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Chapter 1

THE ORIGIN OF PARTIAL DIFFERENTIAL EQUATIONS

1.1 Fields and Partial Derivatives

Partial differential equations (PDE's) arise in the mathematical formula-
tion of physical problems involving quantities that vary inbmore than one space
dimension, or in both space and time. Such quantities are called field vari-
ables; the temperature field in the atmosphere and the wave-height field on

the ocean are familiar examples.

In most problems the field variables are the dependent variables of the

problem, and the space coordinates and time are the independent variables.

What one seeks as the solution of the PDE is a representation of the dependent
variables as functions of the independent variables. Thus, if £(x,y,t) rep-
resents the field variable of interest,”here a function of the two space coor-

dinates x,y and of time, the pertinent first-order partial derivatives are

% - 1lim f(x+Ax,y,th- £(x,y,t) (1.1.1.a)
Axro -

%g - 11m f(x,y+Ay,tz\ - £(x,y,t) (1.1.1b)

y Ayro = 7 -

%f? - 1lim f(x,y,t+AtZt- f(x,y,t) (1.1.1.¢)
Ato - - '

Thus, partial derivatives can be thought of as ordinary derivaties with respect
to one variable, with the other variables held constant. They represent the
slopes of lines along which all the indeﬁeﬁdent variables but one are held con-
stant (Fig. 1.1.1).

In writing partial derivatives, it is important to remember which variables
are held constant. In most of the literature this is left to the reader to
infer. Thermodynamics literature often employs subscripts to indicate which
variables are held fixed. For example, a thermodynamicist might at one time
be thinking of the entropy as a function of temperature and pressure, S = S(T,P)
and at another time work with entropy as a function of temperature and volume,
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§ = 8(T,V). Rather than write J3S/3T, which does not indicate the fixed

variable, one could write

as 9S
3T . or 3T v (1.1.2)

Higher-order partial derivatives are simply partial derivatives of partial

derivatives. For example,

2
I
%3y = (ay) (1.1.3)

If there are no discontinuities in f and its first two derivatives, then

repeated application of the basic definition shows that

o’ _ 8%
oxdy 0y ox

(1.1.4)

That is, the order of partial differentiation is unimportant.
If one makes a small change in one independent variable, the change in
the deEendent variable is, to first approximation, related just to the first-

order partial derivative. For example, from (1.1.la),
. of 2 :
f(x+Ax,y,t) = f£(x,y,t) + e Ax + 0(Ax") (1.1.5)

where the notation O(sz) means that the correction will involve powers of
Ax of 2 and higher, making them negligible compared to the first-order term
as Ax > 0. Similar expressions hold for the changes with respect to the other

independent variables, so that

E(xtbx, yHhy, t408) = £(x,y,t) + 9 Ax + §§ by + 35 ae + oaxD) + oay?

+o(Atd  (1.1.6)

The student may recognize this as the beginnings of a Taylor's series. This
series is especially useful in the derivation of PDE's governing physical prob-
lems. Note that the partial derivatives are understood to be evaluated at the
point (x,y,t). o
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If all of the changes are infinitesimal, it is usual to denote them by
dx, dy, dt, etc., and to represent the total change in f by df =
f(x+dx,y+dy,t+dt) - £(x,y,t). Then, since the higher-order corrections are
infinitesimally smaller than the first-order terms, in the limit

of of of

df = Er_d + su-d + Bt dt . (1.1.7)

Here df 1is called the total differential of f. Eqn. (1.1.7) is also useful
in deriving PDE's for physical problems.

Example 1.1.1

2 .
Suppose f(x,t) = e_x X gin (wt), where A and w®w are constants.
Find 09f/39x and 3f/5t:
2 . 2
of _ 2 -A"x C of _ -A"x
Pl ATe sin wt: H e T we cos wt

1.2 Changes of Variables

Often the solution of PDE's are simplified by changes of variables. For
example, one might ultimately be interested in £(x,y) but find it easier to

solve the problem in other independent variables (£,n), where

g = E(X,Y) s n = T](X,Y) (1-2-1)

To do this requires expression of the PDE in terms of the new independent vari-
ables (&,n). This is accomplished by expressing the partial derivatives
3f/9x and 93f/3y in terms of O3f/3€ and 9f/dn. These linkings may be de-
rived by first equating the total differentials in both sets of variables,

of of

df = Fodx+gody = g

ac + £ af £ an (1.2.2)

Next we express df and dn in terms of dx and dy by taking the total
differentials of (1.2.1),

3 _ o, .o
dE = smdxtgzdy , a0 = glax+glay (1.2.3)
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Substituting in (1.2.2) and regrouping terms,

of of - (

. of of 98, 9f on
df = 55 dx + g dy =t o ) ax + (

@l
%
|
gk
+
o)le)
3|th
o
|3

) dy  (1.2.4)

D>
m"h

Comparing the right- and left-hand sides, we find

of of 8& of on

9 C 3 Bx e ox (1.2.5a)
df _ of 3£ an
3y ~ 9 By T an dy (1.2.5b)

Eqns. (1.2.5) are called the chain rule; they tell us how to express the deriva-
tives with respect to the original independent variables in terms of derivatives
with respect to the new independent variables. The student should master the

use of the chain rule, as we shall use it frequently.

Example 1.2.1

Suppose & =x+y, N =1x-y. Transform df/dx, 0df/dy, Bzf/axz, and
2 2 :
" f/dy".

& _ 9E _ o _ o . _
3 - oo oy Lo % - Lo dy 1
or _ o€, s of _ 2 _ o
9x & on ° dy o9& an
% 2 (38). & (2) %, o (o)
3X2 9x \9x 9& \9x/ 3x  9n \ox/ 9x
} (32f . Bzf) . (azf . azf)
sg2 | 3EaM ameE 2
52¢ 3% 32
= Tt 235t T
o9& an
Similarly,
a%s 8% ) 525 .\ 32¢
- .
8yz BE2 9&an 8nZ
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3. Derivation of Partial Differential Equations

Partial differential equations are usually derived by applying a set of

basic physical principles to a region in space (a control volume) which is

infinitesimally small in at least one dimension. Phenomenological relation-
ships or equations of state frequently are involved.

We shall illustrate the approach with an example. Consider.the problem
of transient heat conduction within and convection from a thin plate subjected
to internal heating. The control volume used is the infinitesimal piece of
the plate shown in Fig. (1.3.1). The six heat conduction rates él ve é6
move thermal energy in and out of the control volume as shown. In addition,
there is a source of thermal energy (perhaps chemical or nuclear energy release)
within the plate, occufring at the rate of s (W/m3). The energy balance on the

control volume is

Q = Q+Q3-Q, - Qs - Qg + sV = S_E (1.3.1)

where V is thé volume of the control volume and E is the thermal energy
contained therein.

HaVing applied the pertinent basic principles, we next bring in the ap-
propriate phenomenological relationships, in this case the Fourier heat con-
duction law, which relates the conductive heat flows to the local temperature
gradients,

3T . OT

q = -ka—x' ’ q =

< v Sy (1.3.2)

where 9, and qy are the heat conduction rates per unit area (W/mz) at
any point (x,y) in the plate, and k is the thermal conductivity, W/(m*K).
Note that we have implicitly assumed that the plate is sufficiently thin and
the material conductivity k sufficiently high that the temperature does not

vary in the direction perpendicular to the plate. We can regard qx(x,y,t)

and qy(x,y,t) as field variables.

To evaluate the heat flows we shall determine the values of the fluxes at
the center of each face of the control volume, and then multiply by the area.
Thus,
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ey

Q = q.(xy+dy/2,t)dy * §

Q, = q(x+dx,y+dy/2,t)dy *+ §
(1.3.3)
Q = qy(X+dx/2,y,t)dx ¢ $
64 = g (xtdx/2,y+dy,t)dx * §
Next we use a Taylor's series;
qu dy
qx(x,}’+d}’/2,t) = qx(x,y,t) +—a'y— 5 + e
3q 3q (1.3.4)
= X _xdy
q, (xckdx, y+dy/2,t) 4 (%,7,8) + 5= dx + 5= 4

It is helpful to notice that the difference in these quantities is what is

needed, because then only one term remains. Hence,

9q : }
; S = - X gy . .§ = O (9T o
Q -Q = -5 dxcdy -8 = = (k 3X)dxdya (1.3.5) = -
Similarly,
aq
d. =0, = - =X I ) o
Q3 = Q, 55 dv dx 5 (k ay) dxdy$ (1.3.6)

We also need phenomehological equations for the convective heat transfer
terms 65 and é6'2 We shall assume ;hat the convectiﬁe hgat transfer rate
per unit area (W/m~) on each side at any point is given by the field vari-
able qc(x,y,t) = h (T—TO), where T(x,y,T) is the local plate temperature,
To is the temperature in the surrounding fluid, and h is the convective heat
transfer coefficient, W/(mz'K). Then we represent 65 + 66 as the value of

9 at the center of the sides of the control volume times the area of the side,
65 + 66 = 2q_(x+dx/2,y+dy/2,t) + dx - dy (1.3.7)

Next we expand the field variable 9 in a Taylor's sérieé,

qc(x+dx/2,y+dy/2,t) qc(x,y,t) + 0(dx) + 0(dy) (1.3.8)

hET(x,y,t) -To:}!-i- 0(dx) + 0(dy) .
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where the 0(dx) and O0(dy) are to remind us that the neglected terms have
factors of dx and dy, respectively; we shall not need these, since when
we multiply them by dxedy (see (1.3.7)) these terms will be infinitesimal
in comparison to the other terms in the equation, which are 0(dxedy).

The source term - sV is given by determining the value of the field vari-~
able s at the center of the control volume, s(x+dx/2,y+dy/2,t); multiplied
by the volume. Using the Taylor's series for s, ‘

sV = s(x,y,t)dxdyS§ + 0(dxdxdy) + O(dxdydy) (1.3.9)

Note that again the higher-order terms need not be included.
We now have all of the terms on the left in (1.3.1), expressed in terms
of the temperature field T(x,y,t). To get the time-rate of change of thermal

: *
energy we use the equation of state for the material , e = e(T), where e is

the energy per unit mass (J/kg). Since T is a field variable, e is also
a field variable., We evaluate the total energy in the control volume at any
instant as the value of e at the center of the control volume times the den-

sity o (kg/m3), times the volume.

pe(x+dx/2,y+dy/2,t)dxdys (1.3.10)

=
1]

pe(x,y,t)dxdyS + 0(dxdydx) + 0(dxdydy)

Again the higher-order terms are infinitesimal in comparison to those retained,
and may be neglected. Hence
dE de

= 0 5o dxdys | (1.3.11)

Finally, we use the equation of state relating thermal energy to temperature, -
e = e(T), which, differentiated, gives de = cdT, where c¢ is the specific
heat (J/kg-K) of the plate material. Using the chain rule,

de _ de 3T _ oT

3% - at ¢ - © 3¢ (1.3.12)

Thermodynamicists will recognize that we are treating the plate as an incom~
pressible medium.
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Hence,

dE _ 9T
it = Pe e dxdy$ (1.3.13)
We now substitute (1.3.5), (1.3.6), (1.3.7), (1.3.9), and (1.3.13) in the
basic energy balance (1.3.1), and drop all terms smaller than dx°*dy. The re~

sult is

3 (. dT\ ., 3 [, 5TV
[ax (k aX) + a—y- (k -3;)‘1 dxdyG + 2h(T—To)dXdy + s dxdyd-
(1.3.14)
aT
= pc -a—t' dXdy(S

Note that each term has dxdy as a factor. Finally, we divide by dxdy§ to
obtain the PDE for the temperature field,

% (x g—}T{-) +—a% (k g—';—)+ 2_6h' (T—T‘;) +s = pe —g{- (1.3.15)
To summarize, the process for deriving PDE's is as follows:
® Select an appropriate elemental control volume.
e Apply basic principles (conservation of energy, momentum, mass, etc.).
® Express the flow or force differences in terms of the desired field wvari-
ables using phenomenological equations and Taylor's series expansions.
e Bring in equations of state as necessary to express the problem completely
in terms of the desired field variables. |
With some experience, the student will know in advance which of the Taylor's
series terms will not appear, and can leave them out of the development.
Another trick is useful in dealing with products of field variables (fegeh).
Instead of doing separate Taylor's series expansions for each, simply do the
expansion for the product, producing terms like 3d(f-geh)/3x. The student
should select some physical problems from his own area of specialty and derive
the associated PDE's. Exercises from a selection of fields are included at
the end of this'chapter.

Equation (1.3.15) is a second-order PDE for T, Dbecause it involves

derivatives no higher than second. If k, h, p, and c are independent of T,

the equation is linear in T.

1.8
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Many physical problems give rise to second-order PDE's or coupled second-
order PDE's. Therefore, we shall spend considerable time studying methods for
solution of such equations, particularly those that are linear in the depen-

dent variables.

1.4 Boundary Conditions, Initial Conditions, and Well-Posedness °

In addition to the PDE's, one must also have an appropriate set of bound-
ary and/or initial conditions. For example, the initial conditions for the
temperature PDE develdped in the previous section would be the temperature
field at some starting time to. We can think of the initial conditions as

the specification
T(X’y’to) = f(st) (1.4.1)

In addition, we would require boundary conditions constraining the temperature
field all around the edge of the plate. One such possibility is to prescribe

the edge temperature,
T(X!y’t) = g(XQY) on C (1.4.2)

where C is tﬁe outer edge shown in Fig. 1.3.1. The initial conditions, the
boundary conditions, the PDE, and values for the parameters in the equations
define the problem to be solved.

If a portion of the needed boundary or initial condition information is

missing, the problem is said to be incompletely posed. If too much informationm,

or the wrong type of information, is prescribed, the problem is said to be ill-
posed. For example, the problemdefined by Eqns. (1.3.15), (1.4.1), and'(1.4.2) would
be ill-posed if in addition we attempted to prescribe any of the following:

e The rate of change of temperature, 93T/dt, at time zero.

e The temperature field at some later time, T(x,y,tl).

e The heat transfer rates into the plate along C, (-k3T/dn).
It is important that the student learn to identify when a problem is not well-
posed. A good way to do this is to use physical'intuition. There are certain
mathematical rules, for some simple types of problems, and we shall discuss these
later in the text. Unfortunately, they are applicable only to the simplest of
problems, and in dealing with the problems that typically arise in engineering

or applied science one has no choice but to rely on experience and intuition.
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A case in point can be illustrated by considering the steady-state heat
transfer problem formed by dropping the right-hand side of (1.3.15). TFor sim-
plicity, let's also drop the convective term, treat the conductivity as con-

stant, and write the equation as

2 2

-3—§+i—§+ s/k = 0 ' (1.4.3)
9x oy :

This problem clearly has a solution if one prescribes the boundary condition
T = g(x,y) on C; physicall&, a plate with internal thermal energy sources,
held at a prescribed edge temperature, can indeed reach a steady-state solu-
tion. But suppose we instead insulate the edges of the plate, corresponding

to a boundary condition
= = 0 on C (1.4.4)

where n is the outward normal direction. Clearly this problem does not have a
solution;~there is no way for the internally generated thermal energy to get out,

and consequently the temperature will go up and up and the system will never

reach a steady state. Hence (1.4.3) and (1.4.4) form an ill-posed problem.
Suppose we insulate only a portion of the boundary, prescribing

oT

3 - 0 on part of C
(1.4.5)
T = g(x,y) on the remainder

This is a well-posed problem; the energy can escape at the points where - T
is specified, and thus a steady-state solution can be reached.

Suppose now we remove the source term and have

3—%+£§- = 0 (1.4.6)
9x oy

This is called Laplace's equation; it is one of the few equations for which

theorems about well-posedness are known. Clearly it is proper to specify T
on the boundary, or to specify T and some combination of 3T/9n on the bound-

ary, as we have discussed. However, can we specify 6nly the heat flux, i.e.,

1.10
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9T/3n, all around the boundary? On physical grounds we can argue that a

steady-state temperature field will be obtained only if the net energy input
is zero, i.e., in this case only if

fg—;rlds = 0 ~on c (1.4.7)

Thus, the Laplace equation with 0T/3n specified on the boundary forms a well-
posed problem only if (1.4.7) is satisfied. But then the solution is not
unique, as one may add a constant to any. solution and produce another!

| Boundary conditions in which the function is specified on the boundary are

called Dirichlet conditions, while boundary conditions'specifying the normal

derivative are called Neumann conditions. Problems involving combinations of

these are called mixed or Churchill conditions. Theorems giving the conditions

for well-posedness of simple equations (e.g., the Laplace equation) for these
conditions may be found in more advanced books on the theory of PDE's.

In addition to the Lap;ace equation, there are two other simple equations
which form useful models for deciding upon the well-posedness of problems.

