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PHERAGE

These pohes are lntended to supplement the author®s book,
Perturbation Methods in Fiuid Mechaniecs. which was published by
Academic rysss in 1964, and in an “"Annoteted editvion" by Para-
“bolis Prege in 197%. The chemges here repressnt firet, of course,
modernization to ianclude sdvances made duvxing a decade of wigoroun
$ct1viﬁy9 partionlarly in the understanding of singular periupe
sntiong, .

Second, a9 indicated by the change of title, the range of
problems hes bheen broadensd €5 cover other branches of sypplised
nechanles: elasticliy, dynamics, orbital mechanics, electros.
stetles, and the like. Fluid mechanics is still pre-eminent,
however, not only because it is the author's field of research,
but also because technlgues for treating perturbation problems

have been largely developed within fiunié dynamica. :

In the last fifteen years the study of perturbation methods
has evolved from an esoberie speclality to z standard subject
for graduate students in engineering. Some knowledge of the
subject ls esaential for carrying out analytical resesrch, apnd
hence o an wderstending of the current literature. Consequently
& nunber of other books on the subject bhave appearsd. Some ave
Cparely sathematical in ontlook (Bokhaus 1973}, but several are
devoted to physical problems (Cole 1968, Nayfeh 1973).

e here inslat on the physical viewpoint throughout. This
parmits us, ag enginesrs, to bolster pathematical reasoning
with physical insight. Another advantage is that we can enpha-
glze throughount the role of geales of space and time. This polint
of view helps to explain why some perturbations are singular,
apd clarifies the various technigques used %0 bhandle them.
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Chapter I

TS NATURE OF PERPUREARTION THEORY

Aodo Avprosimetion in ?mﬁim@@w%wg m&c@a&i&g
& problem in mechanice can bs atbrcked by any one (o & oome
bisation) of three technidues: experiment, anslysis, oy ﬁmmwri@&l
aimplation. Englneers are tuwrning incresasingly to numerlesl solw

tion ag computers are 1mpr@wgﬂg becouse of the limitations of
analysis.

Avalytic solubion ie &mww&@d by monlinearity, by awvkward goeoe—
uatry, or by unknown boundaries, Few problems in modern teghe
nology cen reslistically be regarded as livear, o ihat the whole
apperatus of classical mathematical physics, based as it is on
&nﬁwxp@%ﬂ%i@ng is of little avall. The few exact solutions that

can be found ave uswally either trivial {(e.g., & pavallel stream
mf £inid, a wiform state of stress) or are self-similar, end
therefore often physically unrealistic.

The remalning poselbility for enazlysis iz to approzimate. -
Approximation 13 an art, and the invenitors of suvecessfull approXi-
anblicas are vemenbsred by pogterity: Prapdtl's boundary-layer
theory, Ruyleigh-Hitz method, Hertz contaes theoxy, atc.

1.2. Swstenatic spproxizeticns

«x.zm'x

This courge ig concerned with ?h@ gystematic approximation

af the solutions of physical gr@bl@maa A systematic, or rationa)
approximation is based on some known exact smluticn gpmsafﬁly a
triviel one). The problem to be solved is envisioned as differe
ing only slightly, in some¢ sense, £rom that dbasic problem. Cone
sequently one may hope that the two solutions also differ only
slightly. One accerdingly petfiurbs the basic solution $0 find
an approximation.

Usually one is satisfied with the firat approximation, soma-
times the second: only rarely does he proceed to high order.
However, it is essential that it be possible in principle to
sontinwe 8 rational approximation indefinitely.

Suech sn approximation is by construction asympitokic: 1% be-
_eonas more accurate as the difference betwesn the bvasic and actual

- problens decrecases. The series may have zero radiue of convergence,

vet 8 few terms provide a close approximation.
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Hos all waeful approxinetions sre vetinonl in this sense. An
wnample of an dvvational approzimation of cousidersbls utdiity iw

. bhe shock-oxpansion method for supersosie Flow past an alrfoll ey
bBypersonie £low past @ pointed body of revelubion (Plugge 1963,
po Té-2), which bes renlated determined efforts to embed 1 imto
& syatenatic scheme of successive spproximations. However, ‘
-approximations that appear irvationsl when eriginally proposed
ars often found %o be retional on Pfurther analysis. Such has baer
whe history, for exemple, of simple bean theary in elasticiby
(Piwoskenko & Goodier 1951, sec. 21-22) and of Litting-line theozy
in asrodynamics (Yan Dyks 1984).

L3 Perepeter and coordinete perturbations

%o systewatize ¢ perturbation scheme, the diffevence between
the basic and actuval preblems is characterized by & Berturbation
guantity. It cown alvays be defined o &3 o be small, and vend
%o zero when the two problems coslesece. (For example, & very Rong
elastic beawm or airvplane wing has & very small thickness.} VYe
denate the perturbation gquastity generically by e.

In physical problews the perturbation grantivy oust be dinen-
alontess: L% sakes no sense to say that & flow is oiow or & plate
is thin; cne says instead that the Raynolds nunbeyr is low or the
thickness ratio small. | This dimensionless quantity is often (as
in theme two examplen} the ratic of two lengths: . ‘

£ = % | o {330

. Here the longer reference length L is aimost alweye a character-
istic or parametric length. It is not necesearily a geometrio o
dimension, however. Por example, if liquid of kinematic viscosity |
# fiows with speed U, we may take as characteristic length the

ratio #/U, which has the dimensions of length. , :

Often the shorser reference lemgth 8 18 also a characteriatic
dength. In this case the ratie € 1is a parameter in the problewr; &
and as 1% tends to zero we speak of & paramster perturbation. The ]
‘thickness ratio of a plate or shell is in this category, anﬁ so is
%he Reynolds nuwber, because 1% is the ratio of the geomstric to the’
| viscous lengbh. / /

- The other possibility is that the sherter length 8 is a coord-
Anate.  Por ezample, in o problem governed by parabolic or hyper- ”
‘bolic diffovential eguations, &6 thet disturbances spread only in
ong dirsction {(as for sppersonic Lilow, or a viscous boundary layer),
we can approximato the solublion for distances swall compared with
the length L. 'Them ¢ 18 pot & parameter but a dimensionless
soordinate. We then speak of a goordinate perturbation..

The diffevence belbweon a porameter end & coordinate is somewnst
sudtle. 4 parameter 1o & “variable® thut does not changs. Thnd
lo, to solve a given problen one muad consider o range of values
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A0t of parsneters. Donsequently, the govern-
. derivatives and intesgrations with respect to
ot the pavameters,

' The perturbation quantity &, whether it is a parameter or a
coordinate, can in unsteady problems alsc be the vatio of two,
times. | For oxemple, the problem of a sphere set abruptly iato
motion through o viscous liquid has been approximated for small
valves of the disensionless time +/(2 / &?9

Decasionally the perturbation guantity canmot be identified au
the vatio of eliber two leagths or twe times. An examnle is the
Hach vumber, which is smell 1f a ges flowv is only slightly com-
presgible.  The Mach number cap be regayrded as the ratio of twe
speeds, or 1ts square as the ratio of ivwe energles, but scarcely
ng the vatlo of two Lengihs or times,

An wnusual example was introduced by Garsbedian (1956) im
sludying the flow of a free jet of liguid sguirted from a cireular
orifice (Pig. 1.1}, Although
the CTlovw is governed simply by
the Laplace eguantion, the
unknown boundary makes the
probviem iapozsible to solve
exactly. Bubt the correspond.-

‘ﬁgsﬁ'

E
e .
: ”'W"gm =

5.7

. R M‘mummm
ing problem la pleans flow is %ﬂ’
simple, thanks to conformal ﬂf‘”
mapping. Garabedian therefore >

envisaged the problem in 2+ 8

SPLee d}m@mﬂgemsw gnd appr@gim Pige L.1l.
wated the molution for small -
€. He thus caloulated for
& = L. & value of the conbtrage
tiom of the jebt that agrees perfectly with subsequent numerdest
compuiations. This is evidently a paraneter perturbatlion, bt of
& vather curlous kind that illwetrates the ingenuvity that can be
exsreised in the cholece of pervurbation guantity.

Free jet from
sireular orificse

5 1;4; Th& form of a regular perﬁurbation serieg

. Let the perturbation quantity £ be defined sueh that in the’
full problem (governing equations and boundary tonditions) it
appears only in integral powers including the first.” We then 1
contlder fivet the simple situation of a so-called regular pertur- .
bation problem, which means that the approximation is uniformly

valld throughout the region of physical interest, Them & can

appear only in integral powers in the solution as well. Thug the
perturbation expansion is a formal power gseries, of the form,

£(x58) = £y (x) +E2y(x) + EVEa(x) ¢ ... o {.a)

& B 2 @ ) oy g N - e 3 x>
Later, in chapter IV, we shell want %o normalize & in a differ-
ent way. : '
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iy, however, the solution might have bean normellzed
Cwo oas 40 be woltiplied by some power of 6. Then 1% has

Y

L AP T 2 A R
wow| By lx) o+ e fylxn) @ ¢ fylx) vos ] (1.5}

i

v P . i A 8t T3 e
where © i pot & non-negative integer. The fackor & could evi-

Qently be absorbed imto £ by redefinition, reducing {(1.3) to (L.2).

Ofbon the solution is avalytic at the origin of €, in which
case (1.2} ip & Peyloyr series with non-zero radius of convergence.
Far (1.3} the erigle mey be a regular singwlar point, in which cage.
the expresalon in brackets im s Paylor series. In other problems,
however, the sclution is non-analytie in €. For example, 1t might
have the form ' :

flxs &) = fi{x) 4 @fzﬁx) + @Qfﬁ(x) 4 cooe

£ ﬁ’wg&/{b iég:i)(x) ¢ 8 gg‘ix) + eece :} s o8 (104}

The term @“él% nan an essentisl singularity at the ovigian of 6.
Bevertheless, it is emalley than any power of & on the pogitive
renl mxis", so that 1% comtributes nothing %o the foxmal power
sertes in the Tiret lime of {i.4). Such transcendentally amall
terma alip through our fingers if we consiruct the approzination
in conventionsl Lfashion. ‘ :

1.5, Bramples of regular parameleor gerturbations
>

We now ezamine several exemples of regular perturbatlion series
talen From the Literatvrs of applied mechanics, and comuent bhrislly
n thelr particularitiss. These series are typical, gxcept that
they beve been selected for having more terms than is usval, in
ordar Ho. display their patterns more clearly. We begin with soms
parapeter periurbations.

Firet, the e¢ffects of compressibility of ¢he alr flowlng past a
body were investigated independently by Janzen {1913) and Rayleigh
(1916}, They serturbed the classical incompressibdble petentiail flow
pest o eirele {(Fig. 1.2), assuning

. i
that the free-siveam FHach number ﬂ@/(;;g% P B
"

M {the ratio of the flow speed u o p s ‘
U %o the undisturbed ppeed of Lo gy comreelfin et
pound ) is small, Higher dterns g o - : g
vers celeulnted by Immd (1943} Bl %\xm‘wﬁg NP
gnd Simasabi (19%6). Por the : S el i
maximum speed, ocourding ab the ' e

sides of the eirele, this glves

{with the 2diabatic.exponent -y Fige L.2» - Bubsonic pobential
of the gas taken as Lo 0%} flow past circle.

. s
. .

# X ’ X r-.w'§ 5 . -
Phat dg, 1im e a /e = O For all n a3 g % 0 {through

positive real values.
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Bruns ‘ . . v mwame
3%% s 2.00000 + 1.16667 1 2.58109 1 + 7.59386 B

¢ 25.69342 ©° + 96,79287 'V & cue (Lo5)

Phie iz » perameter expansion, of the simple form {(1.2). Oaly eyen
powers of ¥ appesr, becunss the governlng sguations coutaln He
rether than M. HZoffwsn (L9707 and Reymolds (vopublished) bheve eple
sulated ssveral more termse by delegating the tedious computations
o 5 digital ctmpuber. .

The sigue are all positive. By anslogy with euch a almple modeld

funetlion 8 . — -

?gkm o L oP e R @z o @3 F ome {1.6) '

Lo g - _ |
thie vatters of sigps suggests o singularity oo the p@@iﬁ@?@ ?x£$
ef M. The rapid increase of the. coefficients aleo @ugg@%@ﬁ.@h&ﬁ
the sisgulaerity lies conalderably @lwﬁﬁr.@ha@ g wkiw,\ln i&?§9 :
using techniques discussed in Chapter VILI, Hoffman {3970} shows
that, os conjechursd Yy Rayleigh, the series convexges only vp to
the eritical Mach number, aboul 0,40, at which the meximum sgeed -
baocomes locally sonie. '

Second, Stokes (1851) ealeuwlated the drag of & sphere in slinw
viscovy flow by neglecting the noplinesr convective terms in the
Hoavler-Stokes eguations. Oseen (1910) found o second approximatlon
by lduesvicing instead akoub the uniform stresm; and Goldsiein
{1929) added four more terws according to that linearizabion. Tiis
glvasy , ' 2 5

B 6 ? ,%{RE ;ﬂ{&? RN
2 priind my.—v.wum;.g.‘ gy ] o 1‘, = s s s S ishin fi o .
®p B oLaEE o WL TEE - Belz) tuiss
K P &g,, G 5 lﬁ, ‘i «; ) ’
o mi@ m%ig;(E%% - ."if;u‘gﬁm‘g{g;} o j %
imd 400027 T 537,60002)  ccc (.79

vhare the last cosfficient bas been corrvected by Shanks (195%).
Here W = Us/ir is the Reynolds nunber based op redius s, the

‘axpansion being writtes in powers of R/2 1o keep the coefficients

from decrsealing capldly.
This parametor sxpansion hasg the Lorm (1.3) with © = -1, slmply
because the definition of drag coefficient wsed 1w inappropriate

b0 small Reynolds aumbers. The signe now slisrsate, a pattern simu-

latad by the model funcition

iR . . _
Tre ™ L~ & &Z &%3 % seoe (1.8}

- This suggesis that the nearest einguleridty lies on the negadtive axis

of R, oo that it hao no physical significence. The series has bosn
extended %o 24 terms by computer {(Van Dyke 1870); and analysis af

the coefficlents, as deseribed in Chapter 8, reveals that CORTRTEENCO
is Limited by o simple pols at R = =2,09006,
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L6, Buwaplaos of seguler coordinete perturbeiions

Wo soatisve with ozsmplss where the perturbation quantity is a
dimepnionless coopdinate rather then & parameter.

Third, Howarth (1938) hes calovimted the boundery layer en & wall
heving the laviscid surface spssd U(L-x/8h). He porturbs the self-
Slmiler solution of Prandtl and Riaslius for conatand speed YU, by
expanding fov small disensionless distence 2 Jdowsstresm. Por the

soaffiaiont of ekbin friction he finde

s a%ﬁ 2 g-@mfm‘;’%imf ss‘*‘%f 1.326242 ~ 1.02054 (=/L)
o 06926 (2/T)% w0560 {2/D)° «.0372 (/L)% 0272 (/0)7

ez

wo§?§*§3§3 @xij‘}& i G@l?@’ ('ﬁ&igc?? hd 201&37 (V:/L‘}&% “”‘ wee} ilu‘§§ 4

O

Ihis han the form {3.3) with & &=}, %Phe signs have the fixed pate
Gorn of the model mevies (L.6), suggesting that, as in our Fivad
srample (1.%), ths neavess . _ ' .
singularity lies on the posi- g
tive real sxis. Anslysis of

the cosfficients (Van Dyke 1974)

indioates o square-root sere &t . & L.
/L = 0,96, in secord with numer- el
jeal integrations and losal @(&f{é} of
solutions. Plg. 1.3 shows how W ITR L

BYNRLTT-TIOT
LYL6
1 tewa
"M .

cloarly indicates. divergence. ' 0

. . -

The coerdinante in & coordimate 5’ 1 \;“"?: 2
expansion may also be the time. wl _ . \ 4
Our fourth exanple is the series ‘ 5
caleulated by Ketegiri (1974) for 976 °
the viscous %orque on an infinite D '

&

e

. Qisk set impulasively into. mobting

in its own plane with angulnr Pig, 1.3. Howarth's seriss (1.9)
velocity £ . At the first for skin frictiom
ingtant the motion at any point - .
is that given by the simple salf- :
similer goivtion of the Navier-Stokes eguations for treaslation of
& plate, and perturbing that vesult gives for later tines the dimen-
slonless torgus B : . '
‘ﬁ’ oy uv%‘fb, q,,\;’g, . Y £2iTL A 2 s oy ':.,‘S’
T o= $26)7° | 1.328%79 + 185412 i024)° - Q175867 (D)

1
e

+ 00179678 (24)° ~ 000181775 (25) + .000018134 (+)L0
= «00000178% (B %)% 4 00000017 (Re) 4 |
- 000000007 (R} 4 .. ] C {1.30)

= ot
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v oples (1.5, 1.9) the sisgularit

X% therefore repressuts an

. an jnverss coordinste expamsio
~expands for large as well as small valuez of & parameter.) An example

LWy ‘,A",f r;’;‘_. o GEp e
b E EE

o5
I
é ;

The sigws sltersate, indicating as in our second example (1.7}
that the rast eingularity lies on the negative axis. Ploywre 1.4
suggerts that convergence im
thereby limited o about it = 3,
end later iw Chapdor 8 we abow

how the rediue of convergsmnes . - &

san be astivated accurstely as
"
o }Q@» ® .

| In our £iret and third exam~

VIR
¥

has “physicel® significance, {
though 1% would be eliminsted
by mdopting more realistie ' -
governing eguations. 'On the & e
other hand, in our second angd |

fourth sxamples (1.7, 1.10) [
the singularity on the negative . O
axis has no physical meaning.

artificinl limitetion on the ; <% |-

range of utility of the series.

e shull see in Chapter 8 how

‘$hat renge can be extended by | 2 o .
ggﬁgnfgrgﬁzg giiéggigmcggtimmf - Pig. l.4. Ketagiri's series (1.303

usually move desirabls in a ./ for torque om spun diek
coordinate then s parsmeter '

‘expension, hecause ome generally wants to proceed to as largs valuss

of & coordinate am possible, whereas the practical range of a puram-
eter may be limited. /. (Por exswple, the thickpess retic of un airfolil,
vhich i3 sssuwed swmall in this-airfoil theory, seldom excasds 1[5»}

\'{ &aﬁth@r poseibility is o supplement the expansion for small valu@é

of the coordinate by amother expansion for lavge values. We call this
sion. (OFf course one sometimese alse . |

is the integraited shim friction on a semi-infinite flat plate., The
familiar hovwadery-layer approxivation of Prandtl snd Rlagives i omly
& first approzimetion for largs disteunces downstream. Higher approx-
lmations (Imai 19%7) give, for the drgz baeck to the distance z  from
the lesding edge, : '

S S | - . -
Cp = 1,328 8% + 2,326 B~ ~ 1.102 R ®logR, + Gy R 2+ ,.,

, {1.31}
Hora R = Un/far is the Reynolds pumber based on %, The constant
Gy ds “undetormined. I% corvesponds to sm effective alight ahify
of the leading edge, snd repragsents e resijusl effect far downsitream
of the detnils of the flow mear the lesding edge. Additionsl wundaw
terzmined constanta arise one afier amother in higher approzinations.

| Thie appearance of eigensclutions is a characteristic feature of

any inverse coordinate expansion, which limits its practicability.
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Surbatics solutions turm oul o bo
. forvard approxipation is mob unifor
- vhers in the rogion 6f physical inferest. .

g
\.z@qz

B @ Ny o AU T
- LeTe Bimsmlar neriugbablonss the roly of sealod -

hegular porburbationsy are rolatively rare,  The majority of pevs
lar, mesning that the strdight.
walid, buk breaks down BOmes

L

Sush ponwaifornity will be disclosed by ome Or another of several
aynphoms, &8 dissussed in Chapler 2, Im mild ctees, higher approx-

imgtions are Pound to become increasingly singular in acme paxt of
‘the f£ield. When the nonmuniformity ie more Severe, it may prove

. jmpossible to caleulate higher approxinmations, because integrals
diverge, boundary condibions cannot be imposed, and 86 oM. /

| ¥hy this should heppen, 8nd now it may be corrected cmm, fm

. physical probloms, be illuminsted by considering the rols of somlen

and the foermation of dimensionloss variables. Suppese that the
fgifturbati@& quentity is the ratio of two lengths, ¢ = 8/L (1.1},
f solving the problem one neturally introduces dimensionless vari-
ables. In particulsyx, the space coordinates X, ¥, ... &re made .

 dimensionless by roforring them to & characteristic length. Buéﬂ

wa have two characteristic lengths, & end L, whose ratio is

 small and regarded as tending to zero. - Which shall we choose? .

Yhick is the more cherecteristic?

The surprisisg answer is that in genmeral neither choice sione

i correct; one must nake b@thkchai@e@p introducing, 88y,

e X - ) ! ' A
PR = ‘i . /&ﬂﬂ Er'ﬂ*‘ % ° o , ilel@}

. Phis would appear to be a retrograde step, for it doubles the number

of independent variables, whereas we aim to reduce their number and
g0 integrate the squations. However the complication is only appar-

gnt. The exact roles of these twinned variables depends on which

'of three ecatugories of singular-perturbation problems ie beinmg
Sreated.’ s , ' -

The simplest is the category of glow variations, Many practiesl
approximations in mechanlcs =- for oxanplLe, SiRpLe besm theory or
the ope-dimsnaisnal Phydraunlic®
approximebion for pips Llow ' ‘ ¥
(Fig. X.5) —~- exploit the fmet ,
that the objeet under consider= 8 5 T
ation is of much greater extent = i Yt m??&,

in one direction then mnother. 3ﬁ:‘cwmmW” - ” o K
An described in Chapter %, we s A S ©
gan coustruct & systematic . T

pcheme of successive approxir . i

pations by intreduclvg a8

perturbation parameter the Pig. 1.5. Flow through slowly
ratio ¢ = 8/L of some shord : varying channel

gharacteristic trensverse.

dimension ® %6 o characteristic longituiimel dimension L, I% - -
surns ouwt that choosing either 8 or L as reference length leads,



%o nopunlformity. |

qm%m

transverse dimension &oh

. The intermsdiate w&t@g@ry comprises what are often called boundary
“wxﬁu pr@h%&m& - I% is exsmplified by viscous flow past & body at
well as B, h Reynolds .

mmmﬁ@ﬁ At low Reynolds number

(Big. ma@) the ponilinear
inertinl effsctsy cen be -

-noglectad ingd de & reglon
‘near the body wiwase extenlt
-is of the order of s char- |
-acteristic body dimepmion fu
8. Yn that reglon X = x/8 o
ate. are the appropriate !

variables, . However, the
inertisl effects r@a@@@rt‘
thompelves far from the
body, et distances of the
order of the viscous length

}

,@%@9

a o ._‘\m"
LG duwn 75

That c&n be &vai@adp however, by using a mized -
“gyastem, referring the lopgitudinal coordinate % to the typical
longitudinal length L, and the transverse coordinete y <o the

TN i

Heaxly
waifora
Flow

e -
o o 4 Py

a“@r@@p&mg o

Pig. leﬁm'géalﬁa for Liow at
I@W'R@ymmld& mmmb@ﬁ

'L = 2/U, A diffevent approximation ia required %hﬁr@'mﬂ that @f:\
nserly umiﬁ@rm flow == and th@ aypropyi&%e var;ab}&a are K = le,g

‘4t high Beynolds numbsr:. the me&a%iv& nagnitudes @f the geomatrio

and viscous lengths are reversed.

- of viscosity are, according 4o

Prepdel's hwuﬂ@argmu&y@r theoyry,
goncentrated into s thinm layer-
ﬁ@xﬁ to the surface. Thus -
the flew fleld cen again be
divided indo two veglons,
with differsnt length scales.

. Gutsids the boundary layarg
. whera the flow is neap L
- dnwviscid, the appropriate
- reference length is the ;
dinension L of the h@dyo,

The boundary layer itself

is an embedded reglom of
slow variation. Its @hiekn@@m
is not the very short viacous
length 8 = /U bwut JL& ,

- the root-mean square of I
and 8. This illuvstestesn hew

$wi disperate lengths combine

%o piovide an wnlimited number

of @bh@yﬁg of the form L(@/&)k
for any k. Thus distances across

the boundary layer ars referred o
'ﬁ:@ zao %

For 2 siupls shaps the effecte

- Inviscid
flow e

B@un@&my*wa
lav@r St

Pig. 1.7. Scales for flow ab
high Reyanolds numbsy

Vis ; and distances along 1%



problems lack some boundary conditioms, but the solution cen ba
‘completed by matching the two solutions where they overlap. This.

‘is the iden of the method of matchsd ssymptotic expansions, discussed

@ e
!

Lﬂll@‘l?ﬂ

- Tiws in & boundary-layer problem only one or the other of the |

. twinned variables is used in gach region, soc that the number of

independent variables is novhore ineressed. (More complicated DPEOb-
loms mey ianvelve three ox more different reglons, with a correspond-
ing number of slternmtive dimensionless forms of a single coordinate
Zg but agein only oue such varisble is used in eamch region.) Both |

/

in Chapter 4. |
‘The ‘most complicated of the three categeries of 8ingular~perturba-

. tiem problems is that of slowly modulated oscillations. A simple

poriodic waves
- preduced by a

piston oscillating
einusoidally {(Fig.

modsl is the damping of sound waves by viscosity. oStokes (1845)
1.8},  The obvious.
soale is the wave-

Bl
dength @, which ' ‘

sonsidered the plane
provides the dimanmlﬁ ' _ Is s SgE
sionless coordinate .

X = x/s; Howeyer, &= Pig. 1.8, Damping of plane sownd waves

the slight viscosity by viscosity

- of air damps the

wavss over & much

longer scale L that encompesses many wavelengths, and provides |
the alternative dimensionless coordimate x = x/L.

If the ratio e = o/L of these two characteristic lengths is '

-edopted as the small parameter for an approximation, the straight-

- forward solution using X is found to break down on the longer

scale: the perturbetion is singular. The remedy is again to intio- |
duce both X and ¥ as independent variables. In this more Anvelved
sltuation, however, the preblem obviously cannot be decomposed inte
roglone where only ome or the other is the primaxy variable, The
feable elfects of viscoalty are no longer concentrated into thin
layera, but act throughout the field. (Thers are boundary layers
everywherel) Both scales ars significant at every point, so both
veriables are importent throughout. ‘

Thus the number of independeat varisbles ig, in this clasa of
problews, formally increased. However, we shall see that the ine
crease ls only apparent, because when integratior is being carried

~out with respect to the shori-scale variable X the long-scale ' -

variable x plays only a perametric role, This is the idea of

the method of multiple scales, several versions of which are dis-
cussed in Chapker 5. T ‘ o

ve have juat observed that two disparate scsles can combine to
foxi an indefinite number. Hence we will not be surprised to find
in Chapber % that in some problems the methad of multiple secales
involves an walimited number of succeasively longex scales.
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: ¥ . ; owers of
- £, | For example, The UNSEDRrRLEl bdundery layer on & smooth body has

- top and bobiom clireles

16 Juwm s

RaBl, Comaom forms of sinsnlar-verturbation series

Yo sww that im & regular perturbation the small quantity e

 appears in the solution in the same simples way that it appears im !
~the problem, say in integral powers (aside from & possible mulbipliie
eative fractionnl power). In e singular perturbation this sinplielity
is often destroyed by the . interplay between disparate scales, 4 ‘

& result, the perturbation quantity ecan appear ia She selution ia’
8o unlimited variety-of complicated ways. Keverthelean, three,

. Seneral osisgories of solutions can be distinguished, UWe describs

these and give exemples for each. .

In the Tivsh category, involves fractionsl po

7

the solution ] &
BD exponsion in inverse half povers of the Reynolds numbsr, although
it appears only to the Pirst power inm the Navier-Stolaes equationa.
Hore complicated Tractiens avise, for ingstance, in the elastie
deflection of & thin-walled tovoid under internal presaure (Fig.
1&3. The straightforward .

approvigation is the membraos
theory of shells, which
neglects the bending
rigidity: but this falls

in a thin strip about the

where the bending xigidity .-
is esasniial because the

shell lacks compound cyrvaters
there. Colbourne & Plugge

Aoy e Do ' Pig. L9, Pressurized
{1967} treat this elasticity et =
boundary layer by the nethod thin toroldal shell

of mafiched asymptotic expansions.

