APPENDIX C

PIAGO LANGUAGE SUMMARY

. The following pages are a guide to the PL/I language features which are im-

plemented in PLAGO Version I.. This summary is not a tutorial treatment of how to

use the language, nor is it a rigorous definition of the language facilities.
summary is simply reference material which will be valuable to, the student in
constructing PLAGO programs as he masters the features of PL/I. .
The major section headings of the summary are as follows:

A. BASIC SYMBOLS

B. BASIC SYNTACTICAL CONSTRUCTIONS

C. BASIC STATEMENTS

D. DO GROUPS

E. DECLARATIONS

F. BLOCKS AND BLOCK FEATURES

G. BUILT-IN FUNCTIONS

H. MISCELLANEOUS FEATURES ’

The

- ——

LANGUAGE FIZATURES

COMMENTS

BASIC SYMBOLS

character set the following characters are available:
26 upper case letters,
10 decimal digits, plus the S)e"lal characters,

= -*/() 31 Bi>< _ s @3

&

The EBCDIC charactzr set is utilized. [i= dlcates
2 blark character.

‘BASIC SYNTACTICAL CONSTRUCTIONS

identifier -A letter followed by a maximum of 30 ie tters,
dLgltS or the underscore _e ex: A RATE NET_ INCOME

The first 8 characters must be unique in order to
distinguish between different identifier usages.
Used for variables, statement-labels, procedure-

identifiers, built-in functioa identifiers, and
pseudo-variable 1dent1f1ers.

constant Fixed-point decimal, flecating-point decimal
and character string constants are permitted.
ex: 5 5.6 3,14159

65E-2 753.82165E3

IABC 1} 3] IIT"S]

1. Decimal intéger constants with a value < 231-1 become
fixed-point binarv data of grecision 31, otherwise, they
become float doudble if »231i. '

2, Non-integer decimal constants always become float -single
or float-double based upon the value ma’nifude.

3. gzting-poxnt constants become float-single if mantissa
is< 2°7-1, otherwise float-double, .All floating-point
values are hexadecimal.

4, Character strin> constants may be null or contain a
maximum of 255 characters., : :

5. Fixed-point and - floating-point constants may not
contain more than 14 significant digits,

N ' . -/

)

“LANGUAGE FEATURES

- COMMENTS

expressions All of the PL/I operators may be
used in constructing expressions, Parenthesized
subexpressions may be utilized. (See examples
following operators)

Conversions are parformed when operand types differ.
Expressions may be array or scalar expressions, If
more than on2 array is utilized, all arrays must have
identical bounds, The contexts in which a scalar
expression is required are denoted balow.

operators (by precedea&e levels)

prefix +, prefix -,‘],
1nf1x +, infix -

¢
|

ex: ‘A S “65E-2
: AHB A-B*C :
(A+38)/(C+D) A>B|lCLD
xljy A+38C-D

=,2 &, =, K= ;1 s°1:> i ¥ 4

Integer division produces an integer result (fractioa -

cat.
Fixed-point binary 1 if true, 0 if false.
Fixed-point 1 if both operands are non-zerc, else 0.

Fixed-point 1 if either operand is non-zero, elsz 0,

=

sabs#r1é_ reference An ariay variable identifier
followed by a subscript list in parenthesis.

identifier (expression-list)
ex: A(3) MATRIX(I,J+K)

=7

The subscripts must be scalar expressicis, Tha aunber

of subscripts szt "be equal to the number of dimeasions

declared for the array. Note: cross section array
references are not permitted.

‘built-in fuaction A bailt-in function identifier,
followed by an argument-list in parenthesis.
identifier (expressioa-list)
ex: ABS{X) SIN(T4G)

The arguments in most cases may be any expressions, the-
of arguments must be equal to the number of arguments

required by the built-in function.
(S22 G for a list of the built-in functions}

i

LANGUAGZ FEATURES

COMMEINTS

.ideatifier-list One or more array or scalar variable
identifiers separated by coumas.

identifier,, ideatifier,, ..., identifietn

ex: ALPdA, X, BETA, Y

Used in data-directed GET and PUT statements.
Also usad for specifying procedure parameters.