These are the wave equation,

2 2
é_g___ag = 0 (1.4.8)
9x ot '
and the (so-called) heat equation,
2
9°F _ of
5—7 = 5% (1.4.9)
X

The wave equation arises in simple problems of linearized vibration, one-
dimensioﬁal acoustics, shallow-water wave theory, and other simple wave propa-
gation problems. The heat equation (a special case of (1.3.15)) arises in
simple one-dimensional diffusion problems in heat transfer, fluid mechanics,
and other fields. Most problems of interest involve more complex equations,
often nonlinear. However, an understanding of these three simple equations
and their solutions is very helpful when one has to solve more difficult prob-
lems, analytically or numerically, and so we shall give them due attention in
this book. For each there are boundary and initial conditions which render

the problem well-posed, and we shall investigate these matters in a later chap-

ter.
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1.5 Other Notations

So far we have used the most common notation for partial differentiation,

0f/0x. Other notations in use include
o f to mean of
X 9%
f to mean of
X 9x
2
- 97 f
fXy to mean %0y
2 2 2 ’
sz to mean 9 f + 9 f + 8 £ (in Cartesian coordinates)
2 2 2
ax ay oz

In Cartesian coordinate systems

the subscript convention is frequently

used. The independent variables are written as X (meaning X{» Xy, OT x3),
and the x derivatives are then denoted by subscripts after commas,
£, to mean f
,1 9%,
i
3£
S to mean T
,1j 9%, 9%,
1]
Alternatively; one sometimes sees
3, f to mean f
i 8xi

In this convention the appearance of a repeated subscript means that the term

represents a sum in which the repeated subscript in turn receives each of its

permitted values. For example,

2 2 2 2
£, 0= 2E o 9f 9f 3f (1.5.1)
,ii 8xiaxi 3x2 3x2 ax2
1 2 3
2. 2. 2
XX, = % + Xy + X5 (1.5.2)

Often the dependent variables are also vector quantities, such as velocity, and

their components are denoted by subscripts. For example,'thé three-component
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velocity vector (ul,uz,u3) is represented by u, - Then the continuity equa-
tion, which expresses the principle of conservation of mass for an incompres-

sible medium, is simply

Gul
ui,i = 0 meaning 3;; = 0
du du du
1
or 2 3 . 0 (1.5.3)

+ +
Bxl 8x2 8x3

When using the comma approach to spatial derivatives, time-derivatives are de-
noted by overdots:
u to mean i
i ot
The subscript and comma notations have the great advantage of being very
compact; with some experience you can become quite comfortable with them. You
should practice writing the equations of your own special field in these dif- _

ferent notations.

Exercises

1.1 Express the first and second derivatives of f = sinh(Ax) cos(\y).
Show that f satisfies Laplace's equation (1.4.6).

—Azt

e

1.2 Show that f = cos(Ax)  satisfies the heat equation (1.4.9).

1.3 Show that f = sin(Ax) cos(At) satisfies the wave equation (1.4.8).

1.4 Show that e fe™® satisfies the wave equation (1.4.8).
1.5 Show that e e’ satisfies the Laplace equation (1.4.6).
1.6 Let x =71 cos B and >y = r sin 6. Show that the Laplace equation (1.4.6)
for f(x,y) transforms for f£(r,8) to
+ L 9f 1
r or 2
r

o’ - 0
2

52¢
or 2

06

4
1.7 Let £ =x+t, n=x-t. Show that the wave equation (1.4.8) trans-
forms to Bzf/BEBn
by direct integration,

0. Then develop the general solution to this equation
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1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

Let & =x+ 1y, n=x - iy. Show that this transforms the Laplace
equation (1.4.6) to Bzf/BEBn = 0. Then develop the general solution to
this equation by direct integration.

(For fluid mechanicians) Derive the PDE's governing unsteady, one-
dimensional, inviscid compressible flow of a perfect gas. Assuming isen-
tropic flow, obtain a single differential equation for the éressure field.
Show that if the pressure changes are small you obtain the acoustic approxi-

mation (c2 is the sound speed)

E]zp Vzp - c2 BE% = 0

ot

(For heat transfer persons) Derive the PDE governing the temperature field
in an incompressible, inviscid fluid flowing with a prescfibed velocity
field ui(xi). Show that if the thermal conductivity is zero the temper-

ature of each fluid particle remains constant.

(For heat transfer/fluid mechanics persons) Derive the set of PDE's govern-
ing the temperature and velocity fields in a porous medium heated by inter-
nal sources and cooled by the interstitial flow of a fluid. Use Darcy's
law for the fluid mechanics. Write some boundary and initial conditions

that ydu think are well-posed.

(For elasticians) Derive the PDE governing the vibrations of an elastic
bar. Assume linear stress laws and small amplitude deflections, and con-

sider only bending distortions.

(For oceanographers) Derive the PDE governing the wave height for long
waves in shallow water. Assume small-amplitude inviscid motion. You
should obtain a form of the wave equation. Write some boundary and initial
conditions appropriate to a tidal wave entering the San Francisco Bay.

Under what circumstances would your analysis apply to a water bed?

(For guitarists) Derive the PDE governing the vibrations of a taut string.
Assume small deflections and uniform string properties. You should obtain
a form of the wave equation. Write the boundary and initial conditions

for your favorite plucking mode.

(For drummers) Derive the PDE governing the vibrations of a circular drum.
Assume small deflections and uniform properties. Write the initial and

boundary conditions for your favorite whomp.
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Fig. 1.1.1 Interpretation of Partial Derivatives

Fig. 1.3.1 Control Volume for Derivation of the PDE
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Chapter 2

SELF-SIMILAR SOLUTIONS

2.1 Characteristit Scales; Scale-Similar Probletig

It is often convenient to present the solution to a PDE problem in non-
dimensional form. This makes the results independent of the size of the system
for which the solution was obtained as we;l %s independent of any choice of
dimensional system. Non-dimensionalization is usually accomplished by choosing

some length and time scales characterizing fhe problem, and then defining non-
' dimensional independent variables based on these scales. TFor example, the
solution for fluid flow 1in a rotating sphere might be expressed non-dimensionally

in terms of the dimensionless radius, R = r/ro, ﬁhere rd is the radius of

the sphere. Here r, is the characteristic length scale of the problem. If

the fluid is initially at rest, and at time zero it is put into rotation at
angular velocity w , then the period of rotation is T=21/w, and T would

be the characteristic time scale. Then a suitable dimensionless time would be

T = t/T. Note that one of the characteristic scales for the independent vari-

ables (ro) camevfrom the geometry of the system, and the other (t) from the
boundary conditions. B

The dependent variables also can be represented non-dimensionally. For
example, in the rotating sphere problem the equatorial velocity is u, = wr
and may be used as a characteristic velocity in the dimensionless velocity
U = yu/u.

The problem may also contain Some parameters, such as the kinematic vis-
cosity V. The parameters also can be reduced to non-dimensional form, and in
the case of viscosity it is customary to use a reciprocal dimensionless viscos-
ity called the Reynolds number, Re = uoro/v.

The solution for the velocity within the rotating sphere could then be ex-

pressed non-dimensionally as

U = U(R,T;Re)
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This says that the dimensionless velocity (a vector) U will be 3 function of

the dimensionless radial coordinate R, the dimensionless time coordinate T,
and the parameter Re. It might also happen that the flow depends upon the
Polar angular coordinates ¢ and 0, which are additional non-

dimensional
independent variables.

Problems which have natural characteristic scales for thé indegeﬁdent
variables (here r and T) are called scale-~similar. Scale-similar soluy-
tions for systems of different size will have the same non-

dimensional solution,
provided that the two Problems also have the same values of the dimensionless

parameters and dimensionless boundary and initial conditions

2.2 Self—Similarity

natural characteristic scales for the independent variables exist in the prob-
lem formulation. For example, consider the case of heat conduction inp a semi-
infinite slab initially at uniform temperature, subjected to a step increase in
the surface temperature at time zero (Fig. 2.2.1). The appropriate PDE ig

2
3a°T 1 3T

- = = 9% (2.2.1)
3}'(2 o dt-

where o 1is a constant parameter called the thermal diffusivity of the medium.
The initial condition is

T(x,0) = Ti x > 0 : (2.2.2)
The boundary condition at the surface is
T(0,t) = TS , - (2,2.3)

The temperature field must fall off to the initial temperature T, as x - o,

i
giving a second boundary condition

T(x,t) = Ti as x - o (2.2.4)
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is unaware of the length of a meter), there must be some wdy to roti~
dimensionalize the soiuﬁion to this problem. The only possible way is for the
variables to appear together in a non~dimensional group. Looking at the de-
nominators in (2.2.1), it is readily apparent that x2 and at have the same
dimensions, and therefore the quantity x2/(ut) iq dimensionless., Somehow the
solution must be expressible in terms of this quanfity, in order to have dimen-
sionless form. Solutions made non-dimensional by combinations of the indepen-
dent variables, rather than by characteristic scales imposed by the geometry,

boundary, or initial conditions, are called self-similar solutions.

There is 3 characteristic temperature for this problem, namely the step
increase in temperature TS - Ti' Therefore, one might guess that the non-

.dimensional form of the solution is

T - T, 2
T =7 = f or (2.2.5)

As we shall see, this guess is correct. In a moment we shall develop a sys-

tematic way of discovering the forms of self-similar solutions.

If (2.2.5) is indeed correct, then another fully equivalent form would be

- T,
_ 1 _ g(x//at) (2.2.6)
T - T,
s i
and another wouldAbe
" Ti X
= h(x//af) (2.2.7)

Ts - Ti yat
All of these solutions would really be the same, but the functions f, g, and

h  would be different.
In terms of the similarity variable, n = x/V&f, the family of tempera-

ture profiles existing at different times will collapse to a single curve (Fig.
2.2.1b). This is the essence of self—similarity; the solution does not scale
on the size of the system, instead it scales on itself.

i
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At first glance, it may appear disadvantageous to seek a solution in terms
of the non-linear combination of variables n = x//ot . However, note that a
single function g(n) would be involved, and therefore one would only have to
deal with an ordinary differential eqﬁatipn (ODE). This is the practical
advantage of a self-similar problem in two indepéident variables. fThe existence

of self—similariﬁy will always reduce the number of independent variables by one,

To summarize, self-similar solutions exist when a problem is not scale-
similar, i.e. when characteristic scales foj the independent variables do not
exist in the problem formulation. In problems with two independent variables,
self-similar solutions represent a collapse of the family of solutions as func-
tions of the two variables to a single function of the similarity variable. The
governing PDE is thereby reduced to an ODE, which may be solved by some appro-
priate analytical or numerical method. The propef form of the transformation
depends upon the equation, the initial conditions, and the boundary conditions.
..The transformation can be discovered systematically, as we shall now illustrate

by some examples.

2.3 Example with Constant Boundary Conditions

Consider the transient heat transfer problem Qiscussed in section 2.2
The differential equation, boundary conditions, ané initial conditions are
(2.2.1)—(2.2.4). The solution must be expressible in terms of some similarity
variable, which must be non-dimensional. Let's assume that the similarity

variable is of the form

n o= Ax/t"® (2.3.1)

where A and n aré constants to be chosen in a manner that reduces the PDE
problem to an ODE problem. Now, Suppose we assume that the dimensionless solu-

tion has the form

= f(n) (2.3.2)
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This is suggested by the observation that the sigﬁ&ficant aspect is the
difference between the temperature at any point T(x,y) and the initial
temperature Ti E The form of 1 is suggested by the fact that the solu-
tion for t=0 and x= nust give the Same value of T , and hence must cor-
réépond to the same valuévof f , and hence to thé same vdlue of 1 . Now, we
could have taken ns= Axm/tn but this is no more general’ than the (2.3.1),
since this n is just a power of the other n . Also, we cbuld have taken

n o= At/x" » which also is no more general.. Howevgr, we will have to differ-
entiate twice with respect to x » and only gégg with respect to t , and we
will find our work easier if we keep the x-dependence of n as simple as
possible. For this reason, we make n 1linear in x , and then divide by ¢t
to a power (to be chosen later).

The next step is to transform the PDE. Using the chain rule,

A

= ‘ - —_— —— == - e 2 . ’
Fr i (TS Ti) an 9% (TS Ti? f 0 (2.3.3a)
EZ_T = ‘(T_T).A_El.g.a_‘rl = (T_T)_A_f!v.é;' (2 3.3b)
3x2 - T 0 dn 9x s i 0 ‘
oT df on _ _ v, [_ Anx
2t a (TS_Ti) dn ot (Ts Ti) £ ( tn+l (2.3.3¢)
Then, substituting in (2.2.1), we obtain
T .éi_ err o 41 (T -T,) AEE_.fv
(Ts— i) 2n - o s i’ n+l
t t
*
We could instead take
L = (’}T/T) ' " (2.3.2%)
T-T, B Ty "2
s

The student should work through the problem with this starting assumption to
verify that the same solution is obtained.
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which simplifies to

£+ —Lanx L g L (2.3.4)
0A
Now, this is supposed to be an ODE for f(m) . Thetefore, it can oni& contain
£, £, £, and n ; somehow we must make x #nd ‘t .diéappear. To do this,
we first replace x using (2.3.1), x = t™n/a » and find
A T L (2.3.5)

aAz

Next, we can select the pProper value of n as that which drops out ¢ » namely
n=1/2 ., With this choice, (2.3.5) reduces to

1
20A

£+

5 N £' = 0 (2.3.6)

This is an ODE, és desired. - We still are free to choose A any way we like. To

make (2.3.6) as simple as possible, let's pick

A = 1//2a (2.3.7)
which reduces our ODE to
E'' 4N = 0 | (2.3.8)
Note that n is a dimensionless variéble. ﬁow we have
n = x//2at | 1(2.3.9)
We must also be able to express the boundary and initial conditions in terms

of f(n) din order to complete the self-similar transformation. Eqgs. (2.2.2) and
(2.2.4) both require

f(m) - 0 as n > ® {(2.3.10)

And, (2.2.3) requires

£00) = 1 (2.3.11)
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Eqs.'(2.3.8), (2.3.10), and (2.3.11) define the ODE prgblem\that we must solve.

Eqn. (2.3.8) can be written as

df'
—Fr T -~ ondn (2.3.12)
Integrating,
n2
L LI
or,
2
- 2
£ = ¢ e / (2.3.13)
Integrating again,
n_.2
£ = leeclz do +C, (2.3.14)
2]

The lower limit is arbitrary, and « is a good choice.: We\must be careful not
to confuse the limit of integration (n) with the variable of intégration, and
therefore have introduced ¢ as the “dummy variable'" of integration.

The boundary condition (2.3.10) requires C, = 0 ., ~The boundary condition

2
(2.3.11) requires

0 2
1= clfe"" 12 4 (2.3.15)
o

Hence, we can write the solution as

°°—02/2 °0—02/2
f = e do ' e = do (2.3.16)

n 0
We can express the solution in terms of known special functions by Ietting
z = 0//2 . Then, do = V2 dz , and

—2 ~ -—2
£ = / e ? dz e ? dz | (2.3.17)

n/v2 0
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The denominator has the value Vr/2 . The numerator is Vi/?2 erfc (n/v2)

3
: %
where erfc is the cqmplementary error function. Hence, the solution is

IS ] |
 vT—== = erfc (2.3.18)
: Ts Ti <2/0—LE>

2.4 Example with Variable Boundary Conditions

The motion of a viscous fluid, initially at rest, over an infinite plate
that is set into motion at time zero is described by (Fig. 2.4.1)

2
o u _ du
Vs = T (2.4.1)

dy

where u 1is the velocity tangential to the plate, and v is the (constant)

kinematic viscosity. Suppose the boundary condition at the plate y=0 s is

u(0,t) = atb (2.4.2)

where a and b are fixed parameters. The other boundary condition is
u(y,t) ~» 0 as y ¥ o : (2.4.3)
The initial condition is
u(y,0) = 0 (2.4.4)
There are no characteristic length or time scales in either the domain or
boundary conditions of thisg problem, hence, we expect a self-similar solution.
Suppose we assume '

u = Af(Mm) , n = By/t" : (2.4.5)

where A, B, and n are parameters that we will try to select to produce an

ODE problem. The form of 1 1is suggested by (2.4.3) and (2.4.4), which require

%
:See HMF, Section 7.1.
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that the solution have the sapge behavior for large y as for small ¢t

However, when we Ery to fit the boundary condition (2.4.2) with thig form, we

get
A £(0) = at ,  (Zi4.6)

Since A and £(0) will be constants, (2.4.6) can't be true except for the
special case b=0 (which reduces this example to the pPrevious one), Hence,
(2.4.5) will not work,

We need to allow.additional freedom. If we expect the curves of
Fig. (2.4.1a) to collapse on a single non~dimensional curve, the value of the

fluid velocity must somehow scale on the instantaneous wall velocity. This

Suggests that we try

u = AtTE(M)  n = py/tR (2.4.7)

Where now A, my, B, and n may be chosen to give us the desired self-gsimilar
. , .
solution.