An terme of a dimensionless internal pressure ¢ they find that
the angular rotetion of the owiginally topnost slement has the
gxpansion :

S D396 5/4 0,3749

| 504 . 4
smpmabdmemsam P cin e &+ gcOnst, g~ * s 1.13
LITETY] & e (23

~ The 1/1& power of the inverse Reynolds mumber appears in
rariows problema of boundary-layer interaction, and rather curious
3/1L powsy is encountersd in @ theory of Newtoniam flow separation.
frrations)l powers can slso cecur; Stewartson (1957} and Libby &
Pox (195%) show that the expansion for the boundary laveyr on a
semi-infinite £lat plate comtains Peigensolutiona® with the stream
Tunction varying as distance $o the powers =1.387, -2.%14, e¢lc.
An uvousuval. ssquence of powers appears in Wilson's (1970) anslysis
of the boundary layer at the entrance to s tube, where the inverse
Reynolds mumber occurs to the powers 1/2, 5/4, 7/8, 15716, ete.,
with a condsnesation ot 1.

In the second category, the solution involves a mixture of powers

of & ond of 1%s logarlthm. For exemple, whersss in Tho USess

linearization the viceous drag of a spheve has an expansion (1.7)
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SRy,

F

- of the rer
has calcul

o f o8 6T Fagt
Lfr BB TR

in integrel povers of Reynolds nwatber, for the full Navisr-Stokss

- sguations Proudmen & Pearson (1957) znd Cheater & Breach (1969)

ghow that logarithues appear beglmmivg with the third terms

%

%
Fion

e g, - £ ) &, 3y “
g J o+ ém + @%Eﬁ“’mﬁ R+ ufé%%{? + %Mgz = %%%} R”
@ -

?Ji? & Y eree " : a .
+ Endi0g n + j | (1.34)

Hevs v = D,5772 is Buler's constant, sud "log® denvtes the watural o
logerithn, : ,

The deteiled pattern varies consitierably; the logardtbm BPDOATE
lmmediately in the Tirst term im slender-bady sevodynanics, bud io _
dalayed to the Tourth tewm in subsonic thin-nirfpil theow o DPYem -
the power of the logariths increases by one every other term, and

perbaps that happens in (1,14). Fractional powers may also be ,
‘mixed with logarithms., And even loglog's have @@casi@nally"b@@g‘

sncountersd in boundary-layer problems.
In ghe third cetegor:

proceeds in integral powe

hé'solution‘ _ Ll p
r example, Hallen (1928)

* garithm. Fo

@t My 0

ML OF Tae 4
ated the electyre
static capacitance of a - & gl
slender charged cyiindrical Err3 i3 55 5 4 b a5 ) ¢ 5 h
conductor {Fig. %,10) &gg -y 1, o

"Eig;"1;1@®]$l@mﬁ@r chrrged cylindey

n 3

& o, 0, 3069 o2 TLT l :
mrg-z == "fi““m"%‘};’:“:’ > mmmgmégﬁzmﬁ r3 O QZ’ i‘ ? = o ; ®° 6898 4 oo®
“ne, 08 </ & (log 2/€)2 ~ (10g 2/e)3 (log 2/¢)4 -

(X2 )
Again, Lamb (1911), Provdmen & Pearaon (1957), and Kaplun {31957) have
saleviated the drag cosfficient of & elrcular oylinder in = viscous
gtrean as v _
iy} A5 1 1 - 1,350 .
QB Ly xxvarfv’ngxtzx» e “j;."{,‘“” g ) mo i 2 3 {‘;’ % ? u#‘ @ &4 .,pn
pllea 2 Llog LR - (log 1/Rr)2 {log 1/R)3

where D iz the drag per unit length of the cylinder. As in the
sorresponding axisymmebric case (1.12) the multiplicative fackor

/R eonld be eliminated by a more appropriate defimition of the
Arag coefficient.

3 o@} €101‘(ﬁ;

o

°

. Phis form of expension ie perbaps always assccisted with circular

. sylindrical geometry. It ordiparily yields POOY accuracy unless ¢

g wareslistically swall. Erobably such a series is purely essymptotic,
with zero radjvs of convergence. Proudman & Pearson have suggested
that the terms indicased an (1.16) are succeeded bg tran@c@nﬁentﬁlly
small ones, which are smaller by ractors of R, ﬁgmg @Q?, On the
seale of log 1/R, these correspond o the e=d/e, o2/t ate,
in é;l o 5%‘;3 ° -
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Xe 9 Gowew fuassions ewd order synbels

. . . :
The preveding exsmples contaln a set of simple Tunctions of Thaa
perturbation queantity that serve to describe the degree of smalle.
noss of the terms in & ssries. Theose geuge functions dnclude
‘ Sf«i{ G wrl EE 1. . ‘ - :
& I3 & 9 & iﬁ,‘:g ‘} #® 0 9. E‘ﬂ €102-?§!
(leg B/e)® o
gnd these fow suffics for the great mejority of physical problems .,

éﬁ{l@g@

. Of course these forms are not walgque. For example, ope might
. for some reason prefer to expend not in powera of g, but instead '
jor, . i powers of sine, or {es discussed in Chapter 8) in poweres | |
Eu s&"’ of ef(ove)., These three alternutive gavge functions sre said vo
Lo - ba of the seme grdsr a8 = <tends %o zevo, besauge they all vaaish
i 8% the same rate -- linearly. A& multipiicative constant doss not
{ affect the order: e end 28 sre of the saue order. In fact, e
) and  2000e are of the sawe ovdew, which iliustrates that order in
this mathematicel seuse i not guite the same thing as physical
vrdey of magniitude. (However, we expect that if varisbles sye
sensibly normalized in e physical problem, uo very large or small
constents will appeaw.) o ' :

the orders of two different gavgs funciiouns {or othew funetions of
the perturbation gquantity) are compared by usin§ the ordey mymbols

;o o sxd O (provouneced ®iittle ohk® and “big oh® The asymbol o
4 means "of smaller order then.® That is, given two functioas gle)

end G{e} we say

ale) =of8{e)] av e-po  af 1w %%) = 0 (1.18) |

The symbol © mneans "of not greaver order than.® We amy
| ; 3 : e ?(e | '
#le) = of@le)] as €30 if lim E?%’E% < @  {1.19) |
¥ @w ? % ?, . A X '
Thus, Low example, aing = 0(c). Aaeaiﬁing to the definition, 1%
iz also Lormally true that sine = O{e¥) or sine = 0{1)s bus
these letter atotements are less informative. We aosume that the
sharpest possible estimele is always glven. This wmeans using 0
with the swallest povsible geuge function, snd using © only when
there dis insufficient hoowledze to wse O,

We shall use order syubols mostly 8g a boskkeeping device to keep
[ Ctrack of the error incurred in truncating & perturbation series st &

Tinite nuaber of terms. Thus instead of using the ellipsia (...},
we could write three terms of the Janzen-Rayleigh expansion 1.5) as
q&ﬁ&}t & % Vi . < e g 2 &y é‘ ré % . g |
=y o= 2.00000 ¢ 1.16667 M- + 2.58129 ¥¥ G{M~ ) AL.20) !
§ (and we wonld add ®as N =% 0% if $his wvere not perfectly olear).

Rowewer, if we were wncertain of the exact order of the rewainder,
‘we wourld give the less precise estimale
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HEL e 2.00000 ¢ 1,26667 B o 2,582 o o o(w)  (1.23) )

For this purpose we s2ed to know how to carry oub siaple operge
tlons. with order symbols; bui these are mestly obvious. An excepiion
is the fast that although order symbols can be 1n&a§ra$@&?&wi%h -

. respact to ¢ither the smell quantity or & paraweter) they cemmot
‘necensarily be differeantiated (Brddlyi 1956, mec. 1.1). However, '
since in englnsoring resserch we must ordinarily procsed without

rigor, we shall feel free alwe to differentiate with lmpunily.

WJ&f;&&*@m@e&%&«w@%@ﬁm@%ﬂd suymptotic expansions
Back of our previous sxzemples of a perburbation series {lL.5, 1.7,
1.9, 240, ebed is by construction a Tormal asymptotic expareion.
It i formed with the a2id of a mpecisl seguence of gavge Fw.otions
appropriate $o the partieviar preblem. Fach term of this zaymphotis
sesusncs, which we denote genmericnlly by dple), ie of swsller

oddar than 1%te predecegsors .
@Sﬁ{@j mo @ g:@%mml{@}){g - @14&2@} \

He saw (Bee. 1.4) that in 8 regular perturbetion the asympivitie Se—
querce may ba teken as the integral povers of the small quambisy:
Snle) = 2, thowgh eguivelent alterantives may oscusionally be
preferved {osc. L.%9). In singmlar perturbations, however, we oaw

C fmes. 1.8) that the asyspitotiec seguence usually conialve fractional
powers, logeritbhms, or exponsntialu. Clearly the asymptotic neguencs

- Zov & glven problen ls nelther entirely arbitrsry, nor entively .
Pieed .fwnless we ave conbent with the standard gauge funcilons glﬁl?}ga

a
7.

A fimite asyupitotic exppwsicn (to N teras) is then a linesr som~
binstion of the leading terms of the ssymptotic sequence:

g : : : S
- #{e) = géﬁﬁagmﬁa) + oldy,) a8 € <% 0 (Ro23) |
For either » finite or infinite nuwber of berms this is usually wedte

ten move simply, snd using %he epesial egquality sign ~ (“asympe
totically equal to") as : : A

ey ~ . epdple ) ' o {1.24)

and we sball henceforth wvse this motation. If the function £ wexy
known ezplicitly, the coefficlents op could be caleoulated in suge
session by btaking the limit affter subtracting the previovs derms:

@qu G
{ 4 ﬁm g ! i € s s N .
d g8 4 i > (=1 By ] 15 I 7
‘m f}%;% g,—,fé‘w g ey @ yled /o wbed , \?,1925) ;

Agyaptotic series wewrs christensd by P@im&&ré& who restricted
attention to the gsymptotic power series Loy, e”. {(This term is
wometines alon applied B0 LHE LOYRM  Tule) Fon e®.) The geversiisz-

catlon 40 other aaympiotie sequences followed naturalily. In physical
applicatlions the solution, aad hence the coefficients e, wetally
depend alse wpon one or morvs diwensicaless coordinates, for example
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Bre dlscussed in texts on the subjest (Erddlyi 1956, oh, ).

the order of the
-first term negleg-
‘ ted, and in fact

gy Mireo YR
BRI

- o] B
£i{xg &) o g eptx) dfe) | ' ‘ - {3.26)

Sosh an oxpension to ¥ terns is said to hold wiformly in % &
the rensinder i3 o{dy) wniformly in x. ‘ _ :

doyuptotic expaneions may be added, sultiplied, divided, integ-

rated, and differentinted only wdsy mathemedical regtrietions that

</

hovever, since we med ordinarily procesd heuristically in phyeical

Problems, we will have to pexform these opsrations frogquontly withe-
owt wigowous Justification. , .

" An asympsotic expansion may be convergent (with fimite or infinite
radius of convergence) or divergent. Hovever, we usually find it

convenlent to reserve the term Yasymptotic® for the divergent Case .

We may also use the expression “purely asymptotic® to emphasize that
an expanslion has zero vadius of cConvergencs. ; o

Shisltjes called such series semz~convergent, an evocative term
thet hos wmlortunately fallen into disoss. 1t waderlines ths inporte
ant property that svecessive berms decrease in nagnitude up to &

certain poiad, sand only thereafter ineresse. It is for this reason
that purely asynpiotic '

serisg are useful swallieatd | [-

Tor compubation: 9.0 b

for example, for .

Beasel funchions Expey

of large evgusent. G o o R M om o8 weoomonaansea
‘The error is of | ’ : vALUE

frequently less = 1.0 |-
- in magnitude then | 4
" the last term _ ' i @ aw M W“‘“‘Wﬁmmw‘%mw 5 ' o Rapd e
‘yetained. The G e g = 0.4 VA
heet approximation

is therefore ob- %5

tained by truncating G - , |

the series just . e 8 8
before the lerms & 0 6 Iy
begin to increass - . .

in magnitude. Fig. 1.11. Suecessive pardial sugs for

' : bracked in asymptotic series (1.27)
The approximetion Tor complesmentary ervor funetien

becomas bether, and

the nuaber of terws that

can profitably be retained incresses, as the limit o o O 48
approgehed.  These features are (llvetrated in Fig. 1.11 for the
asyuptobic expansion of the conplenentary ervor funetion, a fumetion -

thet ariess in simpls golutions of the heat eguation:

S

L i L FIQ?? ) 2 U TS TP o Al 3
@X)‘fg’g,(ég} A2 c;f.;‘%’ &Ee / i:l e '5% [ o o «h‘%g @ ey W ("“’l‘}? v 1 5 ?n(gm l) &zm;gi €la2?}
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HERLD Are Hosn te give the reeult %o wilthin one per cent —- wa

- ‘3 16 roached only with dwelve terne of the Taylor sewies
for the BT fﬂmw@i@ﬁg ever though 1% bas infinlte zradius of @@ﬁ@@?g
BRGB o

Hucons @i@& Garms An @ g&x@ig m@gmp%@%i@ @Wﬁﬁmﬁi@@ weunlly a&%@mm
nate iv eige, aithwr indlvidumlly ov in greups of two oromers.

 Phat this is nod inwaristly trus, bovever, ig iliuvstrated by the

H8YHmAtosie @xm@mﬁﬁﬁn for the wmodified Bessel function

AR e 03; . 2. o . L .
;({\(g.)ng o ié’mw @m‘/{v 1 of mn%% Bk gg %f & oes;g : . o ({1&02@}

Plgure l@l? Hh@ﬁ@ how in this

CaO %hm faet that ths error

is of the order of the Tirat 2.6
gy @@@l@g%%ﬂ moans that the

exact value corrssponds o an ,
#inflention w@im%“ dn the plob 2.5
pf partisl suns., .

n . suallest
ol = : LorR

n

Eﬁg@ Lol2, Su&ae@@iv& partinl swes
@gvmgto%¢@ serise (1.28) at
gp & '1!{5%
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BETERCIDES

9&&%@@%&&%@%%ﬁﬁ%%%&ﬁ&%%ﬁmaFMﬁﬁWm%“
ie approximate solution of the algebraic equation - -
2

&
&
£ = L - gX

by (&) first neglesting the term gxe, then itevating on thak Lirat
approxization %o find & second approximation, and repeating %o find

& Bhird s a fourth: (b) uesuming a pover-series expanslen in €

for 1, Bubstitubing, expandisg, squating like powers, and solviug
torm by berm for the first four terms. Contrant these two proced-
wren, snd the reaulte they give, from the points of vwiew of &impli-
eldy, accuracy, ete. Do you thinmk your resulte converge for any
valuse of €% If 80, could you determine (or guess) what valusa?
What neppensd %o the other solution of ihe guadratic equation?

How can o sorvesponding approximetion for it be found?

1.2, The yelative orders of swall guantitiss, The small paramster
or coordinnte € Jn o parturbation solution typleally appears in
the Torme listed belew. It is essential to know how these rank -
with rvespeet to one another for sufficlently small &. Arrvange -
thenm im increasing order (from left %o vight) for & - 0 {ecges

g & g 21).

(, « l . -m*’ i o . 1 |
m.@gg%n Tog 176 ° cs'%} @ ?/&’9 B, ‘é:ﬁp, Eo Log? 3’-,,@@@1@@3«:) °

1,%. Perturbation solution of an integral @Quatiﬂne. In a study of

hoat transtor in & boundary leyer, Lighthill encountered the integ-
el equation :

N . | - s 3 ) d
EE%X}@4 = vk % : c?.gg) § ,
’ - 2= (x¥2 . g2y

PO = L .

e solved this approximetely Por smell = by substituting the
assuned expansion F(X) = 1 = ayx + agx? « azxd + ... Carry oub
this auslysis far enough ko show that a) = 1.46). (The definite
integrals reguired ave Bete funcitions; see, Tor example, Duwight's
olabies of Integrals snd Other Mathematlceal Date,” ov Abramowlits
& Stegun's "Hendbook of Mathematical Functimnsswg

P.4. Reversion of serlies with logaritheic teyms. A standard resull
{e.8., Duight's Tehlee, eg. 50} 1s that the power series '

- oy x
¥ o= ax 4+ brs 4 g %idxé P oee
con be reverted to £ind » 88 8 pover seriss in ¥3

i - B
z %"é’yu« ngy @-MW.mwyﬁ RS

s o R ©
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Pind bhree '%z@mssﬁ in m@ @m&wmm@ voveraion of the %rﬁ,@

2 2. -

¥ o= 8% DR Ingw +ex L @zﬁ};ﬁm 4 £ logx «swﬁi‘ﬁz’“ ¥+ sns

1.5. Anyupbotic werdes fLop m%ﬁ@m&&fm integral. The exzpopenbisl
fntegral, ' €0 «g, .
Byle) = ), % at (lavg 8] < =),

s *é;}izg gvpansion for izﬁ,ﬁg@ % (@cBus Lbromovite & Btegum, @sg@ ’
{gwﬁz@%’«l ¢
‘ . Jode®
;&L'is:pf\f‘zﬁ ‘f%ghﬂ“’ il A&“é“mézé“"w” ’:‘z’ﬂ”aoe}

a

%mw the Tivet tue %@E‘Kﬁ by integrating by pewds. %;ma&@ &@%1

the generel term by a@w@@mme Then show, uwning one of the @"ﬁ@m&m
arh tomts, that the m@imm of convergence m 29r%. By considering

% = %, for vhich =e®Bi{s) = 0.7862%, demonstrate that s point is
renchsd beyond which additionsl tewms increase the errow @esfo Pige

:‘9.. iupd»/



2ot Buscessive epuroximations

in physiceld problsus we ays uvsually soncerned with solving ordin-
ary or partisl diffevential eguations (cecaslienslly integral, integro-
diffeventiel, or diffsrence ogquations), subject to appropriste eugw
Llisry (deldial, boundary, radletion, ...) comditions., We LUPPOBES
that the fll problem is intractidle, bub ket we discover a Idimi G ing
procedure © -~p ¢ for some pevameter or coordinmate & 4n ¢he problem
that pronises to provide a useful epprorimation. That is the cnae
if we ocam solve the basie problom for ¢ =0, aad if ¢ is seslil
in xealintic applications. :

_,  There are then twe &@ﬁ%ematic provedurss for caleﬁlatimg &ﬁﬁeeaaw,?
ive approximetions. / (Both were illustrated by the simple mothomBte
ieal model of Breroise 1.1): '

(i}rxﬁeré%i@n on the basic approximetion |
(1) Substitution of en essumed expansion |

- Ite

- Iberation hes the advantege that thers is o peed to guess the ssymp-'
totic seq rated sutomatically inclu LOY 9XBMDLE ,

AL T8

4 T8 \'; it A WL IO o 3 L).4,
ithmag 1L thay ara pregent. 4 single iteration step

30348 & Clneser of closely spaced terms, such sw ¢*logie,

e%loge, and &,

 On the other nand, series expansion is more systematic in & non-
linear problen because it produces only significant results. By 9
eontrast, iteration yields one correct pew term (or cluster) at

each step, LosE r wiyh higher-order terme ThHat ere not yet
and anﬁ%& therofore ¥e dlsregarded. AS & conssqusnce oOF

. :h@éé“?@if
tive sdvantages, lteration 18 ofien simpler when only & fow terms
are reguired, bul series oxpansion is wevally better for high-order
approximations like the exammples in section 1.4,

i ure  will break down
4 pgulnar-pariurbation problem. Then one needs the bors elebor-
@te techniques dimcussed in chapters 4 through 7. Howewvsr, we shall
s8es that in a realistic physical problem ons can seldom dscide in
advance whether & perturbation is regular or singular. Conseguently
it is wsuelly most efficient to hope for the best: %o suppose that
the perturbetion is reguier, and proceed with a straightforwayd 5
approximation until some symptom of nonunifornity is encountersd. .
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2.2, The basia of e psrturtmilon solution

$he point of é@parture for any @@rturhatien ezpansion i® & kaown
- exact solution, corresponding 0 e = 0. It may have one of thres -
auccassively morse @@mpii@ate& Porms? :

, 1. & trivial solutio@m ‘Fhe null condition - quiaacem& fiudd,

- an unstressed slastic medium, ote. — i8 slways & solution of any
 governing equatiocns. So is e unifors stats, such es a uniform
prrallel stream, & ficld of uniform tension, ete. We shall coumt .
ook & trivial basic solution as the ®zercth epproximation,” ressrvs

; %gg the term “firet approximation® for the laading departure frem

. 2o éhﬁlﬁﬁgaﬁfﬁfy aﬂ'ﬁicms & @oluﬁian in terms of @1am@ntary or
- kmown functions is often found in a linsar problem by separating
\wariables in orthogomal coordinstes, and cccasionally in e nonlivesy
prablen by seeking selfeseimilarity. An exempls is the ﬁiup@@ Bolw-
tlom Lor potentisl flovw pent & clircls that uwnderlies the Jansen-
Bayleigh szpension (1.5). We regerd such 2 basis soluitlon as non-
Srivial, snd adcordingly calld it the “firet approxiuation.

oy

. numerieal solution. In nonlinear problems, elfuaimilar :
' aoﬂmﬁi@ns usually invoive numerical integration of ordinary differ
ential equations. 'in exemnple is ths Prandtl-Blasius sclution for
the boumdery layer on & sepi-infinite flat plmte, which ls the basis
of both Howarth's serdes (1.9) apd Imel’s seriss (1.11). It muet be
afuithed, u@wa@@rg shat the incrassing availability of high-spsed
ecompuders 3o tending %o erede the distinction between closed-form
solutlicon in berms of, say, the error function in Ketegiri's sevies
(1.30) and numerisal sclutions invelving, say, the Prandil-Blssive
fumetion £f efg ) .

¥ne basic solutdon is linear or nonlinsar according as the
@@V@rming gquations arﬁ. E@wvvargvi% ia the asaenﬁa.of a,m%rturﬁam
tﬁ,@m sch@mes ‘th&‘% al ‘..‘ subsaquent approxIGat] Zafs fOVeTH-

'rugi@ mmguﬁgam ip km@w& in elw@@ﬁ ?Qrms one m@y h@p@ *t;t higher -
approximations will be Yoo bub 4f 1t is known @niv nunerically,
higher terms will secessarily 2180 requirea numerisal integration.
{In practice, one rocomputes the basic solution, r&%h@r‘%L&n ey ]
proviously tabulated valuves, at the same time th&t the perturbation
is being caleulased. )

29%. Baple solutions for M@?ﬁi@@n Poissuille fl@w@ or soep Tilm

Py introduce the sechniques af n@r%urh&ti@ng we consider & simple
problen and pordurd it in & vevdety of ways, VWe choose a clessiesl
sathemstical problem that hes familiar interpretations inm silasticliy,

vigsoous fluid fiovw, and other branches of sontinuum m&@h&ﬂiggp 88
well as an analogy in the deflection of o menbrane. This is the
pimple Polsson eguation for & finite reglon in the plane, with ¢
gonstant forcing ters, which can be normslized o wnity, t@g@ﬁh@w
with venishing baurdaty valuves:
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wel, @ =0 ona closed curve. (2.1}
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Soap-film anslogy. He recall first the goap-film or membrane

anatosy vov Ghis problem (Fig. 2.1). In expioring the phenomenon

03 muriace tension in 180%, laplace -

detuced that acroes a surfscs with

- tension ¢ the pressure Juaps P e L
ﬁ?’w

from the convax to the coneave e
~ ¥ i : Aty Ny
side by an saount T ’
. mn;ﬂ[ﬂﬂ"“,’.ﬁ‘ AP
£ mjlgg.. & .mzz,,j s ﬁi}é""m . M }
Ap = .Gj Qﬁ% » Rg ° (2@23 o S

Hers Hy asndl By are the principal ‘“i) m; v,
redll of cwrvaihurs. If the surface - GJ @'th%f ?%? ééww
g = B{x,v} has swall slope (ef, . O T R N e

Broveise Qolgﬁ the mean cuyvature
(L/Rq + 1/R2)  is appromimutely
m(@ﬁé/éxa + 8@/ oyd). {(The minuz
sign corvesponds to the fact that
if the deflection is upward the
pentere of curvature lie below.) Hencs if a scap f£ilm or menbrans
spene & hole of cross-section ¢ in a flat plate and is subjeet to
a alight pressuce difference, ite deflection is described by

VIR R 4 4 a2 o = ¢ ] e . ’ %
g{g. gyy} Ao #=0 on C §2033
Because the surface tension € wmay be assumed constant a9 well as

Ap, we can chooss units such that Ap/¢ iz norwalized %o wilty
and @0 obisin {2.1). : .

Pig. 2.1, Deflection of liguid
f£ilm undey prassure differsnce

Torsion of cylivder. If a long cylindrical shaft ls subjected to
aguplas at either end (Fig. 2.2), the details of their application
décay exponentlially ' ¥ 2

avway from the ends, @ -

acoording 4o AT doxnge

. T i - NN &'F‘ f &
s Weomant o v @dﬁ? b : e’ LTS .f" I
St.~Venant'a “!' e NS L A
! Vit IR

s,

principle {Fung s i
1965, 300309},

?igo‘EQQQ. Torsion of léng cylindey

Phese detalie are negligible beyond a “boundary layer™ that extends
enly @ disbtance from the ends of the order of the maximum width of
$he crosa-section. The problem of livear elasticity away from The
ands wan solved by St.-Tenant la 1855 , who verified his aesunption
that wiolle cross-sections votave as for a civeular section they arve
warped in the azinl dirvection. The warping function satisfies
Laplace’s equation; but Prandil . showsd that it is easier Go work
with the reiated stress function @ (Timoshenko & Goodler 1951, p.




>

265). %Ko squmbions of equilibries ere astisfied with the sheer
wirospes given by ' | ‘

&
=

Sy , q‘;m. o ) @g I
Uy ™ é?-;@. ©ys w?&% s {2.4)

The abseasy of strossss on the surface implies thad #  is seustent
{Bay serc Por o sisply-scunscted crosa-section); & g im found

to sabtisly the differential equation , : '
{5?&(@%@@%, wm @G é&@ﬁ}

Hora & 4o the woduive of elasticlty in shesr snd € the anglo of
twiet per wndt leogth. LAxain we ohn choose wnlés soe that the problem
is normalized do (2.1} : '

Pojesuille Flow. I viseous liguld is forced throuwgh & lemg =
oylindricel tuks (Fig. 2.3), the detells ef the entry end oxit coune
dlvicns again .
(oY eXPONeTe : ¥
tiplldy. The ' . ; %
length of the bz

ordit bowndary Y “’agggﬁw AT PRGBS Tt
3&3@? i@ Q@:&Q}? 4%&@%3? @gg%‘;’? pgg{iz;@o‘:‘f 512., Ben w0 om wm w m ydgx:s;, kﬁwﬁ o g 5
& Fouw ochsnnsl RN R e “"i’z,‘% ) ’

%ﬁ(&ﬁm 9 28 in ) , . ’
the Sorsion Plg. 2.%. Viscous flow through long
@@M@@m bub aylindrical cheanneld

why entry A .

boundayry layer , ) _
45 longer by 8 faobor of ths Neynolds number (Ven Dyke 1970b).