variable-list Tha same as aa identifler-list, except
that subscripted references may bz used.
ex: X(I), Y, M(3,3)

Used as tha target list in assigmnent statements and
list-directed GET statements,

expzession-list One or more array or scalar
expressions szparated by commas

expressidnl, expressionz,-..., expression
! v

n
ex: A+B, C(I)-D, V, EJX

Used as subscript referencés, argument lists and
list-directed PUT statemants,

pseudo variable Used to treat a part of a variable
or two variables as a target. Th2 only pseudo
variable available in this version is SUBSTR

(i.e. substring). : :

SUBSTR (el, €9, 83) .
ey = expressioa

SUB3TR dafines a substring to be used as a t:argefi,‘it

may be used anywhere the regular variable. is used for .

a target. :
ey specifies the source string.

e,y spacifies the baginning of the substring.

e3 if present, specifies the length of the substiring..

if absent, the length is from ey to the end of the

eln.

comments Used to place documentation .in the text of
the program as follows: '

/* any characters */

C

N

Comments may be placed before and after any statement
in the source program, - '

)

s

LANGUAGE FEATURES

COMMENTS

Note: One or more identifiers may bz placed prior to any statemsnt in the program.
If the statement is a PROCEDURE statement,
In all other cases,:the identifiers are statement- labels.

be followed by a colon (:).
procedure-identifiers,

Each identifier must
then the identifiers are

BASIC STATEMENTS

assignment statement assigns the result of an expression
to one or more targets ‘in a var1ab1o list.

variable-list = expression;

ex: A =23; V =X+Y; A,B = D*Ej
M(I,J), X, Y = X/Y;
COMPUTE: VALUE = (X+Y)/Z;

Note the statement label.

If the expression result is scalar, then the variables
in the variable-list may be scalar or array variables.
If the expression result is an array, then the variables
in the variable-list must also be arrays with identical
bounis,

IF s:tatement selects the n2xt statemant to be executed
based upon an expression result.

IF expression THEN statementy;

ELSE statement,;

“ex: .IF A<B THEN A = B ;

IF X THEN GOTO NON_ZERO;
IF X>Y} X<z THEN X = 0j
ELSE X = Y*Z;

The expression must be a scalar expression. If the
expression result is true (non-zero), then statement,

is executed. If the result is false (zero),.then statem»

is skipped. The ELSE clause is optional If b*e;enbtar'
the result is true, then _statement, is Sklpped after the

execution of statementj. . If false, statenentlbls.sklppeﬂ

and statement2 is executed.

'GOTO statement Transfers program control to the next

exocutable statement following the statement-label.
GOTO identifier; or GOIJTO identifier;

ex: GOIO DONE;

' GO[J TO COMPUTE;

The identifier ‘must be a statement- Iabel which is
known at that point at which the GOTO statomcnf is
executed.

" LANGUAGE FEATURES

-

COMMENTS

STOP statement Causes the -program ;8 be terminated,

STOP;

The execution of this statement causes the 51gnalling
tof the FINISH condition,

CET statement Causes the transmission of data from
SYSIN and assigns values to target variables, There
are two forms of the GET statement,

list-directed
GET LIST (variable-list);

data-directed

GET DATA (Ldentifler-list),
EXAMPLES: -
" GET LIST (X,Y,Z);
GET LIST (A(I), B());
GET DATA (A,B,C);’

An ENDFILE condition will be signalled during thas executie
of the statement if this condition arises., In list-
stected, if an array variable is specified, :

: the next n values, based upon the
dL:=nsions, are acquired in row major order. If the rirst
data-directed format is spacified, then oaly the varie 31.3
speclfied bacome eligible for assignmant,

PUT statement Causes expression values or variables to be
displayed on SYSPRINT. There are two forms of the RUT
statement,

list-directed

PUT LIST (expression-list);

data-directed

PUT DATA (identifier-list);

S ome LT ..

———

The standard tab positions are used with five tabs, wlrare
each zone has 24 characters., In list-directed, if an
array expression is specified, then n valuzs, based upom
the dimensions, are listed in row major order.

- In the first data-directed format, if am array variable -
identifier is specified, all elements of the array are
displayed in row major order.