We can immediately determine m using (2.4.2),

u(0,8) = A t™ £(0) = aed (2.4.8)

Hence, we must choose m=b - We may choose A any way we like. If we choose

A=a , then we must impose the boundary condition

£(0) = 1 (2.4.9)
Now, we have
b

u = at f(n) - n = ﬁy/tn ' (2.4.10)

which will fit the boundary conditions.

m T e,
*We could have used u = A yk o g(n) , or u=A y h(n) . These forms ‘

are equivalent to (2.4.7), with different functions f » & ,and h .
Eq. (2.4.7) is the simplest, since we must take two y derivatives and only one
t derivative.
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Next, we substitute (2.4.10) in the differential e

find * (f' = df/dn , £'' = d2f/dn2)

b- L pe
vaB?tP 2ery abt?1

f

As an ODE in f(n) , tﬁis may contain only f

~n

bp—
- at lnByf'

and its derivatives, n ,

constants; y and t may not appear. So, we will replace y by

y = t™"n/B
Then, (2.4.11) reduces to
Vathb_znf" =. abtb—lf - atb_lnnf'
VIn order that t drop out, we must choose n ‘Such that
b-2n = b-1 or n = 1/2

With this choice, our ODE becomes

2

2
Let's choose B such that uB” =

N =

s OF

f'' + nf' - 2bf

and our similarity variable n is

n o= y/v2uw

]

VB® f'' = bf -~% n f'

1/V2V . Then we have

The boundary conditions on (2.4.15) are, from (2.4.9),

£(0) =

2,10

1

i

quation (2.4.1), and

(2.4.11)

and

(2.4.12)

(2.4.13)

(2.4.14)

(2.4.15)

(2.4.16)

(2.4.17a)



SN

and, from (2.4.3),

fm -» o as N = o (2:4.17b)

To complete the éroblem, we must solve (2.4.15) subject to (2.4,17). This
will provide a good review of some ODE s6lution methods and will introduce us
to some special functions.

In order to solve (2.4.15), one must be specific about the value of b

Let's first take b = 1/2 , for which (2.4.15) becomes

.

£'"" +nf' - f = ¢ ' (2.4.18)

The general solution will be of the form

f = ¢

lfl + C2 9 : (2.4.19)

t

where fl and f2 are two 1inearly—independent solutions. For this case,
fl =T 1is one obvious solution; when the first solution to a second-order

linear ODE is known, the second can always be constructed by setting

£, = £ - gn) | (2.4.20)
So, we assume
£,(n) = n g
Differentiating, and substituting in (2.4.18), we.find
ng'' +2g' + n(ng'+g) - ng = 0 - (2.4.21)
The zero-derivative terms cancel, which is why this methods works. So, we have

ng'' + (2+n2)g' = 0 (2.4.22)

which is really a first-order ODE for g' ; separating the variables,
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dg' 2
._gT = _<-ﬁ+n> dn (2.4.23)

_ : *
Integrating; and taking the exponential,

2 2 '
g' = exp <;2 Ln n -'§—> = lg-e n/2 (2.4.24)
n
Integrating again,
n 2 '
g(n) = f;_z_eg/z do (2.4.25)
o

(]

The lower limit choice is arbitrary, except that zero will cause problems;
infinity is an "artistic" choice. S0, we now have the general solution to
" (2.4.18) as

"L 2 *

f = cn+enf e 972 4 (2.4.26)

1 2 O2
0

Note that again we were careful not to confuse the limit of integration (n)

with the variable of integration (o)

We now apply the boundary condition (2.4.17b), which will require C. = 0

1
1f we can show that the second solution f2 is bounded as n + © ., We have
n 2 n 2 AN 2
£.(n) = 7 Le—clzdo < L o2 o e 0 /2 45
2 2 n
bo O o
So, clearly fz(n) +0 as n > o« , Therefore, Cl is indeed zero.

%
We choose the constant of integration to be 0. Any g(n) will
do since we can use any second solution.
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The behavior of f

*
the most powerful tools of analysis-integration by parts, With it,

2 @ n =0 can be clarified through use of one of

, can
be rewritten ag
n .
. 2 n 2 .
=nfl. 1l =0%/2 | 1\/ -0°/2
f2 n, g © I - (— E)(-O') e do
0 [eo]
. 2 n 2.
- 2 - 2
=—en/-nfe0/do (2.4.28)
) .
Now it is clear that f2(0) = -1 . Since (2.4.17a) requires that £(0) =1,
C2 = ~1, Therefore, the final solution is
2 n 2
EM) = & /2+n/ e /2 45 (2.4.29)
[s0]
Using the charge of variables, gz = o/ V2 > ;this can be written as
- 2/2 T
f(m) = N - n//; erfc(n/v2) (2.4.30)
(for b = 1/2 )
Next, let's consider the case b = n/2 , where n is an integer.
Eqn. (2.4.15) is then ¢
£''" 4+ nf' - nf = ¢ (2.4.31)
If we let z = n//2 » then (2.4.31) becomes
d2f df '
—5 t2z - 2nf = 0 (2.4.32)
dz
dz
. *Recall that /udv = uv -fvdu 3 this is called integration by parts;

become adept at doing it, because it is tremendously useful and important.
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The two linearly independent solutions of this equation are repeated iﬁtegrals

of the error function,*

£ = clinerfc(z) + czi“erfc(~z) ’ (2.4.33)

where the function inerfc(x) ig**

2
i"erfe(x) = J/ﬁ (t- X) dt (2.4.34)
VT .
Hence, our solution is
£ o= cli“erfc(n/¢§) + czi“erfc(—n//i) (2.4.35)
_The boundary condition £(®) = 0 requires C2 = 0, since inerfc(ﬂw) is a

constant. The boundary condition £(0) =1 fixes Cl agh**

c = —1i _ F<§+1) (2.4.36)

i"erfec(0)

where T'(x) 4is the Gamma function,

T(x) = fmtx_l et 4t (2.4.37)
b

Hence, the solution is

£(m) = 20 r(§+1) 1"erfe(n/v2) (2.4.38)

(for b =n/2)

%
HMF Sectiom 7.2.2.

**The student should verify (2.4.33) by substitution in (2.4.32),
Integration by parts will be required.

Ffok
’See HMF Section 7.2.7.
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2,5 Example with Integral Constraint

Consider the probiem of diffusion of a contam{nant deposited at time zero
at the surface of a semi-infinite slab (Fig. 2.5.1). The diffusion process is
described by.

2
o c _ Jdc

o 5 2 Bt (2.5.1)
X

where c(x,t) is tbe concentration per unit volume, and o 1is the diffusion

coefficient for the contaminant. The initial condition is
c(x,0) = 0 x>0 | (2.5.2)
The boundary condition for large x 1is
c(x,t) -+ 0 a§ x = < (2.5.3)

The total amount of contaminant contained in the slab is fixed. This gives an

integral constraint,

/

fcdx = Q (2.5.4)
0

This problem has no natural characteristic length or time scales and, hence, we

expect a self-similar solution.
Let's try to comstruct the solution in the form®

m

c = At" f(n). n = Bx/t (2.5.5)

where A, n , B, and m are constants to be chosen. The integral constraint

(2.5.4) immediately tells us something about n

i

*Again, the similar boundary condition (2.5.3) and initial condition
(2.5.2) suggest the form of n .
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00

. OO
m
Q = fAtnf(n)dx = /Atnf(n) °%—dn
0 0
[o0]
A
= Etnﬁn/ f(m) dn = constant (2.5.6)
h {
The integral will be some tumber. Therefore, for Q to be constant n = ~-p .
We will later use (2.5.6) to help determine other constraints.
Next, we substitute (2.5.5), with n = -nm » in (2.5.1), and obtain
aap?e™3m g o _pemmel mat ™l g (2.5.7)

Note we have already eliminated X in favor of n’, For this to be an ODE,

t must drop out, hence -3m = -m-1 » or m = 1/2 . We pick OLB2 = 1/2

B = 1/Y/20. , and then our ODE becomes

£'" +nf' +f = 0 (2.5.8)
The boundary condition (2.5.3) requires
fM) = 0 as n + : (2.5.9)

We have the freedom to match this integral constraint with the choice of A .

Hence, let's choose
£(0) = 1 - ' (2.5.10)

Egqs. (2.5.8)-(2.5.10) define the ODE problem to be solved.

Our task becomes easy when we recognize that (2.5.8) is expressible as
(£ + (E)' = 0 (2.5.11)
Integrating,

f' +nf = C (2.5.12)



Since the boundary condition (2.5.9) requires f(n) ~ 0 as n > o ;

f'M) ~ 0 as n * o . and hence C1 will have to.be zero unless

nf - constant as n=*w, Let's assume (subject to later verification) that\
Nf >0 as h + o | and hénce that Cl =0, Separéting the variables and
integrating again,

&

2
-n?/2
f = ¢, e / (2.5.13)

Note that indeed nf >0 as n-» o » @8 assumed. Our choice £(0) =1

requires C2 =1 . Hence,

2
£Fm) = &M /2 | (2.5.14)

To complete the solution we need™

/f(n)dn = [e"” /2 dn = fe'C’ VZ do = /—72I (2.5.15)
0

Using this in (2.5.6), we find

I

A= e (2.5.16)

Hence, the final solution is

2
. .—&.exp(.za_>

. (2.5.17)
e t 4ot
Note that the concentration at x =0 1is infinite at t = 0 . This reflects

a modest deficiency in the model, namely we assumed that we could plaée a
finite amount of contaminant in a zero thickness layer at time zero. Thus, the
solution is not useful for very small times. Fig. 2.5.1 shows the form of this

solution.,

. ) -
See HMF Section 7.1.
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2.6 A Non-Linear Problem

The laminar boundary layer over a flat plate is described by

by ¥y = Yy Yoy = V wyyy (2.6.1)

where V 1is the kinematic viscosity and Y(x,y) is the stream function,

which must satisfy the boundary conditions

I3

v = 0 at y =0, (2.6.2a)
by = 0 at y =0 (2.6.2b)
by > Ty as x + 0 (2.6.3a)
Wy > U0 as y =+ o ' (2.6.3b)

'Sfudents of fluid mechanics should look up the derivation of this problem; others
may treat it simply as a mathematical example,

Since there are no characteristic scales in the problem, we look for a

self-similar solution of the form

Vxy) = Ax" £(n)  , 0. = By/s® (2.6.4)

Note that we will need three y derivatives, and only one x derivative, so
we chose a form that keeps the vy dependence simple,

Substituting (2.6.4) in (2.6.3),

v, = A" £r(m) - U as (n -+ %) (2.6.5)
Now, f£'(x) wili be a number; hence, for this to be constant, m=n . We
will make the arbitrary choice f'(w) =1 ., Then, we will have to choose A
and B such that AB = U0 + With these choices, (2.6.5) will be satisfied

for all x .

Next, we substitute (2.6.4) in (2.6.1), using m=n . This produces
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~AB £' + ABx Tun £'' - me"lm(f-nf')BAzx"m £'7 = ypia,2m Froe
(2.6.6)

Note that we have already replaced vy by nxm/B .r For x to drop out,
) 3
“2m=-1,0r m=1/2 . Then, if we pick A2B2 = VB'A | the equation reduces

to

1

£ree +-§ ££' = 9 _ (2.6.7)
We have already chosen f'(®) =1 , which led us to AB = U0 . Hence,
A = VUO/v B = VUév -(2.6.8)

The boundary conditions are, from (2.6.2a)

£(0) = 0 (2.6.9a)
and from (2.6.2b)
£'(0) = 0 _ (2.6.9b)
Egs. (2;6.3) will be safisfied by our choice of constants if
£'(m - 1 as n > o , (2.6.9¢)

Eqn. (2.6.7) must now be solved, subject to the boundary conditions (2.6.9).
The solution will introduce you to two useful ideas; rescaling, and numerical

solution as an initial value problem.

In problems of this sort, it is often possible to use a "rescaling tech-
nique" to convert the two-point boundary value problem to a one-point initial
value problem, The advantage of this is that the initial value problem can be

solved numerically with a single~pass technique. To rescale, we let
z = Cn £() = c"g(z) (2.6.10)
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The idea is to pick an n such that we can solve the g8 equation without
knowing the value of the constant C , which will be determined after the g
equation has been solved. Substituting (2.6.10) in (2.6.7), one finds

1

(g' = dg/dz, etc) .

Cn+3 g +4% C2n+2g g’ = 0

Now, if we pick n+3 = 2n+2 » L.e. n =1, the (& equation is
1
g''t +§_ gg'' = 0 (2.6.11)

The boundary conditions on g are, from (2.6.9a and b),

g(0) = (2.6.12a)
g'(0) = ’ (2.6.12b)
We replace the outer boundary condition by a third condition at z =0 . Let's
use '
g'"(0) = 1 " (2.6.12¢)

If we can solve (2.6.11), subject to (2.6.12), we can choose ¢ to produce an
f satisfying (2.6.9¢), and the solution will be cOmplete.-

So now we go to the local computer center, and use a program that solves
systems of first order ODE's by a marching method, These methods deal with

systems of the form

dy,
= = Ai(x,z) ' (2.6.13)

with the "initial" (x = xo) values of the solution vector y; Prescribed.

We define the three va?iables as
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y; = 8 (2.6.14a)

: ' (2.6.14b)

Yo = 8
y3 = g" v (2.6.14C)
Then, (2.6.11) is the first order equation
y.' o= - Eyy | (2.6.15a)
3 27173 T
The other two equations are, from the definitions,
' ' =
b Yy Y, (2.6.15b)
v (2.6.15¢)
Y2 73
The initial_conditions are
y.€0) =0 (2.6.16a)
y2(0) = 0 (2.6.16b)
= 1
¥4(0)

(2.6.16¢)

It takes only a few lines of program to tell the general purpose Program that we
want it to solve (2.6.15), subject to (2.6.16), over é range from x =0 to
some large x (perhaps 20). We execute, and print Yy 0 Y9 s and vy at
different values of x. If all has gone well, at large x v1 will be growing
linearly, Yy = g' will be constant, and ¥y = g" willlbe very-small.

Knowing the value of g'(z) as gz + o , we go back to the rescaling

transformation (2.6.10) and the outer boundary condition (2.6.9¢)
\ 2 1

Hence, ( = 1/V gl (o) ., 'We can now calculate and plot f(nS for 0<n<w
and the problem is finished. ”

’:

2,21



2.7 An Example in More Dimensions

The transient heat conduction 1in a8 quarter-infinite block (Fig. 2.7.1) is

described by

3’ 8% 1ar
2t 2 % S5 (2
ox By

.7.1)

where the quantities are as defined in §2.3, Suppose that the initial condi~

tion is

T(x,y,0) = Ti for x>0, (2
y >0

the boundary conditions are

T(x,0,t)

it

T, (2
T, / (2

T(0,y,t)
Let's seek a self-similar solution in terms of two similarity variables,*
1

£ = Ax/t" n = Ay/tP ‘ (2

Following the example in §2.3, we assume

-— Ti
Tg- T, = F(E,n) (.
Substituting in (2.7.1) ,
2 -2n nt | : ;
A"t F = o
£ €€+an) o (€F€+TFn) ‘ (2.

We choose n = 1/2 to reduce (2.7.6) to a PDE in just € and n .
Then, with A = 1//4 ,

*

different powers or coefficients in the two similarity variables.
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7.6)

Because the problem is symmetric in x and y , we have no reason to use



FEE + an + EFE + nFn = 0 (2.7.7)

Note that the self—similar transformation has reduced the number of independent

variables by one.

The boundary and initial conditions produce

F(O,n) = 1 (2.7.8a)

F(£,0) = 1 . (2.7.8b)

Now, as & + «, the solution should approach that of the semi-infinite
solid (see § 2.3), so

F + g(n) erfc(n) as £ + o (2.7.8c)

Similarly,

F -+ £(&) erfc(§) as n + ‘ (2.7.84)

The PDE for F can be solved by the method of separation of variables,

discussed in the next three chapters. Following the approach to be presented
there, we assume

F(E,m) = £(8) + B(n) + H(E,n) (2.7.9)

Since " + Ef' = 0 and §" + ng' = 0 (see 2.3.8), H also satisfies

(2.7.7). Now, we assume a separable solution for H

H(E,n) = £(&) * g(n) (2.7.10)

Substituting (2.7.9) in (2.7.7), and dividing by H , one finds

ill_%_éil - '_ <sll_t_nsi> (2.7.11)
g

Since the left- hand side is independent of N, and the right-hand side is

independent of £ , both must be constant, and

' '
£ ; Ef =

e !
E-éj&_ = -C
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or,

£' + Ef°

Cf ’ (2.7.12a, ¢

g'" +ng' -Cg (2.7.12b)

The boundary conditions on H are, from (2.7.8),

H+0 as £+ | (2.7.13a)
H=+0 as n. =+ . (2.7.13b)
H(O,n) = -g(n) (2.7.13¢)
H(E,0) ‘= -B(E) (2.7.134)

By symmetry, f and g must be the same function, hence C = 0. So if we take

(2.7.12) will be satisfied, and the boundary conditions (2.7.13) are all satisfied.

Hence, the solution is

F(E,n) = -erfc(§/V2) erfc(n/v2)

+ erfe(&//3) + erfc(ny/f) (2.7.15)

2.8 Summary

We have seen that self-similar solutions arise when there are no natural

characteristic scales for the independent variables in

the problem formulation.
The self-

similar transformation will always reduce the number of independent

variables by one, so that in a problem with two independent variables the PDE

will become an ODE. The steps used to systematically develop the self-

similar
solution are as follows:

(1) Assume a general form for the transformation, guided by the initial
and bgundgry conditions. Use a form in which the variable that
appears 1ﬁ the most complex way 1in the‘equations appears as simply
as possible in the transformation.

(2)

Express the boundary and initial conditions in terms of the simi-

larity transformation, and verify that they can be satisfied by the
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assumed transformation. TIf they can not, add additional degrees
of freedom.