Blsewhers the velecity has only sn axial component, so shat cow-
Shouity is satimfied, and the pressure gratiend iz & negative conatunst.,
Fhe Pavior-Stokse sgquations therefors reduce %o a sisple requirsment
on axial noventiams :

2 2
iy , B dpfas

8w .

whore A is the viscosity. The no-slip condition vequires that
b &g@ ei;:'m the beundery, o that sgain the problenm can ke nornalised
B (2.1}, :

Sasie pelutions. In the avleymmetric ceme, the solutisn of theae
problens glves the parabdolic distribution A

ﬁg & 7({‘5 él ‘”‘*’ﬁ@"‘?} @ ) ng?g



gy
Fox e Bhin pectesgelar sechion,
mares olear that the deflection

bovadery layers near the
onde thal sgain oxtend
omly & distance of the
order of the thiskeess.
Tizewhore the solution
in again peoraboliscs

mM
18

, ' g
: é # 5
# o dla-a®) o (2.8) o
'&ﬁﬁﬁmﬁ

Simple elossd-forn
soluntions in termp
of  alownenbary
Tumetions are aleo
rmown for the egqul-
leseral triangls

{2imosheniko & Goodler 1951, p. 2663, the ellipse

SUemRE T

Plg. 2.4, Deflection of soap Liln
over thin rectongular alig

the soap~-film ewalogy (Pig. 2.4)
is nearly cylindrical except im

B ¥

\%ﬂ ’jbﬁnummﬂ@;“?a&? Wﬂ%&w

- 1G4
X

“:}és@’

o

o
- 'mm;g?sw x
praid b}

2% 1)“
.

.

ERreudy

s wnd other ashupes

wonpected with the elrele end eliipse (lowe 1927, sec. 222).

physioel iaterpretetions we heve Giscussed).

A0i1A%Y 18 o0 mp. 1t 1
problen of torsien (which of course has its. counterparts

Porturbation of ﬁ@v@rﬂing:@@u&%i@n&s'%@wﬂi@m ef seplotroplie priom

in & very simple
in the othep

Yove (1927, man. 226) enalyzes the btoraien of an *asolotropio

Pring® me g
plene of symetry of structure. 24 wood red
or & natural cryotel bas this elsstic struce-
Swee (Plg. 2.5). love works with 3t.-Venans's
warping fuwaetion, ot we converd %6 Prandél's
stress function {(2.4) in oxder %e sxploit our
previows resunlds.

It i3 ressoneble to duppose that the
enisotropy 1s sonll, represented by 8 pare
turbation peremeter ¢. Phen adapting love's
equations, we find that ¢ flrst order im e

the problem for & circular shalft is

(Lmed, 0,

ﬁ} w0 ag x:’ftaty@m 4o

(é”f«;@ﬁ%)
{2,9%)

b2 m:}n 3‘4'

For € = 0 we bave the besic
solution for an isotropic sheft {(2.7):

Qﬁ&ﬁ, ol g{?&«vﬁg ”3’?? o 'ﬁ:’gel@:ﬂ |

non-inotroplic cylindsr - when the cross-sectice is o

y

Plg. 2.5%. Cireulap
ghaft of non~igpe
trople meterisl

rhation’
@""" !

1



e way pov eitber iterate ev agsuns an expansicn LTor small e. The
firek cholow REV aimpler, and gives as the problem for the seconsd
ayproxivation” - :

i3

551%;5% % %gxw R O @@N m «(l4de) 9.
. . ,“ - ? ‘ ' Q@«;ME
foyy = 4 8% E”«%ﬁg @m i _ _ '
E@m@@'im this eiwple problem the sscond approximetion $s & mnldiple
of the Lirebs 4 2 o
fry = $2+de)-(d-x2~y?) | (2.12)
an » mabler of fact, this feature 1o obvicusly wepeated in highey |

approximetions. This suggests that the szmet solution 16 & wulitipls
of the fivet approximation, and 4% 43 then eseily fownd to be

@,

:ﬁﬁ
Ifg HR  OESSCmoCTSENNET - ‘g oz i . g @ :& E
R gt 5 (=% : ~ 2.3

'@h@g the psrturbation solution is not nesessary, though without it
one might hot ave anbticipated the rether paradoxical resulis thal
the stress field is ariaymmetric elthough the problem appsars not to
boo -

in its fluid-mschanisal interprotetiom, the basie axisymetric
solution (2.7) was perturbed by Desm (2927) 2o calcoulats the flow in
& slightly curved pipe. BSimllarly, 3% bas been used %o Tind the
affecte of the rotation of the earth on the flow in & straight pipse.

e

Bs5s. Ferturbation of boundery: slightly neoncircular section

How suppose that the perturbation appears in the initisl or bound~
ary conditions. If only the nature of the cendition is veried, the -
- atraightforward procedure just described remains applicable. Howsver,
- gomplications arise when the position of the boundary waries. This.
43 the situation for free bounderies, whose location depend on the
solution, and also for geometxyy the departs slightly from the basic

. -sheps. It is then nacessary %o transfer the boundary condition.

We illustrate this manipulation for & nearly civeular section in
torsion (or with leminar flow, or o soap film). Any shape can be
desoribed by a Pourier series, snd to firet ovder in the deviaiion
ench component csu be breated sepaxately. We therefors consider only
the fanily of shepss .

' . o= 1L+ eecosib {2.34)

? Having waed Avadic subscripts Tor successive toyms in o psriurba-
tion serieg, we introduce Rowsn-numersl subseripis %o distinguish
the corresponding successive partisl sums. Thus, for exaupls, the
firat two spprovimations in eome problewm might be

 fples ) = fylxd, 0 Zyylms g} @ £(x) ¢ e fh(x)



g

Peds dacindes ﬁrm; ww@:ﬁ:mzﬁ%m Bo %m ellipee for N = 2 aud the
eguilstesal triemgle for H =% {E‘&@.o 2:6). : '

In polar cogrdinntes the problem
for § m &) is

B Fop
gﬁﬁ}‘m i m"bzu:m «w%:%, ;.E; - l 3

. £2.13)
zﬁ%iﬁ.w cosli, B = 0.

Vo now sesume a sories ia povers
0f ¢ sterting vith the basie
w%@y@zf@%&m ¢ solution {2.7):

@ @2 @2’ S'd @@gg $ wow
o L") +efalr.8) + 2o,

{2.06)
, ¥ig., 2.6, Parndly of simple
Hewever we connot novw alwply @Mms& slose %o '@M@l@
substitute ivnte the il problem
and oguate like powsrs of @.
The 4iffionity ls that ¢ appsars impj ieitly dn the argument of eash
@y, in the boundery conditicn. 1% must bo exhibited explicitly by

sransferring the boundary condition from the parturbed to the mm@.
BOunaRry

Dften, a8 ia this cass, the transfer ocan be effected hy expansim
in Teyloyr series (th@u?zx other expansions may be reguired in more
gomplicated sitvations Phns 45%1@ boundary condition becomes

glive coe K6, 6) = @1, 6) ¢ . coceske gér(lg 8) 0{e®)
m [#300,8) +eBy(31,8)] + 2 aoslO 6,(2,8) + ...
= efia(,0) - deeews] « 0fe?) = 0 (227

‘How we ars able to sgvate like PO of &, which yisids for @2
&ho problem &
é?zb @2@@

g‘ﬁgm o wwarkd g “"";;m“’ & @ 9 @2(:&)9@} 2 %@,@&&%}@ o {2@18}

m

 Fhe solution i reefily found by separation of variables, giving the
BrRcond approzination

§ = Hres®) + fe sosl® ¢ 0(cd)  (2.19)

Two simple chocks cax be applied %o this resvlt. Por K = §
the parturbed ehape is eimply & clrcle of wadiws leve {(Pig. 2,6}
The azieymametric Z"@l‘%ﬁi‘%ﬁ&@ﬂ for @ oircle of vadiuve a is H(e? = x'e‘*‘i)p
and mwmg B o= (l+e) and @xgwmdiﬁg reproduces (2.19). Por ¥ = 1
the parturbed shape i, %o 0{e), gm% the basic g §?°e.m ghifted $o
the mgm a distance €. The basie solution & therefore appliss
\g}ﬁx th }xm mmm@d btr $L 4 g2 w 2re s O, and this too reproduces
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Phe prooons of trensfer from the basis to the porturbed gondouy
by series segaacien de freguently repested afisr the solublon bas
bean found, in cealuating quentities om the bouwndswry. Phis tims the
trenpfer i3 not cusential, but 1% produces the aimplest form o the
veeult, freo of irvelsvant higher-cprder terms, o

The Liret spproximation in & perturbation solution is ¢fien adaw
gunte fopr all prasticel purposes; butb higher approzimations are
senetines needed for grepter scowracy or £or some special PUrpnHse.
An gxemple is the fact that here 2 second approximetion is wrequived
te show any chenge iu the integral of # over the eontouwr, whichk
gives the torsional rigidisy of ths shaft (or the rate of viscous
flow, er the voluny under the sosp film). The mext step in the
proeses of suecesglve approziveiions [ with care exercised %0 row
tain texms of 0{ef) in tromsfering the boundary condition’] gives

P @ ¥ . ‘3 czat Do .
B = $3-1%) + Jerd ecos ¥E ~ f‘f‘*&%&zﬁ‘ﬁ (14 128 gog 2HB) + ..o £2.20)
Thise setisfiss cur previous check for N = O [our eheck for ¥ = 1

heding inepplicable becouse (2.14) doee not descride a shiftsd cire
sle %o O{ed)]. ' -

2.6, Shifs of portuwrbation: strained coordinates

I% is clear from the last two sections that & problem with &
perburbed governing squation le somewhat pimpler then ome with &
perturbed boundary. | We nov show how the perturbation can be thiftsd
from the boundary conditions to the equation by slightly straining
the coordinates, ‘ R

Yo introfues this idea becauvse coordinates thet sre slighdly .
gtralned will play & central role in our ¢reatment of singular
perturbations in Chaptoxs % and 6. In simple cases the straining -
de mersly a linesr stretching: and that is all that is required inm .
the present regular-psrturbation problem.for 2 nearly circular
eonbour,. .

_ We conmidexr an sllipse of major end minor seml-gxes {1+¢) and
(3=l (Pig. 2.7). Then the Lorsion/Peiseuille-flow/sosp-Piln
problen is

g ¢ By = =3,

o o3 —
=0 onfgf=l e () =1, (2.20)

Py Pirvet ovder in ¢ ¢this is just
our previows wvroblem {(2.15) with
¥ o= i, B

Pig. 2.7. Slightily

It 19 eany to iatroduce now moncircular ellipse

alightliy atretobed coprdinstes
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Koghe, YTogh o wiws flag) - 8X1),  (2.22)

£
DN i

in teyss of which the bowmdsry i 8 true ecivele. OF @@ur@@'thﬁw

iz echieved at the ezpense of cemplicating the differential 8GNG~

%lon, whick becowes _ o , O
(1922 (B + Byg) = = (1622 + 2e gy = Gyy) 0 (2.23)

or in polay cooxdinates B,® 4n the siretched X-Y¥ plane,

. By Uy 4]
(:ﬁ;v@ }{@mg L R e &a } " am ﬁlm’&ﬁé}&‘ % 2@ &m o E. hed ‘&g }@@@ 2@

fre Hoy ~ ‘
,”,% 5w ) 00 26 (2.24)

Again we assums & wegulay-parturbation expension

Rom @23 & ‘E@? F oo . . (202§§
whers of course . E o
@, = ${(1-87) | (2.,26)
Then the problea for @ is found Yo be simply the hegogenesus one
, B2y Haeg - |
Bipp * 5~ L w0, H=0 &% R=1 o {2.27)

‘Q@mg@qn@nﬁly #s 18 zero. Then reverting to the originel wvne-
stratched @@@fﬁi&m@@@ gives ‘

B = @ +0{e?) = $Hi-22-3¥%) + 0(c?)
m H{i-22) + deonw28 4 ... (2.28)

sl this agress with $he resuwls of the preceding section.

2.7 Thin cross-sections

Yo now supposs that our esction, instesd of being neariy cirgu~
e, is very thin. %This will permit ue ‘o exploit our sscomd basio
solutlon (2.8). Por simpliclty we

buke the section to be aymmetric - koY’ AY  yuef(x)
(Pig. 2.8). Then 1% pay be des= . o™ i
- eribed by L e =
. o e oy dusehow
gy = Zerlx) (2.29) o harwon sl

Pig. 2.8. Thin symwetrical section
where £ im & smooth Pfunetion :
of ovdar uwnity.

L% is cleay from the seap-£iln enslogy {cf. Flg. 2.4) that for
emall thisluess g +the deflsction ¢ will ®%ill change rapidly



roes Bhe seotlon, bt relatively slovly along 1% {exceps pusslbly

aver o biund oud or discontinudty). Yhem ag & Firsk approxiration

wy Bay neglent Hre compared with @?yﬁ and the differsntial oqusw
%ﬁ@m;§2c1$ beocemes sloply S

B, = -1 R (2.30)

The general solution 46 @ = A ¢ By - 4v%5 but of course the depsnde
foos on  x  hes not diseppeared allogethey -- 1% remnins in the
bowndary condition -- go that the ®constants® ef integration A

and B mey depsnd wpom w. In fact, B venishes fop our BYERste
wie section, apd fhe condition thet @ venish at y = £e £(x)

Bivem & = e2 £2(x), Thus our firet epprovimation ie

g = ~§;§;ﬁf§€m§¢ - 32 . (2.31)

dhis 1o & loenl olindrienl or gussi-cvlindricel spproximasion.
e selution at any stetion aiong the section is that for an in-
Tinite rectonguler section having the losal thickness., Other famie
iiay exemples of this approximaiion #ra, in fluid mechanice, the
hy@raviiec approximation in chanvels and nozzles and strip theory
Tor wioge of high asvpost ratio and, in 90lid mechanics, simple beam
thoory for alowly warying cross ssebion.

~ The sscond approzimation is couveniently found by iteration.
it satislies the eguation . , '

~ .

. .‘22 .x@ - ®. | 4 :
gy b e By o b 2R ] (2052}

“his dv the sams problom ss befoye, with 1 replaced by 1
@y gty o, 2
$e? [4°(4]7 , wo the solution is

" o . .r R s Y. . ' ; ]
R T P Y T e e Ty ) (2.32)
This ws been arranged %o show that the sxpansion proceeds in
oven powsxs of ¢ {and of y/z). One might then prefer 4o procesd

o subseguent approzimations by substituting en assumed series.
In any esse the third approximstion is found to be

gy = b ef{n v 52 () > 3 ¥[8 02} & 2062) (17
’ ’ & W oy . B P =) # .
+ (12227 = Hah)™ (1% 0 y2/e?) ] (07 5216%) (2033

Bvidently %his procedure cen, in principle, be continved indefinitg-
1y. &% the expense only of & proliferstion of terns.

&8s Sraddetion of waiformity snd nonwniformisy

We have sdvocated (section 2.1) proceeding on the assunption’
that a psrturbation is regular until some acnunifornity ie encoun~
tered that proves it %o be singular. ‘The reason is thas it is P
actually imposeible to predict a singular perturbation. ¥e diseues
vhy this is a0, and hov one can insiead recognize nonuniformity in
She courss of solution. .



. -

' In the older literature one somatimes reads that o porturbetics
48 singuler if the small perturbation quantity multiplies ons of

‘ the bhigheat derivatives in the differential egquation. This eriter .
dom was inspired by Pramdtl's boumdary-layer theory, where the - o
highest derivetives in the Navier~Stokes equations are muléiplied
- by the small viscosity.  Howsver, it is relevant only to unbounded
-raglons (or those that grow indefinitely as ¢ - O, as in the =~
Clast mection). then it is pot foolprosf, becauss we can alwaye
- menipulate the boundary conditions. : :

Yo suppress the nonuniformity.
For exewple, o parabols iw a
viscoue stresn needs & boundary
layey %o adjust the ouler potenw
tlal Llow to the surface spsed
(Pig. 1.3). However, we could

. lmegine moving the surface (say
with meny swell rollevs, as
suggested in Flg. 2.9), and i
she leocal surface sposd were ads
Justed to.that of the potentisl
Tdow, no boundery layer would
@g:ﬁagﬁ% o . ’

. — , C Pig. 2.9. w flow past
In & whysical problen one Fig. 2.9, Viscoun Llow
might suppose that o singuler g@r&hg&& Wﬁthb@kiﬂ moving
pesriurbation could be predige e eliminade boundavy layer

ted on dimensicnsl grovnds.

Ho bave suggested (Hection 1.5) '

that nonuwnitormitics may avise if the perturbation quantity is the
zatlo of two characteristic lengthe in the problem. This helps te
ezplnin why slight devietions from a sircular boundary sroduced a
regular porturbetion (soction 2.4): the two characteristio lenghbhs
= the major end miner axes in the cuse of the ellipse - are b CEN N
agual, sc that e rvevresents their difference vather thin theiw
ratie, On the other bemd, im bowndary-layer theory the Reynolds
mgwber ie the wvatlo of two disparate lengihs, and our remsvks above
eshow that the perturbetion may be rogular op singular depending en
the detaile of the boumdary conditions.

Tous there is 0o p@ﬁitivw'%@@% for nonuniformity. Howevewr, it
- oppesrs that this dimensionsl reasoning does provide instead & pose .
itive tset for the abaence of eay nonuniformitys

-4 perturbetien solution of o physical problem will bs

- uniformly valid in the space and time coordinates if (2.34)
the perturbetion quantity is not a small parameter foooaEe
that can be interproted as the ratio of two lengths,

fur previcus exzawplos all conform to this rule, though in one
saes the intevpretation may appear & blit forved., Thus in the Jan-
son-Rayleigh expansion {1.5) the perturbation onentity is the Mach
namber, or ite sguevre; snd this i3 the retio of two spseds, oy of
twe emerglies, but canmet poseibly be regarded ag the ratio ol twe
lengths, s8¢ the perturbation must be regular.  On ths other hend,



Repnolds mesbor 18 oonedtimes interpretod ao the mudie of o goonebris
o @ viseous length (as well as the ratlo of twe forces), mo the
Riow prst a sphers at’ low Reynolds number couwld be o elngular PE
Swebation; this happens for the Nevier-9tokes eguotione %1@34} bug
Bot for the Oscsen Llinsarissticn {(1.7).

oA

fhe thiokness ratlio of a slender rod i nothing else than the
ratin of two lengtbs; end it leads o & singular perturbation for
e oapeeitance (l.15). The elastic deformation of a prossurized
thin toroldal shell {(2.13) is also a elngular perturbations bub 1%
s not lwmediately obvious that the dimensionless pressure is the
zatle of two lengbhs. However, it 45 taken as ¢ = pa/fh, whisre
p 18 the pressure, & the ivtermal radivs of the terold, % ¢he
moflulue of elasticlty, end b the thickaess of the shell, Hence
¢ can be interpreted ag the ratic of ths charecteristic length
/B o the thicknsse (me well as the xstic of two stresses o

- Our rule (2.34) implies that & coordinate perturbation is always
rogular. The reason ia that if x/L is the perturbation quantity,
for exemple, theve is no alternative choice of dimensionless ecoorie
imate {corresponding %o =/ im o parameter perturbation). Thus
Bovarths expammion (1.9) for the boundary layer in a rstarded Plow
iz nevessarily regular (though of course the boundary layer itself
ie part of o singuiar perturbation for leorge Reynolds mumber).

. & 1 .

" s % Symptons of aopuniformity: sing

IZ our perturbation quantity is a suall parameter formed as the
ratio of two characteristic lemgths, we should be on the lookoud
- for nonuniformities. A nomumiformity will manifest itsel? im the
dolution throvgh singularities within the reglon of epace and time ,
that is of physical significancs.” Phe resscn 19 thel a abraighte
Yorvard perturbution expaneion has besn constructed on the AESURD-
tion that such term io of smeller ovder than ite predecsssors and
this cam full o be se only nesr & singularity.
* We shall therefore, in case of doubd, examins the ratios of
puecessive torms in any supposed regular-perturbation solution.
if they fall %o vewain small, the perturbation is asingular; and we
may, discern the locaticn, sise, and shape of the region of nonwale
formity. -

Mo recopaidsyr from this point of view our apvrozimation (Seebtien
2.6) for the torsion of a thin ehafé. The periurbstion prrevsier
e 4is cleariy the ratlo of two cheracteristic lengths, so the solwe
blen (2.33) may be singular. Por simplicity, we exemine the fomily
of pover-low shapos {(Pig. 2.40) described by .

g = ez} = g{i~ #23®, S18x<€l, w20, [2:.3%)

4 . ) 5
A singularity outeide the £i9ld 1§ of no comcern. For exswpls,
svery aralybtic function exespt & constant hag & singlarity
somswhoers in the complex plans.
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Thie is swmall, of @(@2) a8 ‘ .
oy fv..; o wn = 13 « I i 2 2 ) s
sesumed, throughout the region pig“m;g%g%pggggeégﬁgéy -
of physical significence if azéﬁzéméa HUWET il
Mo L o«= thmd iey LFf the svds 7he AR

gxe at least as sharp as &
wedge. If thesy ave blunter, this ratic grows without bouads neay
the onds. The perturbation i then singular, and we sees that the

region of m@nunif@rm%g; extends from elther end of the section &
o ¢ and L
distanse of order gof \dem) )

& eurlious exception arises for the ellipse. Adlthough ths ratio
is singelar for nelghboring power-law ghapes on elther side, 1t
venishes for m < 4 thaoks to the multiplicative fmeotor (2m-1),
This suggeats that the perturbation is regular for the ellipus,
and this is confirmed by the fact that the exmet solution is just
{1+e?)~? times our first approzimation. On the other hand, the
Tector m wakes the ratio vanish also for the rechtangle; bul the
soap-£iln analogy of Fig. 2.4 suggests that the perturbetion is

nevertheless singular. The sxplanation is thet the bluniness is
80 great that we have missed 4%; the rectangle is not actually
descrived by (2,3%) with m = 0 (which gives an open-ended sbrip)
but by H{l-=x?), where H is the Heaviside step Pfunction, and
the ratio is consequently very singular indeed at the enda.,

& singaiarity that is the symptom of nonundformity is compounded
in higher approxivations, as for the model function

£ g? g3
b o 4 =
[P [23 .?L e .@, g o R > ° ( :') ‘
*éE X 2{:2 ﬁj ao Yoo 37)

Othexwise 1% would represent & true singularity of the solution,
Thus the vatio of the third te the second torm in (2.33) again
bebaves like (2.36): and this styucture will continue indefindtely.

i In problems of indefinite = sis4404

spatial or temporal extent, gi

the nonuniformity -- and . e Jossl ’
~ hence the singularities w- | “ QEi fmv&y(ﬁ} %ﬁ
- may arise at infinity. A ST e

- particunlar case, which we o

shall sxamine inm Chapber &5,

.is that of so-called secular

terms. A simple exemple is _
8 linear oscillator with - Filg. 2.4). Motion of siightly
alight demping (Fig. 2.11). damped lineaxr oscillator.
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HE dlsturbad, 4% will obviously oseillate with slowly decaying amplie
“bude.  However, & straighiforward perturbation solution hus the form

¥{t) = st - zbaind &n,"zgﬁnéﬁ;g&l} aint - %»%;cmtjﬁ + ane  {2.38)

. The bevms in teing, ?ﬁ>$$nug she. are called ssculer (from Ladin
seeculups 4 long period of time). They are clear ear evidence that this

‘approxisation is not uniformly valid for large time, breaking d@un
vhen € 18 0(1/e).

3£;1Uﬁﬂmﬁi&fiab1e boundary conditions: the %tek@g<§araﬁ@3

L A singularity in the straighiforward solution is the uau&l symp%&m
‘of nonuniformity. Sometimes, howaver, the symptom is inability to
‘ealculate the next approximetion (which mey be the first ome)s The:
difficulty way be, for example, the appserance of integrals that are
divergent and uninterpretable.

 Another common difficulsy is the inability to satisfy all th@ bound-
ary condlitions. A familiar example is the inabllity to satiafy the
no-glip condition for fluid motlon pust & body when the viscosity is

#0 amall that it is neglected. This difficulty was resolved by
Prandtl's boundarxy-layer theorys snd we sball see that in a nuwbeyr of
other examples the dilficulty has also &ucuum@@d recently 4o ﬁr@atmﬁn%
g8 a singular mmr?uﬁbatiano ,

This feilvre.of & gbraightforward eapprozimation %o a&ti&ﬁy all the
‘boundary conditions fe sometinmes berned a E@g&dgxa Ve mention four
paradozxes of this kind: .

1. The ﬁ%oke@ gggﬁd@xs Ne ﬁ@lu&imn ean be found of the approximate
eouations ot slow viscous mobion foxr a &ylinder norwal o a
uniform stream.

2. The Hbit@h&&@zgﬁf&daﬁa Ho second approximation can be found
For slow viscous tiow pant a finite three-dimensional body
{e.z., = aphere) in a uniforw strean.

%.. The Herts varadon. Ne solubion with
finite @ispla eent can be found for
the elastic contact of infimite cylin~
ders (Fig. 2.128).

&. The surf-board paradox. No solution
with finite displacement of the free
gurface can be found for two-dimen—
gional motion of & plate planing on
tha gurface of deep water ot such high

speed thet gravity is negligible {?lgo o ffﬁ?%wﬁ
?al?b)w A A R }tlk};’
e show the ﬁiffiaulty in detail for the . (b)
Btokes paradox, which is typical of all,
considering only the circular eylindex. Fjgo 2 12, %The paradoxes
It is convenlent to satisfy the continuity of a} Hertz for elastic
equation by working with the stream funciion contact, {b) the surf-

board.
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b, whoge derivetives give the velcolsy compunents in partesian coord-
inates asucording o

u = by, v om e g, (2.39)

Thon eliminating the pressure from the Navier-Stokes equaticng by oross-
differentiation leaves a single nonlineay fourth-order partial diffep
entiel sguation , S :
; 2 R
c@ma o f c@am 3 e y i
(0, =t g5)V e = 2V 0. (2.40)
This expresses a balance of inertial forees on the left and viscous-

forews on the right. (It ie amomebimes called the "vorticlty eguation,®
because - § 9 is the vorbicity im pleme flow.)
Por high viecosity or low spseds ~- that is, at low Reynolds nushomr o
this ie simplified ze was Tirst dome by Stokes (18351}, who smiye
ﬁiaa_th@ motion is suppesed smell, on which account 1t
will be allowable o neglect the terms which involve
the squarve of the velocity.”

Thus we obbain the linesr bihermonic eguation:
' %
V‘b = Q.

T the polar coordinates appropriate
o a cirele this becomes

a? . N2, .
{’ -'de + L 8. + “‘;"ﬁx;' mgﬂﬁ} o= O {(2.4%%)
Lope T odr 3@ ,

" and i the variables are mafe dimensionless
(Fie..2.13) by referring lengthe to the

redivs a  of the circle and velocities o Pig. 2.1%. Viscows
tha: free-stremn speed U (o that ¢ is flow pagt eircle
preferred to Ua), the boundary conditlions
beEeome '
gurtace: G = fyp = 0 at ¥ w1 (2.42a)
Jupstreams dey =mwoaln@ aB P -~ O (2.420}

Following Stokes, we may assums that, as suggested by the only nome
bomogeneous element in the problem, & = gin®. Plr). This gives the
erdinary differential eguation '

':“ et " « ;2 L
é“f‘““’“ v de o ;2} Plr) = 0O (2.43)

This is en soguidimensionsl eguation, so we try Flr) = ©™; and sub-
stitubing yields the indicinl equation

| (meh) (=2} (m=3) = 0 (2.44)
The repeated root lndicates the need for a l@g&ri@hmﬁ, 8o that

T gnis foob 48 known to every graduste student nowadays; but Stokes

ned o multiply the last term in the operator in (2.43) by (14 §)®

&

aad finally let S tend to zaro,
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{Wo uze “log” always to denote the natural logarithm.) 8Stokes new
smpetes the upstresm condition, avd then observes thald he has ovnly

the constant A left %o satisfy the two surface conditions. Ye prefexr
0 satisfy the surface conditiens instead, leaving

& w ﬁﬁgfa ) %m {48+ 2DYpv + Cr Iogmy © @E§EMﬂ@' {2.48)

Byt now we cannot satisly the uvpatream conditlon. The beet we can do
18 to mske the singwlarity at infinity ae weak as poessible by setting
D o= O3 but the veloelty still grows logarithmiscally with » gather
Shen becoming waiform. )

This is the parvadox of Stokes. He conclvdes erroneously that no
sieady-atate flow exists, the clrele continmuvally eatveining fluid
without limit. However, he does add, without further comment, thab
it may not be safe in sueh ap extreme case to neglect the terms
depending on the sguare of the velocity, not that they bscong wausuvale
ly largs in themselves, but enly unusually large compared with the
termy retainegd.® ’

That iz, the approximation sdopied cannot pass an g posteriorl oone
" mistency test., Using our solution (2.46) with D = O to evaluate the
ratlo of a typical neglected term to one that was retained glives

_ VG 4 a3, '
neglegted | B-p 9nVTé
potained T

ﬁp - mﬁﬂgyk%fcn%?'%%%%m@(aﬁ?)
L L :
e

This 48 small Like X, bul et wiforamly for large radius x. The
neglected teris ave as lurge as thoss retained when » = oL1/R).
Phe situvation 18 oxactly the seme in Whitehead's pavadox for the sphewss
bt the difficulty is delsyed to the sacoend approzimation becauss ths
Llow L8 genblex. '

. Bvidently the solution can be cospleted only hy somehow taking into

- gocount the nonlinesr inertia terms. Oseen (1910) 4id this approximate-
1y by livsarising about the wiforn streaw rather than a guiescent
agtate. This changes the periurbaticon from a singular to & regular ons,
@0 that the Piret epprozimation can be completed for the cirele (Tamb
1931}, and higher approximations for both the civcle and sphere found,
presumably in principle o any order (Illingworth 1960). However, ¢the
analyels is wnesessarily complicated beceause the ipertial terms arvre
representsd even close to the body, where they are negligible.