. -

C

)

I

~~

J

LANGUAGE FEATURES

COMMEINTS

" in any order following the PUT keyword.

PUT statement (continuad)

The followingz printer control options may be specified
The LIST or
options may or may not be present in this case.

DATA

PAGE

LINZ (expression)
SKIP (expression)
PASE LINE (expression)

PUT LIST (A,B,C);
PUT LIST (X(I)+Y(I));
PUT DATA (X,Y,2);

ex;

PUT PAGE;
PUT LIST (A,B) PAGE LINE (3);-
PUT SKIP DATA (A,B);

If any of the printer control options are specified,
and a LIST or DATA option is specified, the printer
coatrol options are executed first. The expressions
in the LINE and SKIP options must be scalar expressions
If the (expression) _jis omitted from the SKIP option,
SKIP (1) is assumed.,” Only the PAGE and LINE may appear
together in the same statement,

=T ¢ 2p4c €xXPRESSION 1S 2ERO R rEGATIVE,

OVUTPU7T I7EME Wit BE OVERPRINTGD o4& 7HE

SPrME LInvE

null statement No operations performed upon executioa.

Prima2rily used to resolve dangling ELSE clauses in
nested IF statements,

DO GROUPS

statemsnt grouping Provides the means for treating a

group of statemants which are to be executed once as a°
single statement, :
po;"*

statements

END;

Statemant grouping is particularly useful in constructi
the THEN and ELSE clauses of an IF statement.
For example:

IF expression THEN DO;
ELSE DO; END;

eeee END;

LANGUAGE FEATURES

COMMENTS

WHILE DO group Provides for- the iterative execution of

a group of statements while an expression value is true
(i.e. nonzero). When the expression is false (i.e. zero),
the DO group is terminated.

DO WAILE (expression);
statements
END;
ex: DO WHILE (X< Y);
’ = X*C; X = Xi4C;
END;

The expression must be a scalar expression. This
expression is evaluated before the first execution of
the DD group, and prior to each successive execution.

specification DO group Provides for assigning values to
a coantrol variable based upoa specifications and
iteratively executing a group of statements until the
specificatioa limits have been mat,

DO variable = specificationl,

specification ieey specificationn;

2’
statements
END;

A spacification may be one of the following.

a. expression ’ .

b. expression1 TO expression2 BY expression3

c. expression1 BY expression3 TO expression2
d. ‘expression; TO expression,

e. any of the previous specifications followed by
WHILE: (expression). -

“utilized,

The control variable must be a scalar variable or sca’
elemant of an array. All expressions used in the
specifications must be scalar expressions, The speci-
fications are used from left- -to-right, The DO group
terminated when all of the specifications have been

The following describes the actions perLor
for each possible specification.

a, The expression value is assigned to tha control
variable, and the DO group is executed oace,.

b. The expressio:x1 value is assigned to the control

variable. The values of expression, and expressions,

assiganed to two temporary variables E2 and E3. Prior
and following each execution of the DD group, the
following expression is evaluated, '

(E3>=)& (v>£2) | (£3<0)& (V¢ E2)

If this expression is true, the specification is termi:
otherwise, the DO group is executed,

e _
o)
9
LANGUAGE FZATURES COMMENTS
spaecification D) group (coatinued) : ¢. Same as (b)s TO and BY clauses may be interchange::.
exs bO I=2J; ’ d. Same as (b). The constant value 1 is substituted
. for E3.
END; e, The expression result must also ba true, when used witk
DO K=1T0 5; : (b, ¢, or d) or must be true with (2) in ordar to execu:te
H : ‘ : the DO group, If the expression value becomes false,
E&D' the specification 18 terminated.
. 3 _)
DO J =1I+2 TO L BY Nj;

Note: The expression in the WHILE clause is reevaluat..d
. prior to each iteratioa, whereas the other specificati-a
. ' expressions are evaluated once .and cannot bs changad 4 :riaz
END; : .
DO A(I) = X+Y WHILE (A(I+1)); the execution of t?e D) group. The last valu? assigae.
U to the control variable is in the control variable upon
terminatioa of the DO group.