(3) Remove one (or more) of the independent variables using the
similarity variable. Then, determine the parameters of the trans-~
fbrmation necessary to reduce the PDE order by one.

(4) Express the boundary and initial conditions for the reduced problem,
and solve by appropriate methods.

In all of the examples worked here, the similafity variable involved forms

like &//E « The square-root behavior occurs frequently, but not exclusively.

Some of the problems at the end of this chapter will require other powers in
the similarity variable. ‘

For Further Reading on Similarity Solutionsg

Kline, S. J., Similitude and Approximation'Theory, McGraw-Hill Book Co.,
New York, 1965, '

Hansen, A, G., Similarity Analysis of Boundary Value Problems in
Engineering, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964,

Sedov, L. I., Similarity and Dimensional Methods in Mechanics, Academic
Press, New York, 1959,
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Exercises:

A 2.1 The temperature field T(x,t)
heat flux is described by

2 9t
ox

T(x,t) =+ T, as x + o

in a semi-infinite slab with a constant

; T(x,0) = Ti
oT _ ’ -
; ~k ™ q at x =0

Solve for the temperature field for x>0, t>0.

2.2 The temperature field in the thermal boundary layer that grows within a

hydrodynamic boundary layer at a step in wall temperature is described by

¢
D

a_z_T. = B B_T .
) Y}
oy

T(O’Y) = T y >0

[eo]

T(x,y) = T_ ds y-+o ; T(x,0) = T, 3

oo

Solve for the temperature field for =x >0,y >0 .

2.3 A device for,measuriqgkthe velocity gradient in flows is shown in the

figure. It consists of a heated plate at the wall, over which a_therﬁal

boundary layer grows. As long as the thermal boundary layer is confined

to the region where the flow velocity u 1s linear (u = By) , the

problem is described by

2
97T aT

O ——— = By_. ;
ayz ox

T(x,y) -~ I, as y >

T(0,y) = T y >0

oT _ -
3 -k By = q at y=0

Derive an expression relating the local wall temperature, T (x) , to the

flow parameters and x . Evaluate any constants in this expression.

Hint: T .
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2.4 The diffusion of a contaminant deposited along a line within an infinite

medium is described'by

5 c(ryt) »- 0 as r +

Q
@
¥l

~~

=
@
=
|
=
@
ot

(o0}

c(r,0) = 0 r >0 : 2T /crdr = Q

Solve this problem, and give an expression for c(0,t).

2.5 The diffusion of a contaminant deposited at a point in an infinite

medium is described by

d 2 9cy _ .23 | o
a-g; (r 5;) = r . ; c(r,t) = 0 'as r >

oo

0 r>0 ; 41T/cr2dr=Q
0

Solve this problem, and give an expression for c(0,t) .

c(r,0)

2.6 Consider a non-linear diffusion problem described by

3 de | _ dc ) _
I o (1+Bc) ol i oy H c(x,0) = 0 x>0

c(0,t) = 1 5 c(x,t) - 0 as x - o
Derive the similarity transform and associated ODE. Solve the problem
numerically for B = -0.5, 0 , and 0.5 , Use the B =0 case to check

the numerical solution against the exact solution, and to guide the

starting and direction of numerical marching.
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_ Chapter 3

SOLUTION OF EIGENVALUE PROBLEMS BY SEPARATION OF VARIABLES

3.1 Introduction

Solutions to linear, homogeneous partial differential equations, or

coupled systems of such equations, can usually be obtained by the method

of separation of variables (SOV). 1In some problems, such as vibration

analysis, the SOV solutions are of great physical interest, as they represent
the natural modes or eigenmodes of vibration. In other problems the SOV
solutions are of little interest by themselves, but they can be used as
building blocks to comstruct solutions that are of interest. In this
chapter we shall discuss the general idea behind ;he development of solutions
by SOV, and present a number of examples in which the SOV method is used to
construct interesting eigensolutions. In subsequent chapters we will
examine the role of these solutions in constructing more complicated solutions.
With very few exceptions, the SOV method is only useful in linear,
homogeneous equations. A linear equation is one in which the dependent
variable and its partial derivatives appear only to the first power, and never
in products. 1In a homogeneous equation one may multiply the dependent
variable (or variables) by a constant, with the result that the constant
drops out of the equation. Examples of linear, aon-linear, homogeneous, and

inhomogeneous PDE's are given in Table 3.1.1.

Eigenvalue problems arise in linear homogeneous PDE's for which the

boundary conditions are also linear and homogeneous. In such cases it is

obvious that one solution to the equation and boundary conditions is that._the
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the dependent variable is zero; this is called the trivial solution. If

nontrivial solutions also exist, they are called eigensolutions; each is

usually associated with a particular value of a parameter, called the
eigenvalue. In vibration problems the eigenvalues are the natural
frequencies of vibration; in nuclear reactors the eigenvalue is the critical
mass. Table 3.1.2 gives some examples of homogeneous and inhomogeneous
boundary conditions.

The general idea of SOV is to assume that the solution for the dependent
variable (or variables) exists as a product of functions, each of which is a
function of only one of the independent variables. For example, one would
assume

u(x,y,t) = X(x)*Y(y)*T(t) (3.1.1)

(The use of capital letters for the functions, and small letters for their
arguments, is customary). Then, one manipulates with the equation to separate
terms that depend upon each of the variable from one another. This leads to

a situation where the equation reqdires that a function (not those above)

of one independent variable must be equal to a function of another independent

variable, for any arbitrary values of the two independent variables. The

only way that this can be true is for the functions to be constants. This

in turn leads onme to ordinary differential equations for the assumed functions

X(x), Y(y), etc., in which the separation constant appears. The separation
constant, or eigenvélue, is then determined from the linear homogeneous
boundary conditions. We will now illustrate this methodology by several

examples.
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3.2 Vibration of a String

The equation describing the small-amplitude motion of a taut string

is the wave equation,

a“u_ - u = 0 (3.2.1)

Here u 1is the transverse deflection of the string (Figure 3.2.1), x 1is
the coordinate along the string, t is time, and a2 is a physical constant
that depends on the string tension and mass per unit length.* |

Let us suppose that the ends of the string are fixed, so that the

boundary conditions are
u(0,t) = 0; u(L,t) = 0 (3.2.2a,b)

We will seek the solutions to (3.2.1) and (3.2.2) that can be obtained by SbV.
| We assume

u(x,t) = X(x) - T(t) (3.2.3)
Substituting in (3.2.1),

a?x"T - xT" = 0 (3.2.4)

Here primes denote the derivatives of the functions with respect to their
own arguments, i.e. X" = d2X/dx2, " = dzT/dtz. The variables are
separated by dividing by X+ T, which yields

2 X" T"

avx = T (3.2.5)

Since the left-hand side is a function of x alone, and the right-hand
side depends upon t only, and x and t are independent variables that

may have any values, (3.2.4) can only hold true if each side is (the same)

*Students of mechanics should be able to derive this equation.
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constant. We may call this constant anything we like (e.g. C, -C, Cz, o,

.

-wz, etc.) The "artistic" choice is -wz » for reasons that will be clear

very shortly. So we have

2 X' _ 1"
a -

= 2
X T -W (3.2.6)

Therefore, the SOV solution requires that the functions X and T satisfy

the two ordinary differential equations
™+ 0T = 0, aZx" + X = 0 (3.2.7a,b)

The T equation (3.2.7a) has two linearly independent solutions
sin (wt) and cos (wt). Thus, if w turns out to be a real number, the
solution will oscillate with frequency w (rad/s). . The expectation of this
behavior is what prompted the choice of -w2 for the separation constant.

The general solution to the T equation is
T = A1 sin wt + A2 cos wt (3.2.8)

which, using trigonémetric identities, may be recast as
T = A3 cos(wt - @) (3.2.9)

where ¢ is a phase angle. At this point A3 s ¢ and w are all unknown.

The X equation (3.2.7b) may be rewritten as

X + A% = o (3.2.10)
Az = wz/a2
The general solution is
X = B1 sin(Ax) + B2 cos (Ax) (3.2.11)
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Therefore, the SOV process has produced the following solution to the PDE:
u(x,t) = A3‘cqs(w; - ¢ [Bl sin (Ax) + B, cos(Ax)]
(3.2.12)

Any set of values for A3 s 0, B;» By, and w will produce

a solution to the PDE. However, the boundary conditions limit the values

which give solutions meeting the boundary conditions. Eq. (3.2.2a) requires

that u be zero at x=0 for all t. This can only be true if

X(0) = 0 (3.2.13)
This in turn requires that B2 = 0. Likewise, the condition on u at
Xx = L requires
X(L) =0 (3.2.14)
This requires that
Bl sin(AL) = 0 (3.2.15)

One possibility is Bl = 0 , but this will produce a trivial solution. The

other possibility is

sin(AL) = O (3.2.16)

This will be satisfied if AL 1is assigned any of the following values:

AL = m, 2w, 3T, ..., o (3.2.17)

Associated with each of these possible choices, or eigenvalues, is an

eigenfunction

X, = B1n sin(lnx)

(3.2.18)
)\n = n'ﬂ'/L
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Since W = al, for each n there is a corresponding frequency

wn = aln = nMa/L (3.2.19)

We now have a complete description of the normal modes or eigenmodes

for this problem. They are described by

u, (x,£) = A sin(Ax) cos(w t - ¢)
| (3.2.20)

w, o= nTa/L; A, = am/L

Note that the amplitude A cannot be determined; this is a consequence of
the homogeneous feature problem. In addition, the phase ¢ is also
undetermined. All we can determine are the mode shape sin(lnx)‘ and the
vibration frequency wn. The shapes of the first few modes are shown in
Figure 3.2.1b. Note that the higher modes oscillate at higher frequencies,

and have nodal points at which the string remains motionless.

Suppose that a guitarist had sufficient dexterity to pluck his strings
in one of the normal mode shapes shown in Figure 3.2.1. At time zero the
deflection would then exactly match the x-dependence of the eigensolution,
and the string veiocity at the moment of release 9du/dt, would be zero.
The condition du/dt ='0 requires ¢ = 0, and the amplitude of the pluck
wouldvdetermine A. Thus, if we add to the PDE and boundary conditions the

initial conditions

u(x,0) = A sin(A x) (3.2.21a)
du = 0 at t = 0 (3.2.21b)
ot Tl

then the solution is'fully determined as

u = A éin(AnX) cos(w t)
' n (3.2.22)

wn = al,

»



3.3 One-Dimensional Acoustic Vibrations

s

The deviation of the fluid pressure from ambient during one-dimensional

acoustic vibrations is also described by the wave equation,

2 2
cz_a_g - _B_g = 0
o st (3.3.1)

where c¢ 1is the speed of sound in the fluid. The lateral velocity u
associated with acoustic motions is related to the pressure field by*

ol . U
at ox

(3.3.2)
where p 1is the fluid density.

At an open-end of a tube or duct the boundary conditiom p=0 is a
good approximation if the wavelength is long compared to the duct diameter.
At a closed-end of’the duct the fluid velocity u is zero, and hence the
boundary condition Bﬁlax = 0 1is appropriate. Figure 3.3.1 shows the
boundary conditions of interest in a number of simple one-dimensional acoustic
vibration problems.

As an example, let's take the case of a tube closed at x =0 and

open at x =1L , and seek the normal modes of acoustic vibration for this

case.® Thus, the boundary conditions are

'g& = 0 at x = 0 (3.3.3a)
(3.3.3b)
p = 0 at x = L

*Acoustic waves correspond to motions of the fluid in the same
direction as the wave propagation (lateral waves), while in the string
vibration previously considered the string motion is perpendicular to the
direction of the wave propagation (the string).

*These modes can be excited in a tall-slender bottle by blowing
across the mouth.
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Note that these are both linear homogeneous conditions. We assume

P = X(x) » T(t) (3.3.3)

Substituting in (3.3.1), and separating the variables, we find

c X T -w" - (3.3.4)

where again we chose to call the separation constant -wz for the same

reasons as in the previous example. Hence,

T + sz = 0
%X = 0
where
A = w/e (3.3.5)

The general solution of the X equation is

X = Cl sin()}x) + C, cos(Ax) (3.3.6)

The boundary conditions, which must be satisfied for all ¢t » Tequire
that

X'(0) = 0 X(L) = 0 (3.3.7a,b)

The first tells us that C, = 0. The second requires

1

C2 cos(AL) = 0 (3.3.8)

C2 = 0 1is one possibility, but this produces a trivial solution. So we

conclude that A must be such that

cos(AL) = 0 (3.3.9)

which will be true if AL has any of the following values:

wo= T 3—72' 5—"5 cery -DT, L. (3.3.10)
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Hence, for the nth mode, A, = (2n—l?ﬂ/(2L) and X, = C2 cos(A,x).

‘The T equation has the gemeral solution
T = Al cos(uwt) + A2 sin(wt) = A3 cos(wt - ¢) (3.3.11)

So, the normal modes of acoustic oscillation are described by

p(x,t) = A cos(knx) cos (mnt - )
An = (2n-1) w/(2L) (3.3.12)
w = (2n-1) mc/(2L)

Again, we find that the amplitude A and phase ¢ of the acoustic pressure
field cannot be determined (without the addition of initial conditions).
This is always a characteristic of normal-mode vibration problems.

We can now célculate the velocity field associated with each eigenmode,'_.

using (3.3.2);

p-g% =AM sin(AHx) cos(wnt - ¢) .(3,3.13)

Integrating and using the fact that mn = Anc,

u(x,t)

%c- sin(A,%) sin(u_t - ¢) (3.3.14)

(Thé constant of integration must be zero for the fluid to remain
motionless at the closed end.) Note that the nodes of p , where the
pressure fluctuations are always zero, are the antinodes of u (points
where the u field has maximum amplitude). |

Let's look briefly at a Qery simple application of this theory.
Suppose you are trying to reduce the noise pPresent in a long room in
which the acoustic motions of this type occur to the bother of the

occupants. One solution is to damp the motions by providing a fine fibrous
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material that will oppose the fluid motion through viscosity. Obviously

the best place to locate this material is where the fluid velocity is great-
est (a velocity antinode); the material would have little effect if placed at
a velocity node*. This means that the material to quiet the room shoﬁld be
placed at a node in the pressure field, i.e., where the sound you are trying

to kill can not be heard!

3.4 Membrane Vibration

The vibration of a taut membrane is described by

2.2 '
a Vu - u, = 0 (3.4.1)

2,
In Cartesian coordinates the Laplace operator V is

2 2
R (3.4.2)
ox ay
while in cylindrical coordinates
2 2
2 3 1 9 139
V' = ==t = — (3.4.3)
3r2 r or r2 ae2

The parameter a depends upon the membrane tension and density. The bound-
ary condition is that the displacement u must be zero all around the edge
of the membrane.

To study the normal modes, we assume

u(x,y,t) = F(XQY) * T(t) (3.4.4)

%
In actual situations the acoustic field is much more complicated. However,

it is in general true that placing the acoustic damping material away from
solid walls, out in the room where the air can move through it, is most ef-
fective.
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We have chosen not to split F as yet in order that the analysis apply to
a variety of membrane geometries. Substituting in (3.4.1) and separating

the variables,

2
2 V'F " 2
e el -w (3.4.5)
The choice of -~ wz as the separation constant was again dictated by our

expectation that the time~solutions would be periodic. Thus, we have

™ + 02T = 0 - (3.4.6)
vE+A%F = 0 (3.4.7)
Az = wz/a2

The time solution again has the general form
T = A cos(wt-9)

The eigenvalues (w or A) are determined by the solutions to the eigen-
value problem formed by (3.4.7), with the boundary condition F =0 on C,
where C denotes the outer edge of the membrane.

For a rectangular or circular membrane we can solve the F problem by
SOV in appropriate coordinates. .For other shapes the SOV method will not pro-
duce a useful solution, but in such cases it is possible to obtain the soiu—
tion to the F problém by suitable numerical means.

Let's now consider the case of a square membrane (Fig. 3.4.1b). Our F

equation is then
2
F_+F +AF = 0 (3.4.8)
¥y

XX

We assume

F = X(x) * Y(y) (3.4.9)
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Substituting in (3.4.8) and separating the variables,

" (1]

2 . .
We could have placed the A term either on the x-side or on the y-side;
the same solution would be obtained in the end in either case. We chose to
. 2 , . .
call the separation constant - o because this will produce an X-equation of

X" +0%X = 0 (3.4.10)

and hence X will be periodic in x and can go from zero at one side of the

membrane to zero on the other, as the boundary conditions require.*
The Y-equation may be written as
"+ BZY = where 82 = Xz - az (3.4.11)
Equation (3.4.10) has the gemeral solution
| X = Cl sin(ax)>+ C2 cos(0x)
The boundary conditions F(0,y) = 0, ‘F(L,y) = 0 require
C2 = 0 Cl sin(al) = 0 (3.4.12a,b)
Hence the eigenvalues o are
a, = nm/L (3.4.13)
Similarly, the Y solution is
Y = ¢, sin(Ry) + C, cos(By) (3.4.14)
and the boundary conditions F(x,0) = 0, F(L,0) =0 require
C4 = 0 3 C3 sin(BL) = 0 (3.4.15a,b)

If instead we had chosen + az, we would have ended up with an imaginary
value for o, which is "inartistic".
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Hence, there 1is another set of eigenvalues Bm,

Bm = mr/L (3.4.16)

Thus, it takes two indices (n and m) to identify each eigensolution of

the F problem. The solutions are

F_ = Anmsin(lg-’i) sin(y{—‘z) ‘ | (3.4.17)

and the associated eigenvalues are

2 2 2 2, 2,.2,.2
}\nm = oan+8m = (n +m7)mw /L (3.4.18)

We can now express the frequency of each mode of oscillation using the

relationship between ®w and A,

o = aVN(@l+md) 1/L (3.4.19)

nm

Note that the higher modes (larger n and m) oscillate at higher frequen-
cies, and that modes having the same values of n2 + m2 will oscillate at
the same frequency (but with differént mode shapes). The lowest frequency of
vibration, called the fundamentai, is associated with the (1,1) mode, and
is v2ma/L.