& simpler and wore systemetic procedura is to consider the inertial
berms only far from the body, whers they arve important. IThis means
‘eonstructing another approximation to supplement that of Stokes. It
“will fail near the body, just as Stokes's fails far away; but together

they describe the emiire field. Moresover, they possess an gverlap /
~domain of common validity. They can therefore be matched to determine
%he constants of integration remeining in each. Finally, elements of
@a@hacaa be combined to single gomposite approximation that is uwniformly
yalid. ‘ .
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9 13 an oubiine of the pathed of melched asympiotic enpans 08,
n we divcuse in chapiter 4. It was systematieslly developed by '

Baplom (1957) and Provdwsn & Peaveon (1957), who independently mpplied
4% %o resolve the paradoxes of 3tokes and dhitehead end then calculate
he nert appreximation. That technique heas wore recently besn applied
alae to ressolve the paradoxes of Hewtz (JSchwusrtz & Harper 1971) and of
the surfboard {(Riepin 1967). o
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BEEROIDES

2ok, Socond svororimation for defles tlon of nesbrans. Small defloc-
Hlous ﬁixay) of & Boap 1ilw oF othepr homogeneous membrens uwnder o
prepunre difleranse p  ave governed by the Polssen equetion (2.3},
However, 1P the slope of the membrane is net soall, this linearized
sountiion must be replaced by the trus sonlivesr one {(2.2). In Cartes
ian eoordinetes this has the ratier complicated form

# ‘ I Y 2 # . S
o Sty 2 (o boDer - Sty
o araReg ,
andl 0 eylindrical poley ecordinaites with axiel symestry
; a B : ¥ d
(A €1ve'§§.@f3_%g w e {14 %&)"/": P

=P

. Congider the case of & mesbrane spenning & clrewlar hols of radius a
- in a ©lat plate. Solve the linearised eguation to show that the
deflsction is parsbolic in this spprozivation. Pind a second BPDProRe
imablon by fterating on the Pirsy. (Ezxpand the madical in Taylor
Beries, we the fivst approvimation to evalusite the nonlineap terng,
Tind » particulsr integrel by trial, add the general solution of the
homogoneous Linear squation, snd impose the boundary conditions, )
that is the diwensionless perturbation gusntity? Can it be regarded
@8 the ratio of twe charascterismtie lengtha? I8 this & coordivste
parturbation or a peramster perturbeiion? What would be the form of
subsequent tores® Can you imegine calovlnting them by hand, or with
an electronis computer?: Verily your second approximation by expanding
the exact solution, which obviously (a5 in & child’s bubble pips ) :
gives apherical defisciion. :
2320 Flow vast wavy wall. A simple problem that illustrates soms of
the fealures of walser waves mad of thin-ship theory is that of potene

Tisl Tlow past sn infiulte

sivoeoldald wall with a ‘ '“§ ¥

. o ’ = golex
antiefied by introducing & 8 ﬁmmw@vx (y> €
ohrens funetlon aceording b

veiform stream far from the
wall. If contiomuddy is

; 14 e ‘x‘fg‘? P
B0 Ww by, vwedy %the @W%WW@&@%%ﬁW mematn 3
dimensionless problen is »
]

W@g 4 &g‘“\m? = O, B = O on the wall
e b 2y  far from the wall

Fo asiution of this yroblem de kaven in closed form. Show that the
Pleat approvimstion Tor smal) ¢ is

] 2
§ v y o galax oV

gud caryy this %o the next approzimetion. Use your result %6 colenilw
whe the maximaw and minimws spesd in the field (which ccour on the



R

4 Web s’

% Sope and h%%%@mm wf the sinuseldal buaps), putting then
v Leantbgt,. The necsssity Loy transforrisg the surlose
sonddbion cen by avolded -~ gt the expense of complicating

boundery
the Q3T evential sowatien - by weing ccordineten that conferm $o
the purdsce. A sinple possibility 18 %o repisce the ovdinmate by
i%s valus sensured from the swfecs, introdueing the new independend
variablop : .

X=m =, T w ¥ -28l8%.

Gavey out the Tirst-arder aclubion on this busis, and show by compawie
gon with the previous result that 4% actually gives the saximvm sund

‘minimon apeed covrrdet o sscond oxdor.

- Be3. Syresses for %%&ﬁ%@%Kmﬁﬁﬁﬁéﬁﬁﬁéﬁggﬁﬁﬁﬁﬁﬁﬁ%é§§m$§§m£§;§ﬁéﬂ» A
dong elaptic eylinler of nsarly clvoewler croas-section, or a long

wearly cireniar hole in ¢ large block of elastic material is subjog-
Sad 4o & wpiform hydrositntic preossure p.
In this situntion of plane straiu the
thires non-zere atresg components can be
dlwven in terss of Alry's strese funetion
%» i polar eoordinstey the velatioms
are {(for evaunple, Timoshenko & Goodier
1951, p. 56} :

R P
w  _ p Hen o o a g
g!lp oy Gaeden a{f, aaalty w‘) e _»S‘t i) B3 cn SWERY - ewedn
o 2! 9 Urps & [

and ¢ satisfies the bibarmonic eguation
(2.41b). Consider the sylindey deserid-
e by ¥ = R{E) = Leconnlie, and cal-
gulats @ to order & by perturbing the
polutions # = «4prd for a civeuwlsr
ol o @ meadvloge for a cirevlar hole

of vedive a. {(Fote that the normal and tengential stresses on the

boundery differ from those on the hesic cirele bhecause the contour hes

7ot only shifted radially but eleo rovated slightly; and the latber iz

agecounted Copr using Mohy's circle or the formalaes on which 1% is haweds

@offo o Thimoshovke & Goodler 1951, p. 13.) Cheok your resulie by usiug
Whe foote that & =0  represents simply & slight evlargenent of the

g@?$@mrg and N = 1 corrvesponds, %o ovrder ¢, %o & sidevays transe
ahiom. : :

2ed)e Blane woves Traveldne throveh silowly chenging envirownsent.
Tarious problews in msohanics invelve the propagation of waves
theough & nedium that is changing 1%s propevriiss with distance, bul
soprociably only over meny wave lengths. Exewples are longltudival
glasntic wvaves in -2 bey of slowly verying diameter, aconstle waves
45 & troepet, snd scoumbis weves bravelling through aly of alowly
varying density. I» the approximation of plave waves, these are
all governsd by the hyperbolic sguation

. . . 73
b [phe E boun
&xgiﬁx ’ ?@gg w O




ey #

swid Hapgtlon of 2 (Bhe orevo-seothomal srea in the
aplow, apd the density dn the third) puch that the

: i the weve do proporticpel %o the produst wiP, Ye awrs
imtswesied in pericdic waves that 4m the case of constant P would
o destribsd (in divensionless variadles such that the wave spoad
in wndby) by o= oo (2«3} - say, for definitensss, the solution
for waves propegating only in the positive w-dirveciion with .

W et a8t 8w O, -

&3

Bhow that oven in the eimple cage P = 14+ ex the straighhforevard

Lapproach of assuning a8 regular pertuvbation Tor smell e leads to
ddiflenlitios at lovge distances in the second a proximation. Carpry.
the third spprozimation (involving terme in e2) ai loned far

anowght to show how the diffieulty is compovmded in higher BPPLOR>
& R 2 .
HRBEAGNS, . : . 5

dn approximation besed on tho idea that energy is conserved with -
dlatance is e wmy ‘ : '
woas SO{ot)

¥ (=)

Vaurdfy <hat in the cese P = L+ ex this ropresenis an improvennd,
in that the diffienlty 1o postponed from the second %o the third
apgroximetion. What doss thie suggest ebout the. role of sosles in

o

Shais probiew? Por whet P{x) 4is this approximation exact?

efaLhveks dn symnetric shenr Plew. Consider the Flow past & olvewiay

sylindsr of vnlt redivs symmetvically placed in & parallel stream of
Locompressible duviseld £luid baving the velocity distribution far upe
eErenn : o : , '

‘ w = gophfedyd), wvw O,

- ’ . ) N - waprensSgin
Fow sueh » rotational flow the atroam -
Doebion ¥  satiefies the egustion e
’ WMLH%%

AL - A . —
fhy ey ) . . wpecelitio

5@32, . P eshin ofs ] . .
o P x&“z /

whidoh expresuses the fact thet the vertleoity & is constent along eash
streanline Iv o plave inviseid flow, and hence & Pfunction only of the
alrean function ¢, Bvaluste the function (o) by caleulating both -
@ sad ¢ fer upstresn and eliminating the coordinntes hetween then.
Solve the repulting perdisl differeniisl sguation by perturbing the
clasaical golution O = (r-1fr)ein® for a unifeorm stresm. Thus
whow that & difficulty srises in the tevm of ovder s becauvne the
veloelty dleturbances grow rether than dying out for uwpstreaw,

2q8, Pog
SAFRDE xS

< s s R YA TR T TR R
long eylinder having the sross-section of Bg. {2.24) and Pig. 2.6 iz
pleeed serors s uniferm streem of incompressible inviseid Pluld.
Find an approximetion %o 0{g) for the atreem Tunction ¢, which is
& solution of Laplece'’s equation Shat vanishes on the surfane epnd
approsches & mlsiple of y  far upstresm. (For & civcle »0 radivg
% In & sieews of speed U, & = Uread/rlsin€.) Apply the Swe -
chocks dascribed at the bothtom of page 27.

exifed. Loy pont meerly cirevlsr oviinder. Suppose that a



Chaptar 3

S10Y VARIATIONS

There are no singular-perturbation problemsg
thers are only singular-perturbation scelutions.

we Po ho Lagerstrom

Bode Slow va, slight variations

" ¥s heve seen how a perturbation scheme will frequently, through ons
sypptem or another, reveal itself to be singular. If & uniformly

3

valid solution is required, means must be found for dealing with
those diffiouities. We will discues in the following three chapters

the three wain methods of tresting singular-perturbation problens in

nechanicy,

' ¥e shall see that each of these methods
manipulating the scales of space and time.

is based on the idea of
That is, a singuler pexr

turbation bscomes a regular perturbation undsr appropriate alteration

- of scales.

A8 8 simple imﬁr@du@tﬁ@n to these ldeas

wa first examine problems

“of glovw variations. This is an approximetion familiar im_evexy branch

of mechanieca, based on the observation
thet devices of practical wbility often
have a geometry that veries slowly in
one direction coupared with the others
{Fig. 3.1a). Slow variatione in time
algo fall into this category.

. These problems represent a transition
- between regular and singular perturba-
‘$ions. If they are atiacked with a
straightforward perturbaticn procedurse
- the result is found to be nonuniform.
- unless the variation is glight as well
‘@8 slow (Rig. 3.1b). However, a simple
- linear contraction of the longitudinal
length scale relative to the transverse
- 8cale serves to render the perturbation
regular. The calculations are actually
simplified, yet the result is more gen-
eral in that it ie valid for any slow
variation, whether slight oxr not.
(Heither approximation is useful foy
& "wiggly®™ shepe (Fig. 3.l¢), whose
variations are slight, but rapld
rather than slow.)

Ay

_(b) Slight and slow

e g voe - PR Y

= My v NP o Nt
sl PN TN S
(c) Slight

Pig. 3.1. Slow and slight
variations on a strip.



&
> B L

B Poteniiel Llow in alishilv verving chapnsl
: e . L S A it NG %

He begln with the simple problem of plane potential flow through o

nearly stralght shanmel. - (0F course this problem has its counterparts
i electricity, elusticity, and ether

Tields.) For definiteness we consider g I
the hypsrbolle chaunel deseribed in - § o depige
Pig, B2, wh@&&_@@uﬁl@ symmetry is & Bt s . o X éi y &gjﬁmﬁﬁﬁm
sonvenlence rather than & necesnsity. ke

§ R
{(The exact golution covld be Zound = —
woing ellipkic coordinaten; sse s - e &
Horan & Fechbach 195%, p. 1196,.) I e

WFWW A A A e e ’“‘2"’2‘;‘:

&% La convanient to work with the
strean funetion &, Suppose thet we

K o

weneribe the fluz throvgh the chan- Pig, B.2. Potentisl Fflow
B

nael, which s propordiocwsl to the “hrough slowly varying

difference between the valuss of & hyperbolic chammel
2% the upper and lower walle. Hence
the full yrobvlem can be normalized %o

@PKE 4 fiﬁfgy m O, '${z, 0 om0

#lxz, Vieedx?) = 1 . (5.2}

Al though the sguation is elliptle, no howndary conditions are needsd
a% tue “ends® of the chunnel besause they ere indefinitely romeved

(8o $het the details of eniry and exid will have disappeared according
o su anglog of 8t.-Vevand's principle).

Far e =0 the solubiem is slmply & = v, coryvespondlsg to the
waiforn parsllel flow in o chaapel of constant widdh. If ve assune
that there is o _regular perturketlion for swall e, it musd procesd
im powers of & with, say,

$ :;;7’ & @g@géﬂgy) 4 ﬁ‘,@%@‘g‘ixsﬁr} P sse ‘ ‘ igog}
Sabatitution shova that each 4, wusd satilsfy leplace’'s sguntion and
vanish on tie axiz. The boundery condition on the wall is axpanded
a8

[l:m XTI AT ) ) BRSNS ST 0T & Y & -
Wleelnd @-@gwgﬁmg JE%QZKE} T X T e2p{x,1) +

+ 0let) @ 1 (3.3}
Hense the problew fow by A8

o ) 7% N > 6% g &, 3 P % e
@gmg + %Qg/‘,’}* m 3, “%";;3@19@} w {0, Q&gggéﬁs’lﬁ s "”'é’?zb?o {3.4)
Thé- molution is easily Pfound by fwying simple polynemials, o
better wslng complez variable and Srying the lnsginary parts of
gimple powers of (x4 iy) - which, by synmetry, muss be odd povers.
Thus we find the second approximation:
Ao '
¢ w oy o pe? (3Py-ydey) + ...

{5.8)

LI

we gy, w Lo e? (2P gy a1y o

€7



y

sones of sudden variation ﬁ”&toaﬂaagmt°s,principla“

Byen on the exis of the chansel this approximation is gvidently not
walforaly valid fov lerges %. Thers i8 & glugelarity &% X = 603
the gecond serm in v becomey &6 large as the firet when = = 0(1/e).
This difficulty ie compovnded in highewr approxinations. Phs next
approximation iz essily Tound %o he
) b - G4y [# & .
% I S %é (3;55‘2‘%}72@3; ) «ﬁ@ 2 {Qﬁx@m%xdyd’%*?2,}3’4%6@1@:“%&%@;?%4#‘3,3},} {9.6)

and the indisetlon of noavmiforaity where % » 0(1/e) is reinforced.

1% is @&@gﬁ.?@y&iwalﬁy,why_%h@ solubion breske down st such large
distances,  Whiem =z = 0(1/e) the contour has departed significantly
frem the besie etrip, and the doundary condition hes 4o be transgferred

5,@@@%’%@@ grea: 8 distances to renain valid.

0 3o Quasliecylindricnl spprozimation: alowly varving channel
2 A 2L 3

The adeve procedure is not the ususl preactical way of ealoulating
the flow in a channel, nosgle, or pipeline. dpy plunber wouwld apply
dnstend the hydrauvlic sowroximebicon, aeswning that the velosliy is
parallel 4o the axis snd commitant acress the chennel. This glves the

e

femillar gubsi-one-dimensionsl result thad the speed w warles ine

veresly as bt eross-sectional avea A, &0 that the product  wh
romedns senstrat $o snsisfy contizmaity (ovr pub rewsins constent in
compresgible low with density ). In oup special cese of a hypsre
bells chauuel this pives

W% e ‘ (5T}

Uk o elxd.

. %his hydranlic approximation hes the gress sdvantage that it is

- mot restrictel to slight variations. It is seccurate for evem snope
. Bous varlatiouns of area provided that they take place slowly (Pig.

S.dn), end furthermore quickly recovers its. aecurae outside loeal

&

zotion, vhich se have slready used in anslyzing torsion oF & Thin GooZEo
saction (soc. 2.6}, and in fawilisy in wmany other problens snd ficlds.
Seus exanples are current flew in & slowly verying wire; and bonding

o Gorsion of 2 slovly varying beas or shafi.

This ie & epecinl simple ezauwpls of the awagl-vprilndrical spproxie

On i%e face the quewi-cylimdrical approximation i8 an ad hee rether

“than a systemalic ome (sec. 1.2). That is, it i3 not lmmedistely

obvious whether 1%t can be embedded im & raticnsl scheme for succesg-
ively calouloting higher approximations. In Tact, however, this ig

‘sasily accomylished by shifting the perturbation from the boundasry

sonditions %o the differsntial equation: 4s in section 2.5, this is
accopplished sinply by gﬁr@@chimg'@h@-@@ar&in&%@g‘diff@r@n%ialiyg bud
now by a very large ratic. That is, we ®square up® the geometry by
dntreducing the contracted absecisea

| X= ex {5.8)

(Sincs omly the relative stretching im a&gnifi@@ntg we could alt@re

natively .ntreduce the magnified oxdinats Y = y/e; end we shall
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dater prefer %hiﬁ sholes when the origisal problem 18 sealed sueh
thet the slowly verying region is "thin® rather than RLlong® == for
oRample, in Prandtl's vizeous - boundaxy layer.)

o N ‘ - : kUi « ,
With this distortien of the eoordinates, the full problswm (3.1)
becorss .

2 - .
@ @XX % @yv w 0, @4xgﬁlmmmw_$ o,
SlE, J353%) = 3, . o {3.9)
Yor e =0 the selution is
$ = - - : (4,303
+ %fl=&£ﬁ :

and Ghis yields the sxial velocity (3.7) of the hydraniic approzie
mation. Farthersmore, working with the stresm Punction has tht advape
tage that this provides also a first spproximation %o the {ransverse
veloeity, uhich is sbeent from the hydreulie approximation,

Ve omn now systamatically caleulate higher approxzimatioas by ag-
auRing o regelar expansion ‘

& by g2 %(X@y) & g @agmﬂy} % 250 {5.11)
The problem fov the ath texm 18 (for n = 2, 3, ...)
gy By 0 8i%0) s (1) = o {3.31)

Toue instead of seeklng a solution of Leplece's oquation at euch e8%an,
as in the previcus spproximation, we nead merely perform two guadvne
bares. Thve the cecond spproximation is caslly fouwmnd as

% o 2 . ‘;-3. m‘g )
(@g = “"“‘rﬁb@g}g» f:ﬁ, am @2 @g@é&uﬁgﬁg&m {1 Py ngfnr:u §3 & @iﬁé}} E f'ﬁle)
YL+ A2 | 6{aex?y \7 . x2 |

There i now me symptem of nonunifornity in this op any highsr
approxiuation: the perturbastion is regulsr. For example, far downstrean
our hyperbolie channel approaches the wedge-shaped channel ¥ = tex,
Thers our second approximation (%.12) becomes

e 2 .
$ o« %’%l $ %ﬁ“@{l = %é?’} kg @ﬁﬁi@g )4 @ﬁj . @'5&3%}

and this. is just the expansion o @é@@) of the solution for Llow in
‘® vedge (Pig. 3.3), produced by & source at the origin:

fo L‘.i>1 o Feps ‘“’;:L Y
@3 - BpE m (y L‘/‘%’ ) i E&%rnmﬁm{gi Iy 4 - . li 3 ® :g’n@ 3
. : (] &g

fan~t g San

A wathematician would slao change the notation for % to indicste
that the siveanm funcbtion is not the same funetion of X and y as
it i of x and y, bub we Yollow the usual snginesring practice

of using the same symbol when ne confusion can result,



i o oo deX  ose
snd expanding for small & (wmowe %; % e
precienly, for amall eox) reproduces ' % ﬂgﬁwbﬁmﬂwwawW“
our gariier result (3.5) besed on . By LA el o &
- 8light rather then slov waristions. PUR Prpomern.,
This epermtion veveals that (35.%) : - P
eonverges for €x < 1, 4in secovd Py,
%%2@ the @ympﬁ@g@f@f m@@mné%g;m%@y ey
that we detected fow % = €Je o ®ow R gt
Thus we see that the spprozimsticn M%m@gué% iggi?f;@g@gg&’
of slow variations is preferable not Perten @@nr@@%ét vorten
only hecauss 1t is simpler, but alee ! s ‘

because it is less restrictive than

the approximation of slight variations, vhose rosulis sre included
88 & sp@@ial;ama@g R * ~ ’

The calevletions sre oo sinple that it iz Just ws easy to treast
2 chamnel of general shape. Thus Tor 3 symmetric channel deseribsd
by v = & Plex) the second approzimetion is

s w gy e et =] [or0 -] o otet  (sa5)
#w ghr s e gm;} [s22001 -7 ] + o(e, (3.15)
. E’ o

Thois iz wnlfermly velid 42 the fumctlon P ie smooth aond bounded ,

gg g?&ﬁ s glope of the cheanel is everywhere ©{e), the curvature
=y 688,

Purthor apyroximetions are found o sasily in principle thet it
would seewm that the mowiting labor invelved eould be delegated to &
somputer. Io fact lucas (1972} has done this Tor the more complie-
catod probles of luwmivsr flow governed by the Navier-Stokes egquaticna.,
He has computed, for example, 40 terms for an sxyonsntisl chanpel.

DU AL R

2k Beneralised eayEptotle exvensions

¥e have transformed a singular-perturbation problem into a regular
perturbation by simply distorting the ratic of longitudinal and trang-:
verse scales. The result is an asymptotic expansion (section 1.10),
and in fact an ssympbotic power series.  Thet 13, in emch Ssrm the
dependence on the perturbation quantity €, has been ueatly extracted
in the form of o gouge Tumction dple) = €2, Jeaving a wnltiplicetive
function of £ aud y that ie imﬁ@p@m@@nt of e.

. This tidy srrangement is &@@ﬁr@yéd, howaver, i1f we revert %o the
original coordinates. Thus, replacing X by ex in (3.12) gives

AEERE

) . ey
L s ; | s ". 5 .:»K&.‘_w ;{y"g 1
@5 = a g?mﬁz gl l o @2 mgimwﬁfzfm { l =3 ﬂiﬂm’-‘h‘m :‘Wfé" ) s 0€ @;""2’2 g { ‘Z§ o 12b)

yd+e®x B{1racgx? Y b |

-

As Indicnted by the final order symbol, this can still ve regarded
28 an expsnsicn in powers of e2. MNow, however, the coefficients
also depend on €. Hence this is no longer an asymptotic expsneion
in the eclassical semse. Instead of baving the standard form {1.26)



3 A7
~/f b

C2(xg o) w Foeglxddple) . {1.26)
it‘haﬁvth@ more compliocated fora ,
2xs €) ~ ﬁ:%ﬁxs €) dple) o {1.26D)
. Such an expansion bas bsen called & generalized @gﬁ@g@g@ic :
- gxpramsion. (Brdelyi 1961). The a@panﬂ@ngQ”Efpﬁﬁﬁmgd%ffzcieﬁ?g on .

€ provides flexibility &t the expense of additionmal indeterminacy:
with the gauge functions chosen, & given function has only one -

l'aeympt@tie'@xpansioa,-bu® an wnlimited number of generalized asymp- ,?

totic expunsions. Ve naturally insist that the gauge function

properly represent the smallness of each texms; but that atiil

leaves a wide ocholoe for the e«depsndence of each coafficient.
Consequently, further rules of procedure must be adopted in each
- @pscific application. (In the preceding example, we would require
- that the coefficients depend not om = and & separately, but
only on their product X = ex.) ‘

Ha shell ses that, by one techmigue or swmother, the solution of
any perturbation problem can be found a8 2 single expansion that is
wiformly valid througbout the region of interest. In a regular-
parturiation problesm, that will be an asymptotic expaneion in the
classical sense (which perhaps has & finite radius of convergense).
In & singulasr-perturbation problem, on the other hand, it i8 neces=
garily & generslized ssymptotic expansion. :

3581080 local approximsbions

' ¥We have meen that the method of slight variations is lesa general

- than that of alow variations, being contained in it as & special /

. cages It would ssem thet these are the first two members of a

- hierarchy of successively more general methods, sach containing all
ite predecessors. Bach is superior to its predecessors because 1%
‘matches the geometry more closely. Thus the first requires that

' the fractional change in ordinate be small, the second that ehaggeé
i

' in the slope be small, and the Nih that changes in a dimensiopless

Poxm of the (N-1l)st derivetive be small.

In pavticular, the third nembsr of this seguence would provide s
vaiformly valid approximatien for slowly varying channels whese frgew
%ional change im ordinete and slope may bs enocrmous, but whese curvae
Sure ia everyvhere swell. More precisely, the apsropriate dimensiope
less criterion ie that the produst of the local curvature snd ordinate
be amall., Then the first approximeition would noet be eylindrical flow
8t each station, but conical flow (Plg. 3.4).

&



Praonkel {1963} hes explored

thia ides for plane wisoous

flovw in & symwetric chanmel,

but the basic conical solu-
Slon is the Jeffory-Hemel
flow, which involves ellip-
4o functions that complie
oate the anelysis., In the
slmpler cass of Iinconpros-
sible potential Flow, ¢he
basicrconieal solution is

Ry
sty 6,/ w

fpy s Px) ﬁﬂﬁww
d

e e
gy, i S
“"@P&_ ﬁ%&?&“ﬁmﬁ&mwﬁ;%sw ;Z;@i A .
SRUTBl 6 orwrnmn Iy o ALY
6{%@3 «w—"’ ﬁgﬂémwmmw@“% &{i 3 &
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. fs

Pig. Bod. (umsi-conicsl @pprom

that of Pig. %.%, dus %o a
2oures upstreanr or o sink
downatrean, sccording se the
local glope £8 positive or

Cdmation fox potentisl flow im
Blowly verying chsuwnel

?§@@$§V@@ (In the dividing case of zews slope 4% ig wniforsm @&r@il&l
LOW.
Usdng (5.14) we see that for o @ﬁm@@%y&@@l channel descoribed by

y = 2¥z) the {irat quasi-conical approrimation is

o S yer’ (%) /2(x)]
ten™d £ {x)

@ligﬁy) ° ' {3.16)
A 4% stunds, this is an ad hog approximetion rather than a systenadic
one. It would be worthwhile o think aboul hew to imbed it into a
systematic scheme of succepsive approximations., - '

In the same way Messonet (3962) bhas suggested approximating the
#tress field in & beam of varying height a3 that in the tengent
wedge at each station. The writer is net aware that this ides bhes
been pursued or sysbematised.

