to suggest that that part of the
program acquires the next value. FINAL is used to suggest that this part of

the program is executed last, after all of the values had been acquired,

| Statement labels of the form:

X1 #2
L5 $ABC
A3 XYz

2-10
are permissible statement-labels since they conform to the identifier
construction rules, however, they are not very useful in identifying that
nature of the processing performed in a part of a prograﬁ. Consider the

following more representative statement-labels.

TABULATE COMPUTE_FICA
INTEREST_FACTOR TIME_CALCULATION
EVALUATE_QUADRATIC INTEGRATE

CORRELATE AVERAGE_CALCULATION

The programmer should also select a program name (L.e. procedure-identifier)
which reflects the nature of the entire program a8 in the case of the program

SUMMATION. Some representative procedure-identifiers are as follows:

ORBITAL_CALCUIATION NONLINEAR_REGRESSION
" PAYROLL_PROCESSING INTELLIGENCE_TESTS ,
~ VISUAL_PERCEPTION POLYNOMIAL_EVALUATION

Wg havgtunv considered the usage of identifiers for three purposes, that is,"
for variables, for statement-labels and for procedure-identifiers. . Other -

Qses of identifiers will be considered later. The programmer can creaﬁe any:
identifiers ﬁe wishes for these purposesb(subject to the identifier construction
rules), however, within a procedure delimited by the PROCEDURE aﬁd_END
statements, he may not use the same identifier to identify more than one

object, For example, you may not have a variable called SUM and a statemente

label called SUM.

CONSTANTS » . : -
In the SUMMATION program, we used two constants, 0 and 1. There are
several types of constants permitted in PL/I. For now we shall consider only

two types, fixed-point decimal constants and floating-point decimal constants.,

A fixed-point decimgl constant may be an integer or non-integer value

composed of decimal digits (0 through 9). If a non-integer constant is to be

specified a single decimal point indicated by a period (.) may be placed in

)

-3

)

2-11

the constant,

EXAMPLES: 0
5 integer constants
360

3.14159
.05
250.50 non-integer constants
.005982
3798.5

The term fixed;point means thatithe position of the decimal point is fixed,
that is;‘it is either explicitly étatéd for a non-iﬁteger value or 1t‘is
assumed to appear immadiately:toithe fight‘of the last digit of an integer
value. This is not necessarily the case_with floating-point decimal constants.
Before considering the syntax of floating-pointbdecimal constants, let us
consider the nature of floating-point numbers.

FLOATING-POINT NUMBERS

A floating-point decimal number is composed of two-parts. Firstly,
the actual numeric value of the number which is of fixed length called the
mantissa, and secondly a number representing an exponent, that is, the power
of 10 to which the value expressed in the mantissa is to be raised., For
example, the following is a representation of a floating-point number as
expressed in the programming language.

1E2
Where{ 1 1is the mantiésa

2 1is the exponent

E separates the mantissa from
the exponent »

The actual value of this floating-point number can be developed as follows:
1E2
- 1x 10°

= 1 x 100 = 100

2-12

It should be obvious from this example that the exponent simply shows the
positioning of the decimal point. 1In this example, the decimal point is
two places to the right of the mantiss# value, Now let us consider a few

more floating-point numbers

5E1 - 50 - 5 x 103
150E0 - 150 = 150 x 109
532E3 = 532000 = 532 x 10

where 100 = 1, 10! = 10, 102 = 100, 103 = 1000, etc.
In the prpgrémming language, an actual decimal point may be placed in the
mantissa, in which case the decimal point specified by the exponent is relative

to this position, For example, consider the following:

2.383 = 2300 = 2.3 x 10)
SE2 = 50 = ,5x 107
622,E1 = 6220 = 622 x 10

Thus-far, we have only considered a positive exponent which specifies the
positioning to the right, It is also possible to specify a negative
"~ exponent, in which case, the positioning is to the left., For example,

consider the following floating-point values,

-2 = .0l = 1x102
.5E-3 = .0005 = .5 x 1077
6’.5E'1 = 065 = 6-5 X 10_4
532.E-4 = .0532 = 532 x 10
-1 _1 -2 1 -3 1
here;s 10 " =o- =,1 10 =.— = ,01, 1 = 1 = ,001, etc,
where 10 100 » 10 1000 ?

-

_Thus you can see, by simply changing the exponent, the range of the value can

vary quite widely.

