INS

TRUCT

U.S. ARMY
~ ENcINEER

=> ScHoolL

COMPUTER PROGRAMING LANGUAGE
| | MANUAL

FORT BELVOIR, VIRGINIA

IONAL DATA SYSTEMS PROJECT OFFICE

e
N

e
e

PREFACE
The development of the BASIC language was
supported by the National Science Foundation
under the terms of a grant to Dartmouth Col-
lege. The project, under the direction of
Professors J. G. Kemeny and T. E. Kurtz,
included creation of a compiler for the BASIC
language and the necessary executiveroutines
for the GE 235, Dat;net 30 Computer Systems.
Reference material -has been used from "A
Manual for BASIC'", the elementary algebraic
language designed for use with the Dartmouth
Time Sharing System. Dartmouth College per-
mitted this‘reproduction for non-commercial

use.

CONTENTS

PREFACE
INTRODUCTION AND PURPOSE
BASIC COMPONENTS

NUMBERS
VARIABLES
EXPRESSTONS
FUNCTIONS
RELATTONS

SUMMARY OF BASIC STATEMENTS

REM

LET

DATA

READ

GOTO

END

PRINT
TF-THEN

FOR AND NEXT
DIM

LOOPING TECHNIQUES

PROGRAM DEVELOPMENT

PROGRAM ASSEMBLY BY FLOW CHARTING

SAMPLE PROGRAM WITH REMARKS
ERRORS AND DE-BUGGING

TELETYPE KEYBOARD AND SPECIAL KEYS

KEYBOARD KEYS
TELETYPE KEYS
TELETYPE DIAGRAM

PROCEDURE FOR CONNECTING TO COMFUTER

FOR 265 COMPUTER

FOR 420 COMPUTER

ii

PAGE

SN

—_ .
Ll CA NN RORT, R0, 830 £~ LW

P §
&~ 0w

I\)._lJ
oax

22
22
Rh
R3
Rl

Rh
25

e em
N

~

N —

e,

S,

CONTENT S Continued

PAPER TAPE OPERATIONS

TO PUNCH PAPER TAPE OFF-LINE

TO PUNCH PAPER TAPE FROM COMPUTER

APPENDIXES

LIMITATIONS TO BASIC
TIME-SHARING SYSTEM COMMANDS
FRROR MESSAGES

USAES SOP ON TERMINAL USAGE

ADVANCED BASIC TECHNIQUES

iii

PAGE
25

26
26

R7
29
31
41
47

INDEX

BASIC MANUAL TOPIC PAGE # GUIDE

TOPIC

Arrays
Arithmetic Symbols
Comma. Control
Computer Connection
DATA Statement
De-bugging
DIM Statement
END Statement
Errors
Error Messages
265 System
420 System
Flow Charting
FOR and NEXT Statements
Functions
GOTO Statements
IF-THEN Statement
LET Statement
Line Numbers
Loops
Numbers
Paper Tape
PRINT Statement
Print Zones
READ Statement
Relations
REM Statement
Semi-colon Control
S0P
Summary of Statements
System Commands
TTY Keyboard
TTY Keys
Variables
Non-subscripted
Subscripted

iv

PAGE

11
2
7

Rh
5

20

11

4y21,22

10,13,18,20
2

26

i EaR SRR BN
Ne!

29,30
25
22

2,11

INTRODUCTION AND PURPOSE

The Engineer School is currently in the process of obtaining an academic
computer to support its training mission. Since the faculty will be using
this computer to support their instruction, this course is necessary for

two reasons. It is obvious that the faculty will have to know how to use
the computer when it is installed; more fundamentally, however, the instruc-
tors are needed to develop applications and write programs to enable the
Instructional Data Systems Project Office to write specifications for a
system that will best fulfill our needs.

The purpose of this course is to introduce you to the BASIC programming
language and to provide you with a few computer programming techniques.
BASIC is a programming language that was developed at Dartmouth College

to overcome the problem of slow turnaround particular in an academic en-
vironment. BASIC is an easy programming language to learn and is relatively
powerful. Yet, the simplicity of BASIC allows one to write his own programs
after a minimum of instruction.

To be successful computer programmers, you must meet two basic requirements:
(1) you must be intimately familiar with the problem you want solved, and
(2) you must be able to effectively communicate with the computer. The
techniques and language learned in this course are all that you will need
to solve the most difficult problems. This supplement and your BASIC
reference manual will provide you with most of the details you will need

to know in order to write the more difficult programs. This course will
fill in most of the gaps, EXPERIENCE will complete your education in pro-
gramming. ‘

2. BASIC COMPONENTS

NUMBERS

A number may contain up to 9 digits exclusive of the sign or decimal point.
A1l numbers in the BASIC system are double-precision floating point numbers.
The numbers and constants that you will be using in most of your calculations
will be expressed normally as you do now (e.g., - 1234.56, 8.432, -85, 607) .
However, the range of numbers may be extended by expressing the number as a
power of ten. Using the letter "E" to stand for "times ten to the power,"
(exponential), you can write numbers in this form between E-77 and E77 inclu-
sive. Positive "E" Notation numbers do not require a plus sign (e.g., use E77
not E+77). The format for this number is: '

+ XXKKXXXX E (4) YY

Fxample: - 12345F -36 or 6789E36. 1¢¢ may be written 16E1 or 1E2 but
not E2. :

NOTE: Any unsigned number is assumed to be positive.
VARTABLES

There are two types of variables in BASIC: (1) A subscripted variable and,
(2) non-subscripted variable. A subscripted variable is expressed by any
single alphabetic character followed by a subscript in parentheses. (The
subscript itself can be a variable.) For example: A(6), B(6,7), C(A*B),
D(I) are all subscripted.variables. A non-subscripted variable is expressed
as any single alphabetic character or any single alphabetic character fol-
lowed by a single digit. For example: A4, B6, C, C1, are all acceptable
non-subscripted variables. ‘

EXPRESSIONS

Expressions are formed by combining variables and numbers together with
arithmetic operations and parentheses just as in ordinary mathematical formu-
las. The ARITHMETIC SYMBOLS listed in order of priority* of execution are:

SYMBOL FXAMPLE MEANING
Parentheses () (A+B) Use for clarity
Exponential r 2 Find X2
Maltiplication * A%B Multi B by A
Division / A/B Divide A by B
Addition + A+B Add B to A
Subtraction -

A-B Sub B from A

¥*NOTE: The order of priorities for computing is according to the following
rules:

®

—

———

The formula inside a parentheses is computed before the parenthesized
h expression is used in further computations. :

——
N

In the absence of parentheses in a formula that includes addition,
multiplication, and the raising of a number to a power, the computer
first raises the number to the power, then does the multiplication, and
does the addition last. Division has the same priority as multiplication,
and subbraction the same ag addition.

3. 1In the absence of parentheses in a formula that includes several multiply-
divides, or several addition-subtractions, the computer works from left to
right.

