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e GIVES ACCELERATION OF BODY
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o SMALL SIZE

HOW DO THEY WORK

e COMPARES MOTION OF SEISMIC
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288 TWO DEGREES OF FREEDOM

300 mm
150 mm—>|

#

PROBLEM 9.59 Using Rayleigh’s principle,
determine the lowest natural frequency of the
system shown.

% by k=10 N/mm

m % k,=20 N/mm
+ > m=5 kg
% kg m,=3 kg

Answer: f,=9.02 Hz

=

3
)

PROBLEM 9.60 Using Rayleigh’s principle,-
determine the two natural frequencies and mode
shapes of the two-mass system of Problem 9.16.

|

A

bl

AW

a

O

PROBLEM 9.61 Using Rayleigh’s principle,
determine the two natural frequencies and mode
shapes of the two-mass system of Problem 9.17.

PROBLEM 9.62 For the slender rod sus-
pended as a pendulum, Problem 9.18, use Ray-
leigh’s principle to determine the two natural
frequencies and mode shapes of small vibrations.




U-HAUL

}*H‘N'l'l‘l'r

Determine the two natural fre-
-ame and pendulum. The pen-
» in the same plane in which

Two identical solid circular cyl-
| a mass m, are connected by a
h a modulus k. Determine the
y(es) of small oscillations, if the
splaced from their equilibrium
1l without slipping on the hori-

Ak
im

A platform supports a circular
elastically suspended from the
: with a modulus of k. Each has
‘mine the natural frequencies and
' the system, if the cylinder rolls

r
»

’3k
; m; 3x,=x,

! The seismic mass m is mounted
tween two springs, each with a
The frame has identical mass of
the natural frequencies of free
‘e is no friction.

); wi=—
m

SN
B v
vy

3

9.2 MODES AND MODAL FRACTIONS 261

PROl}LEM 9.9 Determine the two natural fre-
quencies and mode shapes of the two-mass sys-
tems shown. '

Answer: wi=—; yW=+1

3>
=

wi=4-; x?=—4

PROBLEM 9.10 Determine the natural fre-
quencies for the system given here. The pulley
can be considered as a solid circular cylinder.

Answer: wi=0.117—;
m

w%=2.133%

PROBLEM 9.11 Determine the natural fre-
quencies and mode shapes for the two®mass
system. Both masses move only vertically. Do
not consider rotation of the lower mass.

An;wer: wi= 1.439%; x1=1.281

k
wi=5.562—; y,= —0.781

3

PROBLEM 9.12 A large automobile manufac-
turer analyzed the problem of the automobiie by
taking an entire automobile apart. By weighing
each section, the following values of equivalent
masses were found. ‘

m, axle mass 180 kg
m, body mass 670 kg
k, springs 45.5 N/mm
k, tires 538 N/mm
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PROBLEM 1.53 Two identical springs support
a rigid rod and two identical masses. Choose
coordinates that will describe the motion of each
mass. Determine an expression for the kinetic
energy of the system in terms of your coordinates.

Answer: T=mi*+ ima(?

PROBLEM 1.54 The uniform circular disk of
200-mm radius has a mass of 30 kg and is mounted
on the rotary bar OA in two ways. In case (a),
the disk is not pinned and rotates freely at A,
Since there is no friction, the disk has no rigid
body rotation. In case (b), the disk is pinned to
the bar and has rigid body rotation.

If the systems are released from rest in the
positions shown, determine the angular velocity
of the bar OA as it passes through its vertical
position, in each case.

Answer: (a) we,a=7 rad/s
(b) wo,=6.6 rad/s

PROBLEM 1.55 The uniform rod AB has a

e mass of 2 kg and is released from rest from the
horizontal position shown. As it falls, the end A
becomes hooked at pin O. End B remains free.
Determine the speed at which end B strikes the
stop at C.