Bridensly 1% is appropriate o charagterise these as quasi-conieal
approzivations, in sontrast to the pravious quasi-cylindrical one,
fore generslly, one cen sake plecewise locml applicetion of other
- Belf-ginilor golutions. This hes been tried in boundary<layer theory

welng the Fallmer-Skan family (Smith 1956), but no one has yet suge
seaded in embedding it im & systenstic scheme mo 2% %o ealeunlate &
gecond approximetion.

. S%311 wove generally, one can
Amegine piecewiss loscal application
of any simple solutiom. For BXAR
‘ple, the slightly famped osoillator
- of Pig., 2.11 on page 28 could be |
- regarded as & sequence of simple
‘harmonic motions (Fig. 3.5). Im
any such approximation the parameters
of the simple solution - in this
cane the amplitude, frequency, and
yhege == will vary slowly, and 8
schene for calouwlating those vari-
~ations is required. Ve shall ses
in chapter 5 that such a scheme is
- provided by the method of multiple
- Boaiem, - -

@

"
&\ .
!
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ws.‘lua.? o wxl&);) %

v

Pig. 9.5« Plecewise local
application of harmonie
motion te alightly
dempedl oseillation

L]
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- 3l@w1y varyimg geonetry is na@@saary if th@ apprcximati@n of slow

variations iz to be explolted, but it is not sufficlent. In our -

| previcus examples the solubion as well ms the geometry varies slowly
-along the axiz because 1% is confined to an intecior wegiom. For . -
¢ho reglon exberior %o & aslowly varying ehape the solution will be

. 8lowly warying in some cases avd to & cerisin order of appraximmﬁi@m,

~and not in others; @md the distinction is not ObViﬁuﬁw

 '¥s coneider %h@ £1uid-nechanical problem of flow past & thim ox
slender body, We use these adjectives im the techailcal sense that w
‘Pazoy blade ie thin, and & needle {(even a slightly bemt or flattomed
‘one) is slender. It turns out that flow over & thin shape, such ag
- an alrplane wing, is never slowly varying. On the other hand, flow

- over & siender bodv is alowly vamying, at least in the firsé approx-
? imati@na

Poy simpllicilty we consider Xm@@mpxﬁﬁgibl@ flovw past & slonder vody
of vevolution {(Flg. 3.6). Paking its longth as wnity we describe 1%
in eylindrical polar coordinates

: T
by xwmeila), sothat € o i 0" or e entn)
the sng ess ckness ratio, | k g
which we will assume 0 bes small. &yﬂiﬁfﬁ“jﬁﬁfﬁﬁwméw,x
- Since. this pavemeter is the watio e ———
of two characteristic lengths, we ' - ~hy
will bs on the 1o@k@ut for non- B
wiformity. | o
T, , N . BPigs Babo Flow paet slender
I we work with the W@L@@iﬁy . e .
potemtial @ the problem is body of revolubion

. Adnear, the nonlineariiies of

the inertie terme in the mowmsadun

gguations havivg been isclated in the @@b&@ﬁu@mﬁ calowlation of the
preseure from the Beragulli @qu@&gﬁn, Then the axial and trangsverse
- oouponents of the onconing atresm can be considersd separately. We
‘mbtert with the erossflow becauvse it is simpler.

We take the srossflow compounent of veloewlty V as veference speed.

Pher the full problam for the velocity potentiald is

B B oo
Ve = ﬁxx ¥ gvr S TZ = O,

f?jxa w gl {x) o {ég ot = efr) (PANGENCY) €3m173
By woond s ¥ -p oo o (FREE STRBAM)

{(Hore the %&ﬂg@ﬂ@y condition ig derived from the fach that at any

muffaaM} Plz,y.5) = 0 %he normal compopent of velooity is grad ¢
grad F. . : ' :

in this 6r@bl@m the swall peraneter € appoars iﬁpli@iﬁly in the
tengency condition as well 88 explicitly. It is made to appear only

~explicitly, and shifted to the differentiml equation, by again stretche

ing the radial and longitudinal coordinstes differentislly, so as Lo
: ”gquar@ up® the geomelry (Fig. 3.7). In contrast to our channel of



cnfyFew 1
I

Fig. %.2, 4% is the tronsverse
seale that we have chosen o meke % R = £{z)
small, rether than the lovgitudinml »;ﬁﬁwf““%%%%%‘
seale largs, with our choles of ot

»,

units. Ye consequently magnify the - ;;ﬁ%“%“x
radinl divensions (as in boundapy- R %%%m‘ =
layer theory) by introducing

R =rfe, where R 18 of oxder

= ¥ Pig. 3.7, Slender hody
ity . in magnified radini
A pew Peature syises im that the soordinates

‘dependent variable also needs magni- , o
fication. The frse-stream condition &8 the only nonhomogensons oloem~
~ent in the problem, and accordingly sete the scale; and in terms of
‘B it shows that @ is also amall, of erder e. We therefore set

CBlac,8) =|eBxme),| Reve. O (5.28)

Thie m&gmifi@&ﬁign‘@f $ is only a convenience hers, because the
provlen is livear o that it concels out; bubt it would be essentianl
i 2 nonlinesr one. Thua our problem (3.17) is transformed %o
. @R &;’ ' Q . ‘, . .
@R& o '%I‘"Egéé + @‘32@3{3 = 0, @R = g @’X:@E(X) at Ras f, '

7 } 1{3.19)
$ -» Reos® as Rw%*mo(?}

setting ¢ = 0 nov ylelda the problem for the Tirst approximediown.
The rewnrkable simplification that results is the disappsarence ef
the axial coordinate x .Srom the differentizl equation. It there-
fore describzs two~dimensional flew in the cross-plane, past o cirele
of radius f£{x). I% is clear physically ‘ '
(Pig. 3.8) that this simplification
corresponds to the fact that £luid flows
more ee2sily around than along a slender
body. To a first approeximation the
axial velocity can be neglected.

The solutlion of this simple problem
for the Lirst approximetion is juat

By = Eﬂﬁ, s &?;RX_);] co86 +  {3.208)

or

? . g o R, s .
N 9 $%{x) . Fig. 3.8, Crossflow pawd
By = ER + @&‘mgfm“ji%@&am (3020m) slender body |

0f course x has not altcgether dige . '

appeared from the problem, o it appesrs hers raramatrically. Thus

we agaln reap the adventege of working with such an integrated quaatity

as the stream function or veloelty petential, that alihowgh the sxial

component wes neglected we find it in the resulbing solution.  As &

aongequence the pressure varies along the body, the Bernoulll equation
D+ %@»ﬁgr&@,ﬁgg = congts , {3,283}

giving on the sucfacs



iy
eSS { 2y

0)}{:):‘
e e DR PRY: 3 o
Bow Py b %ﬁogx @ &m:@xm‘g@ o4 gt {x} con’ @iﬁ {35.21)

Fhis prosswre dlgbtribution produces no net fores at avny sectian.
However, whew & walform axial velocily iz added, the cross-producd
terms in Bernoulli's equation reveal s Lifting foree b sasch ssoblon
proportloosl ko the locel rate
of iwmerease of crosg-sechionsl '
aves (Fig. %.9). This is the %% % &
airship theory of Munk (1924). s P
% was extonded o slendey : e QWKMQ
1AP6ing wings by Jones (1946). ¥y @ &.
He noticed that 1Lt appliss at '
all subsonic and even Supersenie  py.  w,9, T42% dietribubion
speeds, because ir linssrized on slender airehin
theory the effect of compres- ‘ PEBRLE
8abiiity is werely %o add in the 5 '
differantinl couation (5.17) & factor (1L-M") to tbs term @,
that is neglocted. ' -

il

| 3.7, Symptoms of nonuniformity in slender~hody theory

We saw (mec. 3.%) that for the’ interior of a slowly varying region
a diffeventinl siretching of coordinates serves to render the pertur-
betion problem regular to any order. For an exterlor region, on the
- other hand, symptoms of nonuniformlty will sooner or later appear.
~ The reason is that although the solution is dominated by & layer of
glow variation vear the boundary, it includes a fringe that extenis =
~ far from the boundary. (In viscous flow at high Reynolds mumber,
this "fringe® is more important then the boundary layer, so thas we -

‘gannot begin with the approximation of slow varxatiaasaﬁ ‘

Por our ecroseflow problem, this difficuliy veveals Lteelf at the
nexd stage. I we @samm@ﬂ$Mm% {3.19) has a regular-perturbation
expansion in powers of g, we find for the sscond spproximation
the problem :

2 5%? o8 %2 o = § . ‘ . ": N
<, e ol oo O - Uy.{‘“
Pom TR YR 7T E’g&m R I 1o
i 1!3
%%QR @ 2 3@2(«@} e 9 at R = £(x) 9# (gﬁwlngj
@Q =B 0 ‘ as B = o .
A par¥icular jategral of this differential eguation is
& b & T et ® , o
B, v onieghl ¥ [22(x)] cme, (5,23

bt no complementary solutien of the homogensous equation will eangel,
the conseguent logarithnie siagulariity in the weloeity at infinity.

Pais ie Just the difficulty discussed in sectlom 2.9, beling the
gownterpart of the Whitchead paradox because it arises in the secwnd
approximations Our inability to satisfy the distant boundary condir
- 4iom is again a symptom of nomuniformity; and the reason is <elear:



8t a distance the bedy £{=) :

f%iﬁaentg itsel? %o the growonss T o 4 foo
flow not a2 & oylinder e - ! N
but a8 & finite line of éé | J B
singularitics {(Pig. 3.10). _
Consequently an Approxi- R !

mation based on the first | ¥ £
point of view is not . 9 " 14
appropriste to & distent 3 o
‘boundaxry condition. These near « fap

$wo complementary views, - : ,
baged on differsnt secal-~ ' Fig. 9.10. Bwo complementary views
idgs of the sams problem, - of crossilow past o slonder bedy

are the basis of the method
‘of matched asympiotic expan~. :
sions, which we disouss in the mext chepler.

The nomnidformlity seuifests itoelf already in the firet approzisas-
them for the axial cemponent of flow (8o that this case i the coun e
et of the Stokss paradex). Beceouse the problem is arisymmetrie, 4%

2 COKEE . .
v gy e B O, f,=ef (x)fy 8% » =eelx)
T Py TP Ty 0 U Py meligify % »aafix

‘ {5.24)
B o % . 88 T i 60

ds the body dissppsers it loaves the uniform etresm. We therasfore
perturb thet trivial seluticn. Megnifying the radisl coordinate 28
before with R = v/g, we ses thaet the perturbation in @ is pow of
oxdeor ¢2. Honce ve sel . :

# = %+ e (xR, ~{3.25)
vhich transforms the fwll problem %o '
. & \

%2’%}3‘% %ﬁg + g éﬁ@‘m w0, ‘@& - f{x}g&«&z @g;f?xj 8t B = £{x)

B epo an R oo
In the first approzimation (setding e = 0, ov expanding @ du

povers of &?) we hove again two-dimeneionsl Flow in the cross-plene,
nov sxisymavtric end governsd by the asimple eguation

{5.26)

wp %;1 Cwm
@1&& ,gqfufégé s @ @ @’&@XR) m G, {3.27)

‘A® Por the slowly verying chonvel (mec. 3.%) the problem bas been
reduced 1o successive guadvatures, Indegrating once and imposing the
tangeney condition gives ~

. ' b 0% oot
@l& =] f‘z‘xig"g ‘(“{} & {3@@8%

This has the simple interpretetion (Fig. J.11) that ¢o the uniforn
gtrean 1s added & plene radisl fiov in esch seotion thot gorresponda
B fh:local rete of lpereuse of the crogs-scctionsl srea §{x) =
®e? £2{x),



Integrating again yieldw -
By » 2{x)2"(x) 1ogh + glx)

{3.29)

Uefortunately the funetion of
lategration g(x) couvnet now . .
be found. The distant boundery .

aguln beceuse our spproximation by slender body of revolution
i8 not valid at a distancs. - vwiform etyoam

Thus the first approximation
Bervea only V0 predict the radisl

veloocity: it fails %0 predict the streamvwise veloslty increment, and
henoe the pressure on the dody. ’

the remedy that was adopled by serodynsmicicts is the 1040's was
to introduce the slender-~body approximation only after having satis-
f£ied the distant boundary conditiom. This vas scconplished iun Bog-
land by applying the Laplsce transformation, and i Amerioas by reprew
genting the body by a distribution of sonrces and sinks along the
axis, so that the distant bowndary eomndition is avtomatically satise
fded, end then approximating for smsll slope. The seme resulle were
later obtained using the method of matohed asyoptotic ezpansions,
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4.0 Poraion of elrewiar abaft of varving radius., The strosses in a
Treowlsr shadt of varving redius fwisted by couples at the ends are
{excent for the deteils neer

the ends) devivable from

Hioheoll®s atress funetion § Mg e
&@@@Wﬂiﬁéﬁ&’ o {*‘ /if' etascanya P @fg
az:w B o ~@i§ 'y @3‘;& gg (g g’f@ ey B

M?an

i, — A
o ““;yfﬁﬁ&mfj

&

- Iy e
“ 9 @ B 2y @

Thap the problem for § is

By
Jop =975 o 8, » 0, Fw0 (smy) st vwo
g o /22 » 3 (say) on the surface

there My s the torque, (n) Pind the simple solution for & shaft
of conmbant wedivs a. (b) Perturd te £ind the solution to 0{z2)

Toz the byperboleidsl absft deseribed by ¥2 = 14 sips, (6) Pind the
Second approgimation for a slowly varying sheft of general Form by
Introdueing the condreoted abeoisas & =en, {4) Compare the reanlia
82 (o) with thoss of (b) for the hyperboloidal sheft, and with Foppl'e
axact selution (Tlmoshenko & Goodier 1951, p. 309} for a conieal
shaft of ssmi-vertex wagle 06

25 o & 7’9‘ . By o v ]
@ m 2033 (e dy~t/2 23 (x24p? ) B2

2 = B epsl ¢ 0oss oL

Befy Pobeatisl flow throvgh sxisymmetrie duet of varying vadive. A4
problem in £lwvid mechonics similer o Gho torsion problem above 8

that of finding the Stoles streoom function & Fop incomnpressible
potentinl £lov throvgh an axisymmetric dust, %The streamvise apd radinl,
veloclly somponents spee glven by ’ :

Rind @Qx" i %}3%-
T E oy Tpmem

and the probvlem for & ig

. v
B = 5 Oy @ O =0 (say) et ©=0
" ﬁ{%%), . b= /2% = 1 {(sey) on the wall
o Y| .
where @ is the volumetric flux ihrough #he duch. saryy out the steps
Sorsespondivg to those in the prwceding exercise. That Ls, find She

simple solubtion for & tube: porturh 4% to find an approximation fer
the hyperboleidal dued: find the pasond approxiwation for a slowly
varying duct uwedng the contrasted sbgcisen; and cospare the lagh
rasull with the approximetion Tor She byparboloids) duct, and with
the exact sglution for a conicnl duct of semi-vertex angle ¢of (which
s simply that for e point source.) .
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t-u%%,{% vip

5,%, Generalized sxisymestric pobential theory for varying contour.
Solwve the preceding htwe exercises concurrently by wmrk@ng with the
equation of generellized axisymmetric potential theory (PRABPE® )¢
ﬁﬁ .

g%mr B - Byy = ©
vheve ¥ 18 heve en integewr. (Note that cases of physicsl interest,
in addition te the present M = % fLor borsion and M = 1 Ffor the
Stokes stroam funciion, are M = 0 Lor the siresm funciion 0r velow
ety pobentiasl in plave flow, M = -1 for the veloclty potentisl in
axisymeetric flow, and others.) : ‘

Befho Strenses In strip wder tensionm. A lopg syumetrical strip of thin
slastic material is held under teunsion at 1ts distent ends. RBscsuse

4% is thim, the spproximetion of .

plane stress is accurate, snd [
$he siressss are given in terms . {”‘3‘”}

of an Alvy stress funchion # P= s i e 38
&)y Hge ’m""‘&a% - M—-Km&%%

@2& o ﬁﬁyy 0

Bure B satiefies the bibarmonic equations in Cartesien coordinates

By * :M%my + @w;yy = 0.
The conditions of mo nowrmsl ox temgential stress on the edges of the
2brip, found by taking couponents, sre, in the notation of the sketeh

. o o
Uy = bpgo Typ ==y

S g 2 % . o ‘.2 - D " e ’

T =7 sin™F + % con™f = 2 ay sinfoosf =0 } at each
5 Vi y 2"' E { P P . B ! @dg@

P ow hwinm B - ein B - (@Km%} sinpecosd = O

Suppose that the slops ten F of the sdge in everywhers small, of
order £. Baplolt this %o find for any smooth shape a first approx-,
imation for #H 4thet is correet to within terme of relative ordsr g%,
Yow may £ind 1% helpful to check with the resulis indicated below fox
& wniform strip and & wedge: -

ATV Gy N AT e A of, ) A T
o € RS qm@%.sﬁ&v’.’z\m% oty ‘ T =
S e ¢ % Y] o = ) o B2
v S PG5 %
y % o
(ﬂé B ‘:zPT A B g P
A e sgyimgs ¥ oo
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\ 3 aa ?iam@ laminar £low In slowly vary;nﬁ channel. Consider viscous

flow through a slowly wvarying symmetrical channel of arbitrary form.
Using the vorticity equation (2.40)

for the strean Lfunotion ¢, show ' ﬂﬁg@mw

that the first approximation yields . " g
2 parebolic velocity profile ab cach :ﬁszi“ﬁg%gfff:::“:”“mmvMmm
stabion, and skin friction vRTYing wﬂ,mwiﬁw oo,

i@?@f@%ly a9 the sgusrs of the chanpel e g o,
width. ©Oaleulate the sscond approxime ﬁﬁmﬂ %mgxg}@

ation. Specislize to the linearly

growing channel and find, as a function of Reynolds number, the wall
slops for which the skip Triction vanishes.

8.6. Flene potential flow im narrow curved duet. 4 smosth curved

duet of constent breadtlh ¢ i described by giving the swrvaturs

K {s) of ite lover wall as a function of the curvilinear distance

e &1@ng that w?llo fﬁ@ﬁ up ' §$H%&&Mu g

@ systematic schene Por }yﬁﬁﬁ g, e

salonlating spproximately ) . &¢&“““&£ﬁiﬁg

Hha- plan@bl~rg§ﬁﬁimnal igf gpﬁ B

compressible flovw throug ‘ i’

the duwot, and caleulate the lﬁ%(@)????TW WT?Vfﬁ

second or third approximation

for anall &. Check by comparing with %he known solution for the

annulus batwesy twoe concentric clircles. Suvggestions: i1t ig advan~

tageous to wse the orthogonal “boundary-layer? cooxrdinates consisting

of the distance 8 along the lower wall sad the distance n  normel
30 4%, If v and v are the corresponding velocity compouents, the

governing equations of contimmity and irxvotatiorality ave (Goldatein
1938, Modern Developments in kluid Mechanics, D. 1193

o@gw% I 1« P 3 M . .@u o m&:gm | om
%;S&uﬁikgnhﬁ*“@@ TW%H@@ Tven &= 0. ‘
It i3 convenisnt to satisfy continmuity by introducing & gtresm funetion.
&y &n@it@ normalize 4t to zero on the lower wall and unity om the up-
por wall. .



Chaptor 4
SHE METHOD OF MATCHBD ASYMPTOTIC EXPANSIONS
Hatehing, merglng;

matching, purglng ..

we Jydney Goldsteln

4:3. Historical imbroduction

The most useful procedure for dealing with singnler perturbations -
in mechanics is the generalizstion of Prandili’s boundary-layer tech-
nigue that has come t0 be known as the method of matched asymptotic .
‘expansions.’ Although Prandtl made decisive use of it, he did not
elaiw to have originated the ildes, and in fact atiribtuited priorvity
to an 1881 paper of L. Lorenz {Prandtl 1952, p. 414).

Aotwally, 1Lt appearys thaet melched expanalons were first used by
Implace (1805}, In the appendix to the last volume of his great
treatiss on Celeatial Mechenics,” laplase calculated the appronimate
shape of the meniscus in
{among many shapes) a
large clreular cylinder
{(Pig. 4.1). The equi~
Librium betwszen the
forces of gravity and

surface tension is de- AN R Twe el
seribed by & second-order ' b e ¢ P )
exdinary differential ' . A O TN
equation, which is so R P
noplinear ag to be ine L § N
, "y e 30 o iy, . y
intractable. However, a2 “m“”;:;

the alope of the menig-

: global view
eus is soall aimost

srerywhere io s largs Fig. 4.1, Meniscus in large cyl-
vessel, 80 that the index '

gquation cen be lineaxrized.

Thus Laplace found & global approximation in terms of the modified
‘Bassel function Iy (though Bemsel's work appeared only 19 years
later), OF course this approximation is invalid near the wall, whers
the slope is large (provided that the contset angle vy is not emall)s
bu that "howndavy layer” is 8o narrvow that in it the curvaiture of ths

* ¥ s 4 o . S :
In this case the original French has gained in translations in his

English version the famous american astronomer snd navigator
Nathaniel Bowditch has corrected, annstaited, and enplified lapliscets
text in & running commentary at the bottonm of each page.
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wall can be neglected. Despidte its aonlinearity, this local problewm
has o solution in terms of Srigonometwic funections, JIaplace joined
his global and local spproximsiions in ap intuitive bui guite correct
faghlon.

More than & century later the British physicist Rayleigh (1915)
independently repeated this calewlatlon. He became aware of laplacets
work juet as his paper was in proof, and bastily extended his analy-
#le %0 the next spproximation. He thus becane the founder of seconds
order bowndary-layer theory. '

Meanwhile, other ninstesntb-century glanis of natural philosophy
had wsed the ldsa of matehing in the same natural way. In 1860 Mag-
walld caleoulated the slow lamivar flow in & circular-disk viscometer
(Pig. 4.28), an aseenblage b

3y

ef clopely spaced alter-

nating {izxed and rotating .

disks. The motion i3 one- r el B e e

dimensional except near - e I R s o

the wim of each disk, where e B O + P

1t i= approximately plane. ESIEERT) R 84T fmﬁaﬂﬁf

The loeal problem at the Serorire] B N R (. m”gxxmﬁﬁm et

rim reguires solving the k‘mwiu S Mg o o iiﬂﬁ

laplece equation in two .:ﬂmlqﬁ o Teads ?mmézzjw'

dimensions, which Maxwell Sacrr Bl ATl ég‘

did with the aid of his s

friend Williawm ?homﬁomg oo i

Sinilariy in 1877 Kirehof :

Q&leul&tgd the éiac%ram &, Maxvell's b. Kirchoff's

gtatic capacitance of two viscometer capacltor

Yhin cherged cireculsr ' ' e ~layver prabe

@2&%& 3?t§egm&li zﬁﬁmiﬂf Fig. 4.2. fhe ?oun&&ry Layer prob
b4 & lemg of Maxwell end Kirchoff

(Rig. 4.2v).

The twentieth century hegan with Prandtl’s analywiﬁ of the viseouna
bouwndexy layer -- an idea that inecubated guietly in Gottingen for
twenty years beflores spreading rapidly throughout the world. From the
voint of view of matched sxpansions ¢ne can discern other lasndwarks
in the 1930°s and 40°s. For example, Goldstein (1930) treated the
Jaminer wake behind

8 flat plate, matobe %
ding the Prandtl-Blasiue gﬁ§>
golutiﬂn to a au?;layew ;
hat grows from the T L h
trailing edge (Pig. 4.%a), @Q%@@&$m&ﬁ§g§§§%

PN
»
’

cxtecturs sl
Mwﬂ’""“"‘ff et

Again, landauv & levich RO R R s - A

(1942} calculated the el T \
thicknesa of the liguid PRI :
film deposited on & ‘ voae S

shaet that is drawm 5. wake of Tia b, ¢ 03
stesdily oub of s bath B ages OF Tiet b, coating of

of Tluid {(Pig. 4.3b). oo

They speak (writing in ¥ig. 4.%. The boundary-layer problems
Eunglish) of "chaining® of Goldstein and of landaw & levich

the upper slowly varying
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golution to the local approximetion for a static meniscus below,

These ploneers “chained® or joined their complementary approxima-
tions in an Ilntultive fashion that, boelstered by firm physical insight,
-sufficed for 150 years. Consequently they might, as suggested by the
quotation at the head of thie chapter, be humorously contempiuocus of
more formal matching schemes. ' However, the insight of even s Prandtl
will fail a8t some stage; and then a systematic procedure is welcoms.

Deeper insight into the matching was provided in the 1950's by the
work of Kaplun and Legevrstrom (lagerstrom & Cole 1955, Ksplun 1957,
Beplun & Legerstrom 1957). They recognized that viscous flow at low
a8 well as high Reynolds number is a singuler perturbation, and in :
that context studied the basis of the matching procedure. Since then,
the method of matched asymptotic expansions has been applied to an
ever widening renge of problems in fluid motion, engineering mechanics,
and applled mathematics, and has become a standard technique of asympe
totic analysis, '

4:2. Deflection of elightly rigid membrane

it 18 helpful %o introduce the method of matched asymptotic ezpan.
siona in a problem where the source of the nonuniformity and the nature
of the boundary layer are physically obvious. Prandtl's boundary layer
iz unsultable, because it can only be observed indivectly, and always
invelves numerical integration. Laplace's meniscus is ideal for qual-
itative explanstlion, because any intelligent child comprehends the
band of stesp slope on the rim of a glass of water; but the mathemat-
ical apslysis ig still complicated. .

We choose to begin with 2 problem in solid mechanice that is more-
over just a alight modification of the one we umed to introduce regu-
lay perturbations in chapter
2+ . Suppose that the pressure
ized wenbrane of sectidn 2.2,
instead of being perfectly
flexible, has ‘a slight amount
of bending rigidity. VWe may
think of 2 thin metal disphragn
atretched across an orifice
undexr uniform tension ¢,
and clanmped on its periphery
(Flg. 4.4). (¥e must abandon

the analogs in Poiseuille flow Fig. 4.4. Defluction due to pres-
and in torsion, for lack of a sure difference across slightly
counterpart . to rigidity. ) rigid membrane under tension

Small deflections w of %ﬁﬁ :
diaphragm are governed by the linear partisl-diffsrentisl equation

Ev%y «oP%y = P . (4.1)

As in Bq. (2.3), the second term describes the effect of tension
{which would become nonlinear, as in Bxercise 2,1, if the slopes were
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not smell), and the third Ysrm the effect of transverse loading (which
#e bave taken uniforxm for slmplicdty). The new Tirst term describes
the effect of bending rigidity acoeovding to the usual approximations
in the theory of thin plates (Way 1962). Here the constant
»n 5 :
Eow e (4.2)
12(L =2°) :

33 the Llexurad idity or bending ptiffvess, where ¢ 4is the plate
thicimess and 20 Polsson's ratic.

In erder %o spoak of slight rigidity we introduce dimensionless
variables, referring the lateral coordinstes x,v. %o a character=
istic dimension a of the oxifice, snd the deflection w <o paéﬁfﬁ
whick is the maximuw deflaction in the absence of rigidity, sside
from a Lactor of orxder vnity (4 for the circle). This reduces the
differential equation to .

by « 92y iy Ay
eV % « ¥%w = 1, €= Far 120 (L -¥E)ad 4.3l

This is owr previous equation {2.1) for the menbrane, eugnented by a
gtiffaess term proportional to e. Dhis paraneter, vhich measures
the relative importance of rigidity and iension, we propose to take
- swell. For clemped edges the boundary conditions are that the deflea«
tion and ite normal derivative vanish: -
W m %% = O on the contour . (4.4)

~~ This problsm displays both the warnings of nonuniformity discussed
in section 2,7: <the small parameter e multiplies the higheat deriv-
atives, and it is the ratio of two characteristic lengths. Yo would
therafore anticipate & eingular perturbation even if it were not
obvious physically that the membrane spproximation fails in a narrow
neighborhood of the edge whers the rigidity, though small, brings

the slope quickly to zero, ' ~

Though simpler because it is linear, this problem is analogous %o
that in Prandil's boundary-layer theorxy. The boundary conditions (4.4)
are ldenticsl if w is sidentified with the stream funetion $; and
the differential equetion (4.3) is similar to the vorticity equetion
(2.40), with e corresponding to the viscosity 2/ (or te the inverse
Reynolds number in dimensionless terms). The nmein guglitative differe
ence 18 that the boundary layer will be seen to be thinner hore be-
cause Hg. (4.3) drops from fourth to second order when ¢ disappears,
wheress the viscous equation dropg only to third ovder.