If there is ever any question in your mind about the priority, put in more
parentheses to avoid possible ambiguities.

| _ Examples:
How Written How Preformed How Meant
A/B/C (4/B) /C A/(B/C)
B A-B-C (A-B) -C A-(B-C)
I > A$BEC (a4B)? C M(BtC)
L A%B/CxDPH (a¥B)/C *(DpH) (4*B)/ (C*DWMH
FUNCTIONS

In addition to the arithmetic operations, some of the more common standard
functions are available. These BASIC functions are:

FUNCTION NAME PURPOSE

SIN(X) SINE of X)
COS(X) COSINE of X)
TAN(X) TANGENT of X) X must be expressed
ATN(X) ARCTANGENT of X) in radians

- EXP(X) Natural exponential of X, e.g., &%
ABS(X) Absolute value of X, e.g., 1X1
L0G(X) Natural logrithm of X, e.g., 1n(X)
SQR(X) Square root of X, e.g.,yﬁ%-
RND(X) Produces random numbers between 0 and 1
INT(X) Chooses integer part of X

The DEF STATEMENT permits the user to define a function other than the
standard functions listed above. See Advanced BASIC Techniques.

» ,

?
RELATTONS >

These six mathematical symbols are used in IF-THEN statements where it is \
necessary to compare values.

\
3
\
SYMBOL EXAMPLE MEANING

|

V4 ALB Less Than i

= A=B Equal To ;
£ = A< =8B Less than or equal to)
> A>B Greater than L
>= A>=B Greater than or equal to :
<> AK>B Less than or greater than '

(Not Equal)
3, SUMMARY OF BASIC STATEMENTS

BASTIC STATEMENTS

This is a review of each BASIC statement, its function, how it is used and }
when it is used in programming. FEach BASIC statement is made up of three I
components in the. following format: 1
l
|
b
|
]

[Liné Number | KEYWORD Eab"els and/or Expressj.oni—j ()
The Notation }.....] is used in the general format of each statement to

denote a particular unspecified quantity. The[[7} (Brackets) are not
actually used in the statements as you will note from the examples.

REM

The REM statement allows you to insert explanatory remarks within a program. I‘
The computer completely ignores every part of the line following REM, which ‘
allows you to include directions for using the program, identifications of

the parts of a long program, or anything else that you may need. The format ’[
—of the REM statement is: ' ‘

E.ine Numbera REM any commen’a
Examples of REM STATEMENTS:
107 REM insert DATA in lines 5@@-53@.
9f@ REM This sub-routine solves equations. . '

5 REM Find integer part of X.

e s S
) e et

T ————— e

VR
e

LET

Probably the single most important statement in BASIC is the LET state-
ment. It is a command to the computer to perform a certain operation to the
right of the "equals" and assign the results to a specific variable on the
left. The format of the LET STATEMENT is:

[éine Numbég] LET Subscripted or non- - [%%pressioﬁ]
‘ e

subscripted variabl
Examples of LET STATEMENTS:
19¢ LET X1 = ¢
This says: Place zero in memory location X1.
50¢ LET X2 = X2 + SQR(R¥R-+5%3)

This says: Find the square root of the sum of R¥R + S*S, add this
number to the previous number in memory location X2 and place the new
number in X2.

299 LET A, = (81 + A3 - Q)2
This says: Add A3 to S1, subtract from this number, the number

represented by Q, raise the resulting number to the 2nd power and, finally,
place the results in the memory position A4.

DATA
The format of the DATA STATEMENT is:

[}ine Numbe%] DATA [;ist of numbers separated by comma%]
Examples of DATA STATEMENTS:
9gQ¥ DATA 14,67.2
971 DATA 642,86,4.97E-7,62

These statements say: Take the numbers following the name DATA and

place them in a table before the program is run. If the above two DATA state-
ments were in the same program, the data table in the computer would contain
all the numbers beginning with those following the DATA statement with the
lowest statement number. FEach DATA statement can contain as many numbers as

can be typed on a single line. Fach new line of data must have a statement
number and contain the name DATA. '

READ
The format of the READ STATEMENT is:

[:iine Numbeg] READ List of Variablegi]
Examples of READ STATEMENTS:
1@ READ A,B,c
This says: Take the first three numbers from the DATA table and place
them in memory locations A, B and C, respectively. If this statement is en-

countered at another time during the problem, the next three numbers would
be selected as A, B and C, and moved to their locations in memory.

1¢ READ 4,B,C
15 READ X1,X2,Q,R

These statements say: Take the first three numbers from the DATA table
and place them in memory locations A, B, and C, and take the next four num-
bers and place them in memory lccations X1,X2,Q and R. If the end of the
DATA table is reached before any READ statement is satisfied, the computer
will stop and print "OUT OF DATA".

GOTO
The format of the GOTO STATEMENT is:

E.ine Number GOTO E.ine Numbea

Examples of GOTO STATEMENTS:
9g¢g GOTO 18

This says: Go to stétement number 1@ for the next instruction.
25 GOTO 942

This says: Go to statement number 942 for the next instruction. The
GOTO statement is an unconditional transfer statement. Each time it is
encountered in the program, the computer goes to the line number following

the word GOTO for the next statement.

*NOTE: A variable cannot be used for the line number.

)

)

END

The format of the END STATEMENT is:

[}ine Number END
Example of END STATEMENT:
999999 END

An END statement is required in all programs. It must also be the state-
ment with the highest line number in the program.

PRINT

The PRINT statement is extremely useful and versatile. A number of common
uses are:

a. To print the result of computations.

b. To print out verbatim a label included in the program
c. To print out a combination of A and B.
d.

To skip a line in the program.

Print Zones - The PRINT line is made up of 72 characters which are divided
into zones; the first 4 zones are 15 characters long, the last one has 12
characters.

In order to control the format of the printed output, we have the option of
using either "comma" or "semi-colon" control.

Comma Control - The use of a comma is a signal to move to the next print

zone (15 characters long) or, if the fifth print zone has just been filled,
to move to the first print zone of the next line.

Semi-Colon Control - The use of a semi-colon is a signal to move to the next
multiple of three characters for the next answer. Thus, by using a semi-
colon, a programmer can pack 11 three digit numbers per line, 8 gix digit

numbers per line, or 6 nine digit numbers per line as opposed to 5 numbers
when using a comma.

The format of the PRINT STATEMENT is:

[Eine NUmngJ PRINT [Eabels and/or Expressian{]

Exeamples of type a:
1¢¢ PRINT X,Y,Z,Q$2,SQR(X3)
12¢ PRINT A,B, C, B¥B-/¥A%C, EXP(A-B)

Statement 107 will cause the number X to be printed in the first print
zone, Y in the next and Z in the third; it will evaluate Q2 and print
this number in the fourth zone and it will evaluate SQR(X3) and place the
resulting number in the fifth zone. The expressions to be computed can
be of any complexity. ~The above examples demonstrate the ability to print
out the values of variables that have been computed elsewhere in our pro-
gram. It also demonstrates the ability to compute and print out values
from self-contained expressions.

Examples of type b:

1¢@ PRINT "COMPLEX ROOTS"

115 PRINT 1,2,3,4,5

13¢ PRINT "NUMBERY, "VALUE", "TOTAL" <::)
The above statements demonstrate how alphabetic messages or labels may be
printed out verbatim when they are enclosed within quotation marks; Humeric
labels may be printed directly without using quotation marks; and by using
Comma Control, heading type labels may be printed in the different zones.
Examples of type c:

1¢¢ PRINT "THE VALUE OF Y IS" Y

11g PRINT I, "SQUAREROOT =" SQR(I)

12¢ PRINT "THE SUM OF THE FIRST nyn INTEGERS IS" 8

The combination of labels or messages mixed with variables and expressions
provides the programmer with the most useful output format available. We
find that clarity and understanding of your solutions will be greatly im-
proved with this type of print statement. Statement 12¢ will look like
this: The sum of the first 10 integers is 55. (For N = 10) Even if some
period of time has elapsed between the running and actual use of this pro-
gram's output, the solutions are still readily understandable.