Figure 3.4.2 shows the first few mode shapes. Note that all except the
fundamental mode have nodal lines along which the membrane remains motionless.
These lines divide the membrane into regions within which, at any instant of

time, the membrane is moving in the same direction, and across which the di-

rection of motion changes.

3.5 Circular Membrane -- Bessel Functions

Let's now examine the case of the vibration of a circular membrane (Fig.
3.5.1), which will serve to introduce us to some new special functions. 1In

cylindrical coordinates (3.4.7) is
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1 1 2
+;Fr+?Fee+lF = ( (3.5.1)

rr
We assume
F = R(r) - @(6) | (3.5.2)

Substituting in (3.5.1) and separating the variables,

2. n ' 2 2 1"
r“R +r§ +A R _ _Qa__ I (3.5.3)

Note that we had to multiply by rz/Re to effect the separation. The deci-
sion to call the separation constant + OL2 in this case was dictated by the

realization that the soiution must be periodic in 6. Thus we have
@' +a’® = o (3.5.4)
A S S (3.5.5)
The @ solution v}ill be written as
@ = B'cos(ae—\b)

where Y 1is a phase angle constant. Again, we can not determine . B or P
without initial conditions. However, we can determine the possible values of

0. The argument used in the soiution can not be double-valued, i.e.,
0 = @(6+2m
This can only be true if a is an integer, so
¢ = n | (3.5.6)

The R-equation (3.5.5) has solutions in terms of Bessel functions (see

HMF 9.1). 1If we let z = Ar, (3.5.5)_ becomes

2
zZ_d_R+ zifi.,. (zz_az)R = 0 (3.5.7)
dzz dz

The general solution consists of two linearly independent Bessel functions

and may be expressed as
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R = ClJa(z) + CZY&(Z) (3.5.8)

where the functions Ja(z) and Ya(z) are called the Bessel functions of
the first and second kinds, respectively, of order da. These functions are
no different in concept from the sin(z) and cos(z) functions that satisfy
the ODE dzR/dz2 +R = 0; Power series can be found for the Bessel functions
using standard methods for developing series solutions of ODE's, just as one
can for the trigonometric functions. If you have not encountered them before,
think of them as slightly complicated functions which can be computed, tabu-
lated, looked up, or called in FORTRAN progréms, just as those functions with
which you are already familiar.

Just as one.takes linear combinations of e> and e 2 to define new
functions sinh(z) and cosh(z), one can define other functions as linear
combinations of J and Y. Therefore, in the literature one may encouhter
the Hankel functions of thg first and second kinds, Hél)(z) andb Héz)(z),
which are particular linear combinations of J and Y. Hence, other wvalid

forms of the solution to (3.5.7) are

R = C3H§l)(z) + CAHéz)(z) (3.5.9a)
R = CuI(2) + .CGHél)(z) | (3.5.9b)

etc. In some literature Y, 1s denoted by N,.

Note that (3.5.7) is even in the parameter «a. If one replaces a by
- a‘ in the series expansion for Ja(z), ione obtains another Bessel function,
J_a(z). If a is not an integer, then Ja(z) and J_a(z) are linearly in-

dependent, and an acceptable general solution to (3.5.7) is

R = C7Ja(z) + CBJ—Q<Z) (¢ non-integer) (3.5.9¢)



However, if @ 1is an integer, then Ja(z) and J_a<z) are the same function
(excépt for a constant factor) and hence are not linearly independent and
(3.5.9¢) is not the general solution for integer a. Eqn. (3.5.8) is the usual
representation of the general solution in the modern literature, and we shall
use it for the remainder of the analysis. Fig. 3.5.2 shows the form of Ju(z)
and Ya(z).

The Bessel functions Ya(z){ J_a(z), and Héz)(z) have one important
property in common: they all are infinite at z = O. Therefore, these func-
tions cannot appear in the description of the deflection of a continuous mem-
brane that includes the point z = 0 (although they would appear in the

solution for an annular membrane). The functions Ja(z) and H(l)(z)

are
[¢1

well-behaved at z = 0 and present no problem. Hence, for our circular mem-

brane we must take 02 = 0, and with o = n our soclution reduces to

R = ClJn(Xr) (3.5.10)

The remaining boundary condition will determine the eigenvalue A. Since

the deflection must vanish at r = r, for all 6, R must be zero at r = r,.

ClJn(lro) = 0 (3.5.11)

Looking at Fig. 3.5.2, we see that there are indeed points at which the Bessel

function Jn(z) is zero. These points are given in HMF Table 9.5, where

jn o is the value of 2z at which Jn(z) has its mth zero. Hence, it again
bl

takes two indices to identify the eigenfunction and eigenvalue,
A = i/t | (3.5.12)

Recalling the relationship between A and the frequency (see 3.4.7)), the

frequency of vibration of the n,m mode is éeen to be

W = aj /T : (3.5.13)

»



Table 3.5.1 gives the first few values of these frequencies in dimensionless

form. The solution for the membrane displacement U in the vibration

eigenmode n,m is then

unm(r,e,t) = A_J (A r) cos(ab-) cos(mnmt-¢)

(3.5.14)

The phase angles ¢ and P, and the amplitude A remain undetermined.
The lowest frequency occurs for the 0,1 mode. Note that for n =0
the motion is axisymmetric, and has no nodes. The next higher frequency

occurs for the 1,1 mode. This mode has one diametral node.along which the

TABLE 3.5.1
DIMENSIONLESS MEMBRANE FREQUENCIES

n m i w r /fa
Jn,m nm o/

0 1 2.40483
11 3.83171
2 1 5.13562
0 2 5.52008
3.1 6.38016
1 2 7.01559
4 1 7.58834

membrane does not move. (The phase angle of this node cannot be determined
without initial conditions). The third mode is the 2,1 mode, which has
two diametral nodes, and the fourth is the 0,2 mode, with one circular
node at the point where JO(Aozr) =0, i.e. at Aozr = jO,l = 2.40483.

Figure 3.5.3 shows the nodal lines for the first several modes.

3.18



3.6 Nuclear Reactor Criticality

A very simple but conceptually useful model for the neutron density

in a nuclear reactor is that the neutron density ¢ 1is described by

vZ% + u% = o (3.6.1a)
where
2 1 1
Ve = b + T6 4 rzd’ee oo, (3.6.1b)

The parameter uz depends upon the reactor size and design and the position
of the control rods. For a cylindrical reactor, the boundary conditions are

(Fig. 3.6.1)

9, = 0 at z =0 (3.6.2)
_¢r = R at ‘r =1, (3.6.3)
-p_ = B¢ at z = L/2 (3.6.4)

Equation (3.6.2) is a symmetry condition; (3.6.3) and (3.6.4) equate the
neutron diffusive flux at the outer surface to the diffusive loss through
shielding. This model is far too simple to be useful in reactor design.
Nevertheless, it does display many of the features of more complex models
that are solved by any.heavy numerical analysis in actual reactor design.
The example will also serve to introduce some aspects of Bessel functions
and graphical solutions of transcendental algebraic equations. Equations
(3.6.2) f.(3.6.4) are linear and homogeneous. It is clear that ¢ = 0

is one solution. For small yu (small reactor volume) it is the only
solution, but as W 1s increased the point is reached at which a non-
trivial solution becomes possible. This non=-trivial solution, an
eigensolution of the linear homogeneous problem, represents the neutron

density field for steady-state reactor operation. The lowest value of . K
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(lowest eigenvalue) determines the critical mass of the reactor.* The

objective of our analysis is therefore to calculate .

We will seek axisymmetric eigensolutions of the form

¢(r,z) = R(r) *Z(2) (3.6.5)

Substituting in (3.6.1), and separating the variables,

1
R" + =R? "
= - _(g +uz) - 2 (3.6.6)

The separation constant was called _a2 because this will lead to positive,

real a. So,
2

' +yz = 0 (3.6.7)
ﬁhere
¢ = u? - o2 (3.6.8)
and
R"+%R’ +a’R = 0 (3.6.9)
The Z solution is
Z = C1 sin(YyZ) + C2 cos(YZ) (3.6.10)

But Cl = 0 by (3.6.2), then since (3.6.4) requires

Z' +82Z = 0 at z = L/2 (3.6.11)

*The transient behavior would be governed by

a2l - Py b , 65D
3

If M<U,, %% < 0 and the reactor shuts down. If yu > M. —E-> 0 and
the neutron population builds up. The reactor control system increases y
to slightly above u_, then allows the neutron population to build up to the
desired operating level (reactor power), and then resets yu to He to hold
a steady-state critical condition.
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it follows that

-y sin(YL/2) + B cos(YL/2) = 0 (3.6.12)
or |
- B_L) (_%_)
tan(YL/2) (2 L (3.6.13)

This defines an eigenvalue problem for Y. Figure 3.6.2 shows how the
eigenvalue Y can be determined graphically. This plot would be very
useful in helping one structure a computer program to calculate the eigenvalue(s).

The R equation general solution is

R = Bl.Jo(ar) + B, Yo(ar) (3.6.14)

But B, = 0 since YO(O) = =@ Then, (3.6.3) require

2
R' (ry) + >BR(rO) =0 (3.6.15)
Now (see HMF 9.1.28)
Ip'® = -3 (x) (3.6.16)
So (3.6.14) gix}es
Bl[»'Jl(arO) s 0 + BJo(aro) ] = 0 (3.6.17)

Bl = 0 produces a trivial solution. Therefore, we require the term in
brackets to be zero. This determines the eigenvalue «. HMF Table 9.7 gives

the roots of

—AJO(X) + le(x) = 0 (3.6.18)
Hence, if we multiply (3.6.17) by r, and set Bro = A and or, = x, we
can use HMF Table 9.7 to determine ory. For example, if Bro = 0.2,

or, = 0.6170. Finally, we know that uz = az + YZ, and hence can calculate

U from the known values of 0 and Y.
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The neutron density distribution is then

¢ = A cos(yz) JO (or)

The amplitude A cannot be determined. It depends on the reactor thermal

power output, and will increase as the reactor power increases.

3.7 Summary

We have seen that the eigensolution to linear, homogeneous PDE's sub-

jected to linear, homogeneous boundary conditions, can be obtained by SOV.

The general approach is as follows:
}- assume the solution in SOV form;
2. separate the variables and define the separation constants, ,
3. 1invoke the boundary conditions, first to simplify the solution and
- then finally to determine the separation constants (eigenvalues).

The amplitude of the eigenfunctions cannot be determined, because of the

homogeneity of the boundary conditions.
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3.4

c. Show that there are no modes where

p = p(8,t).
d. Find the eigenmodes and frequencies for the general case where

p = p(r,8,z,t)

In the analysis of seismic loading on nuclear reactors, oil storage
tanks and other large fluid containers, one needs to know the natural
frequencies of sloshing motions. This problem will acquaint you with
the typical anmalysis.

z
Consider a circular geometry, with vertical T 0
walls at r = Iy and the bottom at z = =h. ;él 7
The equations governing the sloshing are . ;? 2
2, _ 1 1 _ { -
(1) v ¢ = er + r®r + rz @ee + @zz = 0 ////’/,(/
(2 3 i I
2

~—+gn = 0 on z=20 (4 1o

ot ~ 8 ) 3 = 0 at r = I

an _ 3¢ _ _
3) 3% - 3z = O on z =90 (5) %% - 0 at z = -h

¢(r,0,z,t) is the velocity potential; the fluid velocity is the gradient
of ¢ ; n(r,0,t) is the surface displacement. g is the acceleration
of gravity, g = 9.8m/sec2. Equation (1) is the continuity equation
for irrotationél flow, (2) is the Bernouli equation applied on the

free surface, (3) is a kinematic condition relating surface motion to
velocity, and (4) and (5) are boundary conditions that the flow cannot
penetrate the wall. Students with expertise in fluid mechanics should
derive (1) - (5).

(a) Using the method of separation of variables, derive an expression
for the natural frequencies. Express them non-dimensionally as

(6) QZ = erO/g = f(h/ro)

Ekpress the solution for the surface deflection n(r,0,t) in the
non-dimensional form

)
. ,;;7 G(wmnt) H(m6)

where na is the maximum deflection at r = ry (the sloshing

QR |

amplitude) '
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(b) For the special case h/r0 = ® , calculate the values of Qz for
the modes having the five lowest natural frequencies, and sketch
the node-lines in the surface displacement n(r,6,t) for each
of these modes. Check-point; the fundamental has 92 = 1.841.

HINT: See HMF 9.1.1,.9.1.11, Table 9.5.

(¢) Consider a large oil tank 30m in diameter, filled to a depth of

10m. . Calculate the lowest natural frequency of vibration (hz).

(d) Find a coffee cup, jar, or other circular container. Fill with
water to a selected depth, and manually excite the first mode
by moving the container sideways. Compare the "measured"
frequency (hz) with the value predicted by the analysis.
Visualize the radial node-lines of part (d) in your cup by
banging it (gently!) on the table.

3.5 Consider the sloshing of a fluid in a rectangular
tank. The motion is described by the equatioms
of Problem 3.4, except that

2 0 M-
V¢ = ¢+ + 9

XX yy zz

and (4) is replaced by

¢x = 0 at x

[
o
[

¢ =0 at y = 0,b 0 a

y

(a) Calculate the natural frequencies of fluid sloshing in the tank. Show

that they are given by

2 | 2 2 m2 n2
w = gk tanh(kh) ° ki = m 3+ )
nm a~ b

(b) Give the expression for nnm(x,y,t) , apart from an undetermined phase

and amplitude.
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(c) Find a bathtub, wash-basin, or kitchen sink, £111 with water to a
reasonable depth. Manually excite the fundamental sloshing frequency
and compare the theoretical value with an "eyeball" experimental

measurement (hz).
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Chapter 4

EIGENFUNCTION EXPANSIONS IN LINEAR PROBLEMS

4.1 Introduction

.In the previous chapter, we saw how linear, homogeneous problems led to
eigenvalue problems when attacked by the method of SOV. For the problems
examined there, the init@al condition information needed to complete the prob-
lem formulation was missing. In this chapter, we will see that it is possible -
to combine the various eigensolutions of the "partial problem" formed by the
homogeneous PDE and'homogeneous BC's to generate the solutions to the complete
problem.

Suppose a PDE is a linear, homogeneous equation; let's denote

this equation by L(u) = 0 . Then, if

uy and u, are two functions that
satisfy the equation, L(ul) =0 and L(uz) =0 . It follows from the

linearity and homogeneity that wu., = Au, + Bu

3 9 also satisfies the equation,

1
since

L(u3) = L(Aul + Buz) = L(Aul) + L(Buz)

= AL{y,) + BL(u,) = 0

So, we can take arbitrary linear combinations of functions satisfying the same
linear homogeneous equation and thereby construct new functions satisfying the
same equation. This is the property of linear homogeneous equations that
enables us to use the eigensolutions as building blocks for more complex
problems. |

Let's illustrate the idea with a simple example. In the vibrating string

problem (Section 3.2 ), we had the linear homogeneous problem

2
AU T U, =0 : (4.1.1a)
u(0,t) = 0 (4.1.1b)
u(L,t) = 0 (4.1.10)
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We can group the eigensolutions that we found into two classes: o

—”

uél) = gin (E%E) cos (E%iAt) ' (4.1.2a)
urgz) = sin (5}{5) sin (% ) (4.1.2b)

Eqn. (4.1.2a) represents those solutions that have 9Ju/dt =0 at t =0 ,
while (4.1.2b) gives the eigensolutions with u(x,0) = 0 . Now, suppose
that we pose a complete problem by adding to (4.1.1) the initdial conditions

du/dt = 0 at t =0 o (4.1.3a)
w(x,0) = 3 sin (%5)-— 2 sin (3%§> (4.1.3b)

Since all solutions (4.1.2a) satisfy both (4.1.1) and (4.1.3a), and since each

of these equations is linear and homogeneous, the linear combination

u = 3u£l) - 2u§l) ‘ N’

, X Ta X 2Tx 2Ta
3 sin (E—) cos (ET-E> - 2 sin (ff—) cos ( I ) (4.1.4)

also satisfies (4.1.1) and (4.1.32a), Moreover, at t = 0 it matches
precisely the inhomogeneous initial condition (4.1.3b). Hence, it is the
solution to the complete problem formed by (4.1.1) and (4.1.3).

