L

1

1.

1.

.0

1

3

PLAGO/360 FAST PL/I TRANSLATOR

Introduction

PLAGO is a fast PL/I translator developed at the Polytechnic Institute
of Brooklyn and is designed specifically for use by a large number of
students. It features a very fast job time (time needed to translate and
run a program), usually well under one second. In addition, a large num-
ber of error messages pinpoint mistakes and often help guide the way
towards writing a successful program.

Preparing Input for Plago

All input to PLAGO must consist of 80 column cards punched on an IBM 029
keypunch These cards are stacked into a card deck which is read by PLAGO
in sequence. These cards can be grouped into three categories: 1) Control
cards which control the translation and execution of a job; 2) Program
cards through which the user instructs the computer about what to do in
order to solve his problem; 3) Data cards which contain numbers to be read
by the user's program for use in calculations during execution of his pro-
gram.

It is sometimes necessary %o refer to a particular punch or punch com-
bination. Usually, this is most conveniently done by referring to it by
row and/or column. As mentioned above, all input cards to PLAGO contain
80 columns. Card manufacturers usually number the columns along the top
and bottom of card and the columns can be identified by these numbers.
Likewise, rows of numbers ranging from zero to nine are also printed.
These rows can also be identified by number. In addition, there are two
additional rows above the zero row, The row immediately above the zero
row is called the 11 row, with the row above that (the top row on the
card) being called the 12 row. ‘

Therefore, since the punch combination for the letter A is a punch in
the 12 (top) row and the 1 row in the same column, the punch representa-
tion of the letter A is a 12-1 punch. Furthermore, the representation of
a comma is a 0-8-3 punch, and so on. Finally, the top and bottom edges of
the card are identified by the rows nearest them. Therefore, the top-
edge of the card is known as the 12 edge and the bottom edge is the 9
edge. .

System Input

Cards are read by PLAGO by means of a high speed card reader operating
at about 1000 cards per minute and intermediate storage devices. Informa-
tion for control cards may be punched between columns 1 and 72. Information
on the PL/I language program cards may be punched between columns 2 and 72,
with column 1 being ignored. For this reason column 1 is usually left
blank and columns 73 through 80 may be used for user identification codes.
for his own use. Columns 73 through 80 are not read by PLAGO for program
cards. Data cards use all 80 card columns and therefore the entire card
is scanned for input data,

1See Appendix A for a keypunch description.

1.4

2.

2.

0

1

System Output

All PLAGO output is directed to a high speed printer operatimg at 450
lines per minute and to intermediate storage devices. The number of
printer columns available to the PLAGO user is 120, although the actual
number of print positions on the physical printer is 132, The printer is
used for source program listings, program execution output, and error
messages.

Control Cards and Job Structure

Running a job on PLAGO requires the use . of only three system control
cards, which are identified by a dollar sign ($) in column 1 of the card.
Every job must utilize all three of the control cards described below.
The dollar sign-in column 1 is always immediately followed by a control
key word. No intervening spaces are allowed. Over each of the following
figures of card descriptions, numbers appear stating in which columns the
information must start and end. '

12 6
[;BEGIN acct#name[,optionsi]
Fig. 1. Format of a $BEGIN control card

$BEGIN Card

The first card in the deck is known as a "$BEGIN" card. 1Its general
format is shown in Fig. 1. It must always be the first card in the deck.

.It has several purposes. First, it notifies the system that the beginning

of a new deck is now in the reader and that PLAGO initialization processes
should start. Second, it uses the account number to determine whether the
owner of the deck is a valid user of the system. If he is, it also deter-
mines who is to be billed for his use of the computer. Third, since the
programmer's name is on the card it provides a means to sort and match the
decks and printouts for eventual return to the user. Fourth, it may be
used to specify options to the compiler regarding amount of time needed,
number of pages to be printed, and other information, If no options or
incomplete options are specified PLAGO assumes default values for the
missing options. -

Being a control card, it must contain a dollar sign in column 1 and the
keyword "BEGIN" in columns 2 through 6, followed by one or more blanks.
Next comes the user's 8 character computer account number, followed by one
or more blanks. This account number identifies the user to the computer.
Next comes the programmer's name, with any character allowed in the name
except commas,