—
NI

-

Example of type d:

1¢¢ PRINT
This statement causes the computer to print "Nothing" on a line-(i.e.
skip a line). There is no utility in using this statement unless you are
having the computer list your program. If this is the case, the readability
will be greatly improved.

Much more variety is permitted in PRINT statements than we have shown here.
The additional flexibility is explained in the Advance BASIC Section.

IF-THEN
In a programming sequence, it is often necessary to alter the course of a
program depending upon the outcome of a particular operation. This can be

accomplished with the conditional transfer statement: the IF-THEN state-
ment. The format of this statement is:

[Egne Numbeg] IF [Expre381og] [:elatlogj [@gpress1on THEN [E}ne NumbeE]

The six acceptable relations are:
. Less than

= Egual to
<: = Less than or equal to

>> Greater than
> = Greater than or equal to
< > Not equal
Examples of IF-THEN statements:

50 IF A = B THEN 9¢

10¢ IF (R*R-S¥S)< = ¢ THEN 50

118 IF (X~ (Y4I)*Z)> (C/R) N THEN 8¢
Statement 5@ says: If the condition of the relatlonshlp (A =B) is met, THEN

transfer to Statement 9¢. If the condition is not met, THEN continue w1th
the next statement after 5{.

Statement 10J says: If the Expression (R? - Sz) is less than or equal to
zero, THEN go to Statement 5@ for the next instruction. If the condition
is greater than zero, the computer continues on to the next statement.

*NOTE: If the condition in the first statement is met, the computer
transfers ahead, and in the second statement the transfer is a loop back.

Statement 11@ cdmpares two expressions for a‘greater than relationship. If
this condition is met, the computer loops back to Statement 8g. '

FOR_AND NEXT STATEMENTS

The FOR and NEXT statements are especially useful in Loop Control. The
formats of these statements are: '

‘_4>[:. :] . : = :
Line Number FOR Subscripted or non - [Ekpression T0

subscripted variable

Loop [%kpression STEP [?&pression:]

____[Eine Number NEXT | Subscripted or non- <;:)
: subscripted variable
Fxamples of FOR and NEXT STATEMENTS: '
Example 1

5 READ Y,N, A

i

—3} 10 FORI =1 To N

20 LET Y

Y + 1
Loop
3¢ PRINT Y

e L@ NEXT I
5¢ IF A =@ THEN 99
The FOR Statement says: Let I = 1, then compare it with the value of N.
If I is less than or equal to N, continue through the loop with Statement 20.

10 W,

rthe NEXT Statement says: Go back to Statement 1@ (FOR Statement) where T
is advanced by 1. (I is advanced by the step expression. If no step is
given, it automatically advances by +1.) I's new value is compared to N.
If T is greater than N, the computer will go to Statement 5@, if I is less
than or equal to N, the computer will continue back through the loop.

Example 2
—> 107 FOR X = X TO A STEP X1
118 LET Q = 3.1416%(X-Xg)p2
Loop

12¢ PRINT X,Q

130 NEXT X

These statements say: Let X = X@, then compare it with the value in A, if
X is less than or equal to A (in the case of positive step size) go to
statement number 11@. The program proceeds to 11, 127 and 13¢, which
sends it back to 1¢@#. At Statement 10@, the computer tests the size of
X+X1 with A, if it is less than or equal to A, the computer assigns X+X1
to X and proceeds thru the loop again. If it is greater than 4, the com-
puter goes to the statement following Statement 13@. The value of X will
remain as it was the last time through the loop. In the case of negative
step size, the FOR Statement goes through the body of the loop if the vari-
able has a value greater than or equal to the final value. If the step is
not used, the computer assumes a value of one. Every FOR Statement must
have one, and only one, corresponding NEXT Statement.

For a positive step size, the loop continues as long as the control variable
is less than or equal to the final value. For a negative step size, the
loop continues as long as the control variable is greater than or equal to
the final value.

*NOTE: If you write FOR X = 3 to -3 without a negative STEP expression,
the loop will not be performed and the computer will proceed to the state-
ment immediately following the corresponding NEXT Statement.

DIM

BASIC provides that each list has a subscript running from O to 10, inclu-
sive. If you desire lists or tables larger than this, you must use a
dimension (DIM) statement. Format of this statement is:

[éine Number DIM [Eetter (Integerz] or [ietter (Integer, Integeri]

11

Examples of the DIM STATEMENT:
1¢ DIM A(17)

This says: Reserve 18 spaces for List A running from Ag) to A(17).
2 DIM A(17),8(15,20)

This says: Reserve 18 spaces for List A running from A(Z) to A(17) and
reserve a table for S rumning from @ to 15 rows and § to 2§ columns.

Uses' df the DIM STATEMENT:
1¢ DIM A(17)
20 FOR X = @ TO 17
3¢ READ A(X)
4@ NEXT X

This says: Statement 10 says reserve 18 spaces for List A. Statements 29,
3¢ and A will cause the computer to READ 18 numbers into IList A.

1@ DIM S(15,28)

20 FOR X = ¢ TO 15
30 FOR Y = ¢ TO 2¢
4% READ S(X,Y)

50 NEXT Y

6f NEXT Y

This says: Fill the S table with data beginning with s(@,8),8(d,1),....
s(d, 28),s(1,8),8(1,1) ... s(15, 2¢) :

STOP, DEF, GOSUB, RETURN, INPUT and MAT

These advanced statements are all adequately explained in the Advanced BASIC

Section. Every programmer should be familiar with them and their use. Ex-
perience with their use, as well as the use of the special functions, should
be gained through the solution of real or practice problems.

12

®

o

4. LOOPING TECHNIQUES

Perhaps the single most important programming technique is that of a'loop".
If we must write a new program each time we want to make a slight change,
the usefulness of our powerful computer will be substantially limited. To
fully utilize the capabilities of the computer, we can prepare portions of
our program to be repeated many times with slight changes each time. This
"looping" technique may be either implied or direct loop initialization.

Implied Toops - Implied loops may be developed by transferring back to a -
lower statement number. This transferring is accomplished with either a
GOTO Statement or an IF-THEN Statement.

Perhaps, it is best to illustrate and explain these looping techniques with
example problems. If we need a table of the first 50 numbere "raised to
the power of two" (squared), we can write a program with 51 statements or
by using loops, reduce the number of statements to 5 or 8.

Without Loop With IF-THEN Loop
1 PRINT 1, 142 1 LET X = ¢
2 PRINT 2, 242 , —> 2 LET X =X + 1
3 PRINT 3, 342 ‘ Loop 3 PRINT X, X2
. L— 4 IF X< 5@ THEN 2
. 5 END

49 PRINT 49, 4942
50 PRINT 50, 5042
51 END

There are four characteristics that each loop must contain: initialization,
modification, body, and an exit test. In the sample loop problem, line 1
initializes the loop, line 2 modifies the value of X by increasing it by
one each time through the loop, line 3 provides printed output each time
through the loop, and line 4 is an exit test to see if the loop has been
repeated 50 times.

This same problem solved with a GOTO loop will look like this:

1ILET X =¢
2 LET Y = 5¢
——> 3 LET ¥ = Y-1

4 IF Y!fﬁ THEN 8
Loop 5 LET X = X+

6 PRINT X, X42

7 GOTO 3

*38 END

¥NOTE: Exit Test transfers out.