A floating-point decimal constant is composed of one or more decimal

digits (O through 9) representing the mantissa (with an optional single decimal
point specified by a period (.)) immediately followed by the letter E. The E
is followed by a'+ or - sign followed by a decimal exponent or simply followed

by a decimal exponent in which case, it is assumed to be a positive exponent,

4

(

VR
N

'\

EXAMPLES: 314159E-5

2-13
If a decimal point does not appear in the mantissa, it is assumed to be

to the right of the mantissa value.

.3141592653589793E1
2,7182818E0

12.5E6

.5963E-18

Obviously fixed-point numbers are easier to understand and recognize
and in moét‘cases, you Qill pfobably select to‘use fixed-point numbers. Some
computers like the IBM System/360 are capable of containing the representation
of fixed-point decimal values in the computer memory and performing operations
directly upon this type of value. However, in general, it takes more computer
time to perform operations on fixed-point decimal values, whereas floating-point
values can be manipulated much faster in the computer, Further implications
of various types of numbers and additional PL/I constant formats will be

discussed the last section and in the next chapter.

STATEMENTS

The next set of syntax rules are used for the construction of state~

ments, the basic instructions of the program.,

The general format of a statement is as follows:

[%tatement-label: statement-identifier statement-bodya

1. One or more statement-labels may optionally appear prior to the statement.
Each statement-label that is specified, must be folldwed by a colon (:).

2. The statement-identifier specifies thé ihstruction or action to be pe#formed.
3. The statement-bbdy contains 1nf6rmation‘required for thé execution of the
action specified in the statement-identifier. The nature of the information

is dependent upon statement- identifier that is épecified;

4., The assignment statement and theAnull statement discussed in the next
chapter, are the only statements in the programming language that are specified
without a‘statemént-identifier.

5. All statements are terminated by a semi-colon G).

2-14

In the SUMMATION program, two statements werevpreceeded by the
statement-labels, namely NEXT and FINAL. The identifier SUMMATION,,»
although it appears prior to a statement, namely PROCEDURE is a procedure;v
identifier rather than a statement-label. An instance wﬁere it might be
useful to utilize more than one statement-label is when a particular segment
of the program performs the operations for several cases, For example,

- consider the following skeleton |

CASEA: CASEB: A=A + B;

CASEC: A = A - B;

CASED: CASEE: CASEF: GET LIST (A, B);

Transfers of control such as:
GOTO CASEA;
GOTO CASEB;

Transfer control to the same program statement,

There are a multitude of statement types that will be considered in
thio textbook, all of which provide various basic progfam activities, The
following list summarizes all of the statement types to be considered by the
type of program‘activity they perform, You will note that some statement
types are listed in more thon one category, since theyvperform more than one
basic activity, You shall algo notice that some statement-identifiers may
be abbrevia;eq. That is; the translator will accept either form. In
addition; thé GOTO statement may bo specified without a blank character

between GO and TO or with a blank character (i.e. GO[]T0).

O

®

2-15

1, Program Segmentation : 6, Decision Making
PROCEDURE or PROC IF
BEGIN . ’ . null statement
DO _ ' ‘ DO _
END . 7. Value Disposition (Output)
ENTRY
PUT
. : , OPEN
2. Value Declaration and Allocation CLOSE
- WRITE
DECLARE or DCL
FORMAT
3. Initializing Key Variables
assignment statement
DECLARE or DCL 8. Iteration and Transfer of Control
GOTO or GO[JTO
4, Value Acquisition (Input) CALL
GET p
OPEN , _ o ggD
CLOSE ‘ ‘ 9., Program Termination
READ v : '
RETURN
END

5. Value Calculation

" 10. Exception Conditions

assignment statement
PUT ON

SIGNAL

All of these basic programming activities and several of the associated
statement types will be discussed in the next chapter, The other statements
will be presented later in the textbook.

KEYWORDS

In the SUMMATION program, you will notice that various words appeared
in several of the statement-bodies such as OPTIONS, MAIN, LIST, THEN and DATA.
These words are termed keywords. That is, they provide ihformation to the
translator as to the structure of statements and the various alternative

activities to be performed by various statements. All of the statement-

identifiers are also keywords. Many keywords will be introduced throughout

2-16
the textbook.

The programming language PL/I permits the programmer to use keywords
as identifiers for procedures, statement-labels, variables, etc., However,
using keywords as identifiers is not recommended, since it reduces the

' point,
readability of the program. To illustrate this/ consider the following
version of the SUMMATION program which performs the same program activities
but is more difficult to understand. |

SUMMATION: PROC OPTIONS.(MAIN);

DATA, N = 0;

GET: GET LIST (LIST);

: IF LIST = 0 THEN GOTO PUT;
DATA = DATA + LIST;
N=N+1;

GOTO GET; o
PUT: PUT DATA (DATA, N);

STOP; .