The programmer's name may optionally be followed by a comma and a list
of options separated by commas., Each option has the following format:

- KEYWORD=VALUE

where KEYWORD identifies the option to be utilized and VALUE is a parameter
to be assigned to that option. Options available include the following:

N
N

2.2

2.3

2.4

TIME=n System will allow your job to execute for n minutes. If this op-

tion is omitted, one-half minute is assumed. 1In general it is a good

idea to consult with your instructor or advisor if you need more

than the default time, since poor programming technique may be the
cause of such a long execution time.

PAGES=n System will allow your job to print up to n pages on the system
printer during execution. Any attempt to go beyond this limit
will result in an error message and termination of the job. 1If
this option is omitted, 10 pages is assumed. Once again, any
decision to increase this limit should be made only after consult-
ing with your instructor or advisor, since you may be producing
more output than is necessary.

| 1 5
$DATA

Fig. 2. Format of a $DATA Control Card,

$DATA CARD

The $DATA card serves three purposes: 1) It signals the end of the
user's PL/I source programs; 2) It indicates that input data to be read
by the programs during execution may be immediately following this card;
3) It initiates the loading and execution of the user's object program.
This card must always immediately follow the user's PL/I source programs.
Its format is shown in Fig. 2 and has the standard control card format of
a dollar sign in column 1 and the keyword DATA in columns 2 through 5.
The rest of the card is ignored and should be left blank.

[e i

Fig. 3. Format of the $END Control Card.

SEND CARD

The $END card indicates the end of the user's input deck to PLAGO. It
must always be present and must always be the last card of the user's
deck. The $END card format is shown in Fig. 3 and follows the standard
control card format of a dollar sign in column 1 and the keyword END in

columns 2 through 4. - The rest of the card is ignored and should be left
blank.

SUMMARY

This section will summarize the use of control cards in the user's
deck:

1. The $BEGIN card issued by the Computer Center is always the first
card of the deck. pi /g

2. The user's N source programs.follow. No control cards are -
needed between programs.

3. The source programs are followed by a $DATA card.

4. Any data to be read during execution is included next.

5. A $END card is included as the last card in the deck.

3.0

4.0

A pictorial summary is shown in Fig. 4.

$BEGIN acct.# name,options

PL/I Source Programs

$ DATA
Input Data Cards (if necessary)

$ END
Fig. 4. Input Deck Sequence for PLAGO

PLAGO LANGUAGE SUMMARY

PLAGO is designed for an educational environment with particular empha-
sis on its use by students of engineering and science. For this reason
PLAGO does not support the entire PL/I language but instead a compatible
subset of PL/I which is usually used in scientific form. A complete
description of the PL/I language as it is implemented on various machines

at this time is contained in the IBM PL/I REFERENCE MANUAL, form number CR8-82¢1i.

A more complete description of the PLAGO language subset is given in
Appendix C of this guide. 1In this appendix is a list of statements imple-
mented in PLAGO and a brief description of the use of each statement.
Appendix D of this guide contains a list of differences between the PL/I
subset used in PLAGO and the language as described in the IBM L[I REFER-

ENCE MANUAL.,

- DIAGNOSTIC MESSAGES

~ The present version of PLAGO has only one level of error severity with

all errors either preventing execution of the program if it has not started.

or terminating the job if execution has already been initiated. All

errors are noted by means of a code number appearing on the computer print-
out. A list of error numbers and their explanation as well as descriptions
of causes of the errors and possible solutions are given in Appendix B.
Errors may be grouped into four categories:

1. 1Initial translation errors found when PLAGO was first scanning the

- source program text. The offending column is marked with a dollar sign ($)

to indicate exactly where the error was detected. In addition, the error
number is printed just to the right of the dollar signs. Errors in this
category have number codes between 0 and 99.