Yo exhibit the essentials of the method of maitched asynptotic expane
@ions, unencumbered by mathematical details, by considering ‘Yhe cyline
drical deflection of a diaphragm stretcbed across 8 slot (Fig. 4.5,
{As in section 2.6 this might be the quasi-cylindrical approximaticn
Tor & long slowly varying ovifice.) Then our problem {(Bass. 4.%, 4.4)
reduces to ,
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g;_': omesse €rp VAT = l #
dzd  gx?

(4.5)
yoam oo ¢t xe= t
k4 v 0 a8t x=2X1.,

The solution is obviously symmetric
in %, 806 that the boundary condi-~
tionas at the left edgse, say, can be ‘ ’
replaced with the requirement of . Pig. 4.5. Cylindrical defe
aymnetry. , . leetion of slightly

- rigid membyrane

This mathematical problem has
gnother alightly different physical '
interpretation. It describes also the deflection of a bheam under
tension T and wnifoxrm trensverse loading P, where now g =
EXI/%82, I being the moment of imertia (Fig. 4.6). For & beam of
rectanguler cross-aaction, taking _
the width as wnity wskes ¥ =ga
and P = p, and then e = Bt2/120a",
the absence of the factor (L -#4)
that appears in {4.3) representing
the differense belwesn plane airess
and plane strain. Cole (1968, pp.
69~76) analyzes this problem in the
more gensral situation when the

loading P waries with x; and the ' P

reader may wont to compare his dis-

cuaeicn with the present one. In Pig. 4.6. Deflection of
that case our membrane becomeg 4 uniforuly loaded beam
string. , “din tension

In the membrane approximation we
neglect the rigidity, which corrvesponds to setting e = 0 in (4.5).
Then the general aymmetric solution of the differential eqguation is
w = (¢ ~4xc, However, we cannot impose both boundary conditions at =
x =1, This is & characteristic dilemma whenever the order of the
' equation is lowered. There are various ways of answering the question
of which condition, if either, is to be retained. That question
~ scarcely arises here, however, because it is impossible to impose ¢the
sonditlon of zero slope; and in any case it is clear physically that
this condition disappears with the rigidity. Hence the usuwal meie
brane soiution (298§ reprosents a first approximation everywhere ex-
cept in the lmmediate viesinity of the edge.

Suppose we try to improve upon this first approximation, for example
by substituting ‘

W . “%(3,“3&2} 4 & Wg(}ﬂ) 4 see (406)

This gilves d?wEfdxg = 0O, of which the most general symmetric solution
is simply & constant. We shall gee later that this result is essentisl~
1y correct. In fuck, it is clear physically (Fig. 4.7) thet enforcing
the rigidity condition of zero slope at the edge reduces the deflection
everywhere almost uniformly. However, our sclubtion has reached & dead
end; for we have no way of calculating the constant. (The same diffi-
ewléy arises with the Nevier-Stokes equations at high Reynolds nunber:
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dropping the no-alip condition ' Pt
vields as a first approximation o5 wﬁ”””“mwmwmgxgx
an inviscid flow that is walid _ gggg%/‘yﬁ e

almost everywhere; bul the
sacond approximation cannot be

determined. ) Fig. 4.7. Membrane approximation
: ' compored with exact deflection

4.4, First local &ggrmximaﬁion 8t _edge

There is no singularity here, as in some problems, to indicate the
‘source' of difficulty. However, it is abundantly clear vhysically, as
‘well as from our neglect of boundary conditions, that the difficulty
originates at the edges. We therefore follow the general boundary-
‘layer procedure of shifting the origin to the region of nonuniformity,
end then magnifying the scale. iWe consider the left-hand edge, where
£+1 = 0 (the right-hand edge being treated in exactly the same way

byiaymmetry)a

Finding the proper scaling is a crucial step in the method. Here

. 4t ie simplest to realize that the rigidity, which was previously neg-
lected, must balance the tension near the edge. This corresponds to

introducing the magnified abscissa g

X = £+l (4»7)
s0 that the problem (4.5) becomes
4 2 | | -
lw . Ly €, ve =0 at X=0, 2fet  (4.8)

The deflection w ought to be correspondingly magnified, for it is
obviously smaller near the edge than elsewhere. In a nonlinear prob-
lem it is essential to stretch the dependent as well as the indepen=-
- dent variables. Here, however, it is not essential because any

stretching of w cancels out of the leading terms as a result of
linearity.

_ When the proper scaling is not evident, it is helpful to consider
all possible power-law stretchings and single out those that yield
nontrivial simplified equations. Thus vwe would try setting

w o= eru(X),. X = ﬁ%}» (4.9)
€

80 that the differential equation (4.5) is transformed to

glra~4b ghy a-2b 2y
- = E . "'2
ax4 e

Fig. 4.8 shows how the a~b plane is divided into three sectors,
within eich of which a single one of the three terms in the equation

dominates the other two for small e. Along the dividing rays, pairs
of terms balsnce each other. And at their common intersection all
three terms survive. ‘

1 (4.10)
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Fig. 4.8. Possible first-order équati@ns for powey-
law stretchings of =x+1 eand w.

e vreject the last poseibility since approximetion was rescrted to
because the full equation was supposed to be %oo difficult to solve.
O the other hand, the first case of a single surviving term is %oo
degenerate to be useful. Here it yields the absurdity O = 1 vhen
the pressure is dominant, but always presents the contradiction that,
a single term is so much larger than the others that it is equal o
zero. We are conseguently interested in the intermediate situaiion
where pairs of terms balance. ' We have already dealt with the balance
between tension and pressure in our global approximation. Both the
remaining pairs include rigidity. : :

If it were mot clesr physically that rigidity is balanced by tension,
both possibilities would have to be considered. If it were balanced
instead by pressure, the first local approximation would be a quartlc |

or, with the boundary conditions imposed at X = 0, Wy = AXZ2+BXJ+ |

x4/24. However, this will not mwatch with the global sclution, whereas
' we shall see tha® the other cholce does. ’ '

For & =0 our squation (4.8) has the general solution

) o . \ (-., 1}(
¥ = Aex- + Be;“x + 00X +D *r\ RUTPRPE (4.11)

He can reject the term in ex because an exponentially growing term
will not mateh (though if uncertain we would keep $t). Then imposing
the boundary conditions at the edge in question leaves

¥ = C{¥ -1 + @“X) (4.12)
. The remaining constant is not, of course, %o be found by imposing the
‘boundary conditions at the other edge, which lies far outside the
range of validity of this.local approximation. Instead, it is %o be
found by matching with the global approximation.
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4,5, Matching of plobal and local approximations

‘We anticipate that our global and local approximations have a common
- region of validity -~ an gverlap domain where both apply. If s0, we
‘can determine the remaining constant of integration im the local approx-
imation (4.12) by matching there.

Matching is the crucial step in the method of matched asymptotic
expansions. Although in some ways intuitively appealing and physically
obvious, it is abt the same time a subtle and almost magieal procedure.
We thevefor2 carry out the matching in three different ways, each of
which has its proponents -~ and its advantages and disadvantages -
though of course the result is the same in each case, e

Intuitive matching. We first emulate the giants of the nineteenth
and the First naif of the twentieth century, for whom the matchling was
a natural intvitive process. Our guiding principle is that far away
from the edge the local solution should agree with the global sclution
close to the edge. '

For large X the
exponential in (4.12) is
negligible, so the local
approximation grows lin-
early at its outer edge
(Fig. 4.9a), with slope
given by - :

w 8y X = ;% (x41) o (4.13)

{b) global solution
Pig. 4.9. Matching of slope at edge

Conversely, near the edge wheye (x+l) is small the first global approx-
imation (4.6) also becomes linsar (Fib. 4.9b):

¥ 8 (x41) , | (4.14)

Theas mateh with 3
c = & © (4»15)

Of course this shows, as anticipated, that w should have been magui-
fied to the sams extent as the abscissa in the local solution. It ie
also now olear thet the quartic local solution that would represent
& balance of rigidity and pressure cennot match. Nelther can the
positive exponential.

. Matching by intermediate limits. The notion that we have just used
of moving far away from the edge in the local solution while moving
close to the edge in the global solution can be formalized by introduc-
ing intermediste limits associated with a family of intermediate vari-
ables. 1r we restrict attention to powers of €, the relevant inter-
mediate variables here ars

;ﬁ: 54 WQ Q«&&gé‘ﬂ R (4016)
E .

The limits on the exponent assure that as ¢ =» 0 a point lying at
fixed x tends toward the edge, but more slowly than in the local
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solution. It thersfore drifts to the outer fringes of the outer solu-
“tion while approaching the edge in the imnervane;;

Por simplicity we may'us@ only the apscific intermediate wariable
with & = E, though in general the whole family is used., Then rew

writing the local solution (4.12) 4n terms of the intermediate variable
¥ = ¢4 X and expanding for small ¢ glives

oot a 1 e ) W s iiowh]  an

Parforping the same operation on the global &pproiimaﬁion gives

v = et #fn - petz] (4.18)
The leading terms egain matoh with ¢ = Q%s

~abe asyaptotic matching principle. In an effort to systematize
the matching procedure, the writer (Van Dyke 1964) proposed what he
thought to be a variant of Eaplun's scheme of matching by intermedi-
ate limite, but which Fraenkel {1969) has shown %o be & distinet PP -
cadure. It was given in the form® .

- The m-term local expansion of the n-tsrm giabal expangion =
the n-term global expansion of the m-term local expansion. (4.19)

‘This is supposed to hold for any m and m, but it is wseful only
1§or certain combinetions -- often whem m is equal t¢ n, or one
_é 88, '

- Qocawionally the counting invelved in this rule may seem awbigu-
ous; then an alternative version is useful. One may feel uncertain
how to count terms, for example, in the following situations: if
the asymptotic sequence has gaps (e.g., the series proceeds by inte-
gral powers of € except that the coefficient of £ venishes iden-
tieally); if the asymptotic sequences ave essentlally different for
the global and locsl expansions {e.g., one proceeds by powers of e,

* Here we have replaced immer and outer by local and global. The
older terms were derived from flows ot high and low Reynolds num-
ber, where the local region liee inside the global one; but our
problem ¢f the deflection of a Blightly rigid diaphragm heas already
provided an sxample whewe the positions are reversed, Disregarding
the geometrical meaning, Kaplun insisted that the terms be asgigned
so that the oubter solution is, to first order, independent of the
inner one: in other words, the outer is the primary and the inner
the secondary expansion. However, it does not seem worthwhile to
preserve this distinction, which does not exist in every problem,
and 1s gomewhat artificial, as gxemplified by the fact that the
viseous boundary layer is $hen the inner solution in foreed flow
but the outer one in free convection. Instead, our terms local
and global serve %o emphasize once more the important role of
scales in perturbation problems. They are, incidentally, close to
the terms proximal and distal adopted by our French colleagues.
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the other by half powerm): if logaritbmic terms arise (e.g., ekmg
appears as well as eX); or if eigensolutions intervene. - In such X
cases, uncertainty is usually avolded by adopting the following unam-
biguous variant of the rule:

The local expamsion to order & of the global ezpansion to order @ =
the global expansion to order & of the local expansion to order A.

: (4.20)
Here Ale) and S(e) are any two gauge functions (not necessarily

the same), which may or may not actually appear in the asymptotic seqe
uences for the global and loeal expansions. Of course this reproduces
the original form of the rule (4.19) wheéenever it is clear how to count

torma. In all subsequent general discussion we will, for simplicity,

suppose that the counting is upambiguouvs, 8¢ that the original form
¢an be used.

Ye now appl;é‘ this rule to (4.6) and (4.12), taking m=n = 1. We
systenatize the procsdure by always uwsing the following format:

l-term global expansions woe ${l-x%) {4.21a) .
rewrltten in J,@éal yariables: = e’g'it(l «»eé’m {4.23b)
expanded for small e = @:%X - gX2 ‘ {4.21¢)
l=term local expanaions = s;'%x, ' {4.214)

1-term local expansion: | % w O(Xwlde™X) {4.22a)
rewritten in global vapriebles: = GE‘% -1 4 o= (x2)/ E%]
exponded for small g e G( g«% -~ 1 4+ exp {4.228)

o S €
l-texrm global expansions P @",K:lu ” {4.224)
rewrltten ir loeal wariables
for comparisons = CX ' (4.22a)

Here in (4.22¢c) "exp® stands for exponentially small terms, smaller
than any pover of €. The lagd step is required simply to put the

two results into a common notation. Bquating them gives once more

C &8 Eo Y . .

4.6, Formasion of & compogite first approximation

Yo have found & firat approximestion that is walld everywhere, bub
i% exists in the two pleces shown in Pig. 4.9. This may be adequate
in some cases, but often we would like & single uniformly valid approx-
imation., If the local and global selutions cross -~ as they do in
this example -~ 1% would be congistent with the approximation simply
to switch from one to the other at their Intersection. However, the
reggsulting kink makes this an unsatisfactory procsdure.
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" Instead, it i3 essy to unite the elements of the giahal and loecal .
expanaions %o form a single uniformly valid ¢omposite exvangion.. The
idea is simply to combine the two approximations, and remove the part
Ehag’they have in common (which was determined in the course of watch-
ing). o

- This combination is wusually effected by addition ‘and subtraction.
- Thus the additive composite is given by ’

composite = (global) + (local) ‘_(égggélcgfg%gggi ”) {4.2%)
Just as in matching, this procedure may be applied to any n terms of
the global expansion and m terms of the local expansion (or through
orders & and 4 if the counting iz ambiguous); but usually m ie
taken equal to n, or one less. :

Por our membrans problem, taki the l-term elements from Bgs. (4.21a},
{4.22b), and {4.224), with C = ¢¥, gives

8 2 Ly o o~(xen) /ey ,
w ¥ {l-x°) + se%{mﬁgwlae ® ) {1+%)

Y oomp

. bex?) - (1 - g~(iem)/et) (4.24)

Here the last term may be regavded as a correction boundary laver, rsep-
regenting the difference between the tirue solution and the global ap~--
proximation near the edge, which is added to the latter to rendey it
widformly valid, This point 6f view is common in solid mechanics,
wger@as in fluid mechanics the full boundary layer is usually consider-
@d. :

0f course this result has been rendered walid only at the left edge,
not at the right one. We could take the attitude that the solution is
obviously. symmetric, and simply reflect it on the right; but that would
leave g kink at the middle, although of magnitude exponentially small
in e. Howewver it is more satisfying to repeat the process, forming a
composite from (4.24), regarded as the global approximation, and the
right-hand local approximation, which ig just the left-hand one with
x replaced by -x. This gives the compoaiie valid everywhere

W e (1ex2) w.e%(i - @m(1+x)/a%) - e%(i - emélmﬁ)/aﬁ) (4.25)

comp

In this form this is readily interpreted as the result of adding to the
global approximation the correction boundaery layers for the leftd and
right edges.

Clearly the composits swpension can be nowhere more accurate than the
globel and local approximations from which it was formed. Thus it is
not & mistake thet our composite result (4.25) gives a deflection w =
(~e7 + exp) at elther edge instead of zexo, for that is the ordexr of
the ervor in the {irst approximation, which would be reduced in the
second., Nevertheless, we might be tempted t¢ rewmedy this, and slightly
gimplify the result, by replacing it with the equivalent

\
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A% the middle this glves w e § = %9 whereas (4.25) gaye %‘»Qﬁ%ﬁ
and no significance can be attached to either term in €7 becauss 1t
t00 is n second-crder quantity, to be determined in the next approxi-

mation. Howsver, the sign secems right scgording to the physical argu-
ment illustrated by Fig. 4.7,

Whereas the ccnstitment,global.and-loca&«a,prOXiﬁmtions are classe-

fié&l asymptotic expansions; of the form (1.24), the composite approxi-

mation e not. It has ingtead ths form .

2(xs €) ~ Y eplxs &) O (e) (4.27)

which i3 complicated by the fact that the perturbation quantity e
appears in the coefficients e¢p @8 well as the gauge functions $n.
‘asymptotic @ |

-}

Brdelyi (1961) has termed this a*ggne;&;%ggg»qa;y;wg_”c‘e sion,
Part of the price paid for this generality is that, in contrast to &
classical expansion, the generalized asymptotic expansion of a givem
funotion is not unique ‘even'when the asymptotic sequence dnle) is

specified. However, any two alternatives are equivalent, differing

only in higher-order terms.

Gﬁn&@@uem%ly there are other ways of forming & composite expansion,
which yield results that are different but equivalent to a given order.
In fact, J. Ellinwood (unpublished) has pointed out that any operation

- on Ywo funetions can be used that has & unigue inverse and reasonable

properties of monotonicity. Multiplication is such an operation; and
in treatling the nonuniformity at the leading edge in thin-airfoil snd
slonder-body theory, the author (Van Dyke 1954) preferred the multi-
pligative composite, formed as

~ {global) - (local)

composlie TTocal of global) = (global of local) (4.28)

However there is alweys the danger of dividing by zero; and Schneider
(1973) has pointed out that thia occurs ahead of a round-nosed airfoil.

Thus the additive composite (4.23) is to be recommended for general use.

4.7. Second global approxina

- To illustrate how the method of matched asymptotic expansions is con-
tinued to higher approximations, we proceed %o the next stage of the
solution for the s8lightly rigid membrane., We must follow the usual
matching order indicated in Fig. 4.10, which involves starting with the
first globval approximation and then alternating between the global and
local expansions. (This order can be by-passed under certain cireume
atances, of which we shall see an example in the next section.) Thus
we turn to the second term of the global expeansion.

Sion

I% is helpful to anticipate the next matching by carrying out the
half that can be done now, begtause this usually serves to indicate the
order of the next term to be ¢alculated. Thus following our usual for-
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mat E@f, Bys . (4022}} ve have, for the left edge,

i-term local expsusion: wes el ¢ @"X)

rowritten in globsl variables: B leR = e%z; « @w(l+X)/g%}-

sxpanded for small &3 s 1l ¢+ % - a% + eXp

2-term global expansion: 2 (L+x) = et {4.29)
Phis suggests that the second term in
the global axpansion is of order e¥, GLOBAL I0CAL
rather than ¢ [as it would be in the ‘ EXPANSION EXPANSION
regulay §arturbation represented by v
Bq. {4.6)1. <3£E)“*wa& o

Substituting
W = %(10»32)*#e%wg(x) P weo (4.30)

intoe the original differential equation
(4.5) gives, as before,

ﬁ2w2 . '
-&gy s 0 . {(4.51)

Again the symmetrie solution ls juasi
a constant, may ¢z, which is found A
by completing the matching with the local solution:

Pig. 4.10. Normal
matching order

2-term global @gp&nsiggé W= f(lex?) + @2@%
rewritten in local variables: = 4 ze"}x(z o @%X) + B9 g'%
l~-term locel expansion: @ a%(x~wag)
rewritten in global variables *
for comparisocn: = (lex) +eze {4.32)

Then equating (4.29) and (4.32) shows that ¢s = -1, This means that
our alternative composite (4.26) happens to be correet to second order
axcept near the edges,

In the next step we would, a3 indicated by Fig. 4.10, retuwrn to the
local expansion and calculate the second approximation. Instead, we
aimply observe that any number of terms of either expension ¢an be exe
tracted from the exact solution of (4.5), which ie

7.
g%} = cosn{x/e¥)
v om 4 (1 exd) - et cosh(1/e = 4,
 sinh(1/e7) (4.33)

4.8, The sarth-noon-spaceship problem

The preceding exanmple ylelded a series belonging 0 the first cate~
gory of singular-perturbation series described in section 1.6 -« those
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involving fractional powers of the perturbation quantity. We now cone
sider a problem frow another branch of mechanics that yields a series
in the second celegeyy -- involving a mixture of powers and logarithms,

In celestial mechanlcs the restricted ithree-body problem deals with
‘one body -- pay & “spaceship® -~ of such smsll mass that it does not
affect the motion of the other two. If, moreover, one of the two
heavy bodies is much ¢he greater =-- as a sun and planet, or planet and
monAp = L% dominates the
motion. Thus a spaceship
Lauwnched from our earth
will be. only slightly diz- : ¢
turbed by the moon {(whose
wass.is 1/80 as great),
unless it ssoner or latex

asges cloge to the moon
Fig. 4.11).

A
AN

LY

_JInplece sssoclated Fig. 4.11. Trajectories of spacesh

with She moon a “"sphers i%guigh@@ grag g&xg&@ o epaceship

of influence” at which

orblig aboul the earth ’

and about the moon were to be patched together. ILagerstrom and Hevore
kion treated this perturbatiom problem more systematically using the
wethod of matched asymptotic sxpansions. We exhibit the essentiasls
with. their simplestmodal

of one-dimsensional wmotion

for & non-rotating system  Mrasey M § [2e
{ngﬁrstr@m & Kevorkian o,
L s Fue Y

In the notation of Pig. ent’
&.12, Nevion's lavw gives i |
fox the motion of & space-
ship of unit mess » 0 & L

2 Pig. 4.12. Netation for one-dimeneionsl
4z E xn Ei] (6.34) sarth-noon-spaceshlp problem

ROECGIWOS g G
at? | (1-x)?  a?
Bere @ is the universal gravitatiomal constant, and ¢he signs axe

correct for the spaceship between the earth and moon (0<x <L), It
is simpler %o work with the first integral

dxye LK B
%{ﬁ@} w @{;? 4-32;) = congt. (4.35)

This ia an energy @quatian, the firegt term representing the kinetie
and the second ﬁ@rm the potential emerzy. ‘

~

We now make several simplifications, First, we introduce dimensione
less variables by referring distance to L, messes to the total nass
(M+m) of the system, end time to [L3/26(M+m)}¥% Second, we vestrict
attention to the special case of zero energy (so that the spaceship
would reach vemote space with zero speed). Third, we measure time
from the instant of leaving the (center of the) earth. Pourth, we
introduce g = m/(M+m) as & small parameter. And fifth we interchange
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the indeopendent and dependent vearisbles. Thus ﬁh@ problen is reduced

5 (4% 2 . ®{l-x}
"’(ﬁx} (1mg) = {l-2e)x °

This can be solvsd in terms of elliptic integrals. However, s vsrture
bation solution for emall ¢ is simpler, more wseful, and Serves as

R 1)

+0) = 0 (4.36)

-8 model for more intractable problems.

For € =0 the moon i abseny, and the solution is ecasily fouwnd, .
Taking thet es & first approximstion lesds to a straightforward expan-
sion in powers of &3

- 2.5 (3;.% ! :a.»s—ss%‘) 22 gt
b= X£%{$‘§E 4+ R m»ziﬁgmmeg 4+ g x‘ G K

3 ek ' .
%lm%ﬁ%#%ﬁg)% LI (4037) .'

That this approximation is not valid close to the moon is indicated by

-8 logarithmic singulexity 8¢ x = 1 in the second term and an algebraic

one in the third. We have been able %o by-pass the usual matching order
(Fig. 4.10), and calewiate several terms in the global expansion come

pletely, because no boundary conditions ave imposed within the local
regicn near the moon. : :

For the local expsnsion we must evidenily shift the origin of space
to =z = ), and of time to the approximate time of arrival at the moen,
say Cg [which we will see is in fact given correctly as 2/3% by the
first term of the global expansion (4.37)]). Howaver, it is not elear
how greatly these variambles are to be magnified. The ratio of the first
and second %terms of the global expansion auﬁgeata an exponentially small
region of nonuniformity, where 1-x = Q(e~l/€); the ratio of the Tirat
and third terms suggests 1l-x = 0(@2);.and the ratio of the second and
third suggesta 1-x = 0(e). The gravitational forces balance in (4.34)

when J-x = 0(e?); but the potentinl energies of the earth and moon are
equal in (4.35) when 1-x = 0(c).

When the proper cholce 1s uwaclear it is helpful, as before (Sec. 4.4),
to consider all possible power-law siretchings. Thus setting

. ¢ ‘ %"“CQ '
X & e ] T = (4’0‘38)
e® ° &P |

transforms the differential equation (4.36) %o

e ; o 'a e i
(B . 2w XD 2 X ()
ax 4 ()L~ 2¢) +el™8 X ¢gl-s

(Here we have approximated the right-hand side wsing a » 0, which cor-
responds to the obvious fact that the region needs to be magnified
rather than reduced.) Now this equation degenerates to the contradic-

“tion of 8 single dominant term that vanishes, unless (a-b) =0 and

a £ l. Furthermore, unless & = 1 +the first spproximation to T is
linear in X, and will not match. Thus we must choose & = b = 1, and
the full equation in local variables becones
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e

(«ﬂff o B(leeX) . (4.40)
dk 14 X- 26X

. Iot us assume that the local golution ﬁ&sp like the global one, an
expsnsion in integral powers of g3

T3 €) = Ty(X) ¢ eTo(X) + ooo (4.41)
Phen the first approximation is found to be
Py = oednh AT - VX(14X) + (4.42)
Hexre (4 18 dstermined by matching; in our usual formet:
3 4 .g; % (:52; % %mv 1“9‘:3‘:'&’
@lobel expepsion o Ofe): & = Sx2+eigxiex %lﬂgm)
| 2
rowritten in local variables: = %(lmex)zﬁngggﬁl&ex)%ﬁﬁ(1w£X)%
m%‘mugl«@tz%]
1e(1=gX )

expanded to O{e): -

rewritten in global variables
for comparison: =

4
& ﬁ(% - X m‘%lmggg}

2
wilng  walny

- (1 5 3 log =t
Z - e o off - vaegds) (4a3)
locel expansion to O(e): & ® Qy + ei@iﬂhﬁlgsfwnfkflﬁx) + 61]

rewritben in global vars.: = Cg + e[%imhf@jlgx mj(lwx)%§~x+sl.+@1]

€
expanded to 0(c)s = G~ (1x) + oy~ 4 10gtEL]
(4.44)

[The =+e¢ in the last verm vomes from Lhe secondary term in the global
axpanaion of the second-order local terw, and was overlooked by Lager-
etrom and Kevorkian.]

These mateoh 1f (4.43) and (4.44) ave identical, which would require
2 3
@0 ax® "3: ? @l &= “’g o %‘ 103% ‘ (4045)

Strietly, this is not acceptable, because C3; was supposed %o be a
pure constant, independent of ¢ as well as x., However, this slight
mismatch by a multiple of log(l/e) is not serious. It simply means
that our local expansion (4.4)) ought to have started with a term in
l@g(lja)s and this would have been clear if we had anticipated the
matching as we did in the previous problem. Howsver, the structurse of
the expansion is sufficiently simple that starting over on that basis
yields just the same result as merely using ths above value for Oj.

Phue the local expansion about the poon gives.
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Setting X = 0 gives the time of arrivel at the (center of the) moon:

tary = %w%@log%a@(%ﬁ «»Zloga}@: * ece (4.47)
Higher pcwera of liog(l/e) can be expected in subsequent terms,

- It is clear how such a mixturs of powers and logarithms of the per-
turbation quantity  c¢f. Bq. (1.12) is generated by the interplay be-
-tween the global and locsl scales whenever either expansion contains -
a logarithm of the coordinate or any function, such as cosh-l, K,
ete., that behaves logarithmically for small or large values of the
aygument. This phenomenon has been termed switchback (¢f. lagerstrom
& Cavrsten 1972). ' :

4.9, Resolution of Stokes Paradox for Circie at Low Reynolds Humber

The fTirst triumph of the wmethod of matched asymptotic expansions was
its effective vresolution of the Stokes paradox (Sec. 2.10) for slow vis-|
cous flow past a circle, and the corresponding Whithead paradox for the
sphere. We consider the circle. This provides an example of the third
category of singular-perturbation series distinguished in Section 1.6
-= those involving integral powers of the reciprocal of the logarithm
. of the perturbation quantity. Fraenkel (1969) calls this the purely
4(, logarithnic case, and ahows that it has certain unique properties.