13

NOTE: Statement 4 is an exit test for this loop. If this statement
were to be omitted, we would have an infinite loop (no exit). Therefore,
it is very important to include an exit test in every loop you program.

Because loops are so important to many applications of programming, BASIC
provides two statements to specify a loop. They are the FOR and NEXT
Statements and their use in solving the same problem of 1 to 5@ squared

is illustrated below in just four statements:

2 PRINT X, X2
3 NEXT X
J, END

l:w FOR X = 1 TO 50

FOR and NEXT Statements are fully discussed in The Summary of BASIC
Statements (Section 3). However, for many applications in programming
it is useful to have loops contained within loops. These are called
nested loops and may be initiated with FOR and NEXT Statements or IF-
THEN and GOTO Statements. Beware, these loops must be actually nested
and must never be allowed to cross. Note the illustrations:

Not Permitted

~>FOR, X
Crossed] -»FOR Y
Loop NEXT X
: NEXT Y

Pormitted

—>F0R X

FOR Y
FOR 2
NEXT Z
NEXT Y

T CNEXT X

The example given on GOTO "looping" demonstrates the ability to transfer
out of the body of a loop. However, great care must be used if you need
to transfer into the body of a loop. Generally, you will never need to

do this.

" 5. PROGRAM DEVELOPMENT

PROGRAM ASSEMBLY BY FLOW CHARTING

In order to solve your problem through the use of a computer, it is neces-
sary to .(1) recognize the problem to be solved, (2) analyze the problem

thoroughly, (3) decide on a solution procedure, (4) create a step-by-step
logical sequence of instructions which perform this procedure. This step-
by-step set of instructions is called a program. The best method of out-
lining this problem for programming is the Flow Chart. A flow chart is

made up of a combination of geometric symbols whith represent the various

14

),

-

operations required in the solution of your problem. These charts are
usually drawn to be read down and to the right.

The illustration on the next page shows how one might describe the vari-

ous steps involved in using a teletype machine to access a computer. This
illustration may appear to include some unnecessary effort for solution of
such a simple problem. However, the intent is to demonstrate that the steps
must be organized, and to suggest that this method of Flow Charting is very
useful, even necessary, when applied to more complex problems.

The symbols and techniques needed for flow charting will be discussed in
advanced classes. We note it here for your information.

15

The logic in using a teletype to access a computer

Depress
"ORIG"

FLOW _CHART

Button

v

Dial #
of S

Computer

No.—

Yes

Wait a
‘while

=

Depress
- MCLR"
Button

Sign-on e

Sequence

Sequence

No____J

Complete

Computer
Accessed

v

16

0)

PROBLEM: TFind the sum of the first N integers.

FLOW CHART FOR PROGRAM 1

' PROCESS
S
(s=8+1)

[<

INCREMENT
I

\

A\ 2

17

NOTE:

NESTED LOOPS

EXAMPLE PROGRAM AND REMARKS

PROBLEM: Find the sum of the first N integers.
PROGRAM 1:

1¢ REM Find the sum of the first N integers

20 READ N
3¢ LET S = ¢
WFORI=1toN

50 IET S =8 + I
6@ NEXT I
7¢ PRINT "THE SUM OF THE FIRST"; N; "INTEGERS IS",S
8¢ IF N = 1¢¢g THEN 999 |
9¢ GOTO 2¢

- 10g DATA 18, 20, 100, 100¢

999 END
RUN
THE SUM OF THE FIRST 1¢ INTEGERS IS 55

20 21¢
100 5050

THE SUM OF THE FIRST 10¢¢ INTEGERS IS 5¢¢500

18

)

1¢ REM

27 READ

3¢ LET

47 FOR
5¢ LET

6@ NEXT

7¢ PRINT

8¢ IF
99 GOTo

10% DATA

999 END

STATEMENT MEANINGS FOR PROGRAM 1

A remark statement that tells what this program does.

Causes the first value in the DATA statement to be placed
into memory location N.

Causes zero to be placed in memory location S.

This statement says: Let I = 1, then compare it with the value
in N, if T is less than or equal to N, go to the next statement.

Causes the number in location S to be added to the value of T
and their sum to be placed back in memory location S.

Sends the computer back to statement 4Z where I is advanced
by 1 and its value is compared to N, If I is greater than N,
the computer goes to the statement following 6@, if not, back
through the loop. '

Prints the tag "The Sum of The First 'N' integers is 'S' and
prints the value in memory location N and S in the space
provided following the tag.

Test the'magnitude of N, If it is equal to the last value
in the DATA statement, the program is completed.

Tells the computer to execute statement number 2@ because
there is uncomputed DATA. ' :

Contains the DATA for this program. -

Tells the computer that this is the last statement.

19

PROGRAM 2

PROBLEM: Find the sum of the first N integers.

This is the same problem that we solved in program 1. However, we have
used implied loops in place of the direct loops in this program. Note

this difference and how it may be useful to your programming.

1¢ REM FIND THE SUM OF THE FIRST N INTEGERS

2¢ READ N

25 LIET I =N
3¢ LET S = ¢
4g LET S = S+I

50 LET I = I-1
6¢ IF I ¢ THEN A¥
7% PRINT "THE SUM OF THE FIRST"; N; "INTEGERS IS"; S
75 GOTO 20
8¢ DATA 18,20, 107, 1000
999 END

NOTE: The solutions for programs one and two are the same, however,
the body of each program is very different. One test for a good program
is, "does it produce the correct answer?" Any program that produces the
correct answer is a good program. However, efficiency is needed whenever

possible for cost reductions.

ERRORS AND DE-BUGGING

If the first run of your new program is error-free and produces the correct
solutions, you will be most fortunate. However, it is much more common that
you will have errors that will need to be corrected. You will find that there
are two types of errors: (1) Errors of form, or grammatical errors, that pre-
vent even the running of your program, and (2) logical errors in the program
which produce wrong solutions or even no solution to be printed.

Errors of form, or grammatical errors, often prevent the complete running
of your program. Usually error messages will be printed out instead of the

20

)

-

expected solutions. These error messages will give the nature of the error,
and the line number in which the error occurred. (NOTE: These errors may
occur after part of your solutions have been printed.) Various error mes-
sages for errors of form, together with their interpretations, are given in
Appendix C.

Logical errors are usually much harder to uncover, particularly when the
program appears to give nearly correct solutions to your problem.

The whole process of locating Logic errors or "de-bugging" a program can

be approached in many different ways. One is use of "Test Cases" where a
program is run with data for which the solution is known. However, test
data must be carefully selected if you are to succeed in locating all the
bugs. Difficult de-bugging problems sometimes cannot be solved by supplying
test cases. Another technique called "tracing" will be most useful.

Tracing not only prints out the final solutions, but also the results of
the intermediate calculations. This is accomplished by using "print state-
ments" to print the value of a variable immediately after a calculation has
been performed. Also, by printing paragraph or section names at critical
points in the program will allow you to follow the flows in program logic.
By comparing these results with presumably correct ones, you can usually
find the errors in your program.

Another technique, which we strongly recommend, is a generous usage of
REM Statements. Any program, especially a long complicated one, should
be supplied with enough REM Statements to explain adequately how the pro-
gram works.

Still another technique is to use variable characters which suggest their
role. This idea makes it much easier to follow a program, especially if
it has been written by someone else.