Answer: vy=7.28 m/s
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which is quadratic in (w/w,)’. Using the values of Wl = 6500/18.29, w}, = 2600/73.16,
and . = 0.25, this simplifics to

4 2
m(“’) - 14.5(“’) +2=0
w, W, ‘

Solving for w/w, yiclds

w : w,
<~- ) = (),1544, 1.2956 or = (.3929, 1.1382

W, u

Hence the three roots satisfying | Xk/Fy) = 1are 03929, 1.1 180, and 1.1382. Following
the example of Figure 5.12 indicates that the driving frequency may vary between
0.3929w, and 1.1180w,,, or since w, = 18.857,

74089 < w < 21.0821 (rad/s)
before the response of the primary mass is amplified or the system is in danger of ex-

periencing resonance.
O

The preceding discussion and examples illustrate the concept of performance
robustness, that is, the examples illustrate how the design holds up as the parameter
values (k, k,, etc.) drift from the values used in the original design. Example 5.3.2 il-
lustrates that the mass ratio greatly affects the robustness of absorber designs. This
is stated in the caption of Figure 5.13:up toa certain point, increasing p increases the
robustness of the absorber design. The effects of damping on absorber design are ex-

amined in the next section.

5.4 DAMPING IN VIBRATION ABSORPTION

As mentioned in Section 5.3, damping is often present in devices and has the poten-
tial for destroying the ability of a vibration absorber to protect the primary system
fully by driving X to zero.In addition, damping is sometimes added to vibration ab-

* sorbers to prevent resonance or to improve the effective bandwidth of operation of
a vibration absorber. Also,a damper by itself is often used as a vibration absorber by
dissipating the energy supplied by an applied force. Such devices are called vibration
dampers rather than absorbers.

First consider the effect of modeling damping in the standard vibration absorber
problem. A vibration absorber with damping in both the primary and absorber sysiem
is illustrated in Figure 5.15.This system is dynamically equal to the system of Figure 4.14
of Section 4.5. The equations of motion are given in matrix form by equation (4.126) as

[m 0 ]\:x(t)] N [c + ¢, —cai\[)'c(t)

0 m, || X.(1) -, Cq Xq(1)
k+k, =k, || x(t) | _| Fol.

’ [ &,k ][xa(r)] ) [O]S‘“‘”‘ o
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N e —

el
x(f) LlJ -«——=— Excitation force
[
c l k Primary system Figure 515 Schematic of a vibration
L‘-l absorber with damping in both the
7 . primary and absorber system.

k, Fo sin(wf) Absorber system

. Note, as was mentioned in Section 4.5, that these equations cannot necessarily be
solved by using the modal analysis technique of Chapter 4 because the equations do
not decouple (KM™'C # CM™'K).The steady-state solution can be calculated, how-
ever, by using a combination of the exponential approach discussed in Section 2.3
and the matrix inverse used in previous sections for the undamped case.

To this end, let F,sin ot be represented in exponential form by Fye/® in equa-
tion (5.27) and assume that the steady-state solution is of the form

x(t) = Xel*' = [ )f ]efw' (5.28)

where X is the amplitude of vibration of the primary mass and X, is the amplitude
of vibration of the absorber mass. Substitution into equation (5.27) yields

[oc sk, —mo?) + (e edoi k= Go) ][X ]

—k, — C,wj . (k,, - m,,wz) + c,of {| X,

= [g":lefw’ (5.29)

Note that the coefficient matrix of the vector X has complex elements. Dividing equa-
tion (5.29) by the nonzero scalar /' yields a complex matrix equation in the ampli-
tudes X and X,. Calculating the matrix inverse using the formula of Example 4.1.4,
reviewed in Window 5.3, and multiplying equation (5.29) by the inverse from the
right yields

. (kn - ’nan) + Cuwj ka + C,,(l)j FO
\:X] k, + c,wj k+ k, — mo?+ (c+ coj || 0

X, det(K — o*M + wjC)

(5.30)