2, Program construction errors detected after PLAGO was finished scan-
ning the source text. These errors are indicated by the word "ERROR"
followed by an error code and possibly a name indicating a label or vari-
able used incorrectly. All errors of this type are listed immediately

'following the course listing on the printout and are identified with error

codes between 100 and 199,

3. Execution errors caused by a program malfunction. These errors are
identified by the keyword '"ERROR" followed by the error code and the
statement in which the error occurred. All error messages of this type are
usually mixed among the program printout and are identified by code numbers

-between 200 and 299

C

4., Errors detected by the PLAGO system in general which can occur
during any phase of job processing. Errors of this type cause an ’
English text error message to be printed without any identifying error
code number. These messages are always self-explanatory in nature.

Al.0

Al.

1.

APPENDIX A, Use of Kevpunches

Introdhction

The IBM System/360 utilizes a high-speed card reader as its main input
device., This reader has two sets of metal brushes internally, with one
set of brushes at a slight electric voltage. Normally an electric current
is running between the two sets. When the card reader is running, punched
cards are sent through a path between the brushes one at a time, insulat-
ing the sets of brushes and shutting off the current. Whenever a hole in
the card is encountered as the card moves through, current flows between
the two sets. 1In addition, each set of brushes is separated into groups
so that the reader will know exactly the position of the hole on the card.

‘By noting the pattern of holes in a card column the reader determines the

character read, converts the character into a binary form acceptable to the
computer, and sends the encoded character into the computer memory.

Obviously, the task of hand punching a card with the correct hole pat-
terns to indicate the desired characters is a laborious task. A device -
has been invented which is operated in a manner similar to an electric
typewriter, called a keypunch. : '

Operating the Keypunch

There are many different keypunches on the market today which are
compatible with the System/360. Of these, the two most popular keypunches
are the IBM 026 and IBM 029. Although the characters and hole combinations
they punch are somewhat different, their basic use and mode of operation (ﬁ>
is the same, —

The first feature of the keypunch is the path of cards through it. At
the top right corner of the keypunch is a card hopper which contains the
user's blank cards which are to be punched. The cards are held upright in
the hopper by a spring loaded back plate which in turn is held by a lever
to keep it from slipping. To put cards in the hopper, reach over the key-
punch and locate the back plate and its associated lever. Release the
plate by closing the lever against the plate. Then, still holding the
lever, push the plate towards the back of the machine until a gap is created
which is large enough to hold the cards. Insert the cards and let go of
the plate, allowing it to spring back against the cards and hold them in
place. At this point the cards are loaded and ready to punch, one at a
time.

The remainder of this section can best be read while being seated in
front of a keypunch. If this is not possible, then refer to Figs. A.l and
A.2 for diagrams of the path that cards follow when going through the key-
punch and the keyboard.

APPENDIX A. (cont'd.) ‘ 8
USE OF KEYPUNCHES ‘

Within the keypunch, a card can be in any one of five locations:
1. In the card hopper awaiting processing as described above., This is in-
dicated by a "1" on Fig. A.1l.
2. In standby position waiting to be registered in the punch station. This
is indicated by a "2" on Fig. A.l.
3. Registered in the punch station ready to be punched or being punched.
This is indicated by a "3" on Fig. A.l.
4. Registered in the read station ready to be read or being read. This is
indicated by a "4" on Fig. A.1l.
5. In the output card stack, with all processing finished for that card,
This is indicated by a "5" on Fig. A.1.

The movement of cards through the keypumch is controlled by three buttons
located on the right side of the keyboard (see Fig. A.2): the REL (RELEASE)
button, the FEED button, and the REG (REGISTER) button. At this point we
will trace the movement of a single card through the keypunch.