After using these techniques to make a careful analysis of the errors in
your program, the incorrect statement or statements may be corrected in any
of these three ways:

1. Changing a line by retyping it correctly with the same line number.

2. Inserting a line by typing it with a new line number.

3. Deleting a line by typing only the line number.

21

We note that to be able to insert a line requires that the original line
numbers NOT be consecutively numbered. For this reason, most users will
number their line numbers in multiples of five or ten.

These corrections can be made at any time, that is, before or after you
have run your program.

Since the computer sorts lines out and arranges them in order, a line may
be retyped out of sequence. Simply retype the incorrect line using its
original line number. The computer will replace the original incorrect
line with this new correction. After many corrections have been made,
you will find it most helpful to have the computer list out your current
revised program for you to continue working with.

6. TELETYPE KEYBOARD AND SPECIAL KEYS

Special Keys on Keyboard

KEY ' PURPOSE
Shift : ‘ Provides access to special characters and <;:>
: : symbols. '
Return | Carriage return - NOTE: The computer

ignores the line being typed until this
key is pushed.

< | When pressed with the "shift" key, erases

(Backward Arrow) the last character typed or two presses
erases the last two characters typed, etc.

Escape or A To erase an entire typed line before a
AL,T MODE "RETURN" is given.
Break To terminate the running of your program.
Linefeed)
Rubout g Are used in off-line paper tape operations.
Rept

9,

- -

)

| Model 33 Keyboard and Teletype Unit Controls

23

coded ALT MODE

NOTE: ESC Key may be

Special Keys to Operate the Teletype

BUTTON PURPOSE

ORIG Turns on the Teletype machine.

CLR Turns off the Teletype.

BUZ-RLS Turns off buzzer, which goes on when the
paper supply is low.

LCL This mode cannot connect you with the

(Local) computer. It is used for off-line tape
punching.

BRK-RLS Button is depressed to free keyboard after

(Break Release) a "break" signal which locks the keyboard.

7. PROCEDURE FOR CONNECTING TO COMPUTER

For 265 Computer

1.

2.

Push "ORIG" button on right of teletype.

Dial number of computer. 265 # 420 #

After computer answers the sign on, sequence will automatically begin.
Type in your user number when the computer request. User Nr.
PUSH "RETURN" after every line you type in.

Type in BASIC if the computer asks for the system you want.
NEW-OLD; OLD to access program previously stored.

NEW to enter your new progranm.
Problem name must conform to the format given in the SOP (Appendix D)
in this supplement. :

(Any /4 characters plus 2 of your dept code. First character must
be alphabetic.) :

"READY" is typed by the computer.
Entering program and/or information.
a. To enter program and/or information directly with teletype:

(1) Type in each Statement line beginning with a "line number" and
ending with a "RETURN".

(2) After the "END" Statement, which will have the largest line number,

has been typed in and a "RETURN" given, type in "RUN" and give a
"RETURN". This tells the computer to execute your program.

R

)

-

(7)

To enter information and/or program from paper tape:
Type "TAPE".

Have tape mounted in reader and after "READY" igs printed, push
lever up to START.

When tape has reached final rubout area at end of tape, push lever
down to manual cut off.

Type "KEY" to return control to the keyboard.

"READY" will be typed. Your program is in memory and is ready to
be "RUN", "SAVE", "LIST", etc.

To stop program at any time while COMPUTING, type "STOP".
To stop program at any time while PRINTING, push "CONTROL" (CTRL),
"SHIFT" and "P" keys all at the same time.

To sign off -- type "BYE".

For 420 Computer

The Sign-on procedure is the same as 265‘system with the addition of a
pass-word control, which you will follow directly after the computer ask
for your "user number".

Computer Types You Type
i.e. PASSWD/CHG# Pass-word plus three characters
MM XXX

8. PAPER TAPE OPERATTONS

The user should plan his session at the teletype to avoid excess amounts
of terminal connection time. One of the best methods to do this is to

prepare as much of your work Off-Iine on punch paper tape as possible.
Remember the motto;

TYPING IS NO SUBSTITUTE FOR THINKING.

.25

To Punch Paper Tape Off-Line:

1. Push "LCL" button on right of teletype.
2. Turn on the paper tape punch.

3. Hold both "RUBOUT" and "REPT" keys down until about 1@ rubouts have
been punched in the tape.

4. Type first line of program - starting with a line number.

5, At the end of every line punch "RETURN", "LINE FEED", AND "RUBOUT" in
that order.

6. When finished - put about 2@ rubouts at the end of the tape. Tear off
tape through rubout area.

7. Turn off the paper tape punch and the teletype.

Punching Paper Tape from Computer

1. It is assumed that you are connected to the computer and that you are
in "READY" status.

2. Turn on the paper tape punch.
Put about 1@ rubouts on the paper tape.
Turn off the paper tape punch,

Tyge "LIST".

o W P~ W

Timing is crucial now. After the title line has been printed and before
the first line of the program is printed ---
turn on the paper tape punch.

7. The first line punched in the paper tape should be the first line of
your program - starting with a I1ine number.

8. When finished - put about 2F rubouts at the end of the tape‘and tear
off tape through rubouts.

9. Turn off the paper tape punch.

26

APPENDIX A-~LIMITATIONS ON BASIC

There .are some limitations imposed on BASIC by the limited amount of com-
puter storage. IListed below are some of these limitations, in particular,
those that are related to the error messages in APPENDIX C. The reader
should realize that while the BASIC language itself is fixed, in time some
of these limitations may be relaxed slightly.

265 SYSTEM
Item Limitation
Length of program The total number of characters including
carriage returns and spaces in the source

BASIC program must not exceed 6248 characters.

Constants The total number of different constants must
not exceed 75.

Data There can be no more than 128¢ data numbers.

FOR statements There can be no more than 16 FOR statements
in a program.

GOTO and IF-THEN The total number of these statements combined
statements cannot exceed 8@.
Iists and Tables ‘The total number of elements in all the lists

and tables combined cannot exceed something
less than 20¢@.

400 SYSTEM

Length of program The maximum length of a source (BASIC) program
is approximately 130,09d characters. Note that
while a maximum size source program would not
be expected to fit in the maximum size limita-
tion for object programs, almost unlimited
space is available for remark statements.

Data There can be no more than 2¢,¢¢¢ data numbers.

27

Iists and Tables

File (Program or data) Names

Similar to 265 system. The total number of
elements in all lists and tables cannot ex-
ceed something less than 20@7.

Special characters must not be used in the
name assigned to a file. Several of the
special characters (including the comma (,)
and the slash (/) have been reserved as
arguments to system commands.

28

)

)

C

Alt Mode¥*
-
(Backward Arrow)

BASIC

Break*

BYE

CATALOG
EDIT DELETE
EDIT EXTRACT

EDIT MERGE

EDIT RESEQUENCE

EDIT WEAVE

GOODBYE

HELLO

APPENDIX B--SYSTEM COMMANDS
To delete an input line as if nothing had been typed.
To erase the last character(x) typed. SHIFT key must
also be depressed.
To denote programming language.

To cause the computer to stop whatever it is doing with
the program when printing is occurring.

To disconnect frbm the system.

To 1list a user's cafalog of saved programs.
To erase portions of a program.

To retain portions of a progranm.

To combine saved files into working store and to re-
sequence line numbers.

To resequence line numbers in program in working store.

To combine saved files into working store without re-
sequencing.