: -
>

K =11 T0 M, L2 TO M2;

Note: DO groups may be nasted, however, they must be perfectly nested where each DO statemant is terminated by a
corresponding END statement. Control must not be transferred to a statement within a WHILE or specification D)
group. Entrance to the D) group must always start at the DO statement. If a transfer of control is made to a
statement outside of the DO group, thz DO group is terminated and can only be reactivated by reentering at the DO

statement. If the DO group is reentered in a specification DO group the specifications are used again from left-
to-right, 5 T o '

10

LANGUAGE FEATURES

COMMENTS

DECLARATIONS

DECLARE statement Specifies the explicit data

attributes of variables which are local to the block in

which the statement appears.

DECLARE identifier; attributes,
identifier2 attributesz, ves

ideatifiery attributes;;

DECLARE may be abbreviated to DCL.,

1f an array variable is declared, the bouands of the
array must be specified in parenthe51s immediately

following the identifier. A bound is specified as

follows:

lower-bound: upper-bouad
where: lower-bound < upper-bound
I1f the lower-bound is owitted, 1 is assumed, The

namber of dimensions is equal to the numbar of bounds.

(boundy, boundy, ..., boundn)

The specification of attributes is optional, The
permissible attributes are as follows: .

a. FIXED "

b. FLOAT (precision)

c.” CHARACTER (length)

d. CHAR (length) .

e. (c or d) followed by VARYING or VAR

The daclaration of the identifier always makes the
identifier local to the block in which it is declared.

If data attributes are not specified, then thesz attributes
are supplied by implicit declaration.

The bounds of an array aad/o: lenzth of chacacter
variables may be scalar expressions when declared in an
internal procedure or bagin-end block. The bounis and/or
lengths may also be specified by asterisks (¥) for para-
meters, (See param=ter dlscussions)

The following describes the meanlng of each attribute and
its System/360 data representation format,

a. Fixed-point binary 1nteger. Four bytes,
Value range = iy RS TN

b. All floatinz-point values are hexadecimal, Precision
must be a decimal integer constant of v31ue-”14 If
precision " 6 then a single float value is allocated.

Foax b]tés. If precision 2> 6<14 then a float double

value is allozated. Eight bytes. Value range for both
precisioas is approxlmateles 4E-79 tof7.2E75. If (precisio.
is omitted, single float is assumed by default.

c. and d, The length must be in the range 1 to 255. The
length determines the number of bytes. Refereaces to

fixed length strings uses the eatire string.

e. The length spacifies as in ¢ or d is the maximum
length, References to varying strings use the current
length,

O D,

),

11

LANGUAGS FEATURES

COMMENTS

(continued)

DECLARE statement
ex: DICLART A FIXED, B FLOAT (6);
DCL X(10), Y(-10: 10);

DCL RATES (I,J) FIXED;-

DZL TEXT CHARACZTER (80);

DCL MESSAGE CHAR (50) VAR;

implicit declaration For variables that are not locally
declared via a DECLARE statemant, but simply referenced
in a block, the following occurs,

If the identifier is explicitly declared in a
coataining block, then the ideantifier is the same as
the explicitly declared identifier. Otherwisz, it is
moved to the extern2l procedure and acquires its
attributes as follows.

1f the first letter of the 1dent1fier is 1, J, K, L,
M or N, then it is FIXED. Otnerwise, it is FLOAT (6).
This is referred to elsewhere as tHe (I-N) trule,

It is important to aote that variables may omnly de
explicitly declared via a DECLARE statemant. However,
statement-labels and procedure-ideantifiers are explicitly
declared by their position in the program, and are

local to thz block in which they appear. Conseguently,
they are involved in resolving an implicit declaration.

BLOCKS AND BLOCK FEATOURES

)

‘and the ending of an external procodee block.

orozedure-block Providas for identifying the beginning

L S

A program is composed of a single external procedure, A
PROCEDURE statemznt must be the first statement in the.
. program, amd an END statement must be the last statement,

12

'LANGUAGE FEATURES : ~ COMMENTS

STORAGE ALLOCATION AND BLOCK TERMINATION Upon entrance to a procedure block, storage is dynamically allocated
for all variables which are local to the block. If array and/or string variable bounds and lengths are specified
with expressions other than decimal integer constants, then the amount of storage required for these variables

is calculated upon block entrance. However, in this case the values of any variables used in the expressions,
must be global data variables allocated by an outer block.