The first objective is to move a card from the card hopper to the punch
station to ready it for punching. This is accomplished by first pushing the
FEED button to feed a card from the card hopper to the standby position, and
then the REGISTER button to register the card in the punch station. The card
is now ready for punching. '

The actual method of punching the card is very similar to using a typewriter.
The keypunch has two sets of characters for each key: ALPHABETIC shift, cor- '
responding to the lower case (small letters) on a typewriter, and NUMERIC shift,
corresponding to the upper case (capital letters). Normally, the keypunch is
in ALPHABETIC shift, and can be changed by depressing the NUM (NUMERIC) key at
the bottom left side of the keyboard. For example, if the key next to the SKIP
key (right side, middle row) is pressed with the keypunch in ALPHABETIC shift,
the letter L will be punched. 1If the keypunch is shifted to NUMERIC the numeral
6 will be punched. If the fourth key on the top row is pressed with the key-
punch in ALPHABETIC shift the character STAR (*) will be punched. If the
keypunch is put in NUMERIC shift the character DOLLAR SIGN ($) will be punched,
The same is true for all the grey keys on the keyboard. If an illegal symbol
is attempted to be punched, such as the numeric character corresponding to the
letter A, the keyboard will lock due to the error and may be unlocked by
pressing the ERROR RESET key if it is available. Otherwise, just tap the
BACKSPAQGE key in the middle of the keypunch. The BACKSPACE key, if held down,
will also back up the card to repunch columns. The card will be backed up as
long as the BACKSPACE key is depressed until column 1 is reached. It should
be noted that once a column on a card is punched, it is punched irrevocably -
forever. There is no such thing as erasing a punched column.

When the card is finished being punched it must be released from the punch
station so that another card can be brought in for punching. This is done by
pressing the REL (RELEASE) key. Above the keyboard is a set of switches, one:
of which is marked AUTO FEED. If the AUTO FEED switch is turned on, a feed
sequence as well as a release sequence takes place each time the RELEASE key
is pressed. '

(O

N

S

APPENDIX A. (cont'd.) - 9

In summary, each key will perform the following operations:

1. REGISTER key: Will take cards from the standby position and register them
in the punch station. In addition, it will take cards just beyond the punch
station through a release sequence and register it in the read station.
Finally, it will take cards just beyond the read station and put them at the
bottom of the output card stack.

2, TFEED key: Performs all the operatidns of the REGISTER key and in addition
will move a card from the card hopper to the standby position.

3. RELEASE key: :
a. With AUTO FEED off: Will release cards from the punch and read statioms.

b. With AUTO FEED on: Will release cards from the punch and read stationms
and also will perform all the operations of the FEED and REGISTER keys.

One final key of interest on the keyboard is the DUP(DUPLICATE) key. With
cards in both the read and punch stations, the card in the read station will be
duplicated on the corresponding columns of the card in the punch station,
column by column, as long as the DUP key is depressed or until the end of the
card is reached. If no card is present in the read station, the card in the
punch station will simply be spaced over as long as the DUP key is depressed.

ADDITIONAL FEATURES

Above the punch station there is a small window through whi h can be seen a
drum, At the the bottom of the drum is a row of numbers and apointer. The
number pointed to corresponds to the column number ready to be punched in the
punch station, ' ’

Above the keyboard is a switch labelled PRINT. If the switch is ON, the.
character punched through the use of the keyboard will also be printed at the
top of the card above its respective column. If the switch is OFF, no such
printing will be done.

On some keypunches, a spring switch labelled CLEAR is present. By flipping
the switch momentarily to the ON position and releasing, the entire keypunch
can be cleared of cards from all stations, with all cards ending up in either
the card hopper or output card stack.

Other switches, levers, and keys are also on the keypunch. These are
normally used only by trained professional keypunch operators or in very
special applications and as such are beyond the scope” of this section.

OPERATING HINTS

In general, if a large number of cards needs to be punched in consecutive
order (such as the initial preparation of a program deck) it is a good idea
to have the AUTO FEED turned on. If only a few cards need to be punched in
non-consecutive order (such as corrections to a deck) it is a good idea to
turn off AUTO FEED,

If the keypunch malfunctions, DO NOT ATTEMPT TO FIX THE KEYPUNCH YOURSELF!
Report the difficulty to the proper authorities in the Computer Center. They
have experience in dealing with such disasters and also have special tools teo
fix the keypunch quickly. However, many times in the past, relatively easy

APPENDIX A. (cont'd.) 10 ()

repairs have turned into nightmares resulting in calls to IBM for drastic
service., Once again, since it cannot be stated sufficiently strongly:

DO NOT ATTEMPT TO FIX THE KEYPUNCH YOURSELF!!!

c

\

N i

Number

APPENDIX B. o
PLAGO ERROR MESSAGES

Explanation and Typical Causes

7.