To disconnect from the System.

To change user number or system.

*Control key on Teletype unit.

29

KEY
LENGTH

LIST

LIST: XX
- NEW
OLD
RENAME

Return*

RUN
SAVE

SCRATCH
STOP

TAPE
UNSAVE

User Number

To reset terminal operation to normal after reading in
paper tape.

To request the number of characters in working copy of
program.

To list the current working copy of a program.

To list the current working copy of a program beginning
at line X or after (XXX 1 to 5 digits).

To introduce a new program and destroy the working copy
of the current program.

To retrieve from saved store a previously saved file and
destroy the working copy of the current program.

To change program name but not working copy contents.

To terminate a program line, cause the System to take
action based upon input provided, and act as a normal
carriage return.

To compile and execute. Also to determine elapsed run time.

To save permanently the working copy of a program.

To eliminate from the‘working copy of a program everything
but the program name.

To cause the computer to stop whatever it is doing with
the program except when printing is occurring.

To inform the System that paper tape will be read in.
To release and destroy a previously saved program.

Four to six characters that identify the user to the system.

*Control key on Teletype unit.

30

APPENDIX C~-265 ERROR MESSAGES--265 SYSTEM

The various error messages that can occur in BASIC, together with their
interpretation, are now given:

Frror Message

DIMENSION TOO LARGE

Interpretation

The size of a list or table is too large for. the
available storage. Make them smaller. (See

ILLEGAL CONSTANT

ILLEGAL FORMULA

TLLEGAL: RELATTON

TN
o

ILLEGAL LINE NUMBER
ILLEGAL INSTRUCTION

ILLEGAL: VARTABLE

INCORRECT FORMAT

END IS NOT LAST

Appendix p)

More than nine digits or incorrect form in a
constant number, or a number out of bounds

(>5.7896¢ E 76) .

Perhaps the most common error message, may indi-
cate missing parentheses, illegal variable names,
missing multiply signs, illegal numbers, or many
other errors. Check the statement thoroughly.

Something is wrong with the relational expression
in an IF-THEN statement. Check to see if you used
one of the six permissible relational symbols.

Line number is of incorrect form, or contains more
than five digits.

Other than one of the fifteen legal BASIC instruc-
tions has been used following the line number.

An illegal variable name has been used.

The format of an instruction is wrong. See
especially IF-THEN's and FOR's.

Self-explanatory, it also occurs if there are two
or more END statements in the program.

31

NO END INSTRUCTION

NO DATA

UNDEFINED FUNCTION
UNDEFINED NUMBER
PROGRAM TOO LONG

T0O0 MUCH DATA
TOO MANY LOOPS

NOT MATCH WITH FOR

FOR WITHOUT NEXT

CUT PROGRAM VR DIMS

The program has no END statement.

There is at least one READ statement in the program,
but no DATA statements.

A function such as FNF () has been used without
appearing in.a DEF statement. Check for typo-
graphical errors.

The statement number appearing in a GOTO or IF-THEN
statement does not appear as a line number in the
program.

Fither the program itself is too long for the
available storage, or there are too many constants.
(See Appendix A.)

There is too much data in the program. (See
Appendix A.)

There are too many FOR-NEXT combinations in the
program. The upper limit is 26. (See Appendix A.)

An incorrect NEXT statement, perhaps with a wrong
variable given. Also, check for incorrectly nested
FOR statements.

A missing NEXT statement. This message can also
oceur in conjunction with the previous one.

Either the program is too long, or the amount of
space reserved by the DIM statements is too much,
or a combination of these. This message can be
eliminated by either cutting the length of the
program, or by reducing the size of the lists and
tables, reducing the length of printed labels, or
reducing the number of simple variables.

32

)

)

-

The following error messages can occur after your program has run for awhile.
Thus, they may conceivably occur after the first part of your answers have
been printed. All of these errors indicate the line number in which the error

occurred.

OUT OF DATA

SUBSCRIPT ERROR

INPUT DATA NOT IN CORRECT
FORMAT

RETURN BEFORE GOSUB

DIVISION BY ZERO

ZERO TO A NEGATIVE POWER

ABSOLUTE VALUE RAISED
TO POWER

OVERFLOW

A READ statement for which there is no DATA has

been encountered. This may mean a normal end of
your program, and should be ignored in those cases.
Otherwise, it means that you haven't supplied enough
DATA. In either case, the program stops.

A subscript has been called for that which lies
outside the range specified in the DIM statement,
or if no DIM statement applies, outside the range
g through 1¢. The program stops.

Input from Teletype consists of an illegal number
format, wrong format, or wrong number of variables.

Occurs if a RETURN is encomntered before the first
GOSUB during the running of a program. (Note:
BASIC does not require the GOSUB to have an earlier
statement number--only to perform a GOSUB before
performing a RETURN.) The program stops.

A division by zero has been attempted. The computer
assumes the answer is +©@(about 5.7896@E76) and
continues running the program.

A computation of the form @4 (-1) has been
attempted. The computer supplies + 0@ (about
5.78960E76) and continues running the program.

A computation of the form (-3)4 2.7 has been
attempted. The computer supplies (ABS(-3)) 2.7
and continues. Note: (—3)¢~3 is correctly
computed to give -27.

A number larger than about 5.7896@E76 has been
enerated. The computer supplies + (or -) &
%about + 5.7896¢E76§ and continues running the

program. ’

33

UNDERFLOW

EXP TOO LARGE

10G OF NEGATIVE NUMBER
1OG OF ZERO

SQUARE: ROOT OF A NEGATIVE
NUMBER

A number in absolute size smaller than about

4 .31809E-78 has been generated. The computer
supplies @ and continues running the program.
In many circumstances, underflow is permissible
and may be ignored.

The argument of the exponential function is
176.753. + %0 (5.78960E76) is supplied for the
value of the exponential and the rumning is
continued.

The program has attempted to calculate the loga-
rithm of a negative number. The computer supplies
the logarithm of the absolute value and continues.

The program has- attempted to calculate the logarithm
of #. The computer supplies - oo (about -5.7896FE76)
and continues running the programn.

The program has attempted to extract the square root
of a negative number. The computer supplies the
gquare root of the absolute value and continues
running the program.

34

)

C

 APPENDIX C--400--ERROR MESSAGES--400 SYSTEM

Some of these messages occur during compilation and others during execu-
tion of a program. Many of the messages not only identify the type of
error, but indicate the line number where the error occurred. It is ex-
pected that as the development of the BASIC language continues these error
messages will be revised.

During execution, certain messages occur which do not stop execution, but
inform the user of irregular conditions existing in -identified lines of
his program. Other messages, however, point out serious errors which stop
execution. : :

COMPILATION ERRORS

BAD FUNCTION CALL A function such as FNF (X) has been used without

LINE # xoooxx appearing in a DEF statement. Check for typo-
graphical errors.

CUT # OF LINES OR Too many lines or variables have been used.

VARTABLES Reduce the number of statements or variables.

CUT PROGRAM OR ARRAY Either the program is too long, the amount of

SIZE space reserved by the DIM statements is too much,

or a combination of these. This message can be
eliminated by cutting the length of the program,
reducing the size of list and tables, or reducing
the length of printed labels.

DIM TOO LARGE The size of an array exceeds the avallable storage.
LINE # oo

DIMENSION ERROR A dimension error or inconsistency has occurred
LINE # xoomx in connection with an array or matrix.