END SUMMATION;

The keywords GET apd PUT have been utilized as statement-labels and
the keywords DATA and LIST have been used as variable identifiers. Do you
agree that it is less readable than the original version of SUMMATION?

The translator is nof confused by this-type of multiple usage of words
since the context in which the words are used in the program statements

determines their meaning (i.e. variable, statement-label, keyword, etc.).

2-2 PROGRAM PREPARATION, TRANSLATION and EXECUTION

After the program has been written, it must be encoded on some
medium which is an acceptable input- to the computer. We shall- consider this
'input medium to be punched cards which are acceptable to the-qafd reader
input device. Other medium such as typewriters which are directly connected
" to the computer may be used in some systems,
In addition to punching the program into punched cards, we must also

prepare cards that contain the data to be processed by the program and what

are called control cards. Thesyntactical format and information conternt of

control cards depend upon the conventiors of an operating system. An operating’

O

@,

2-17

system is a sophisticated machine language program which schedules the work
of the computer. We shall assume in this textbook that the operating system
0S/360 (1) for the System/360 is to be utilized. The reader should check
the local control card conventions used by the computer center at which he
intends to have his PL/I programs processed, Since gontrol card conventions
vary quite widely we shall not discuss them iﬁ detail in this textbook. For
a detailed discussion of the control cards of 0S/360 and the appropriate
conventions for PL/I programs, the reader is referred to (2) and (3).
Another document (4) is a reference manual which describes all of the PL/I

features that are implemented by the 0S/360 PL/I translator,

1. 1IBM System/360 Operating Syétem
Concepts and Facilities Form C28-6535.

2. 1IBM System/360 Operating System
Job Control Language Form C28-6539.

3. IBM System/360 Operating System PL/I (F)
Programmer's Guide Form C28-6594.

4. 1IBM System/360 PL/I Reference Manual
Form C28-8201.

2-18
The 0S/360 control cards, the SUMMATION program and the input data

are prepared on punched cards in the following order. ("\

//LF127700 'EE397200', LAWSON

//A EXEC PLI1FCLG, PARM.PL] = 'X,ATR,EB' ,PARM.LKED = 'LET'

//PL1.SYSIN DD *

SUMMATION: PROCEDURE OPTIONS (MAIN);
SUM, N = 0;
NEXT: GET LIST (VALUE);

IF VALUE = 0 THEN GOTO FINAL;
SUM = SUM + VALUE;

N=N+ 1;
GOTO NEXT;
FINAL: PUT DATA (SUM, N); .

STOP;
END SUMMATION;

/*

//GO.SYSIN DD *

23 -6 0
/*
//

The first three cards must contain the characters // in columns 1
and 2., The first of these cards is called a job card. 1In essence, ﬁhis
identifies your computer job and to what account, the usage of the computer (T>
- 1s to be billed. The second cards specifies that you want to use the PL/I -
translator part of the operating systeh. This card also specifies certain
options available to the user of the PL/I translator, The third card
specifies that the input for the translator follows this card,

After these first three control cards, the PL/I program occurs. In
05/360, the program must be punched between columns 2 and 72. However,
within these bounds, you are free to ﬁse any columns, Additional factors
in the encoding of the program will be presented in the next chapter. After
the last program card a /* card appears to identify the end of the program,

The next control card which uses a /7, specifies that the input data to be
acquired by the program follows this card. After the input data which
could be several cards, a /% 1s used to identify the end of the input data

and the final // control card 1dentifies the end of the job, Normally, this '(u)

job would be one of many jobs to be processed by the computer, the jobs would

Fg

()

2-19

all be collected together, loaded into the card reader input device and
then processed, The control cards provide a convenient way of
' specifying what is to be dome,
identifying the beginning and ending of a computer job,/ and separating
various components of the job, in this case, the PL/I program and its data.
An important point to remember is that the operating system and the
PL/I translator are machine language programs, At various stages in the

processing of the job, the machine language instructions of these programs

are contained in the computer memory. We may visualize the step by step

..processing of the job in terms of a block diagram,

AFTER PREVIOUS JOB

STEP 1 Certain accounting information is noted
e :

-08/360 and it is determined that the PL/I
ACQUIRES translator is to be executed.
INITIAL

CONTROL CARDS

. STEP' 2 The program statements as the input, are
PL/I TRANSLATES Sthr 2 thep ,
THE PROGRAM - translated into machine language instructions,
INTO MACHINE The /* card terminates the translation.
LANGUAGE |
THE TRANSLATED STEP 3 The translated program is executed,
PROGRAM IS input values are acquired and output
EXECUTED values created.