This example had such a simple initial condition that the proper mix of
the eigensolutions could be found by inspection. But we would like to be able

to deal with more complex situations, for example, the case where (4.1.3b) is
replaced by

u(x,0) = f£(x) (4.1.5)

where f(x) is any continuous function consistent with the end boundary con-
ditions (4.1.1b) and (4.1.1c). You might correctly guess that this general

case would require a mix of all of the eigensolutions uél) » such that
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ulx,t) = z A ur(ll)(ic,t) (4.1.6)
n=1 ' 5

The question then is, how can the coefficients An be evaluated? Students
who have encountered Fourier series will recognize that in this case the

coefficients An are just the Fourier coefficients in the sine series for

f(x) , since

u(x,0) = z A_ sin (9-}{35) = £(x) (4.1.7)

However, suppose the eigénfunctions were not sinusoidal in x (as would be

the case for a non-uniform string). Recalling thét

un(x,t) = Xh(x) . Tn(t) (4.1.8)

X v
since we can always normalize the eigensolution such that Tn(O) =1 , the

inhomogeneous initial condition would take the form

u(x,0) Z AX (0 = £(x) (4.1.9)

The function X might be sines, or Bessel Functions, Legendre polynomials,
or other spec1a1 functions, depending upon the problem. The need to determine

the coefficients An still remains, as we shall see, a property of the

eigenfunctions Xn(x) » the orthogonality property, allows the An to be
determined. o ’

Thus, the solution to the complete problem can indeed be constructed as

a linear combination of the solutions to the linear homogeneous partial

Problem.

Meanlng those for which T (0) #0, i.e., the u(l) functions in
(4.1.2a). n
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4,2 The Sturm Liouville Problem

The key to detefmining the An's in an expansion solution is the

eigenfunction orthogonality property, which can be established for each

particular eigenvalue problem by mathematical analysis of the ODE's govern-
ing the eigenfunctions. Second-order ODE's arise in many problems; a

reasonably general second order problem is the Sturm Liouville problem.

"The Sturm-Liouville problem is the eigenvalue problem described in the

linear homogeneous ODE

%; (S(x) %ﬁ) + Q@ +.A2 P(ly = 0 (4.2.1)

and the linear homogeneous boundary conditions

]
o

oy + By' at x = a (4.2.2a)

§
()

Yy + &y’ at x=b (4.2.2Db)
All of the second-order ODE's that appeared in Ch. 3 can be placed in this
form; indeed, any second-order linear homogeneous ODE can be transformed to
the form of (4.2.1).

In this section, we are going to explore the nature of the solutions to
problems of the Sturm-Liouville claés, and develop the orthogonality property
of the Sturm-Liouville eigenfunctions. We will discuss questions of conver-
gence of eigenfunction expansions, but will use heuristic arguments rather than
formal mathematical proofs. Exacting proofs are available in books on advanced
theory of ordinary differential equaﬁions.*

Let's begin by looking at a siﬁplified form of (4.2.1),

y" 2% Py = 0 | (4.2.3)

P(x) > O

with the boundary conditions

E3

See, for example,‘Ince, E. L., Ordinary Differential Equations, Dover,
New York, 1956. ‘
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y(0 = 0 y(L) = 0 (4.2.4a,b)

If we momentarily replace (4.2.4b) by the inhomogeneous condition
y'(0) =1 | - (4.2.5)

then (4.2.3), (4.2.4a), and (4.2.5) precisely defines a function y(x3;A) for
any A . Fig, 4.2.1 shows what these functions might look like for P(x) > 0
over 0 < x <L . Note that y'' will éhaﬁge sign when y = 0 . Hence, the
solutions will oscillate’as shown in the figure. The larger the value of A,
the larger will be y'' and for any given y , and hence large A solutions
~will oscillate most rapidly. ‘ v
Now, in this case the equation solutions y(x;A) do not necessarily
satisfy the boundary condition (4.2.4b). However, for certain values of A

this boundary condition will be satisfied. The eigenfunction yn(x) is then

V. = y(x;An) (4.2.6)

It is clear that for this case there is an infinite set of eigenvalues and no

two eigenvalues are the same. Hence, - we can think of ordering them such that

2 . 2 2 2
and Ai +> oo as n > (4.2.7b)

In general, for (4.2.1) subject to (4.2.2) it may be shown that,‘if S(x) >0
and P(x) > 0 over the problem domain (a <x<b, then the eigenvalues are
distinct and may be ordered as in (4.2.7).

We are now ready to develop the orthogonality Property. Let Y, and Y
be tyo eigenfunctipns associa;ed with eigenvalues An and Am » respectively.

Then, y  and y_ satisfy slightly different ODE's.

[]
o

(Sy;)' + [Q + AiP] v, (4.2.8a)

]
o

ty? 0 12y |
(Sym) + [Q+ AmP] Y (4.2.8b)
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Now, multiplying (4.2.8a) by Yo ~and (4.2.8b) by Y, o subtracting the

e’
second equation from the first, and integrating, one obtains,
2 2 -
tyro 1yt = - .2,
f Palr’ = vator e = 02 - ad f Py v dx  (4.2.9)
a . a
Integrating the integral-on the left by parts, the left-hand side becomes
b b
T 1 - LI B Tt
Yu3Vn = Y5V, (sy vy = sylyl)dx
a
a
But the integrand is zero, hence (4.2.9) is-
b b
syt -y v = - %) Py y dx ' (4.2.10)
m’n atm’ m n n’m
a
The boundary conditions at x = g (4.2.2a) require
N
' ==
ayn + B%“ 0
at x = a (4.2.11)
' =
aym + Bym 0
Thinking of this as a prair of linear homogeneous equations for 0 and B ,
which must have the problem values as a non-trivial solution,‘it follows that
the determinant of the coefficients must vanish, or
v ' '= . =
Vg = Vo) 0 at’ x=a (4.2.12)
A similar result is found at x'=b . Hence, the left-hand side of (4.2.10)
is exactly zero. Hence, ' |
b
(>\\2 - Az) Py ydx = 0 (4.2,13)
Sm n A n’m te
- . 2 2 . .
Thus, if A7 # A%, as will usually be the case if n # m -
n m ] N
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b ‘
= 2.14
f Pynymdx 0 n#m (4 )

a

Eqn. (4.2.14) is the orthogonality property of the eigenfunctions. The eigen~

functions are said to be orthogonal with respect to the weight function P(x) .

Now, suppose that, in the course of trying to construct the solution to
a PDE as a linear combination of eigensolutions of the linear, homogeneous
partial problem, we are led to the point where we wish to determine the

coefficients in an eigenfunction expansion,

£(x) = 2 Ay (%) (4.2.15)

where the ¥, are eigensolutions of a Sturm-Liouville problem. Multiplying
(4.2.15) by Pym » and integrating over the problem domain,

b -
fnymdx = Z A /Py y_dx  (4.2.16)

a

But, because of the orthogonality property (4.2.14), all of the integrals on

the right will drop out, except the one where n =m . Hence, we can immedi-

b .
f nymdx

a

A = —_.b__f | (4.2.17)

ately solve for Am ,

Pyidx
a
The infinite series (4.2.15) will be useless if it fails to converge to
£(x) . 1In specific problems where one calculates the A it is easy to
perform the standard tests for series convergence. It is somewhat‘more
difficult to prove convergence in general. However, if f is square- |

integrable, i.e., if
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b ,
fszdx is finite N

a

%
then the series converges in the sense that

2
dx =+ 0

. b N
1im f If(x) - z Ay (%)
N-> o0 n"n

o a n=]

This means that, if f is continuous over the interval g, <x<b, the
~Series converges uniformly (at all x). However, if f ig discontinuous at
some point, then the series will give a value at that point that is the
average of the values of f at points infinitesimally above and below the
point of discontinuity. .

There are many problems of interest involving higher order system of
linear homogeneous equations. In these cases, there are no theorems or
general proofs of convergence of the eigenfunction expansions. One has to
pProceed by examining each case separately. However, problems arising from
well-thought through physical fqrmulations rarely, if ever, give rise to non- \_
convergent expansions, so the analyst is usually safe in going ahead,
assuming convergence, and then verifying it after the fact by ratio tests,

numerical calculations, or other appropriate means.

4.3 ‘Example - Vibrating String

y

For the vibrating'string problem discussed in 84,1, the solution is given

‘by (4.1.6). The coefficients A.n must be chosen such that (4.1.9) is

satisfied. The eigenfunctions Xn are eigensolutions of

]
o

X' +>\§ X_ (4.3.1)

and hence, from Sturm—Liouville theory, have the orthogonality property

*
See, for example, Ince, Ordinary Differential Equations, Dover,
New York, 1956,
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I,
andex = 0 n#m (4.3.2)

Recalling that

X = sin (Eli’i) (4.3.3)

we see that (4.3.2) is equivalent to

L '

fsin (E;r—'?i) sin (r_n_g_g_) dx = 0 n#m

0

which 1s indeed correct. So, to determine the An we multiply (4.1.9) by
Xm and integrate, '

medx
0_
Ay = L
2
dex
0 0 .
(4.3.4)
L
f(x) sin (m’rrx) dx
- 0
L
f sin2 (EE-}S> dx
0
The integral in the denominator has the value L/2 , for all m . Hence
A o= 2 [ ¢ etn (1“-1’1) dx | (4.3.5)
m L) ' L o

To be more specific, let's suppose that
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2e x/L x < L/2
f(x) = (4.3.6)
26 (1-x/L) x > L/2

This corresponds to an initial Pluck in the center. Integrating, one finds

4e (_1)(m+;)/2

2 m odd

(mm)

A = (4.3.7)

m
0 m even

Hence, the coﬁplete solution for (4.3.6) is
' = 4 +1) /2
u(x,t) = zg -——E—E (-l)(n sin (E%§> cos (E%é t) (4.3.8)
: . (nm) _
n=
(n odd)

Noting that Ah v l/nv2 s we see that (4.3.8) is absolutely convergent for all
X and ¢t .,

A real string would exhibit damping, not presenﬁ in the mathematical model

used here. Damping would cause the higher‘frequency modes to decay faster
than the lower frequency modes, with the result that the fundamental (lowest

frequency) mode would dominate after a period of time.

4.4 Example - Quenched Sphere

A metal sphere is hééted to a uniform temperature To » then quenched
by dunking in water. If we assume that the éurface temperature is instantly
dropped to T = 0 by the dunking, the temperature history in the sphere is
described by the linear, homogeneous PDE {

]

'

2
o (231) _ o |
or \" 37/ T 3 ut (4.4.1)

and the linear, homogeneous boundary condition

' 4.10
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T(r,t) = 0 , (4.4.2)
and the linear, inhomogeneous initial condition
T(r,0) = To r>0 (4.4.3)

This problem can be solved by the methods just described. The first step is
to construct the eigensolutions ef the homogeneous problem formed by the
linear, homogeneous PDE and boundary condition (4.4.1) and (4.4.2). Then,

a linear combination of these solutions will be taken to satisfy the inhomo-
geneous initial condition (4.4.3).

For the homogeneous problem, we look for eigensolutions in the form

Tn(r,t) = R(r) * F(t) , (4.4.4)
Separating the variables,
2 '
R LE 2
rZR : oF A . (4.4.5)

The decision to name the separation constant —Xz was dictated by the fact

that the F equation then becomes

F' + A%aFr = o (4.4.6)

which has the solution

2 : I
Fosocoe Aot 4la.7)

Thus, each of the eigensolggions will decay in time. The R equation is
(r’r) '+ 2%2%R = g (4.4.8)

This equation has solutions in terms of the spherical Bessel Functibné
(HMF 10.1.1); the general solution is

4.11



R = C2 jo(Ar) + C3 yo(kr) (4.4.9) N

The functions jo(z) and yo(z) are related to the Bessel functions of
order 1/2 , as shown in HMF §10.1. Now, yo(O) is infinite (see HMF 10.1.5),
80 03 =0 1is required.' Since we are going to multiply the eigensolutions

by expansion coefficients A.n when we construct the complete solution, we

lose nothing by setting Cl'C2 =1, and hence take the eigensolutions
Tn(r,t) as
f —Aiat
Tn(r,t) = jo(lnr) e _ (4.4.10)

The eigenvalues An are determined by the homogeneous boundary condition

(4.4.2), which requires Rn(ro) = (0. ,Hence, the condition
jo(lnro) = 0 (4.4.11)
fixes the An . HMF Table 10.6 gives the roots of this equation, s

Each of the eigensolutions (4.4.10) satisfies the PDE and boundary con-

dition, both of which are linear and homogeneous., Therefore, any arbigrary

N

sum of the eigensolutions will also satisfy the PDE and boundary condition.

So, we take

T(r,t) = z AT (r,£) (4.4.12)

and will try to find expansion coefficients A.n such that the infinite sum

also satisfies the initial condition (4.4.3). Thus, the initial condition
.takes the form

(4.4.13)

=
[e]
]
=g
(2
o .
Pany
>
f=}
H
N
[/}
:1:>
-]
7~
a1
Nt

4.12



The orthogonality property, used to evaluate the An » may be developed by
manipulations with the ODE (4.4.8). One multiplies the equation for R by
R » the equation for Rm by Rn » subtracts, and integrates by parts.
Alternatively, the result may be taken directly from Sturm-Liouville theory.
In either approach one finds
r
° 2
f r R R dr = 0 if n#m (4.4.14)
n m
0 .

So, multiplying (4.4.13) by rsz , and integrating, one finds

r r

r
o
r [ R - N A R Rdr = & orszdr (4.4.15)
o m n n m m m T

0 n=1 0 0

Note that the orthogonality property drops out all of the integrals except

the one with n =m . Hence,

T J/ﬂ r R dr '
0 TTI

o1l
A = 4&(3 . T v (4.4.16)

2
J,” r R dr
0

Thus, once these 1ntegrals have been calculated, the solution will be com-

pletely known.

The integrals Il and 12 can be evaluated using the differential
equation (4.4.8). This avoids the need for explicit integration. Integrat-
ing (4.4.8), one finds

r

¢ .

v w0 1Y v
l n _2» .n

An 5 A

5]\)

0

(4.4.17)
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{
Thus, the integral can be evaluated in terms of the derivative of the

b\\../
eigenfunction at the boundary. @
» In order to evaluate 2 » a special trick is hélpful. Let R(r,A)
denote any solution to (4.4.8) that is finite at the origin (here
= jo(Ar)). Note that R(r;A) satisfies (4.4.8) for all ) .
Differentiating with respect to A, we obtain
2 (220 #2232 B yoaeR = o (4.4.18)
dr droA oA * e
We multiply (4.4.18) by R.n and integrate over the problem raﬁge, obtaining
Yo 2
9 2 3°R 2 2 3R 2 _
/ Rn e (r Bra}\)-'-}\r a)\+2>\rR dr = 0 (4.4.19)
0
Integrating the first integral by parts,
N/
r r 2 .
Q2R | ° PR R ar e ... = o (4.4.20)
n-  9roA r '
' 0 0

The boundary terms drops at r = Q » and also at r = r, Dbecause Rh(ro) =
Hence, only the integral remains. Integrating it again by parts, (4.4.20)

becomes

r r - r

_ 23R _,|° ° 3R 200v1 4 222 ° 2
a% R +~/r 5 (r Rﬁ) + A°r R.n dr + 2 r°R Rndr = 0
o 0 0

(4.4.21)

Now, the integrand of the first integral is zero everywhere (it contains the
equation for R ), and hence this term drops out., With )\ = ) n’ R(r,A ) =

R (r), and hence the second integral is a constant times I

Los thus<
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[0}
_ 22, . 1 2. )R
0 r=r
A=A

Thus, we are able to evaluate the integral 12 in terms of properties of
the solution at the boundary points. This is very useful, especially in

problems where we must resort to numerical solution of the eigenvalue ODE
Hence, '

. - - ToroRn(r ) . an
n 2 2.,
. An roRn(ro)(BR/Bl)
, -
n
=r
)
27T
-——9
An(aR/ax)
A=A
n
rex, (4.4.23)

For the problem at hand, jo(z) = 8in(z)/z (see HMF 10.1.25). Hence,
the eigenvalue-defining condition Rn(ro) = 0 becomes

sin (Anro)
5 r = 0 (4.4.24)
n o

and we see that the eigenvalues are given by the roots of sin (Anro) s

Anro = nT (4.4.25)

Moreover,
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sin(Ar) (4.4.26)

Ar

=

7~~~
3]

w
>

St
i

i
.

cos(lnro) | (4.4.27)

>
i
>

Noting that cos(lnro) = (—l)n » (4.2,23) gives

A = 21" T (4.4.28)

So, our final solution is, from (4.4.12),

00 sin(aTx/r ) 2. 2
T(r,t) = 2T 2 -1y ) nPrlar/ (4.4.29)
nrr/r :
n=1 o

Note that the series converges for all t . The. series for 0T/9r , developed
from (4.4.29) by differentiation, will converge for all t > 0 because of the
exponential, but does not converge at t = 0
limitation. As

« But this is not a serious
t increases the series converges more rapidly, and at large
t the solution is given (approximately) by just the first term,

sin(ﬂr/ro) 2

v- 2
T = 2T e M ot/ry

(4.4.30)
mr/r
(o]

4.5 Sturm-Liouville Denominator Integral.

In analyses,leading to the'Sturm-Liouville problems, the orthogonality

property will produce (4. 2.17) The denominator integral may be expressed in

terms of quantities evaluated at the boundary using a generalization of the

trick employed in the previous example. Let y(x,\) be a solution to (4 2.1)

not necessarily satisfying the boundary conditions (4.2. 2). Then, y(x,\ )

4.16

N

N

\



/

will be an eigensolution satisfying the boundary conditions. We differentiate
(4.2.1) with respect to A , obtaining

]
9 9 2.7 9 }
= (s “Laxax> + [Q + A p] =X+ 2)py 0 (4.5.1)

Néxt, we multiply (4.5.1) by y, and integrate over the problem range,

9 S _Efl_. + [Q + )\ZP] 9 .+ 2Py } dx = 0 (4.5.2)
n | ox \° Dxox EP

a

The first'integral is integrated twice by parts, and (4.5.2) becomes

b

_ 3y o
oA ynS

b ’ b
+/ %{' (Syr'z)' + [Q + }\zp]yn dx + 2)\/. Pyyndx = 0 (4.5.3)

a a

Now, if we set )\ = An ».the first integral drops out (because the integrand

contains the Y, edquation), and hence

b b , b

2 = '—:.L_.. ' ﬁz - a_L
/ Py, dx 5 ) Ya® 0 Yo 3o (4.5.4)
a a _ a

Thus, the denominator-inJ A.n can be evaluated without recourse to integration.