END IS NOT LAST Self-explanatory; it also occurs if there are two

or more END statements in the program,

EXPRESSION TOO COMPLICATED Too many operations have been attempted in a single
LINE # xoomx expression. Use two or more simpler expressions
instead.

FILE ERROR LINE # xcooxx This covers a variety of errors, usually in the

form of the file name, user number, or library
name.

35

FILE IN USE LINE # xoooxx
FILE NOT SAVED
LINE # xxoxx

FILE NOT SAVED FOR READ
OR WRITE LINE # xooxx

FILE OUT OF DATA
LINE # xoxxxx

FILE OPERATION ERROR
LINE # xooxoxx

FOR NOT MATCHED WITH
NEXT LINE # xoooox

FOR-NEXT LOOPS NESTED
TOO DEEPLY LINE # xocxxx

ILLEGAL, ARRAY NAME
LINE # xxxoxx

TLLEGAL, CONSTANT
LINE # xxoxexx

ILLEGAL EXPRESSION
LINE # xoooxx

ILLEGAL FUNCTION CALL
LINE # xxxxx

JLLEGAL LINE NUMBER
LINE # xxoxxx

INPUT FILE ERROR
LINE # xxoxxx

The file which was referenced is already being
used.

The file was not saved under the requested user
number.

The file was not saved with the proper privileges
(READ, WRITE, APPEND). This will occur in the
first reference to the file even though the file
may be saved with the proper privileges for that
operation.

The input file ran out of data; line number specified

is that of the program INPUT statement.

A READ and WRITE was attempted without restoring
or closing in between.

A NEXT statement is missing.

There are too many FOR-NEXT combinations in the
program. The upper limit is 26.

An illegal array name has been used.

A illegal constant has been used. It is more
than nine digits, in an incorrect form, or a
number out of bounds (D 5.7896E76) .

This may indicate missing parentheses, illegal
variable names, missing arithmetic symbols,
illegal numbers, or many other errors. Check
the statement thoroughly.

This may indicate missing parentheses, misspelled
function name, missing equal sign, or many other
errors.

Referenced line number is of incorrect form, or
contains more than five digits.

Contents of the input file are something other
than line numbers, digits, literals or commas.

36

)

»

-

LEFT PAREN NOT MATCHED
WITH RIGHT LINE # xotxxx

NEXT NOT MATCHED WITH
FOR LINE # xoooxx

NO DATA

NO END STATEMENT
NO PROGRAM
OPEN QUOTE LINE # xooxxx

PROGRAM BEING USED;
TRY LATER

STRING VARIABLE TOO
LONG LINE # xooxxx

TOO MANY FILES OPEN
LINE # ooxxx

TOO MUCH DATA AT
LINE # xxxxx
UNDEFINED ARRAY NAME
LINE # xxoox

UNDEFINED FUNCTION CALL
LINE # sooox

UNDEFINED LINE NUMBER
LINE # xoooxx

UNRECOGNIZABLE STATEMENT
LINE # xxxxx

A left parenthesis has been processed without
a corresponding right parenthesis. Check the
parentheses count thoroughly.

A incorrect NEXT statement, perhaps with a
wrong variable given. Also, check for incorrectly
nested FOR statements or an omitted FOR statement.

There is at least one READ statement in the pro-
gram, but no DATA statements.

The program has no FND statement.
There is no programn.
The quote that terminates a message is missing.

A program exercises exclusive control over a file
since the program may update or otherwise alter
the file. This message means that some other
user has control of the file you are requesting
and you must wait until his program releases
control.

The assignment of a string variable with more
than 15 characters has been attempted.

The 1limit of 5 open files at the same time has
been exceeded.

The total amount of data is too much for the
available storage. This message can be eliminated
by reducing the amount of data.

An array name has been used, but was not defined.
A function such as FNF(X) has been used without
appearing in a DEF gtatement. '
The referenced line number appearing in a GOTO,
ON, or TIF-THEN statement does not appear as a

line number in the program.

Other than one of the legal BASIC instructions has
been used following the line number.

37

WRONG PASSWORD LINE The password was incorrect. This can occur if the

xooxxx file is saved without a password; and when the
file is referenced, a password is used.

EXECUTION ERRORS

CUT STRING VARIABLES Either the amount. of space used by string
variables exceeds the available storage, or
the program is too long. Reduce the size of the
string variables or the size of the program.

DIVISION BY ZERO A division by zero has been attempted. The
' computer assumes the answer is + 90 (about
5,7896@E76) and continues running the program.

EXP LINE # xoooo(x) The argument of the exponential function 2176.753.
+ 00 (About 5.7896@E76) is supplied for the value
of the exponential, and the running is continued.

FILE OUT OF DATA An INPUT statement has been encountered for a

LINE # xoooxx file which has no data. This may mean a normal
end of the program, and in that case, should be
ignored. Otherwise, it means that insufficient

data was supplied. In either case, the program //
stops. \\:)
GOSUB NESTED TOO DEEPLY Too many GOSUBs without a RETURN. It may mean
LINE # xoooxx that subroutines are exiting by GOTO or IF-THEN
‘statements rather than by RETURNs. The program
stops.

INCORRECT FORMAT-RETYPE The input data is in an incorrect format. The
data must be retyped.

INPUT FILE FORMAT The inpﬁt file contains characters other than

ERROR LINE # xxoxxx digits and commas. Correct the data on the input
file.

LOG LINE # zxoooox(x) The program has attempted.to calculate the loga-

rithm of a negative number. The computer supplies
the logarithm of the absolute value and continues;
or the program has attempted to calculate the
logarithm of @#. The computer supplies - 00
(about -5.7896@E76) and continues running the
program.

38 U

)

NEARLY SINGULAR MATRIX

LINE # xoooxx

ON LINE # xoooxx

OUT OF DATA
LINE # xxxxx

OVERFLOW LINE # xxxxx

RETURN BEFORE GOSUB
LINE # xxxoxx

SIN ARG LINE # xxxxx

SQR LINE # xxxoex(x)

STRING VARIABLE TOO
LONG LINE # xoxxx

SUBSCRIPT ERROR LINE
xoox Alx,y)

The INV operation in a MAT statement has en-
countered a matrix with zero or nearly zero
pivotal elements. The matrix being inverted
is singular or nearly so.

The value of the expression in an ON statement,
when rounded, must be an integer which is greater
than zero but less than or equal to the number of
line numbers following the expression.

A READ statement for which there is no DATA has
been encountered. This may mean a normal end of
the program, and in that case should be ignored.
Otherwise, it means that the user has not supplied
enough data. In either case, the program stops.

A number larger than about 5.7896@E76 has been
generated. The computer supplies + (or -) &0
(about + or -5.7896@E76) and continues running
the program.

Occurs if a RETURN is encountered before the first
GOSUB during the running of a program. (note:
BASIC does not require the GOSUB to have an earlier
statement number--only to perform a GOSUB before
performing a RETURN.) The program stops.

The argument of the sine or cosine function
exceeds the limit of 1.374FE11. Zero is supplied .
for the value of the function, and running of the
program continues.

The program has attempted to extract the square
root of a negative number. The computer supplies
the square root of the absoclute value and continues
running the programn.

The string variable has exceeded the limit of 15
characters. The program stops.

A subscript has been called for that which lies
outside the range specified in the DIM statement,
or if no DIM statement applies, outside the range
@ through 18. The program stops.