0S/360 SKIPS
TO THE
NEXT JOB

NEXT JOB

This type of processing in a computer system is referred to as batch

2-29
processing. That is, several jobs are collected in a batch to be thevinput
to the computer,

Let us take a closer look at the translation performed in STEP 2. This
translation is analogous to gaining an understanding of some treatise written
in a foreign language. That is, the treatise must first be translated into
a language that .1s understood., If the treatise was written in Hungarian
and was translated to English, Hungarian would be considered the source

language (source of translation), and English would be the object language

(object of transla&ion). Likewise the encoded program written in the programming

language is termed the source program or source language. The translator

I
1

translates this source program into an object progfam or object language wnich
is ihdeed the ﬁaéhine 1anguage program,. The tfanslation process ié illustrated
in Figure 2-2, \
In the translatiop.of one natural language to another, thé translator

is normally a person, However as we learned previously; the translator
.fof a progrémﬁing language translation is a nachine language program which
instructs the computer to accept the source program and to create a mahcine
langﬁage program that reflects the instructions stated in the source program.

When the translation to the object program is complete, the computer may

then be instructed by the object program.

O

¥

2-21
PROGRAMMING [ANGUAGE

NATVRAL LANZUACE
TRANSLAT/ON

"TRANSLATOHN

"-! c— SOURCE PL/T PROG A “F‘LI

"D bup\nnn'n (-CINKO* {
3umnn1m~ }

J__:

SOURCE LA EVAGE -——-—~>l HALLG AT
(HUNGARIAN)

i
i
|

J |

I

TRANSLATOR | : "
TRANS TRANSLATCR

= < OBTELT PROGRAM HE wi]
MACHINE | T MACHINE LANGURGE REM g s 6
LAN@qud 5 : SILENT
VS TRUCTIong "~ OBITLT LANGUAGE —)) K}Qé‘éfp :

= (eNGLISH) N .

- Acr:omf’uﬁ '

¥ MARTIN LUYTHER

Figure 2-2, Tfanslation Process
The translator will normally create a listing via the printer output
device of all of the statements of the program that it translates. In addition,
it will diagnose certain types of errors in the program, and list these
messages on the printer. These errors are normally due to th:= fact thét the.

programmer did not follow the syntax rules for constructing PL/I programs,

2-22

There are a multitude of possible error messages th@t can be produced in a

PL/I translation, These error messages are described in (3)
Assuming that our SUMMATION program was successfully translated .
and executed, we would obtain the following information in the listing

produced on the computer.

PROGKAM LISTING

SUMMATICN: PROCEDURE GPI]ONS(MAIN).V:;_

1 :
> SRR UM N = o

3 ' NEXT: GET LIST(VALUE);

4 1F VALUE = 0 THEN GUTO FINAL.
6 : ' - 2 SUM = SUM + VALUE;

7 : ; . N N*l’

8 S ’ corc NEXT;

g ,: | FINAL: PUT DATATSUNINTT
10 , - STOPS ,
11 Co ‘ -~ END SUMMATION;

EXEQCUT|ON RESULTS

SUM= 1.7CCO0E+C1 N= 23

4]

O

W,

2-23
The notes to the right are not produced by the computer, they simply identify

the origin of these components of the listing.

Th re would be additional information in the listing including the
control cards and their 1nformation describing the various intermediate |
stages of processing the job, Based upon certain options specified in the
control, cards, various other information may be placed in the listing.
Again, the reader should check the local control card conventions at the
computer center where hiS‘JObS are processed

You will notice in the output produced by the SUMMATION program that the
value of SUM appears in floating point decimal notation, whereas the value
of N appears as a fixed -point decimal integer. The reason for these value
formats will be described in the next chapter, |

2-3 COMTUTER REPRESENTATION OF VALUES

An obJective of most programming languages, including PL/I is to

structure the language so that it is relatively machine independent. That

is, given a program coded in PL/I for one computer, this same program may.