4.6 Removal of Inhomogeneities -in the PDE and BCs

In the previous problem, the PDE and BCs were homogeneous, and there-

fore eigensolutions of this homogeneous problem could be found. By taking a
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linear combination of these eigensolutions, we were able to construct a ;

\\'—/
solution which satisfies an inhomogeneous initial condition. In many
problems, the PDE and BCs also are inhomogeneous. In such cases, one must
"remove" the inhomogeneities to form a homogeneous problem which can be
attacked successfully by the methods presented above.
To illustrate the problem, suppose we are interested in the time-
history of the diffusion of a contaminant in an annular system in which the
contaminant is continually produced (Fig. 4.6.1). The governing PDE is
9 [ dc r dc
or (r Br) o ot  r8 (4.6.1)
Here ¢ d1s the contaminant concentration (kg/m3), o is the (constant)
diffusivity of the contaminant, and s is a "source" term. Let's suppose
that the outward diffusion is blocked at r = r, by a barrier, so that the
boundary condition at r = r, is
Je 0 at r = r (4.6.2) ‘
or 0 M
And, let's suppose that the contaminant is removed convectively at the inner
radius ry » 80 that the inner boundary condition 1is
h(c-c) = D28 at r=r (4.6.3)
L or 1 '
Here h is the convective transport coefficient, cg is the concentration
(fixed) in the fluid passing through the annular hole, and D is the
diffusion coefficient for o ~in the solid. Finally, 1et 8 suppose that
initially c = ¢y throughout the solid, '
c(r,0) = c, (4.6.4)
Egs, (4.6,1) - (4.6,4) défine the problem to be solved, (4.6.1) contains the
inhomogeneous term rs 3y (4.6.2) is homogeneous; (4.6. 3) contains the
inhomogeneous term hcoo + If we could somehow remove these inhomogeneities, the
. s

4.18



PDE and BCs would be linear and homogeneous, and we could find the
eigensolutions and then combine them to satisfy the initial condition.
In transient problems such as this one, the inhomogeneities can usually

be removed by use of the steady-state solution. Let Y(r) be a solution of

(4.6.1), (4.6.2), and (4.6.3) that is iﬁdegendent of time (t) . Hence, the

steady-state solution U(r) will satisfy

%;.(r g%; = - rs (4.6.5)
%‘rr'i = 0 at =t (4.6.6)
h(bme) = DEL et rar (4.6.7)
Now, if we put
c = Y(r) + ¢(r,t) (4.6.8)

then the transient function ¢(r,t) will have to satisfy

3 3
5D =

QIn

3
52 (4.6.9)

r=r, (4.6.11)

Note that (4.6.9) - (4.6.11) are all linear and homogeneous in ¢ ; the

’

inhomogeneities that appeared in the eduations for ¢ have been "removed".
Hence, the ¢ problem can be attacked by separation of variables, and its
eigensolutions found. The initial condition for the ¢ problem is then

[ .
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6(r,00 = c(r,0) < B(@) = o = Y(r) (4.6.12)

Thus, the structure of the ¢ problem is the same as in the problems
previously studied: homogeneous PDE and BCs, inhomogeneous initial condition.

The VY problem is solved simply by integrating; the first integration
yvields

' 2
rY' = - %—'s + ¢y , (4.6.13)

but (4.6.6) requires that ¢, = ris/Z » Thus, the second integration yields

2
r's 2
_ o _ 8x (4.6.14)
Yy = > n r -7r--+ c,

c, is found using (4.6.7) . The result is

' S 2 r (ri - r2) D rg
Y = c, + E- T in (;;9 + 5 + T ;;'~ r, (4.6.15)

Next, we attack the ¢ problem. We look for eigensolutions of the form

¢ = R(xr) ° T(t) : (4.6.16)
Eqn. (4.6.9) produces
(ig')' - %g_' Y .(4.6.17)
Hence, the T equation is
T + %1 = o - (4,6.18)
and ;
T = exp (- \ar) | '(4.5.19)

4,20 . )
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Since we expect the eigensdlutions to decay with t (leaving the steady-
state’solution), the choice of —Azl as the separation constant was
appropriate, The R equation is '
‘l ' 2 o=
(rR")'" + A"rR = 0 (4
which has the solution (see HMF 9.1.1).

R = €I () + C,¥_(Ar) (4

The boundary conditions (4.6.10) and (4.6,11) require

' ' ' =
ClkJo(Xro) + CZAYO(Aro) 0 (4

I
o

¢, [hJo(Ari) - DXJ&(lri)] +C, [hYo(Ari) - DAYé(Ari)]

(4.

Eqs. (4.6.22) are a pair of lihgar, homogeneous algebraic equations for C

and C2 . Non-trivial solutions can be obtained only if the determinant o
the coefficients is zero,
] 13
,AJO(KrO) XYO(ArO)
D(x) = : = 0
‘ — ' — 1]
h Jo(}ri) DAJO(Ari) hYO(Ari) DAYO(Ari)
(4.

.6.20)

.6.21)

.6.22a)

6.22b)

1

£

6.23)

D(A\) 1is called the "characteristic determinant” of the problem. The zeros of
D(A) defines the eigenvalues An . They could be determlned by a suitable

graphlcal or numerical routine, using Fig., 4.6.2 as a guide.
Now, the amglitude of the eigenfunctions can be anything, since they

- satisfy homogeneous equations. Therefore,‘we can arbitrarily scale the

eigenfunctions in any way we like. The choice C, =1 is convenient} with

1
Cln =1, either of (4.6.22) will produce
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N
= -~ J! ! 4.6.24
C2n Jo(Anro) /// Yo(Anro) ‘( )

The eigenfunctions Rn(r) are now completely known, and hence the Rn(r)
can be calculated.

Finally, we expand the solution for ¢ in terms of the eigensolutions,
< ‘ - Azat
= ; = - . .2
¢ z A b (r,t) Z AR (r) e’n (4.6.25)
n=1 ‘ n=1

Evaluation of the An requires the orthogonality property. It is derived by
multiplying the Rn equation by Rm » the Rm. equation by Rn » subtracting
the two equations, and integrating. After integrating by parts, using the

boundary conditions, one finds

) .
f T Rn Rm dr = 0 n#m (4.6.26)

We could have taken this directly from Sturm-Liouville Theory (4.2.14). Hence
multiplying (4.6.25) by rRm > and integrating, one finds, for t = 0

9

r

» (o] . ro 2
A = f ¢(r,0)r R dr / r R dr (4.6.27)
r,
1

1
Using the initial condition on ¢ , (4.6.12), the Am can now be evaluated.

If we were doing this analysis completely, we would write up a computer
program to evaluate the A.m and graph the solution for a range of r and t .
Computer center libraries have routines that generate Bessel functions with
the same ease as exponentials, sines, and other functions, so this would be a
very easy task. The hardest part would be solving D(A) = 0 for a large
number of A's , QOne would start by plotting D(A) vs. A s Which would give
én idea of the structure of the problem, after which an "automatic" root-

M

finder could be constructed.
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We note that the denominator integral in (4.6.27) could be evaluated

using the approach of the previous section. The numerator integral would

involve

r r . r

) ° 4 o
Il = / ardr 12 = / T Rndr v 13 = / T ,Qn(r)Rndr.

Ty

(4.6.28a,b,c)

Il can be found, in terms of boundary quantities, directly»by integrating

(4.6.20), 1

X

o, 2
! =
/ T (ar) dr + An 12 0

Ty

Integrating by parts, the first integral is

H
N
~

)
'
)
N
H
2
P
n
)
H
)
!
N
R
N
=
=)

i i _ i i

So, we can evaluate I2 in terms of I1 and boundary quantities.

also be found by multiplying (4.6.20) by fn(r) and integrating,

r : ,

] 1) R
f fn (r) (ar) dr + An 13 = 0
r,
i

Integrating by parts, the first integral is

T . - r

o o 1 o

I3 . rR' - Y = ) o i -

n (r) rR} .ar = dr r fn(r) RY R
R 3

4.23
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I3

o can be found by multiplying (4.6.20) by r2 and integrating:

(4.6.29)

ir r
o o
-2 Q}r ‘YR dr
4 n
T ri

can

(4.6.30)



and hénce I3 can also be evaluated in terms of boundary quantities. Thus,
the An can be found without recourse to any numerical integration! This

is often the case; the key is always integration by parts.

4.7 splitting

We have seen that problems with linear PDEs and BCs can be solved by
constructing linear combinations of the eigensolutions for appropriate homo-
geneous partial problems. We also saw that in transient problems the
inhomogeneities can be "removed" by "splitting" the solution into steady~state
and transient parts. The concept of problem splittiné can also be used to
"remove inhomogeneities'" in other problems.

To illustrate the idea, consider the problem sho%n in Fig. 4.7.1. ‘The

PDE is the inhomogeneous Laplace equation,

v = b+ = hix,y) (4.7.1)
‘ XX vy _ '
The domain is the rectangle shown, and the boundary conditions specify ¢
around the boundary, in terms of the functions shown. Note that all of these
boundary conditions are inhomogeneous.

To use the methods developed in this chapter, we‘can "split'" the problem
into the five problems shown in Fig. 4.7.1. Problem (p) will take care of the
inhomogeneity in the PDE. The solution ¢(p) is any particular solution of
the PDE, without regard for boundary conditions. Tt will yield the values of
¢(p) on the boundaries denoted by the functions 8 - g4_,We shall discués
means for finding the particular sblution shortly. The four problems
¢(1) - ¢(4) involve homdgeneous PDEs and nearly completely homogeneous bound-
ary conditions. Therefore, for each the eigensolutions of the homogeneous
partial problem can be found, and then a linear combination of these eigen~

functions taken to construct a solution satisfying the remaining inhomogeneous
boundary condition. Note that the sum

4

o = ¢® +k21 N | 4.7.2)
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satisfies the inhomogeneous PDE and inhomogeneous boundary conditions. This

type of splitting can, of course, only be done in linear problems.

Let's presume .that we have the particular solution ¢(p) » and are ready
to éolve problems ¢(l) - ¢(4) . We will do the ¢(l) problem; the other
three are done in the same way. '

The ¢(1) PDE is, dropping the superscript (1),

\ | Deg + Oy = O (4.7.3)

and the boundary conditions are

$ = 0 on y=0 _ (4.7.4)
6 = 0 on x =0 (4.7.5)
$ = 0 on x=a (4.7.6)
¢ = £ - g (x) = a(x) on y=hb | (4.7.7)

We look for eigensolutions to the homogeneous partial problem (4.7.3) - (4.7.6)
in the form

¢ = X(x) Y(y) (4.7.8)
and, from (4.7.3), find
X" , va ' 2 .
Y < -5 = - A (4.7.9)
Hence,
LI 2
"+ 2°x = 0 (4.7'10)
'A%y = (4.7.11)

The decision to name the separation constant —Az was dictated by the recogni-

tion that the X-solutions must oscillate in X in order to match the boundary

conditions. The X solution is
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X = C sin(Ax) + C, cos(x) ' (4.7.12)

The BC (4.7.5) gives C2 = 0 . Then, the BC (4.7.6) requires sin(Aa) = 0 .

Hence,
\a = nam (4.7.13)
The Y equation solution is

Y = C3 sinh(Ky) + C4 cosh(Ay) (4.7.14)

The BC (4.7.4) requires C4 = 0 . Hence, the eigensolutions are (apart from a
scaling constant)

¢n(x,y) = sin(nmx/a) sinh(nmy/a) (4.7.15)

Finally, we seek the solution satisfying the inhomogeneous condition

(4.7.7) as an expansion in the eigenfunctions,

¢ = AL o (4.7.16)
n=1

Thus, at y = b,

q(x) = 22 An sin(nmx/a) sinh(nmb/a) (4.7.17)
n=1

¢(b,x)

The orthogonality property for the Xn eigenfunctions is®

a
‘/ﬁ X X dx
n'm
0

*
Developed in the usual way.

]
(=]

n+#mn (4.7.18)
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So, multipiying (4.7.17) by sin(mmx/a) , and integrating

a

. /q(X) sin(mmx/a)
T : 2 , (4.7.19)
sinh(mﬂb/a)/sinz(mﬂx/a)dx

0

Given q(x) , we could compute the A.n . Hence, the ¢(1) solution is com-

pletely known.

The ¢(2) s ¢§3) ; and ¢(4) ‘problems could be handled in much the same
way. In the ¢(3) problem, the Y -equations would again be (4.7.11), and
Y(b) = 0 . Hence, rather than (4.7.14), a "more artistic" form of the Y

solution is

Y = Cg simh[A(y-b)] + Cg cosh[A(y-b)] (4.7.20)

because C6 will have to be zero for Y(b) =0,
Let's now discuss the particular solution. If h depends upon only one

of the independent variables, say x , the particular solution may be developed

by assuming
o(P) F(x) (4.7.21)
The inhomogeneous PDE is then

F'! = h(x) A. | (4.7.22)

whiéh has the solution (by double integration)

x £

F =/ f h(o) do dg (4.7.23)

0 0
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If h = h(x,y) , the particular solution can be obtained by expanding N
h in a Fourier series in either x or y . If we choose to do it in x s

we would write

-

(o]

h(x,y) = ES an(y) cos(2nmx/a) + 25 bn(y) sin(2nmx/a)

n=o n=1
(4.7.24)

The coefficients a and bn are determined using the orthogonality property

of the sine and cosine functions;

a
a = ;1;/ h dx (4.7.25a)
0 .
a |
a = ﬁ-/h cos (2mmx/a)dx | (4.7.25b)
0 ]
. a ‘
b = éfh sin(2mmx/a)dx (4.7.25¢)
0

Next, one would look for a particular solution in the form
!
(s}

¢(P) = Z Fn(y) 'c.::os(2vn7rx/a) + Z G (¥) sin(2nmx/a)

n=0 ) . n=1
(4.7.26)

Substituting into the PDE, and equating coefficients of the sines and cosines,
one finQS )
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F''" = g (4.7.27a)

(o] (o)

2nm \? :
F'' - (~9~> F = a (4.7.27b)
n a n n

201\ 2 |
G - (—Eﬂ) G = b (4.7.27¢)
n a n n

Particular solutions to these three ODEs can be obtained by standard methods
(e.g., the method of separation of variables).

In this problem, the corners would be singular points. The series solu-
tions would converge everywhere, except at the corners, where the solutions

would all be zero because of the method of solution.

4.8 Some Generalizations

While some problems fall into the Sturm-Liouville form, others do not.
However, the same general ideas can be used with the help of a new concept,
adjoint operations.

Suppose that the SOV process in a linear, homogeneous PDE problem produces
the ODE '

Lu = Mu+ ANu = 0 (4.8.1)

where L , M, and N are linear operators.  Suppose that the linear,

homogeneous boundary conditions are a set of equations of the form
{Bie = 0} " at x =a or b (4.8.2)

where the Bi are also linear operators. The eigenvalues A are those values
for which non-trivial solutions to (4.8.1), and (4.8.2) exist. The adloin

operators L% , Mk , N% ; and B; are defined by the requirement that

b ‘ b

,vaudx = /uL*vdx - (4.8.3)

a ‘ a
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where a < x < b is the range of the problem. Thus, the adjoint operators

N’
are identified by integration by parts. The adjoint ODE, L#*v = 0 s will be
uniquely determined, but the adjoint boundary condition set {BIV = 0} is
not always unique.

For example, suppose that the ODE is
Lu = o' 4 £Gu"" + 2% (0u = 0 (4.8.4)
and the boundary conditions are
u(a) = u'(a) = u(b) = u'(d) = 0 (4.8.5)
To identify the adjoint operators, we multiply (4.8.4) by v , and integrate
b b
vaudx = /v[u""'+ fu'! +A2gu] dx = 0 (4.8.6)
a a . '

N
Integrating by parts (several times) to transfer the differentiation from u
to v , one finds

b b
/VLudx = (Vu”' - v'u'' + vy - \;vvvu)
a a
p b~ ‘2
+ [vfu' - u(vf)'] +/u[v"" + (fv)'' + A gv}dx = 0
a a '
(4.7.0
Now, (4.8.5) drops out g%most all of the boundary terms. The remaining
boundary terms will drop if we choose
v(a) = v'(a) = v(b) = v'() = 0 (4.7.8)
\
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These, then, are the adjoint boundary conditions. In this problem, they are
the same as the basic boundary conditions (4.8.5). The adjoint ODE is then

Ld¥v = y''"'"" 4+ (fy)'' + Azgv = 0 _ (4.8.9)

Note that, if f 4is not constant, (4.8.9) is different than the basic ODE
(4.8.4).