39

TAN LINE # xxooxx

UNDERFLOW LINE # xoooex

The argument of the tangent function exceeds

the limit of 1.374E11. + %0 (5,7896¢E76) is sup-
plied for the value of the function, and running
of the program continues.

A number in absolute size smaller than about

4 .318@9E-78 has been generated. The computer
supplies @ and continues running the program.
In many circumstances, underflow is permissible
and may be ignored.

40

)

(/\) APPENDIX D--STANDING OPERATING PROCEDURES
REMOTE COMPUTER TIME-SHARING TERMINAL

TABLE OF CONTENTS

PAGE
I. GENERAL 42
A. Purpose and Objectives 42
1. Purpose of the Standing Operating Procedures 42
2. Objectives of the Computer Time-Sharing System 42
B. System Description 42
Definition of Time-Sharing 42
C. Personnel Authorized to Use the System LR
1. Faculty L2
2. Students 43
- IT. USAGE Lby
<;~> A. Sign in Procedure ' 4ty
Use of Log Liy
B. Storage of Programs by
1. When to Store Programs Ly
2. Paper Tapes 45
3. Program Library 45
4. Program Format 45
C. Reserving the Terminal 45
How and Where 45
D. Economy in the Use of the Terminal 45
The Purpose of and the Means for Economy .45

C

41

SECTION I - GENERAL

PART A - PURPOSE AND OBJECTIVES

1. Purpose of Standing Operating Procedures

The purpose of this SOP is to promulgate the policies necessary to
insure efficient use of the computer-time-sharing terminal at the
US Army Engineer School. The monitoring agency will be the Instruc-
tional Data Systems Project Office (IDSPO).

2. Objectives of the Computer Time-Sharing System

The remote terminal at the Engineer School will serve two functions.
Primarily, it will assist in the development of computer applications
to be used in the generation of systems specifications necessary for
the procurement of our own computer at the Engineer School. Secondly,
it will provide faculty familiarization with and training in the use
of the CAT educational mode.

PART B - SYSTEM DESCRIPTION

Definition of Time-Sharing

Computer time-sharing is, as the name implies, the sharing of a com-
puter by many users. With modern third generation computer hardware
and related software, it is possible to execute simultaneously sev-
eral computer programs and to run an even larger quantity of programs
concurrently. Thus, with a large computer system, it is feasible to
allow almost unlimited access by an extremely large number of users.
The Engineer School has procured and is in the process of procuring,
contracts with several firms that specialize in computer time-sharing
services. Through the teletype terminal located in Humphreys Hall,
the user will have access to all these facilities.

PART C - AUTHORIZED PERSONNEL

1. Faculty

My faculty member can have almost unlimited access to the teletype
terminal. However, before a faculty member will be allowed this
freedom, he must take a brief (2 hour) orientation course conducted
by the Instructional Data Systems Project Office. Faculty members
can develop program applications on the terminal at their own dis-
cretion; but before actually attempting to use a CAI application in
the classroom, the instructor must first consult the Educational
Advisor to make a determination as to the utility of the applica-
tion.

42

)

(/\) 2. Students

Initially, students will not be allowed access to the terminal. FEx-
perimental projects may be conducted allowing students to use the

- terminal, but these will be quite limited and closely controlled by
the Instructional Data Systems Project Office.

SECTION IT - USAGE
PART A - SIGN IN PROCEDURE

1. Use of log

a. The Remote Terminal User's Log (USAES Form 73) is intended to
provide the IDSPO with pertinent statistical data in order to cor-

relate the monthly charges and to determine the usage of the terminal.

b. Fach time the remote terminal is used and contact is made
with the computer, the user will make the appropriate entries on the
log. The user will enter his name, rank, and social security account
number. Then he will enter the title of his program with a brief
discription of the program. The program name will conform to the
following format:

XXXX10 D/E&MS

XXXX30 D/M&TE
XXXX50 D/TOPO
XXXX70 IDSPO

where X is any alphabetic character. The user will then enter the
time and date prior to rumning his program. After he is finished at
the terminal, he will enter the total terminal connect time used and
the total running (CPU) time used. The remarks column will contain
the name of the computer service used (CEIR, COMNET, etc), how the
terminal was used (de-bugging of program, problem solving, classroom
instruction, etc.), and state whether the program was saved or not.
If the service used has more than one system, include which system
was used; e.g., CEIR (265) or CEIR (420). In example of the Remote
Terminal User's Log is shown on the next page. All entries will be
printed and legible!

PART B -~ STORAGE OF PROGRAMS AND PROGRAM FORMAT

1. When to Store Programs

The Engineer School will be assessed storage fees for programs stored
in any of the available systems. Since the School is restricted by

a limited budget for these computer services, it is mandatory that
the number of stored programs be kept to a minimum. Any program may
be temporarily stored; otherwise, all programs will be kept on paper
tape. When a program is stored, it will be noted on the log. If no
such notation is made, the program will be purged from the system's
storage library. ‘ ‘

4ty

)

~

2. DPaper Tapes

Punched paper tapes should be used to the fullest extent possible to
maintain program files. The Instructional Data Systems Project Office
will keep a documented library of all tapes which will be of general
engineering interest. Copies of any programs which will be of such
a.nature, should be given to IDSPO to be included in the library.

3. Program Library

When a program has been de-bugged, a copy of it along with a sample

run should be sent to IDSPO. These programs are necessary to deter-
mine workload requirements in order to write system specifications.

They will also be made available to other users.

4. Program Format

In order to facilitate the processing of Automatic Data Processing
applications, several comment statements will be added to the begin-
ning of each program. These comments will include the programmer's
name, office, phone number, and a narrative of the program to include
a description of the variables used. Where the system allows, a
"LENGTH" command, or its equivalent, should be given and included
with the sample run given to the IDSPO.

PART C - RESERVING THE TERMINAL

How and Where

The terminal will have receptacles in Room 118 and in classrooms 1A,
1B, 1E, and 1F of Humphreys Hall. It can be used in any of these
rooms when they are not being used. The terminal itself can be
reserved by signing the appointment sheet attached to the teletype
unit. When available, one of the classrooms can also be reserved
up to 3 weeks in advance by contacting Schedules Branch, Operations
Division, Director of Instruction (42973). If the terminal and a
classroom are needed on a recurring basis (i.e., for classroom
instruction, etc.) contact the Operations Officer, IDSPO (42897).

PART D - ECONOMY IN THE USE OF THE SYSTEM

The Purpose For and the Means of Economy

a. The Engineer School has been allocated a limited amount of
funds for ADP services. Much has to be accomplished with these
resources. Consequently, emphasis will be placed on the efficient
use of the remote time-sharing terminal. Programs should be punched
on paper tape off-line and then read intothe system on-line. Entire

45

programs will not be typed on-line. Programs will be stored only
as outlined previously.

b. The School is charged for the time while the terminal is
connected to the computer; consequently, sessions on the teletype
terminal will be carefully planned. - CAT applications may be tested
in the classroom, but lack of funds will prevent their use on:a per-
manent basis.

NOTE: Any changes to this SOP will be included with the copy
that is attached to the terminal and notice of such changes will be
given. When a notice of a change has been posted, the user must
read these revisions before continuing his use of the terminal.

46

(/\) : : APPENDIX E--ADVANCE BASIC TECHNIQUES

Advance BASIC Techniqﬁes will be available at a later date.

SN
-
|

- |

-17,316—Ft Belvoir