8.

9.

10.

An identifier is used locally for more than one purpose. For example, the
same identifier is used for a statement-label and variable-identifier.
Remember, an identifier must have one and only one meaning within a block.
That is, as a statement-label, procedure-identifier, parameter, variable
identifier or built-in function.

Statement cannot be classified. The statement being scannediis not a
valid PLAGO statement. The translator skips to the next semi-colon and
translation continues.

Statement translation incomplete. According to the syntactical rules for
statement construction, the statement should be terminated by a semicolon.
However, a semicolon was not found in this point in the scan. The trans-
lator skips to the next semicolon and translation continues. This error
also occurs when another :

External procedure has not been recognized. The first statement in the

program was not a valid PROCEDURE statement. The translation is termin-
ated. : ' '

THEN missing in an IF statement. The THEN clause which must follow the
expression of the IF statement cannot be found, The translator assumes
the existence of the THEN keyword and continues the statement translation.

Left parenthesis missing. A left parenthesis is required at this point in
the statement., The translator assumes the existence of a left parenthesis
and continues the statement translation.

Right parenthesis missing. A right parenthesis is required at this point
in the program. The translator assumes the existence of a right paren-

~ thesis and continues the statement translation.

JInvalid variable 1list in an assignment statement. The variable list in an
assignment statement is illegal. The translator skips to the next semi-
colon and translation continues. ' - ,

'Equal Sign missing in an assignment statement. An equal sign is required

at this point in the program. The translator assumes the existence of an
equal sign and continues the statement translation. :

Invalid LIST in a GET or PUT statement. The LIST or DATA options of a
GET or PUT statement are illegal. Remember the DATA option may have no -
LIST or specify variable identifiers, the LIST for a GET statement must be
composed of expressions. The translator skips to the next semicolon and
translation continues.

LIST or DATA option missing in a GET statement. .One of these options must
must be present in a GET statement, The translator skips to the next and
translation continues,

APPENDIX B (cont'd.)

Invalid printer control options in a PUT statement. An invalid combina-

fier is required at this point in an expression translation. Expression

Control variable not recognized in a DO statement. The control variable

cannot be recognized, the translator skips to the next semicolon and treats

Invalid GOTO statement. An identifier is not found following the GOTO

Invalid CALL statement. An identfier‘is not found following the CALL. .

keyword. The translator skips to the next semicolon and translation con-

Invalid parameter list. An element of the parameter list is not an 1dent1-~

fier. The translator skips to the next semicolon and translation continues. -

Procedure jdentifier list missing. A procedure identifier list must be

specified prior to the PROCEDURE statement. The translator ignores the ab-

Invalid precision. The precision following the FLOAT attribute is elther

‘not a decimal integer constant, or it exceeds the maximum of 14 digits.

In the former case, float single is assumed. In the latter case, float
double is assumed. In both cases, the statement translation continues.

Invalid DECLARE statement. An identifier is executed at this point in the

statement. The translator skips to the next semicolon and translation

" The declaration of a parameter using the asterisk notation requires that

all dimensions be specified and/or all lengths be specified with asterisks.

All of the above errors will be printed below the erroneous source program

All these errors appear at the end of the source listing., They are noted

Number Explanation and Typical Causes (continued)

11,
tion of printer control options have been specified. The only valid
combination is PAGE and LINE.

12. Expression Operand cannot be recognized. A valid constant or identi-
translation stops and additional errors may be listed.

13, Not assigned at this time

14.
the DO group as a non-iterative DO group.

15,
keyword, The translator skips to the next semicolon and tramslation
continues. ‘

16.
tinues.

17.

18.
sence of the list and translation continues.

19.

20.
continues.

21,
The translator skips to the next semicolon and translation continues.
statement, with a dollar sign ($§) pointing to the column in question.

-SECOND PASS ERRORS

only after PLAGO has already scanned the source program one time.