If the adjoint ODE and adjoint boundary conditions are the same as those
of the basic problem, the problem is called self-adjoint. The Sturm—L10uv1lle

problem is self-adjoint, which is Why we did not require the concept of the
adjoint in our earlier examples.

The adjoint problem is also linear and homogeneous. It will have solu-
tions only for particular values of A

It is easy to argue that the eigenvalues )\ of the adjoint problem are
identical withbthose of the basic problem. Let v{(x,A) be a solution of the
adjoint equation L*v = 0 that satisfies all but one of the adjoint boundary
conditions {B* v = 0} . Suppose that A is an eigenvalue of the basic

problem, assoc1ated with eigenfunction u . Hence, integration by parts gives
b b
/vLudx = / uL*vdx + boundary terms (4.8.10)
a a '

But, the integrals are both zero, and therefore the boundary terms must vanish.
Hence, v must also satisfy the one remaining boundary condition; therefore v

is an eigensolution of the adjoint Problem, with eigenvalue )\ .

The orthogonality pProperty of the eigenfunctions is derived by multiplying
the equation for u, by vm , the equation for vm by u subtracting and
1ntegrat1ng (by parts, of course!) Thus,

b

.)(.{vm(Mun + anun) - un(M*vm + KmN*vm)} dx = 0 - (4.8.11)

a
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Integrating the first terms by parts, this becomes -

b
~ % =
/ {un(M*vm FANRY) - u (k) } dx = 0

a

or
-~ * = .8.12
A=A funN v dx 0 (4.8.12)
' a
Hence, if \Xn # Am ,
b .
/u N*v_ dx = 0 (4.8.13a)
n m
a
Alternatively, if A_ # A, RN
n m
b .
fvaun dx = 0 (4.8.13b)
a

Eqs. (4.8.13) are the orthogonality property of the eigenfunctions (and their
adjoints),

In PDE problems, one may want to expand in terms of the eigenfunctions.

The orthogonality property allows the expansion coefficients to be evaluated.
For example, if we set

h(x) = ngl An un(x) (4.8.14)
then
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b

/ h(x)N*v'm dx

Am = 5 ‘ (4.8.15)

Mény PDE pfoblems involve more than one dependent variable. If we denote
the vector of variables in a coupled set of ODEs arising in a SOV analysis by
ui(x) »' then the coupled ODEs will be of the form

M,, u, + AN, ., u, - (4.8.16)
J 1]

ij -

[1]
o

where here we use the subscript summation convention (see §1.5), the sums to

be carried out over the k variables in the solution vector. The adjoint

equations

M v+ AN, v, = 0 (4.8.17)
11 ] i3 J
are identified by integration by parts in the scalar equation
b b
: . *
/viLijujdx = /uijividx (4.8.18)
“a . a : A
The boundary condition will be of the form
{Bij uy = 0} : (4.8.19)
The adjoint boundary conditiong
% .
By. v. =0 8.2
{ i3 Vs 0} (4.8.20)

are also identified in the integration by parts operation. The orthogonality

property is the scalar equation
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b ) N’
fujfn)N:j yj(“‘)dx =0 . n#nm (4.8.21)
a

where here we use superscripts to denofe the (vector) eigenfunctions,

In complicated problems, the ODEs will have to be solved numerically to
calculate the basic and adjoint eigenfunctions, and the. integrals for the
~ expansion coefficients (4.8.15) will have to be done numerically. There are

now numerous problems in the literature that have been solved in this way.

"~ 4.9 Summary

In problems described by linear equations and linear boundary conditions,

in domains of simple shape, solutions can be obtained by the following process;

1. Split the problem into a number of parts, each of which takes care of
some of the inhomogeneities. A particular solution of the PDE will

take care of the PDE inhomogeneity. Where boundary conditions are to

be specified, the split problems should involve homogeneous PDEs and
boundary conditions that are homogeneous in at least one of the

coordinate directions.

2. Solve the homogeneous partial problems associated with the split
problems by SOV. Take a linear combination of these eigensolutions to
form the complete solution to the split problem, using the eigenfunction

orthogonality property to evaluate the expansion coefficients.

3. Assemble the full solution.
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Exercises

4.1

4,2

4.3

4.4

The temperature field in a slab, initially at uniform temperature, sub-

jected to a sudden increase in the temperature of one face, is described by

3°r 1 9t _
—‘-2" = &‘ﬁ T(x,0) = TO
9x v
T(0,t) = TO T(L,t) = T1

Develop the solution to this problem, giving expressions for any integrals

involved in the solution. Does your (series) solution converge?

The temperature field in a slab, initially at uniform temperature, subjec-

ted to a step input in heat flux at one surface, is described by

2
3°T _ 12T N
"“*—2 = a’ "‘E- T(X,O) = TO
9%
oy ﬂ — [}
T(0,t) = TO k - = q
x=1,

Solve this problem, giving expressions for any integrals involved in the

solution. Does your (series) solution converge?

The azimuthal velocity field in a cylinder of radius a filled with fluid
initially at rest, subject to a sudden rotation of the cylinder is de-

scribed by

) du uf_ _ du
\)Ea?(r ar)—;—]-?é? u(r,0) =0

i 1

u(a,t) = u

Solve this problem, giving expressions for any integrals involved in the

solution. Hint: The steady-state solution is solid body rotation.

The motion of the fluid in an annular cylinder, set into motion by the sud-
den rotation of the outer surface, is described by the PDE and initial con-

dition of exercise 4.3, and the boundary conditions

u(ri,t) = 0 u(ro,t) = u

4.35 !



4.6

4.7

where r, and r, are the inmer and outer radii. respectively, Solve

this problem. Express any integrals involved in terms of functions

evaluated at ri and ro.

The concentration of a contaminant in a hollow sphere, initially ' ‘clean"”,

subjected to a step jump in the concentration at the 1nner radius rs
is described by

; )

3 23y _ r dc -

W 5) = % o - o
c(ri,t) = ¢ c(ro,t) = 0

Solve this problem, developing expressions for any integrals involved in
terms of functions evaluated at r, and r,. This problem has applica~-

tion in the geologlcal diffusion of nuclear wastes.

The transient temperature of a circular fin is described by

0 9T\ _,2 . I 3T
k 5?'(r 5?) Br(r-T) = o 3t
g% = 0 at{ r=r v T(ri,t) =0
T(r,0) = T,

Solve this problem, developing expressions for any integrals in terms of

functions evaluated at ri and ro.

The steady potential field in a circular object, with potential spec1f1ed

around the perimeter (r = a), is described by

é%—(r é9) +-%-§EQ = 0

¢(a,6)

i
h
~
D
~

Develop the solution to this problem, expressing the result in terms of
appropriate integrals.
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4.8 The temperature field in a quarter—circular sector plate cooled by con-

vection is described by

9 AT 19°T 2
—— Pt —_— b — = 0
5 (r 2+ - } B r (T-T )
a0
T(ri,e) = Tl T(ro,e) = a+ bo
oT _ .: _
3 = 0! at 6 =0, w/2

Solve this problem, evaluating any integrals that appear in terms of

functions evaluated at r or r_. What happens at the corners?

i
4.9 Study the Sturm-Liouville problem (4.2.1). Show that, if P is
veal, the eigenvalues are all real. Hint: Let them be complex; consider

the conjugate equations. Use our favorite tool, integration by parts.

.10 Consider Bessel's equation and boundary condition
r2R" + rR' f AzrzR = 0
R(a) = 0
Find the adjoint equation. If the eigenfunction is Jo(lr), what is the

adjoint eigenfunction, and what is the orthogonality property? 1Is this the

same as obtained from the Sturm Liouville form of Bessel's equation?
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7.6 General Solution of the Wave Equation

The general solution of the wave equation can be found if we use

both of the characteristics as coordinates. We take
n = x-at , £ = x + at (7.6.1)

Here, n corresponds to the '"+" characteristics and & to the "-"

.k
characteristic. Transforming (7.5.1) to these coordinates,

u = uE + U u, = a(ug-un)
u = U,.. + 2u._ +u , u = az(u ~2u,._ +u_ )
XX g En nn tt 22 En mn
So the wave equation (7.5.1) becomes
= 0 (7.6.2)

Yen

We can solve this exactly. Integrating with respect to §,

un = g(n) (7.6.2a)

Now, integrating with respect to n,
u = fg(n') dn' + F(E) (7.6.2b)

or,

u = F(E) + G(n) (7.6.3)

The use of both characteristics as the coordinates for the equation is
functional only if there are two characteristics; it is not a useful
approach in a two-dimensional problem with more than two characteristics,
such as occurs in certain types of turbulent boundary layer models.
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Hence, the generai solution of the wave equation is
u = F(x+at) + G(x-at) (7.6.4)

The general solution can be used to solve some problems, but it is

a cumbersome approach for others (those handled better by separation of

variables). For example, let's consider the problem where the initial

conditions are specified, for - ® < x < + ®, 'as
u(x,0) = p(x) (7.6.5a)
%% = 0 (7.6.5b)
t=0

Applying (7.6.5b) to (7.6.4),

a[F'(x) - G'(x)] = 0 (7.6.6)
Therefore,
G(x) = F(x) + C; (7.6.7)
Now (7.6.5a) requires
F(x) + G(x) = p(x) (7.6.8)

Combining with (7.6.7),

F(x) % p(x) - 2 ¢ (7.6.9a)

N

N
o

Cx) = 7 p(x) + (7.6.9b)
So the solution satisfying (7.6.5) is

p(x-at) ' (7.6.10)

N

u(x,t) = '% p(x+at) +
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At point (x,t), the quantity p(x+at) will have a value determined by
the intercept of the "-" characteristic passing through point (x,t)
with the line t = 0 (Fig. 7.6.1); similarly, the quantity p(x-at) is
constant along the '"+'" characteristic passing through (x,t). There-
fore, for this problem the value of the solution at point 3 in Fig. 7.6.1
depends only upon  the values of the initial data at points 1 and 2! The
solution at point 3 is merely the average of the initial values at points
1 and 2. »

For example, suppose that the initial aistribution is a Gaussian

pulse
u(x,0) = exp(- x2) (7.6.11)

Then the solution at later times will be

u(x,t) l-exp[—(x-l—at)z] + l-exp[-(x-—at)z] (7.6.12)

2 2

The solution says that the initial pulse splits into two parts, one which
propagates to the left, the other to the right. The center of each pulse

moves out along a characteristic line, so each pulse travels at the speed a.

7.7 Imaging in Wave Equation Solutions

Suppose we are interested in the reflection of a wave from a boundary.
Eqn. (7.5.1) and the initial conditions (7.6.5) again govern the problem,

but now we add the boundary condition

Ju

9x
X=0

= 0 (7.7.1)

and restrict our interest to the domain 0O < x <, This problem can be

solved by the general solution. We set

u = F(x+at) + G(x-at) (7.7.2)

The initial conditions (7.6.5) require

7.17



F(x) + G(x) = p(x) x>0 (7.7.3a)
F'(x) - G'(x) = 0 x>0 (7.7.3b)
So (7.6.4) again give F and G, but only for positive arguments! Note
that now the functions F and G are not defined for x < 0 by the ini-
tial conditions. Instead, we have, from (7.7.1),
F'(at) + G'(-at) = O (7.7.4)
This must hold at all times. Therefore, for negative arguments the function
G must be such that its derivative is the negative of the derivative of
the function F for the same value of positive argument; i.e.,

G'(-0) =-F'(0) (7.7.5)

‘This will be the case when G is the mirror image of F (Fig. 7.7.1).

In mathematical terms,

G(-x)

F(x)

n

F(’o/z x>o (7.7.6a)

F(-x)

G(x) p (xY, x»0  +  (7.7.6b)

Therefore, since the cq terms cancel, we can take

(x+at) >0 F(x+at) = % p(x+at)
(x+at) < 0 F(x+at) = %p[-(x+at)]
(7.7.7)
(x-at) >0  G(x-at) = 3 p(x-at)
(x-at) < 0 C(x-at) = %—p[—(x—at)]

The solution (7.7.2) therefore can be thought of as a combination of four

wave packets, as shown in Fig. 7.7.1. The first is half of the p(x)
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wave, which moves to the right away from the reflecting boundary. The
second is the other half of this wave, which moves to the left and passes
through the boundary to negative =x. The third is the mirror image of

the p(x) wave, which starts to the left of the reflecting wall (outside
of the real problem) and travels to the right, entering the wall as its
"mate' passes through going left. This image wave then appears in the
domain of interest as a reflected wave. The fourth wave is the other half
of the image p(x) wave, which travels to the left and never enters the
domain of interest.

Wave~equation solutions obtained by these imaging methods must be
represented segmentally. If there are only one or two segments, this is
not too difficult and is a convenient way to get the solution. However,
if there are many reflections, such as would be the case for the solution
of standing acoustic waves in a duct or the long-term vibration of a
finite string, the approach becomes very cumbersome and the separation of

variables technique usually is easier to execute and present.

7.8 Characteristics for the Laplace Equation

For the Laplace equation,

+ = 0 7.8.1
U T Uy ( )
the characteristic slopes are y' = * i, so the characteristics are
given by
x + iy = const. and x - iy = const. (7.8.2)

On the surface this does not appear too useful, because the characteris-
tics are not lines in the real x-y plane. However, we can learn some-

thing by transforming the equation to new variables §&,n such that

g€ = x+1iy , n x - iy
u = ug +u , u = i(ug-un)
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= + 2 + = - 2 -
Ugx -~ Ygg T Vgt Uy o0 U Ugg + fug — U

So (7.8.1) becomes

uEn = 0 (7.8.3)

Integrating as before, we have the general solution of Laplace's equation

as
u = F(&) ; G(n)
or
u(x,y) = F(x+iy) + G(x-1iy) (7.8.4)
This equation forms the basis for solution of the Laplace equation by the
method of complex variables. These methods are beyond the scope of the

present text, but are discussed in depth in courses on the applications

of complex variables.
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Exercises

7.1, The fluid temperature field in a nuclear reactor is described by the

simple model

T dT
SE-+ \Y Pl A sin(m x/L)
T(0O,t) = 0 |, T(x,0) = 0

where A and V are constants. Develop the solution to this problem

using the method of characteristics. At what time is the steady-state

solution achieved?

7.2. The Bradshaw-Ferris turbulent boundary layer model is described by

uu_ + vu = e +h
X y y
ue_ + ve = aeu_+ g
X y y
u_ + v = 0
y

where h, g, and a are functions of the dependent variables u, v,
and e. u and v are velocity components, and e is the turbulent
kinetic energy per unit mass. Find the slopes of the three characteris-

tics for this problem, and write the three quasi~ODEs that apply on these

characteristics.

7.3. The equations for time-dependent, one-dimensional compressible flow
are

9 0 v _
3¢ (PA) + . (ApV) = 0
ap 9 2 9 _ L5 o o
A 5 + B (ApVT) + Fs (ApV) — »O Vgx (oY, b:x\ oy J?P_@\lp”gﬁ
TR
3p_ 23 .., R
9x 9x

where A(x) is the prescribed duct cross-section area, and
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where 02 = kp/p 1is the isentropic sound speed. The independent vari-
ables are the velocity V, pressure p, and density p.

Develop the expressions for the slopes of the characteristics, and
write pseudo-IDEs that apply on each characteristic. Organize an approxi-
mate numerical algorithm to solve this problem marching forward in time,

using the method of characteristics.

7.4. Consider the wave equation Uy ~ U = 0, with the initial condi-

tions u(x,0) = 0, ut(x,O) = exp(-x") 1in - o < x < + o, Derive an

expression for the solution using the general solution of the wave equation.

7.5. Consider the wave equation U T U 0, with the initial and
boundary conditions ’

u(x,0) = xe * 0 <x<w
ut(x,O) = 0
u(0,t) = 0

Develop (segmental) expressions for the solution to this problem in
0 < x <, and give an expression for the solution at t = 1. Interpret

in terms of right- and left-running waves, using a sketch.

7.6. Consider the wave equation LA 0, with the initial and

boundary conditions

u(x,0) = 0 0<x<1

1 0<x<1/2
ut(x,O)

0 x > 1/2
u(0,t) = 0
u(l,t) = 0

Develop this solution by the method of characteristics and by separation
of variables, and compare.
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The characteristics

t
u
Fig. 7.2.2
, The characteristics are straight
' X

Fig. 7.2.3

Wave form propagation on characteristics

7
Characteristics
steeper where wave is higher
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"+" characteristics

"_" charac-

teristics

Fig. 7.5.1 The two sets of characteristics

"_" charac-

teristics N "+" characteristics
___,,////1>>>k<::://’

| A 2

Fig. 7.6.1. Solution for an initial pulse
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