Upon exit from the block, all storage allocated upon entrance to the block is deallocated. A normal exit from
a procedure block is by encountering the END statement of the block.

mu]_tiB].e closure Provides for terminating DO groups The identifier specified following the END statement

and/or blocks at the same point in the source program may be a statement-label or procedure-identifigr. A}l
without specifying an END statement for each DO group open DO groups or blocks are closed up to and including
or block to be terminated.] the DO group or block in which a match is found in a

procedure-identifier list prior to a PROCEDURE statement
ex: LOOP: DO I = : or in a statement-label list prior to a DO statement.

1 TO 10
DOJ =1TO 10

e w

END LOOP

By specifying the statement-label Loop after the END
statement, the affect is the same as if: two END
statements were specified without the statement-label.

A: B PROC;

BEGIN

DO WHILE X>Y);

<:iEND B; _ <:> | ::>

;-

13

i

LANGUAGE FEATURES COMMENTS

multiple closure. (continued)

In this case, the affect is the same as if three END
statements were specified without the procedure-.
identiifier. ’

- G. BUILT-IN FUNCTIONS

In the following list of built-in functions provided by'PLAGO, we shall use the following notation to denote
the type of arguments that are required in referencing each built-in functions '

S - e - scalar or array expression ’ se -~ scalar expression
= ae - array expression : ai - array variable identifier

" Where arguments to a built-in function are optional, they are underlined., A detailed discussion of the
built-in function is contained in the textbock., However, you should note that PLAGO is more permissive, since
it allows scalar expressioas which are converted to integers, where decimal integer constants are required in

" PL/I.
e e R - MATHEMATICAL
: ' ATAN(e, e) L0G10(e)
. 3) ATAND(e, e) L0G2(e) .
L g CoS(e) SIN(e)
. coSb(e) SIND(e)-
ARITHMETIC EX
sumiene , mr)
ABS(e)) - TAN(e)
CEIL(e) " ' TAND(e)
FLOOR(e) .
MAX(el, ez, eo ey en) .
MIN(e,, ezf'..., en) :
MOD(e, e}
SIGN(e) .
TRINN (oY

14

LANGUAGE FEATURES.

OrMENTS

LENGTH(e)
SUBSTR(e, e, &)
REPEAT (e, se)

ARRAY DIMENSION AND ARRAY CAILCULATIONS

PROD{ae)
StM(ae)

MISCELLANEOUS FEATURES

ON conditions During the execution of an object program,
there are several conditions that may arise. When a
condition arises, we say that it is signalled. The

ON conditions which are enabled during the execution

of the object program are as follows:

ENDFILE (SYSIN)
NAME (SYSTN)

- ‘FIXEDOVERFLOW

UNDERFLOW L

OVERFLOW

ZERODIVIDE

CONVERSION _ . . -
SUBSCRIPTRANGE - - : -

-STRINGRANGE : o
" ERROR o e d

FINISH ~

When a condition is signalled, the signalliﬁg is denoted
by placing a message line on: SYSPRINT in the following
format: :

CONDITION condition SIGNMALLED IN STATEﬁENT statementenumbe)

co.

e’

On statements are not implemented in this version.
However, vhea a condition arises, the standard system
action is exercised as follows- :

ENDFILE (SYSIN) -
message - signal ERROR -
NAME (SYSIN)

message - ignore erroneous

' assignment format and executiom continues

FIXEDOVERFLOW

message - signal ERROR
OVERFLOW

message - signal ERROR
UNDERFLOW

‘massage - result set to zero and execution continues

ZERODIVIDE
message-signal ERROR
CONVERSION

message - signal ERROR
SUBSCRIPTRANGE '~
message - signal ERROR

15

LANGUACE FEATURES COMMENTS

where: condition is one of the above conditions, STRINGRANGE _
statement number is the statement in wnlch the SUBSTR reference is forced to be in the string and
condition was detected. execution continues,
ERROR

message - signal FINISH
FINISH

message - program terminates