100.

Identifier in a GOTO statement i8 not a statement label, ‘The identifief

in a GOTO statement, is not known globally or 1oca11y as a statement label.

O

Number

APPENDIX B (cont'd.)
SECOND PASS ERRORS (cont'd.)

Explanation and Typical Causes

101,

102.

103,

104,

N
N

200.

201.
202,
203.

204,

Illegal transfer of control into a DO group or block. Control may not be

transferred into a DO group, procedure block, or BEGIN-END block via a GOTO
statement. Remember, the DO statement of a DO group, or the BEGIN state-
ment of a BEGIN-END block must be executed by a flow of control; a pro-
cedure block must be entered by a CALL statement or procedure function
invocation. The illegal statement label follows the statement number.

Statement label illegally used. An operand in an expression, or a variable

in a variable list specifies a statement label. The illegal statement
label follows the statement number.

Illegal function or subscripted variable reference. A reference was made

in the program which is not a valid subscripted reference to an array,
not a valid procedure function reference. The illegal identifier follows
the statement-number. Usually caused by failing to include the variable
in a DECLARE statement or the DECLARE statement in which the variable
appears is syntactically incorrect.

Incorrect number of arguments or subscripts. A subscripted reference was

made to an array and the number of subscripts does not match the number of
dimensions declared for the array. Or a reference was made to a built-in
function where the number of arguments does not match the number of re-
quired arguments for the built-in function. Or a procedure function
reference or CALL statement reference was made where the number of argu-
ments does not match the number of parameters declared for the procedure.
The identifier of the illegal reference follows the statement number.

EXECUTION ERRORS

These errors occur during execution of the program and are mixed among
the values put out by the user's program. The format of the message is as
follows:

ERROR error number IN STATEMENT statement number

An array expression has been used in a context where a scalar expression
must appear. : -

Declared character string length exceeds the maximum of 255 characters.
The memory space allocated for data storage has been exhausted.

An attempt is being made to assign a value to a parameter where the corres-
ponding argument is not a legal target. For instance, a constant or
temporary.

Lower bound of an array dimension is not less than the upper bound.

APPENDIX B (cont'd) : ()

EXECUTION ERRORS (cont'd.)

Number Explanation and Typical Causes

205 X =0and Y<O ig X #x Y

206 Arrays whose bounds are not identical have been used in an érray expression.
207 X < 0 in SQRT(X)

208 X € in LOG(X) or LOG2(X) or LOG 10(X)

50

209 ABS(X) 2K % 2 in SIN(X) or COS(X) (K=m)

or in SIND(X) or COSD(X) (K=180)
210 X > 174.673 in EXP(X)

50

211 ABS(X) > K *.2 in TAN(X) (K?W)

in TAND(X) (K=180)
212 X too close to singularity in TAN(X) or TAND(X)

213 Y = 0 in MOD(X,Y)

380' Error in_execution'interpreter
. ON_CONDITIONS
ENDFILE Attempt to read more data then was supplied
'NAME " For GET DATA, the name of the data item listed was not specified

on the list (or is not known if no list was specified). The item
is skipped and execution continues. .

FIXEDOVERFLOW The result of a fixed binary operation exceeds 231 -1,

OVERFLOW The exponent of a floatiﬁg point number exceeds 75.

UNDERFLOW The exponent of a floating point number is less than -79.
Execution continues.

CONVERSION An illegal conversion from character string to numeric value has
been attempted. This condition is also raised for invalid input data.

~ SUBSCRIPTRANGE The value of a subscript lies outside the specified bounds.

ZERODIVIDE Division by zero in either a fixed binary or fléating point operation.

STRINGRANGE The parameters to the SUBSTR function are such that the specified (u)
substring lies outside the string. Execution continues using the ‘

‘valid part of the substring, which may be null. If both sides of a
statement using SUBSTR are invalid, this condition is raised twice.

N
o

APPENDIX B (cont'd) ~+ ON_CONDITIONS
ERROR This condition is raided following any on-conditioh which

FINISH

terminates execution.

This condition is raised immediately before the job is terminated.