We saw in Sscition 2.10, that the solution of the biharmonic equation
for the stream function that grows as slowly as possible with distance,

¢ = C(x j_@gr - he o+ é-%;) 8in®© (4.48)

is invalid where r = Q0(1/R). We therefore regard this Stokes approg-
imation as the firat term of & local exypanslion, and seek to construct
& complementary global approximation valid at large radius.

We introduce the contracted redial variable

p = Rr  (4.49)

{not to be confused with the density, there bsing a shortage of syn-
bols for radial wvariables when R is pre-empted by the Reynolds num=-
ber). This corresponds to wreferring the physical radius to the viscous
length 2°/U rather thean the radius a of the circle. In these terms
the circle is described by p = B, &0 it shrinks to a point as R -3 0,
It is therefore clear that the global solution begins with the undige
turbed free stream:

Qﬁ an y‘a' Py L %Sfﬁ.ﬂl @ 4+ soe | (4‘050}

{' - We can now find the constant C by matching these two approximations.
. In our familiar format we write
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i-term global expassion: ¢ = & p sl

rewritten in local vars: = rainb

l-term local expansion, re- 3

wvritten in global vars: e £ p 8ing (4.51)
i~ferm local expansion: ¢ = Cirlogr —%r + % %}m@

rewritten in globel vars: =

>

% Mg%: vlogp -4f H;%]am 8

3
5 2og5 e +§(p Jog o = 4) +4R]am e

expanded for small H: = C
l-%erm global ezpansion: = C % lng% °p #ind (4.52)

. ¥
These match with € = log(1l/R). 4s in the earth-moon-spaceship probiem
we have encountered a switchbaci phenomenon, showing that the local
expansion starts with log{l/R). :

In this purely logarithmic case the matching is marginal, and sug-
vessive approximations proceed with agonizing alowness, We had to
negleot R~1 compared with R-1 log(1/R), because otherwise the term
in plogp would spoil the matching. This means that the expansion
proceeds, in higher approxjimations, in powers of [log(1/R)]"7. The
drag coefficient {where D' is drag per unit length) is then

D’ 1.2 )
c ¥ Ny o o Q ] . ) 4@
p ® P A% R, g % 4 (-—-L-%) } '( 53)

To proceed to higher approximations, we turn again to the global

gxpansion, in accord with the normal matching order (Fig. 4,.10). Thus
we substibute

d" ] %’S-ﬂﬁm e % m"l""‘i" @2(99@) < ooo] (4054)
logg |

in:. the full Navier-Stokes equations. This gives for %3 the linear-

ized equation for small departures from & uniform stream that was intro-
duced in 1910 by Oseen, and is known as the Oseen approximation. We
need the solution for s point disturbance. Using that result, Proudman
& Pearson (1957) found a second approximation for the drag:

. 1 L logd ~y +
GD A 4‘}5 ﬁ [w"ﬂj: s ""-i‘ Py : + swe } (405%)
g (weg) |

Here ¢ = 0.5772 is Eunler's wmtamo

This is in fact just the expansion to two terms of lamb’s (1911)
result:

2 -1
' Yog g =y +4

which he obtained by solving the linearized Oseen equations approxi-

(4.56)
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mately for swall Reynolds number. As this suggests, the problem is not
& singular perturbation if i% is solved in the contrasoted glotal coord-
inetes. The situation is thus analogous to that of slow variations (and
in accord with the quotation at the head of Chapter 3). In the corvese
ponding problem of the aphers, Illingworth (1963) has discussed how
higher approrximations can be found by iterating on the Navier-Stokes
equations startiag with the Oséen linearization. However, the method
of matched assymptotic expansions hes the advantage of producing the
solution in the simpleat possible way.

Phe computation beeowes so difficvlt that although Kaplun (1957)
clacluated the third approwimation, no further terms have bean found
since, nor is it likely that they will be. His result is

- 1 i 0.87 1.
Op ~ 4= e : *»o(m«mﬂ (4.57)
. R logh - v+ 4 {m%-»w%}‘g log g~y +¥
. The conztant 0Q87 vas found by numerdical evaluation of an infinlte inte-
gral involving products of Bessel functions. Here Proudman & Pearson's
two terus have been telescoped into the first by adoptinmg Tamb's form
{which comes from expanding the moedified Bessel function X,). Pig.

-4.13% shows that this greatly improves the agreement, though the result
is s8till imaccurate sxcept at Reynolds numbers less than unity.

fhis infinite sequencs of powers of Elog(lfﬁ)j'1 or Elag(d,/a)wvwk-é-]“q,
if it could be found, would still correspond only %o the linearlzed

40 . . —— .
% - °L term of (1.16)
0") ,° ’
| 9 terms of (1.16)
30 - | i
Cp
20 ¢~
S\ | | (ee)
\¢x \% e ®
10 e \ \ & o .M%m., . o e——— - .
0% 4
' ] & Exyperiment
‘ Q%k\\‘}%\@@@ﬁ@@@ @‘p o .
t 2 terna of <
; 2 ferue, ‘ \\Eap:mn (4»,*;,7)i
-0 L R = Ua/y 2 3

Fig. 4.13. Drag of circle at low Reynolds number
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Shey add m%&ﬁ&@@ﬂdentally snall terms

' The simplest to calculate are gonce tric“boundagx Aayers., These arise

'8imply by successive application
- of the procedure already discussed.
Thus for flow at high Prandtl

‘£low far from the body is first .~

rx)&z;, ' 5 -

{biharmonic) approximetiom near the cirele. Hence it cannot predict
the separatlon, for example, that begins at about R = 2.2 (Fig. 4.14).
The nonlinear terms in the Navier-

Stokes equations eve essential, bub

{mec. L.4)}, of relative order R.
Proudmas & Pearson {1957) discusssd
briefly the possiblility of skipping

to those terms. This ides has recent-
1y been pursusd in other yroblems.
Thus Terrill (1973) finds that inelude
ing transcendentally small terms
gigaificantly improves his solution
for viscous flow through & porous
pipe. Tho notion of finding the

Flg. 4.14. Separated flow
pagt civele at R 23 10 .

Reomplete® asyaptotic expansion, including all cr&nscen&emtalty small

%@rmﬂg ig @ealt with at great length in & new book by Dingle (1973).

- 2ayers

Boundary layvers are encountered not only in a wide range of problens

in m@@h&nics@ but in many geometrioanl configurations, and in a remarkable

variety of combinations. However, they can always be treated in prin-
ziple by appropriate application of the method of matched asynptotic
expansions. The practical computational details may become forbidding,
but one has the sztisfaction of knowing that the method decomposss &
problen into 1lis simplest possible elements.

We may distinguish three categories of multipla b@und&ry 1&y@r@.5

when a problem involves three or more disparate scales of length, Thﬁg’

- & corresponding number of distinct reglons can be distinguished, and

these are nested one within another like a set cf Russian dolleg, An
example is viscous flow with hesat -

transfer past a body at very low T. inviecid

or high Prandtl nvmber, which e iyt e T1. viscow
mpans that the thexrmal Aiffuslon HBAOR " “boundary layer
of the fluid is much greater than e e Ty A&y
its diffusion of momentum by vige ﬁﬁﬁwﬁzﬁgﬁjllle thermal
eosity. Such problems are solved . g0 boundary layer

number (Fig. 4.15) the inviscid ! .
' = %;; .

regerded as the global approximaw, :
tion to be matched to the local ' , Pig. 4.15. Concentric boundary

- epproximation in the viscous bound- ¢ layera for flow paet a body
ary layer, but then the latier is. I at high Prandtl numbsy

in turn regavrded as the.global.

‘approximation to be matched to. the‘

8t111l more local thermal layer./ Three aifferent regions sre treated im
the same way foyr Kirchoff's cepuciteor (Fig. 4.2b). As many as five
guperimposed layexrs have been dvalt with by Bush & Croseg (lQ&?) in
hypersenic viscous flow.

B
1

1
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fﬁ(Q@QQXQ;&Q%&QQ&)Jpggggggzula.ersgwgwhese typically arise at edgee .
- eornerd., @ problem is simplified if the thicknesses of the layers
~are of different orders. For example, :

~ eeding paragraph; and the intersection
" directly by matching. However, there )

boundary layers may be distinguished’

- viscous fluid (Fig. 4.18). Fluid is
‘Arevn inward at the poles, carried

_ term "colliding® is used to emphasize
: tg:h?acg that the boundary layer om -
- elther hemisphere could continue well . .
u?ast the equator without separating Pig. 4.18. Colliding boundary
'~ {Banks

isé;llaffhé:subtletieS'ot:matching

. mi?gftg
. 1% 1s more difficult to solve the second categoryof intersecting

-
d X

[
)

if & circular cylinder filled with
#lightly viscous fluid is impulsively
set into rotation at large Reynolds
Bumber R = £a2/y (Fig. 4.16),
boundary layers of thicknessee R™Y?
and R°Y grow on the sides, and of
thicknens -2 on the flat ends.
(Greenspan & Howsrd 1963). The three ]
concentric regions on the sides can
be treated as described in the pre- /.

|
§

with the layer on the ends is handled | Fig. 4.16. Spin-up of £imdd

. ’ i 4 Y

" of dimension R=1/2 ¢that is intractabdle.

Thie more 4ifficult problem of the
Intersection of two egqual boundary
layers arises in pure form, for example,
#ith the meniscus in a corner (Fig.
4.3.7), or viscous flow along & corner.
These intersections have usually re-

_.quired nume@ical solutiqn. : Pig. 4.17. Intersecting

_— o , . neniscuses in o cornex
. A third category of colliding Henieus B A

in a moving medium. An example.is-a / _
‘'sphere spinning steadily .in slightly

around the surface ia a thin boundary
layer, and then ejected in an equgtor-
ia). sheet after the two boundary )
lgyers collide at the equator, The '

1965) were it not to meet its | layers on spinning sphere

. mirror image head on. o :

. Matching, which is the heart of the method of matched asymptotic |
oxpansions, is evidently a delicete and subile process¢ The newcomer
to §h®1subj@ct wey be entitled %o regard it am mysterious and even
magical.

The process was first systematized by Priedrichs (1955), who ecalled
4% the "identification technigue.® Deeper insight into the nature of
metching was provided by Kaplun, who introduced such coneepts as the

Al
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overiap domain, intermediate limite and expsnsions, and the extension
prinoiple. The three papers that comprise his published 1life work
(Baplun 1954, Kaplun 1957, Kaplun & Lagerstrom 1957) have been repube
1ished, together with some incomplete notes left unpublished at hid
death (Kaplwun 1967). Purther discussion and interpreteotion has bsen
provided by Lagerstrom and his colleaguss in that volume and elge-
vhere. In particular, Lagerstrom & Casten (1972) give a useful review
with the aid of medel equations. :

- The central idea is that of overlap. %wo expansions can bs i
matched only if they ave both rich snough to cover a common region:
- of wvalidity.: This is the case for Prandtl‘'s boundary layer, which'
in ite outer fringes , : . )
m@rg@? into ﬁh@}invi@@iﬁ :
flow {(Fig. 4.19). By .
conbrast, a more : INVISCID

draatic simplifi- ¥ILOW

- ecabtion of the

Ravier-Stokes % @va?iap
equations would BOUNDARY
lead to the Stokes LAYER

approximation of
ereeping flow, but
that applies only : W ‘ Stokes layewr
in & thin sheet at . ire

ths bottom of
Prandtl's layers it
is not rich enough :
to overlap with the . : : :
invieseid flow. ' Pig. 4.19. Viscous flov past flat

o

o , plate, indicating overlap of
If overlap exists, boundary layer end inviecid flow

‘ﬁatching,rests on ths ’
‘general principle that ;

The local expansion of the global expension should,
to appropriate orders, agree with the global expan+' {4.58)
- sion of the local expamsion. (Legerstrom 1957) .

The spscific way in which this is carried out in practice is largely
‘& natter of teste. 4 master in the field may choose %o mateh intu~
itdvely, and sniff at eny formal scheme., But his intuition will fail
at some stage: even Prandtl wavered when he discussed higher-order
boundary-layer theory (Prandtl 1934, p. 90). In the book of Cole
(1968) watching is alweys by intermediate limits. The present writer,
verhaps for lack of experisnce, feels, insecure with that uethod, and
" prefers the "asympiotic matching primciple® (4.19) -- or, betser,
4.20) =~ because it is so auntomatic it could be programwmed for @
computor. '

Another important study of the mathematical nature of matching hes
been presented by Fraenkel (1969) in a series of three papers whose
significance has been largely overlocked. The first part, in particu-
lar, is hard reading for an engineer. But concealed among the new
notation, definitions, . lemmas, and theorems are several nuggets of
practical information. WHe summarize the three most useful points:s
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1._The seymptotic matohing principle vs. intermediate limits. The !
. asymptotic matching principle (4.19) or (4.20) can be incorrect in some
‘cases,. including the two important situations covered by points 2 and
3 below. However it has the advantage of being easier to use than -
Eaplun's procedure of matching by intermediate limits (sec. 4.5), ),
‘which depends on the existence of overlap. It succeeds even when E
applied to local and global expansions that contain too few terms %o
overlap to the order of the terms being matched. ! ’

‘2. Don't cut between logarithms. Iet e be specified as the ratio’

. of the local to the global scales. Then in matching, all terms must |
be grouped together that differ by less than some power of & «= that
~i8, one should not separate termsmtﬁat_ditfer only by a power of the
logarithm, such as e¥loge and €Y. This seems plausible, because |
[} change of scale from €& to ce will shift powers of loge among }

-such c¢loge terms., - ' :

_ The practical importance of this warning is illustrated by & recent
- calculatlon of acoustic diffraction by a thin plste (Crighiton & lep-
pington 1973). The asymptotic sequence for the local expansion i®

l[ﬂ €y &“:2 1@'& €y @29 £3 l@g e 5‘:33 © o o (‘ﬁs%%}

It bappens that disrsgerding Fraenkel®s warning and truncating the
geriss st ¢ loge gives & correct mateh; but truncating at €3 loge
yields e result that viclates & §eeiprocity principle, and is corrected
by retaining alse the term in e2. This casts doubt on the result
{1.12) of Chester and Breach for the drag of a sphere at low Reynolds
number, becavse 1% has exactly the same asymptotic sequence, and has

boen truncated at jJust the point that led to erxror in the diffraction
problem, ' ' :

- 4 Forbidden regions in the purely logarithmic case. In the "purely
logarithmic case™ (sec. 4.9), when both the global and the local expan-
sions proceed in powers of [log(1l/e¢))”?, the asymptotic matching prin-
a cipla,?4g19).may fail for certain values of m and n 1lying within a
"forbidden region.® This difficulty is actually encountered in the
‘problem:-of axisymmetric flow past a paraboloid of revolution at low
" Reynolds number, and in various cylindrical geometries (Exzerciee 4.2).
The remedy seems to be simply to proceed to the next approximation, '
which ordinarily carries one outside the forbidden region, so that
al). constants can then be determined by matching. ,

The following additlional remarks about matching may be helpful:

&. Metching is different from patching. The idea of patching two
curves is a familiar one, exemplified by Laplace's "“sphere of influ--
- ence" at which orbits about the earth and the moon are joined with

- continuous tangent, but discontinuities in higher derivatives. By /
" gontrast, matching yields a smooth transition, with all derivatives
sontinuous. : ‘

b, ggtchihg takes the place of missing boundggx conditiong. It

48 used to determine the elements in one or both of the expansions'

that are unknown for lack of boundary conditions. These elements i
are usually multiplicative constants, but may also be expoments ; ‘
- (Brercise 4.1) and even functions (Exercise 4.7%). f
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6. YMatching one guentity matches all. One is free to matoch any |
‘depsndent variable that serves the purpose of determining missing /

slements, | Then other dependent variables are also matched, or
matching them ingtead would give the same result. For example, in
viscous bouwndary-layer theory it is customary to match either the
gtrean function 9 or the tangential velocity componsnt ©w = &,
and thon the other is avtomatically metched. (0f course if the
depondent variable were a polynomial, matching too high a derivative
would yield e corrsct but useless triviality.) Likewise, it may
auffice to match along one line rather than throughout a reglon.
Por axample, Crighton & Leppington (1973) match on only a single
ray from the origin. S ‘

- d. Zhe asymptetic matching principle holds for any m gnd B 3
~ {or in the form {4.20), for any 4 and &), Ordinarily, when the
- normal matching oxrder is followed, only the choices n=m (for !
the right-hand column of Fig., 4.10) and n = m+1 (for the left«

- hand column) are useful. All other combinations give results that!
are also correct, but only trivially so. \ A {

i

. @, Numerical or even sxperimeptal results can be matched. It is
‘only nscessary that the asymptotic form of the result be known im
;cleosed analytic form. For example, in the classical problem of
wviscous flow past a flat plate(Pig. 4
‘dnvolves the so-called Blesius function £(% ), which is found by
numerical integration of a nonlinear ordinerxy differential equation,
It can be matched using the fact, revealed by u simple asymptotic
analysis of the aguation, that (Y )~ % « 8 + ... for large

{that im, im the outer fringes of the boundary layer - the overlap

!

«19) the boundary-layer solution

raglion). . ’

@;12. Friumphs of the method of matched asymptotic expansions

The literature of engineering mechanics shows that the wethod of
matohed asymptotic expensions has by now been applied to several thous-
and problems. The majority arve in the various branches of fluid mech-
anics, and such allied fields as heat transfer and combustion; but the
method is increassingly being applied o diffraction, s0lid mechanics,
calestial wechanics, etc. ‘

Most of these applications are straightforward or even routins. &
fow stand out, however, for their novelty of technigue, or the simpli-
city and elegance of the results. Ye sketch a few sxamples of what
are, in the author‘s opinion, such triumphs of the method.

Its firet euccessss were ths definitive resolution of the parddoxes
of Stokss and Whitehead in viscous flow theory. We mentioned in sec.
2.9 the resolution of anslogous paradoxes - also involving logerithwmic
divergence at infinity -- in the theory of elestic contact and of free-
surface planing; and in sec. l.6 the removal of the algebraic singulayr-
ity in the membrane approximation for a toreidal shell. Aancther ezam-
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ple of a paradox resolved
is the motion of a slightly
viscous vortex ring (Fig.
(4.20) . In plane flow, a
vortex can be approximated
by an iaviscid singularity:
but in three dimensions a
curved soncentrated vortex
line induces infinite velo- .
city on itseli, so that : . '
viscosity, though small, is Full Global Local

crucial. Tung & Ting (1967) problem approximation approximation
matched the local solution . W

for a two-dimensional viscous Fig. 4.20. Motion of a viscous
vortex to the global solution vortex ring

for an invisecid vortex ring,
to find a finite speed for the
ring, decreasing logarithmically with time as the core diffuses.

‘Another significant role of matched expansions is in systematizing
ad hoc approximations. (A class of free~streamline problems that have
been treated is exemplified
by the two-dimensional water-
fall feormed by a waiform ALY
inviscid stresam flowing over
a cliff (Fig. 4,21). It is \

%lear that far from the brink
-(in the absence of surface ‘ .
Lo Full (lobal ap- local
L ar B Aty
§§§§§°§a§§§ ii;gigléigi{ytig problem proximation aprroximation

& thin sheet along 8 nearly , . . .
parabolic arc. Clarke (1965) Fig. 4.2). Plane inviscid waterfall
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o
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matched that global approximation to a local approximation departing
only aslightly from a horizontal stream near the edge. For the aerodyn-
" amics of a wing of high ‘
aspect ratio (Fig. 4.21),
Friedrichs (1953) first
showed how Prandtl's
lifting~line theory could
be embedded in a system-
gtic expansion scheme; and
the author (Van Dyke 1964)
had the pleasurs of working

Full prob- Global ap- Local ap-
gggrghgpgﬁzgiigtggnﬁhe lem proximation proximation
(At thal stage for a smooth o .
planform there appears neax Figé géglgaéigtlng wing of high
the wing tip a still nmore 8P

local region of nonuniformity
that has not yet been analyzed.)

Ogilvie (1970) has recently shown how the method of watched asym-
ptotic expansions is useful in a variety of problems of ship hydrodyn-
amics. In s80lid mechanics, Messick (1962) has treated boundary layers
at the edges of plates and shells, and their intersections at corners.
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PThis brief sampling could be multiplied meny times., In fluid BECH-~
anice, for example, matching has produced interesting results in the
theories of asrodynamic noise, sonlc boom, hydredynsmic stability,
lubrication, ravefied gases, itransonic and hypersonic flow, and water
waves, The reader interested in further examples will encounter them
in almost every issue of the Journal of Fluid Mechanics, for example,
or he ckn consult the books of Cole (1968), Neyfeh (1973), and Van
Dyke (1964) and subsequent references to them in Science Citations.
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4.1, Matehing for mressurized goroidal shell. In a Stanford Fh.D.

shoals the deformation of o alightly

. @olved by the methed of matched .

asysptotic expsusions. Iterating

- on the linsarized nenbiane
approxivetion yislds for {he.

"~ angular rotation AL of an

slemnt of the shell the

- pories {(with the abbreviation
B w sinp)

% D40 qay o 20T 8 24 o o BB a) (28 8)
WW - @@‘(‘“ e 3 8 K @@(@.{F@) - g %i_l‘“ ) o %‘%

: 2 -1 4 35 .3 .41, 2.2 3 3.'12@V 2

g g e {38+ = Beimpat «Lag’ - 26%87) 4 ole”)
- w3 8)? P ﬁiﬁ &3@ ie c o

“Eere the constent of ﬁ.ﬁa&eggxﬁﬁm X dtself has an @XW&@X}. K s

By + e Ky # co. The positive expomenta v aund & are vnknown,

a8 well as the constants K,. This approximation falleas near @ =

0O or %, where the pressure is not resisted by compound curvabture

of the shell, s¢ that bending xigldity becowss of primery imporiance .
In terms of a boundary-layer variable & 8/ ﬁe& p i

the approximation in that vieinity is found
%o be 54 : _
X = %%fm{mwmm o cy{@m @) + 1}] + o)

Hare F@ and ,‘E?l ars tabulated functions that bshave Toxr gmall
“values of thelr argument as '
T ( wo & . wl 2

Poll)~ Zi~ e Y+ coeo AL iy S Y AL

{a) Give a pilavaible motivation for the choice of €% 1 th

v

boundary-layer variable. :

{b) Match the two oxpansions to delermine the exponent vy, and
.the constant X; in terms of O (vhich is itself them
.gmmd fm}gn ‘%h@ symmetry condition of zero rotation at
b = ,ﬁ: b8 2 ® - .

(c) Porm & composite first approximationm that ls uniformly walid.

4,2, Metehing in the purely jomarithmic case: sliding rod. 4an infine
itely long ecireulsr red of radiug o Iinltially at rest im en unbouwnd~
o8 sxpanse of viscous liguld is impulsively set into motion along its
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axis with sonstant speed U. The problem for the resulting £luid
ralocity im '

uvmlU a8t rea
%a'm@ gt t =0, v = ab

g = ¥ {uge + ufr),
{Alternndively, w 48 the temperature inm & solid of thermal con-
duetivity ¥ outside & cylinder of radius a whoss temperature is
suddenly reised by an smownt U.)} It ie convenient to introduce the
dimensioniess variebles w = w/U, R = p/a, and the similarity
gapiable % = a/2(»4)¥, Thon the problem becomes

wwl 86 Rel

% -~@»‘ SR+ 2x%, = O
n + ¥p/R ¢ . €  we0 at T=, R» ®

. v d (5 .(:‘E“"‘J\‘

;’ u\ s f‘&l :
We seek on approximation for large time (hence sitell %), Neglact-
ing the term containing 79, eud imposing the surface boundary cone-
dition, glves the approximation we= 1 + Clog R. This repressnts,
in fact, the infinite [iockes expapeion, of the form

. I & b o T
T w o= 3 % g o + ¥+ ooof B R
o {Mlﬂ’ (egl/z)®  (log1/z)d

beosuse the neglected terms in TS ere smaller than eny pover of

&i&@% 14Ei~=L, However, this canncot satisfy the boundary condition ab
B=ao. To describe the flow far from the surface we introduce the
contracted radivs p = TR = Urfzr » In thees QOpeen variables the

probiemn ??@@@HWSQ ' -
. 4 (2@»@»1/@}*% ag»ggwﬁ w 0, we l 8% p=T

w
pe wed at p=w, T = 05

How neglacting the term containing T gives as & Lfirst approxime.-
tion & multiple of El(@f?)g where the exponential integral is

A - : y .
By(z) = gm 4‘%&@3 = «(logs ¢y) + Q}(ef?‘{) for small 3
‘ % : ) \)\// (‘V =% 95??2000)
. Matohipg with the Pirst term of the J%okes expesnsion shows that the

consbens is 4/ (legl/C), with a relative error of the same order.
Thus tbhe Oneen expeansion bas the form o -

2 SENAY:
* v i e of)

(a) %@Mg)m@ asynptosio m‘&;@gﬂs& prineiple in the special form of
4:20) ' : :
The Stokes expsmsion to ovder (logi/z) ™ of the
Opesn expansion %o erder (logl/T) B = <¢the Omeen
expansion to ordeyr (JaglJfZ}™R of the Stokes
- axpansion to owvder {legl/e)-® '
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try to meteh for all six comwbinations with m =0, 1, 2 and
nws 0, 1. Thus determine the constants a and b in the
Stokes expansicn, and show that matching is impossible in two

of the cases. What is the shape of the forbidden region in
the p-n-plesa? - - . '

(b) Show het the second and third terms of the Stokes sxpansion
@an h@ telescoped into ome by rewriting them, for soms K, a8

v = 1 4+ { B 4 2
| logkfe  (logkfE)?

{c) Whet can you sny about the utility of a e@m@@%iﬁa expansion in
this cage? : - -

‘9?;@@0 51@@ R

: ;4@30_$pm@wi@allg'aymm@%ria'n@i@@ field. The method of matm&@ﬁ'a@ym@m

totic expansions has recently been applied with success to various
problems of serodynanic sound, of which the following is a simple
- example: . ' : : . : o

A certain loud source of sound can be idealized &s a aphere of
radivs a through whope surface air is being pumped with redial

velocity Vcosamb, An approximate solution is sought on the basis
that the magimume speed ¥V is small compared with the undisturved
speed of sound ¢. Then entropy chenges can be neglected %o high
order, so that the radisl velecity is 6/er, wvhere the veloclty .
potential # satisfies the nonlinear squation of ges dynanics

[62 = (v-1) (By + 402 ] (Bt 28E) = frg + 20y + B2 o
- Here the adiabatic axponsnt ¥ ‘is = constant (7/5 for air).

{(a) Introduce dimensionless variables appropriate to the flow in
the vicinity of the source, referring velocities to VYV, time

" %0 1Jw, and distences €0 a.  Thus show that, provided the
dinensionless frequency weafV i3 of order unity, the nearly
¢low 18 incompressible with an eérror of order Q@ where
M= Ve 18 the Mach number. S .

(b) Solve the iacompressibje problem. Then itéerate to find the
correction of order M, carrying the solution just far gnough
4o Pind evidence of nonuniformity when the radius is as largs
as the acoustic wavelength e/t.

{¢) Introduce new dimensionless varisbles uppropriate to that
distent region, and show that to & Tirst approximation for
pmall K Ghe motion there 1is governed by the linear wave
esguation. Matoh the general solution of the wave equation for
outgoing wavss, @ o= F{r-ct)/e, %o the incompreasible solution.