be processed on a different computer which has an implementation of PL/I.
Complete machine independence is imp0331b1e due to the different ways of
representing values in the computer memory of various computers. However,
even though the data representation is a deterent to machine independence, the
basic instructional steps of the PL/I program (i.e. statements) will in the
majority of‘cases‘havepthe same or similar meaning on every computer in which
PL/I is implemented. When using PL/I it is not essential to know all of the
details of how data is manipulated in the computer. However, it is desirable
to know the manner in which data values are represented and the relative
efficiencies of processing various data values in the computer upon which
your programs will be processed. This information will aid you in constructing

more efficient PL/I programs. For this textbook, we are using the IBM

, . ' | - 2-24
System/360, which several data representations. In

chapter 3, we shall learn that one of the most important roles of the basic
program activity of.Value Declaration is to specify which data representations
are to be wused for program'vsriables.

NUMBER SYSTEM>

In chapter 1, when we considered the SIMPLE computer and 1its memory,
it was stated that all values in the memory are in the form of binary (i.e. baselz)
digits (0 and 1), and by appropriately grouping binary digits, we can represent :
other number bases such as the familiar decimal base (i.e. base 10) In the
following discussions of number bases, we shall consider decimal (base 10),
binary (base), and hexadecimal (base 6) number systems. This later number‘
base, hexadecimal, is simply a convenient grouping of binary digits..‘The
System/360 permits the encoding of all three of these number bases, Since -
we shall be discussing values of three different number systems, the following
wotation will be used to explicitly state the base of a number,

(v)2, (v)10 and (v} 46 where v = the value

DECIMAL INTEGERS

Let us examine the manner in which decimal base 10 number is developed

For example, consider the following decimal value:

G36%10

We can state this value as the sum of successive powers of 10 multiplied

by the digits of the number as follows:

-2x103+3x102+6x 10! +8x 100
= 2 x 1000+ 3 x 100 + 6 x 10 + 8 x 1

= 2000 4300 +60 +8 - é368) 10'
where: 100 =1 units position N
‘10! =10 tens position
10% = 100 hundreds position
10”7 = 1000 thousands position .

Ly

BINARY INTEGERS

2-25

The construction of a binary integer value is represented by a series

of zero and one binary digits, As in the decimal number ¢xpansion; we can

express the value of a binary number as a scries of successive powers,

however; we use the powers of 2 rather than the powers of 10 as in the decimal

expansion. Consider the binary number:

[

S1x23 41 x 22 4y 0x 2l 41x02
=1x8 +1x4 +0x2 +1x1
= 8 + 4 + 0 + 1
where: 2? =1

2, =2

25 = 4

2 = 8

Consequently, the binary number élOO o is-equivalent to the decimal

1910

DECIMAL FRACTIONS

Next, let us consider the composition of a decimal fraction.

fraction is the result of applying successive negative powers of 10,

example, consider the decimal fraction:

(’5921) 10

This may be ekpressed in powers of 10 as follows:

5 x 107! + 9 x 1072 +2x 1073 +1x 1004

)z

-1 1
h + 10 = e
where 10
1002 = _L_
100
1003 = 1
' 1000
Lo~% 1

~ 10000

.1

.01

.001

.0001

number

A decimal

For

2-26
Consequently, the value may be restated as:

5x .1 +9x .01l +2x .00l +1x .0001 = (.5921)10

BINARY FRACTIONS

A binary fraction may be specified in a similar manner. It is .-
expressed as successive negative powers of 2, For example, consider the

'following binary fraction:

(3):

This may be expressed in powers of 2 as follows:

0x 27! + 1 x 2'2 +1x 2'3 + 1 x 2'4
where 2'1 = l = .5

2

272 212 35
%

-3 1 .
2 == = ,125 ,
274 2Ll L o625 | ’
16

Consequently the value may be restated as:
0x 5+ 1x .25+ 1x .125 + 1 x .0625

= 0 + .25 + .125 + 0625 = (.4375)10

The binary fraction (.0111)2 when expanded using the successive

negative powers of 2 is equivalent to the decimal fraction '(4375)10.

our knowledge of these conversions, consider expressing a

binary value which has a whole part and a fraction, Consider the binary value:

(1011 . 101) 2

This may be stated in powers of 2 as follows:

+ 1l x 21

+ 1x29 + 1x27l 4+ ox 2:3 + 1x2°3
=1x8 + 0xb4 +1x2 +1x1 +1x .5 +0x.25 +1x .125'(«)
= 8 0 + 2 4 1 + .5 S+ 0 + .125

i
Wl