4.4, Deflection of slightly xigid triangular nenbixone. Consider the
- deflection dus to wniform loading of a slightly rigid membrane undey
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4:6. Oualitutive meiching for viscous Plow past barrier, OL1 is Deiog

wirpsd steadily through the paseage between two marallel flab plates,
and at sows point this is nearly

: K

bl@@ﬁl’ﬁ?@ %3\3},’5‘ o, -ﬁ;xamﬂgg@vﬁzng@ pl&'t@ BBl B X F 2 4 0 g a5 2 “f R A
thet loaves only sesll gaps for i B 1y
the o1 to wouirt Through. The rerscs D é v
motlon will certainly obey the e ¥ oo
E?@WA@X“W&%@R@@ equations; DA A A i i G b e i TS

sentinnlty: : Uy ¢y = 0O

Remonentums Uiy ¢ vig @ B /D wm (e # U 3

yazmmamm@z uvy + fsv%y & ;pyj N O Vi )]

but the problen is obviously too difficult 4o solve analytically,
Suppose you deecide o approximate on the basis that the ratie :

€ = d/h of gap to channel half-width is smail. Brplain why this

ie almost surgly a singular perturbation. Deseribe how it wonld ba
treated by the method of matehsd asynptotic expansions. For bodh
the global end the lecal problem define the lvdependent verigbles,
sketeh the geometry for the fivat approxivation, and indicate what
you think the streamlinss pight look 1ike., %hen fron overal contine
ulty conslderations dedunce ths order, in ferme of g, of the POLOCw
ity cowponenta in the leocal problem., Hewse deduce from the Favier.
Stokes equations ths order of the pregsure in the local problem.
Thus deduce finally that the drag coefficient of the transverss
plate (its drag per wait distance inteo the sketeh divided, say, by
pU2n) varies as @ certaln nown power of e. :

+



20 Pen T8

A
&mt:% 5".133

wnilforn tenuien vhen i%e shape is an equilnboral triengle. Pind a
Liret spprozivation o ths solulion of equations {4.3) and (4.4)
for smeil . Use 8%.-Ténant®s vesuld _
(for the enalogons toxsion problem)

that the soluticon of Vo » -1 for an.
squiinteral trisnmgle with w = O om
the boundery is & polyncaisl of dogree
thwew dn = and y (and hence simply
the produst of the three linsar fune-
bioms of x esud ¥ thet vanish along
tho odges). Pind the bhoundary-layer
aorreation for the odges =z = 1.  Discuss
whether the boundary-layer solubion is
velid in o cornev, aud if not, whet is
requived there? :

4.5, Boavily loaded journal bearism. Reynolde's theory of lubrisation

glven tha problem for the pressure increment p(@) 4in em infinitely
leng Journal besring ae _

Lofpd 40Y e
if@?@ a9/ = GeUR éfé? f
p{0) = pl2a) = 0,

For & amall yatio of mean clearance o o
radive R, the gep width h{(Q) can be
approzimated by o{l-$coe®). Taen Soumey
fold's solution is :

pou . BB $(2-So0s0) sine
o®  (24§2)(1-Seosd)?

Suppose thed (perbaps because dommerfeld®s solution was not kmown) one
wors to atiack the problem by sesking an approximate solution foy hoavy
loading - snmd hence very swall minimum gap — by setting & = (1L -e)
and appronimeting for swall €. Deduce Prom Sommerfeld’s solution the
Pivet tvo torms of the straightforward (global) sxpansion for small &.
Verdfy that the firet term eatisfies the first-~order global problam,
obbtained by simply setting ¢ = Q0 inm the full problem. Deduce ¢the
aize of the saugulsy reglon near © = 0 whers the global expansion
breaks down, describing it a8 @ = 0(c%) with an appropriate exponend
k. Show thet the sema estimste is obbained by using the firest global
approxiwation fo evaluate the ratic of terma neglected %o those include
" ed in settine e = O in the full problam. Introduce the magnified
(local) variable @ « ©/e¢k into both the problem and Somperfeld‘s
solution. Verify that it satisfies the Local eguation o first order,
Introducs the intermediate variable 1 = 0/cW¥? o g ¥2® into the lesd-
ing terms of the loeal and global expansions. Expand both foranlly to
first order for smsll ¢ and verify that the two results agres. Rew
write the leading term of the gloval expansion in terms of the loeal
variable @ and sxzpand to first order for small e. Conversely,
write the leading term of the local expansion in terms of the global
variable @ and expand to Firut order, Verify that the two rosults
BETOS »
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5.1, Introdnetion

Host perturbations are singuier, and most singular perturbatiocns
are of boundery-layer typs, so thad they can be treated by the msthod
- of matched asyuptotic expansions. However, there is a large and ETOY~
. ing category of problems in mechanics having a more complicate strug~
. ture, Most of these cam be categorized as involving slowly modulated
o8eillations -~ vibrations or waves. Such problems cannot be solved
by matching, but can be treated by a more general technique that has
coms %o bs known as the method of multiple scales, ’ :

. Of courss a boundary-layer problem involves multiple scales, in the.

Bense that in some direction two disparate scales are relevant. How- ¥
ever, there is the simplifying feature that at any .point only ome or /|

the. ether of the scales is of primery importance. - Consequently the {

- field can be subdivided into a global and & local region, in eack of .,
- which only the single relevant scale need be used. By contrest, in a /
- 8lowly modulated osecillation both scales are of primary importance K

. everywhere. “We might say that it is packed full of boundary laysrs. /

~ 7he method of miltiple sosles consists in working with both sc&lea,’\
 simultaneously, and regarding them as independent. This seems at £iret)
-8ight a retrograde step, inasmach as it increuses the number of inde- i
. pendent variables, and so turns an ordinary differentisl equation into
8 partial one, whereas our sim is to solve the problem by revers the

- process -- for example, by separating variables. -However, we s Bee

that this complication is more apparent than real, because the extrs |

variable appesrs only as a parsmeter at each stage. The consequemce is '
"B WO (X m‘t - ti 0, Lr .""“-" e XU D 2 :

:  fun

ma. B A
¥y thers

: quations
'y nmmumiiarmi

be_suppressed.

f’EWiﬁ@nﬁly muliiple scales, being tﬁedﬁara_g@&@ral technique, san be.
used to treat boundary-layer probloms as well. That slightly eompli~
- ¢ates the analysis, because the global and local regions are then treat-)

- 6d simultaneocusly xather than separately. However, the result has the

{

advantage of heing wiformly valid, whereas matching yields expanaions |



e

- that bave to be combined into & composite series if a single wniform
sxpansion is required. %The result is in any case a generalized ESYHp~
totio expunnlon (se6. %4, 4.6), and is therefurs nob wmigue. This
megns that theve is e certsin amewnt of freedow in the choice of the
nlowly varying fumetlions, and this cuh sometives be exploifed for

some specirfie purpose.

. Ynereas uatching i3 150 ysars old, the method of multivle scales
has bsen invented and developed within ths last two decades, I¢
appesrs to hove heen imbroduced by Sturrock (1957), who ealled 4%
the “derivative-enpunsion method.® -I% hes also been cslled the %S
veriable expension method® (Cole 1968) snd, becavse it was Pirat
applisd %o problems baviag time 28 the indepsndent variable, it bes
fucetiounly been called “two-timing.® , . :

502, Nepr-resonant ezxcitation of & limesr oscillater _

: §
- He ave primerlly iuterested in problems of continuum meohanics,.
Which requires the solution of partial differential squations. How-
aver, to exhibit the method of mulitinle ' L
Boales in 1ts simplest form we borrew
frem Kevorkian (1966) the problsm of
an undempsd lineear oselillstor started
from rest. As the basis for & pere
turbation echems, we suppose that
the driving fyeguency @ differe
only elightly from the nmtural
freguency & = {(k/u)¥.

We refer the displacement § %o
the static deflection Pp/k, 8&nd

“he time %o the reeiprocal of ths . 5.1, o \
neturel frequsncy. Then with Eignﬁgrlgiﬁ%ﬁgiémgggigigzgr
€= Wed)fur, the full problem iom
ig . , - ‘

¥ 4y = cob(l-e)t, y(0) = y(0) = 0. (5.1)

& straightforward perturbation éxp%m&i@n gives
g -a}gf ein t « 16 (4% com ¢ =% 8in 1) = $e? (2 tInin® +
' + 5i€c08t - 3% aint) + ,@@j (5.2)

This ie cleerly luvalid for lavge time, when 4 = 0(1/e). The
Lirat berm incresses indefinitely in amplitude, corresponding to
ezact resonance; but the second and thixd teims grow to the same order
as the first wher % =« 0{1/¢), wad then y 3ig also 0(i/e). PForther-
Bere, the goveniformity i evident in evem the first term, becauss the
geouler torms (Bseo. 2.9) tamt, t cowt, ete., fail %o display the
periodiciiy that we know the ezaos solution must possass.®

]

" ' .
L% i otrictly periedic 32 & is & rational fraction, but in sy
caps globelly pewisdic, repeating iteelf afler € = 2nfe,
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0F couwrse in this simple problem bhe szact solution is well kwnowns

=per | {eoB et ~1) con ¢ + sin ot sm‘t:j (5.5}

23]

4 ,
;&?‘; p] PrEsd S?’n%;ﬁamn:g- g‘

Bryanding this formally for swall e _(aad also smell e%) reproduces
thes perturbation series (5.2), and shows how its successive terms
deviate from the true solution (Pig. S.2).

Cnr previouws - *, %ftfézgmm
experience might - PO e
auggest that the > PN A N
nopunifomity cen by I
e removed by . e

uning the method

of mntched asymp-

totic sxpansions, 0
-~ dndroducing the

sontracted lLlocal

variables ¥ and

%, valid near the

point at T = @,

aacording to

Fd

ym%”?ﬁ‘i‘g@}g

¥ig. 5@2, Beenonse of undamped linear

D w ek (5.4) @g@zmmmr 40 peapr-resonent excita-
- « 4 tion
However, this transforms the 5 o,
Pl differontial eguation to o cor(Gy Ve
.y _ ‘ : w e T L)
Y ¢ w aesm{%m‘ﬁ} v {5.5)

which glves as a first approximation nothing mors than the averags
value Y = 0. Matehed expansions are imapplicable because this ie
net & boundary-layer problem.

Tostead, we recognize that both the short time mcale + and the
long seale T = et ave glanltansously operative by setting

. . " T s
}y [ %yl{?f:g’r} < S’ﬂébé:ﬁﬁ?) 4 @¥3(39T3 P oOf & . %} ;; ;,t;t ' (%06}

(Yo staxrt the szpansion with & %erm in 1/e hecnuse, as implied hy
the sitrailghiforward expansion, y reaches that order of magnitude
a8 & resalt of the near rescnance. Failing €0 include this torw
would again bring sscwiar terms into the following analyeis.) Sub-
atituting into the differential equation snd bowndary conditions
(5.1}, oalonlating derivatives by the chain vule, and sguating like
powers of ¢ ylelds the sequence of problems

@%’1 ' : Ay
Pr SR A UL 9. = ‘?g%i‘ = 0 T et Ts PO

2 3%y , ¥y |
,;a:f,‘z:% 4+ ¥ D = GO0 (“i;'m‘l‘j e ,‘Zimgz F) Jo = E“%y;?; 4 25“‘;‘"}“ @ a8t Ta %
b ’ BE T aT O
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By LSy 08yy.0 By 0p.y Cm
dgs T 9m mE arar | are Y =gy TR v 0 8t T=T =0
@Kl = 39 49 ¢oe) (507)
¥s see that at each stage the slowsr variable appears only param ,
meirically, se that these are effectively ordinary differentisl
squations. The Piret has the general solution -
g1 = A(2) onew + B(T) sin ¥, A{0) = B(O) = 0 © (5.8)

It is typical of the method that the solution can be completed at /.
any stage only by examiming the problem for the next approximation ¢
(though it need not be completely solved)! Thuse we inspect the sec-
ond-order équation, which bsconss -

@g’?y;g' : RN NP N -l '
z;%ﬁ + Fy = E«m@? - 2B (mj@@@‘f&:’ + Eaisn‘x & 24A {‘X‘ﬁsm? {5.9)

The non-homegensous torms in @inT ana' 0087 will im éenefal Pro- |
duce secular terms in. ®eos T and Teim¥. The simplest vay of sup-y
. pﬁassm, thaf secularity is to armihilate the right-hand side by
. choosing SR

A'(2) = ~fomT,  B'(D) w foow? .  (5.10)

Then integrating, veing the imitial conditions on A eud B found
in the fivet approximation (%.8), gives : :

AT} = flcoa®-1), B(R) = fem® . (5.11)
Thus we heve found the weiformly valid £irst approzimetion _
y m gf; Ef(emﬁ@ =1) coBE® % éﬁ.ﬂff‘sinﬁj + Of{1) H (5.12)
or finally, restoring the original variable ¢, .
oy e i(mém 1) €08t + Wi et stnt] [1 + oe)] (5.13)

fhis is in obvious accord with the exset solution (5.3). In this
sinple esxanple the process csn be continued indefinitely to find
suscessive terms in the expavsion (5.5) which will, according e
the exact solution, all be simple multiples of the first, giving

y o~ ﬁé%%@@% gbwl) oot < mm'@mt{m rde + 322 > o0) (5.34)

5.3, The elemenis of the method of multiple secalse

This simple ezmample has illustrated all the cesential featurss of
the method of maléiple scales. In contrast ¢o a regular-perturbation |
problem, whose solution ie an asymptotic expansion of the classical ;
Poincare form (1.26), or a bouadary-layer problem, whose solutiom.
can be represented by two such expamsions in .overlapping regions . .
with corrvespondingly different scales, the solution hers (like a



composite expansion) ies a
~of the form

y ~ L Ry (45 )

asymptotic expansion (sec. 3.4),
: (5.15)

He have remarked that such an expansion is far from balog walque,
me that further rules of procedure srs requived. Heve $he basic
rale 1o that the dependence of the y, on the parameter g iz only
through the slower scale et, #0 that the expsnsion specislizes to

y o~ Z %2 g (%, et) ' (5.16)

Parther rules are vequirved to spedify the procedurs. In vartieular,
one faces the decisiomn whether to write cosfficients in terms of the
short scale, the long scale, or both. Thut is, the forcing term in
(5.1) can be written variously as - .

cos (l~g)t =  cos{C-e%, oob(E-T), m:s{%mﬁ“zf)g mmé%{m‘f@} (5.27)
We made withou$s comment the simplest choice -— the second of ﬁh@&@ e
aad the reader can verify that it alone yields & uniform result.

This might suggest that the coefficlients are 4o be rvewritten in
texme of the two scales in such & way as ¢ eliminate all explicit
dependence on €. However, in some problems (cf., Exercise 5.5} .
this would meke the firvst approximation the full aolution, so that
no approzimetion was achieved. AL yresent, we can only propose the
sonpewhat wneaticfactory rule that coefficients may be left unchanged
except where that leads to nonuniformity. S

Thus we may summarize the method of multiple scales, in ite-
simplest form, as follows: | .

‘1. Introduce, in addition to the original dimensionless
coordinate, a second slower (or faster) independent - \
variable equal to the first multiplied (or divided) by «&.

2. Thereafter (until the approximation is complete), regayd (o
these two coordinstes as entirely independent, calculating
: deriv&txves by the chain rule. ) :

3. Leave coefficients in terms of the original coordinate’
except where that is found to lead to nonuniformity.

{4. Expahd"the éolutibh in ﬁowersﬁof £y ‘aubatitute into the
‘problem, equate like powers of ¢, and solve the resulting
simpler problems in succession.

5. At each stage determine the functions of integration, which -
depend on the slower coordinate, by requiring that the next
term in the expansion be uniformly smaller -- hence no BOYeE
singular ~- than its predecessor.
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The varisty of physical problems that have been treated in the
literature using the wethod of multiple seales show many varistions
on this basic schems. It can be applied t0 & space as well as a
time variable (in which case it is nstural to speak of short and
long, rather than fast eand slow, variebles). The procedurs applies
t6-parvisal 28 well as oxdinary differential squations -= of ellipe
tio, pavabolie, and hyperbolic typs. Then the nonuniformity usual-
iy erises with respect to only omecof the coordinates, and it
alone ie subdivided into two disparate scales. The ratio of the

dwosscales«may be.an:integral or fractional power of &, or some
. more. gemeral gauge functiong and likewise the perturbation series
i proceed in other than integral powsrs of e. It may else
heppopn that more than two scales are r@quir@ﬁ? Just as for concen-
tric boundery layers (sev. 4.10).

\Mors important, although the aimple scheme outlined abeve J
wsuwally suffices for a firet approximetion, it often fails in- ;
higher approximations. It must bs replaced by & more elaborate
veraioa of the method of multiple scales, of which meveral have
- boen devised. We discuss thesse in their order of incrsasing
onuplexity. ' C

Bodo fn unlimited numbsr of @impl@ scales

o -Omdy. rarely in practice do two aimple scales suffice to elmmimmte
’n@nuniformity to arbitrarily high order. Rither more scales are
needed, or they are not both simple. :
Bele (1968) emd Nayfeh (1973)

filustrate this with the simple

example of & slightly demped

linear oscillator (Pig. 5.3).

In &imansl@nl@as veriables, 4
the eguation of motion may bLe

written (with the factor 2

inserted for convenience)

T+2ey 4y = O (5.18) | :
‘ ?ﬁ'&o %ogo SIi@hﬁl? da’mj@@@
which has the goneral solution idnear oscillator

v = 06 Pelficed ¢ +9)  (5.19)
The @tr&ighﬁf@rwarﬁ perturbation selution Lor smell e 18
y = @Em (44p) = m m@ﬁ-ﬂa) + %@?itzm {s+p) + & sﬁmiwp)} + M‘,j

(5,20)
Again this iz clearly invalid when = 0{1/c), with a
pattern of seculer teras similax %o (5 2). This would suggest using
the two slmple scales ¥ = ¢ and T = ¢t a8 before; but thet leads,
in the third aporoximstion, e .

y ® @e@”ﬁ%g@@&a@&p) ¢ ¥ e ﬁi&@@a@»p)} o ' {5.21)
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The residual secularity hege auggests introducing o third, still
#lover, time scale Ty = ¢“t. Then two approximations later @ |
fourth seale is required, and @c on indefinitely. -

N

3@%@3 we intruduces in geﬂeéal,.an wnlimited number of @ucc@amxmaf

1y alawag {or longer) scalse, s , :
B et %uwg%sgm 2y = et ... o {5.22)
]mmm&mmmummeMnm | .
. %-%- 8“%55, + s‘g-fé + 2 % + eeo o {5.23)
$turrock,(1957), vho invented tﬁis procedure, called it the deriwv- -
ativg-expansion method. 7That name is retmined by Nayfeh (1974,

whe the most comprehenasive treatment of the method of mmltiple
sceles, with three varients, of which this is the first,

5.5, One simple, one‘ﬁlighﬁly atretched scale

Although the preceding treatment of the a8lightly damped oscile
lator is formelly adequate, it is conceptuslly unsatisfactory bha-
cause we recognize that the motion does not actually depsnd om am
unending sequencs of successively slower scales, but gn%y Two.
The difficulty is that one of those two soales, (l-e2)%%, dependas
on ¢ in a way sufficlently compliceted that it cenmot Be disceransd
in advance. Hence mnother possibility is to find thet scale 886 p-
by step in the course of solution, by setting '

T = t(1 +82° + be? + cet + ...) |
® = g% _ - | (5@2@}

ané determining the free constante a, b, ©; ... BO as Lo @m@p@a@ﬁ
secularity.

Thie procedure, iumvented by Cole & Kevorkian (1963), is the only
version of multiple scales used im the book of Cole (1963), and is
the saecond of the three variants described. in the book of Rayfah
(973). Hote that no linear term im e 1is required when the Pasiew
scale ¢ is stretched, because it appears in the slower scale.¥
In some problems, on the other hand, 1t is the slower seale thas
regquires & 8light stretching, in which case we set

C o= %

' - {5.25)
P = gt{d + he + Be? + Qe? + soo) s ‘_ '

Y

* In our problem of the alightly demped omeillator, 1% i@ clesy .
fron the exact solution (5.19) that all the other odd povers
ce¥ e will alse disappear,

P
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Of course the coordinate may have originally been scaled Qiffer-

ently so that, for exampls, in stretching the faster scale we must
aet ‘ ‘

T m g (1 + ae? + e + et + ,.,)
R . A i%wggp
¥ v ¢ ’ S :

5.6. Two slightly stretched scales

Hoither Cole nor Nayfeh mentions that in some problems (e.g.
Peyret 1970) both ecales nsed to be stretohed slightly. 4 simple
example involving @ pertial differential equation {(taken from the
1969 final examination) is the damping of plans sound waves Yy
vi@@@@i%gi Htolten ntudied this problem in 1845 using a linsarised

B

form of newly developsd equations of viscous motion:

’ Ugg = @f"{x&m = %2”%&2‘% o (5.,27)
8t the origin of = by 2 plane
?i@t@m,@scill&ting sinusoldally -

F \:
ent with the linearization to - o :
trensfer the boundsry sondition

Suppose that waves are gensrated ‘ y ga
e i’l“‘”f?"“’%‘"‘
ig. $.4). Then 4% is consist- y e

Aty
[V Y L -

to the oxigin (pection 2.5),- Fig. 5.4. Plane waves from
giving . 5 oscillating piston
| v = Ucos @t a8t % = O . {5.28)
‘ . Alde

Referring the velocity to the speed U of the piston, ﬁi@%&m@@
%0 ofw {rather than the viscous length */c, which is very
small), and time to 1fw yislds the dimensionless problem

- - | g 4 vw
g < Vg € Vigxt * S

, (5.29)
w{G,t) = comt

Sinoe we will epprozimate by fivet neglecting the dissipation, ws
will aleo need the Sommerfeld radistion condition of waves moving
in only the positive x-direction. . :

A straightforward perturbation solution for smélx £ glves

U = o008 ($-%) ~ dexcos (t-x) + %52 ﬁ:xgc@szs (t=x) = T-ain (tmx)j + nan
L €§930§
and this showa nonuniformity at large distances, where ¥ = 0{1/e}.
Applying our primitive version of the method, using the two simple
ecales € = X, X = gX, yields the wniform firet approximation

u m 0”4 o (4ox) + Ofe) {5052}
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ruspired Reylelgh’s obhservation {(Theory of Soung, wol.
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The mellowing of eounds by distance, ag observed in
sountainous countries, is perhaps o be attridbuted to
friction, by the operation of which the higher and
beysher componsnts ave gradually eliminated,

in higher spproximetions, fupther nopuniformities arise, They
san be eliwinated sither by infroducing additional scales {see,
o4} or by slighily stratcbdng the two used above. That both the
short and the long abscises wust be gtretched is clear from $the
exact golution, which is easily found o be

o "\: 9 '
W o= @ &'}*@@&ait - Bz} . (5.%2a)
where . o
a8 . L ) e ,
ﬁ o @fﬁ; [ Ei?u:z:m-:fmga [Qg s P !3{%? i: 5 }» g:;éné:o @5 ofn

16 X8
, e g 9 § 5
@ﬁ 5% o= mm:xmmw‘;@ ,%’ e (AP -4 ..'3,\ . N i ‘i" "

& o

gae

s Bl
&

§

Thus we would in gensral set
>

€ o mll +0e? 4 be?d ¢ oed o s )

# . Ll €§)°k§3ﬁ
¥ oo oex{l + A + Be? 4 Qe 4 cow)

end procesd as befora. In this papticulayr example, of coursse, it

18 clear from the ezact selution that only the even and odd powers
of & are needsd in o oand X wesprotively.

)

9.7, & posteriori stretching

5 P
P, 55 ‘;

Hdemney & Newell (1967), following Pritwio (1962}, point ous
$hat o alight stretching of one or mors seales can he imposed g
pagiariord on e perturbation expunsion 1f 1% is Yound to be none
v form.  The ecefficients in the gtretohing are deterwvined by
voquiring that the solution, rewritien in %eres of the sivetchsd
eoordinate, be uniformly valid,

A an example, we vsoonsider the #lightly demped linsay opelile
Iator (zeo, 9.4). Using the two gimple aealed t and T e ef
gavre e nomaniform third approximetion (5,51)

1
¥ ow ce™t

= ? . L2 . o 3
Ec@%(ﬁu%p} ﬁ»§~a‘t$mm§%n&p}j £5.94)
How instesd of introduclog She slightly strained fagt vwariable
fg, oa) -

b S o (l)"g“z/

lt({: v ‘f: {,}L + ﬁm!rge: “f 13 ne? : é{{}v‘a f}?{),&’
dnts the problem, we may avoid duplication of effort by simoly
smveacucing 4t fute this f@@ﬁ of the solution., Reverting th@

gy " o £ o s R e & o o . . P P
peries b0 Ldnd. ¢ = T(leasd ¢..,.), substituting into {6,347,
Bud erganding systematically for smell g Riven

kS
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cw%?&%&a

y =68  |ea(Zep) + (bea) cratalzep)]+ o(ed) (5.36)
‘@h@ gecular term is eliminsted by choosing & = «%. Thus, restor-

%gﬁﬁ%he original variable, ws have the uniformly walid third approx-
401 '

7 = 06"t (%4 p=He?t) , (5.37)
whieh is just the result of the method of section 5.5.
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BIRRCTIES
5.1, Pleme waves in slowly changing environment by wultipls scales.

Using the method of miltiple scales, recongider the problem of Exep-
sise ﬁoég :

'@gu . , ‘
B v, K)ﬁ§ w P{ex) g = 0, n= oot at ® = 0, vaves prop-
8% agating in positive w~direction.

Uaing two simple space scalss, show that the walformly wvalid first
approxination reproduces the previcus result based on the sseuugp~
tion that energy is congerved., Procesd to the second approximation,
contiveing the statement of Wingate & Davis (1970} that “higher
approrimations can be obtained by continuing in & similayr manver.®
Jhow thet weing Nayfeh's scheme of keeping the simple long scale, :
but slightly siraining the short scale in a nonuniform way according
Lo .

o= x4 eglex) + oo

yields ﬁh@ ﬁ&@@mﬁ approxXximetion as a single termv 8o that for
?(@&} e %ﬁ@ solution ie

X I e2x y
Vs ey 008 R 4 oorTeese o § 0(&2}]
14gx 8(1+ex)

B.2, brfact of viscoaity on standing deep-water waves, For small
kinematic viscesity 2 the wol tdon of water waves is &ppr@xim&ﬁ@lv
irrotational. Hence the V@iu@&ty

mhy be teken as the gradient of a J
velocisy potential § thet satige g

#ies the Laplace eguation in the
1

1
ppace coordinates. For plene - mtgéfﬁﬁfﬁ???ﬁx e
moblon, with the uwpward displace- e o e o Nl
ment of the free surface from its TR T A vg§w
mean position given by y = M{x,%), B BRI %/
the Tirst-order boundary conditions * .
8% the surface ave _ ’ €

{murface noTHl stress ) an + Wy = 2 ey
4 ) g at v = @
{sueface flax) Ue = @y=ﬁ 0

in desp water the vwlwﬁﬁtv muat 8lso decay wi h depth. (&) Wegleot-
img vizcosity, considew 3?%&@&&@ waves in deep water that are period-
?@ in both space and time, so that W = a sinlkx cogot, where &

o the (pwell lmeximm emplitude, Relats o %o %k, and caloviate
B{x,y,%). {b) Show that including the small effects of viscosity

by meang of & Bb“&i&h&fu?%&rw parturbation scheme leads to nonunie
formisy in $ime. (e} Apply the method of multiple scales to supprses
e novemiforslty amﬂ 80 obtaln o wniformly valid firet spproximation.
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.59, The earth-moon-gpaceship problem revisited. The one-dimone
aional nonroteting earth-ucon-spacsshlp probvlem (sec. 4.8) was

[8%5%2 i
2é§§3 @ EEEﬁ::E: v £{0) = O
X Lex

This was solved by mateching with an inner solution on the magnified
geale X = (Il-x)/ec. Pind & uniformly valid first approximstion
instead by using both scmles. simultaneously. (This example illus-
trates thet 41t is not alweys possible, in suppressing the nonuniformi-
ity, einply to apnihilate the nonhomogensous terms in the higher-
order equations. )