Here the determinant in the denominator is given by (recall Example 4.1.4)
det(K — oM + wjC) = mmue* — (c,c + mk + ko) + km)w® + kk
+ [(kc, + cky)w ~ (ca(m + m,) + emgw’li  (5.31)

and the system coefficient matrices M, C, and K are given by

m 0 c+e¢, —¢ k+k, —k ‘
= = K = a
M [O m,,:‘ ¢ [ €, Cq ] [ -k, k, jl

oy
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Simplifying the matrix vector product yields
_ [(ku - '””wZ) + C“(.U].]F()
det(K — oM + wjC) (5.32)

¥ = (ky + c,0)F%
“ dcl(K - o*M + ij) (5.33)
which expresses the magnitude of the response of the primary mass and absorber

mass, respectively. Note that these values are now complex numbers and are multi-
plied by the complex value ¢/ to get the time responses.

Equations (5.32) and (5.33) are the two-degree-of-freedom version of the fre-
guency response function given for a single-degree-of-freedom system in equation
(2.42). The complex nature of these values reflect a magnitude and phase. The mag-
nitude is calculated following the rules of complex numbers and is best done with a
symbolic computer code, or after substitution of numerical values for the various
physical constants. It is important to note from equation (5.32) that unlike the tuned
undamped absorber, the response of the primary system cannot be exactly zero even
if the tuning condition is satisfied. Hence the presence of damping ruins the ability
of the absorber system to exactly cancel the motion of the primary system.

Equations (5.32) and (5.33) can be analyzed for several specific cases. First, con- -
sider the case for which the internal damping of the primary system is neglected

(¢ = 0).If the primary system is made of metal, the internal damping is likely to be
very low and it is reasonable to neglect it in many circumstances. In this case the de-
terminant of equation (5.31) reduces to the complex number
det(K — M + oCj)

= [(-mo® + k)(=m,0* + k,) — mk0?) + [(k = (m + m,)w?)c,w)j  (5.34)

The maximum deflection of the primary mass is given by equation (5.32) with the de-
terminant in the denominator evaluated as given in equation (5.34). This is the ratio
of two complex numbers and hence is a complex number representing the phase and
the amplitude of the response of the primary mass. Using complex arithmetic (see
Window 5.4) the amplitude of the motion of the primary mass can be written as the
real number '

x? (k, — maw?) + w'c

Fy  [(k - mo? )k, — mw?) — mok0 ) + [k~ (m + m,,)wz]zcﬁmz

It is instructive to examine this amplitude in terms of the dimensionless ratios intro- -
duced in Section 5.3 for the undamped vibration absorber. The amplitude X is writ-
ten in terms of the static deflection A = Fy/k of the primary system. In addition,
consider the mixed “damping ratio” defined by

(5.35)

CH
L (5.36)

2m,w,
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Window 5.4
Reminder of Complex Arithmetic

The response magnitude given by equation (5.32) can be written as the ratio of
two complex numbers:

X _AtBj
Fo Ayt Byj

where A,, A2, B,,and B, are real numbers and j = V—-1. Multiplying this by
the conjugate of the denominator divided by itself yields

¥ (A4 + Bi)A - Bi) _ (Mt BBy B~ ABy,

Fy  (As + Boj)(As = B) A3 + B3 A+ B}
which indicates how X /F, is written as a single complex number of the form
X/Fy = a + bj.This is interpreted, as indicated, that the response magnitude
has two components: one in phase with the applied force and one out of phase.
The magnitude of X /F, is the length of the preceding complex number (i.e.,
\X/F| = Va* + b?. This yields

\é B /A% + B?
F A} + B}

which corresponds to the expression given in equation (5.35). (Also see
Appendix A.) '

where w, = Vk /m is the original natural frequency of the primary system without the
absorber attached. Using the standard frequency ratior = w/w,, the ratio of natural
frequencies B = w,/w,, (Where o, = Vk,/n,),and the mass ratio p. = m,/m, equa-
tion (5.35) can be rewritten as

X _Xk_ | @u) + (- B <37
5= R NG -1+ er) + e - (2 - 00 - e) 7

which expresses the dimensionless amplitude of the primary system. Note from ex-
amining equation (5.37) that the amplitude of the primary system response is deter-
mined by four physical parameter values:

. the ratio of the absorber mass to the primary mass

B theratioof the decoupled natural frequencies

r the ratio of the driving frequency to the primary natural frequency
L the ratio of the absorber damping and 2m,w,

These four numbers can be considered as design variables and are chosen to give the
smallest possible value of the primary mass’s response, X, for a given application.
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1
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Figure 5.16 Normalized amplitude of vibration of the primary mass as a function of
the frequency ratio for several values of the damping in the absorber system for the
case of negligible damping in the primary system [i.e., a plot of equation (5.37)].

' Figure 5.16 illustrates how the damping value, as reflected in , affects the response

for a fixed value of p,B,and r.
As mentioned at the beginning of this section, damping is often added to the ab-

sorber to improve the bandwidth of operation. This effect is illustrated in Figure 5.16.
Recall that if there is no damping in the absorber ({ = 0), the magnitude of the re-
sponse of the primary mass as a function of the frequency ratio r is as illustrated in Fig-
ure 5.12 (i.e.,zeroatr = 1but infinite at » = 0.781 and r = 1.281).Thus the completely
undamped absorber has poor bandwidth (i.e., if r changes by a small amount, the am-
plitude grows). In fact, as noted in Section 5.3, the bandwidth, or useful range of oper-
ation of that undamped absorber, is 0.897 = r = 1.103. For these values of r,
|Xk/F,| = 1. However, if damping is added to the absorber (¢ # 0),Figure 5.16 results,
and the bandwidth, or useful range of operation, is extended. The price for this increased
operating region is that |X k/ F| is never zero in the damped case (see Figure 5.16).
Examination of Figure 5.16 shows that as { is varied, the amplification of | X k/ Fy|
over the range of r can be reduced. The design question now becomes: For what val-
ues of the mass ratio p, the absorber damping ratio {, and the frequency ratio B is the
magnitude | X k/ Fo| smallest over the region 0 = r = 27 Just increasing the damping
with p and B fixed does not necessarily yield the lowest amplitude. Note from Figure
5.16 that { = 0.1 produces a smaller amplification over a larger region of r that does
the higher ratio,{ = 0.4. Figures 5.17 and 5.18 yield some hint of how the various pa-
rameters affect the magnitude by providing plots of | Xk / Fy| for various combina-
tions of {, ., and f. -
A solution of the best choice of p and is discussed again in Section 5.5. Note
from Figure 5.18 that p. = 025, =0.8,and { = 0.27 yield a minimum value of
| X k/ Fy| over alarge range of values of 7. However, amplification of the response X
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still occurs (i.e., | Xk/Fol > 1 for values of

tems such as engines, where the operating speed
varies over a wide range. In such cases a viscous
crankshaft (or other rotating
through an angle 6,
spins through an angle 0

this system becomes

Jl 0 é] n [Cl, —‘C”][é‘] + [k
0 Jz 62 —C,4 Cq 6, 0

r < V2),but no order-of-magnitude in-
creases in | X| occurs as in the case of the undamped absorber.

Next consider the case of an appended absorber mass connected to an un-
damped primary mass only by a dashpot, an arrangement illustrated in Figure 5.19.
Systems of this form arise in the design of vibration reduction devices for rotating sys-

device) as indicated in Figure 5.20. The shaft spins
with torsional stiffness k and inertia J,
in a viscous film providing a damping force ¢ — 0,). If
an external harmonic torque is applied of the form M,e*", the equation of motion of
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Figure 5.17 Repeat of the plot of Figure
516 withp. = 025and B = 1 for several
values of {. Note that in this case, { = 0.4
yields a lower magnitude than does
{=01

Figure 5.18 Repeat of the plots of Fig-
ure 5.16 with p. = 025, = 0.8 for sev-
eral values of {. In this case { = 0.27
yields the lowest amplification over the
largest bandwidth.

(and hence the driving frequency)
damper is added to the end of the

.The damping inertia J

01 e Mo | o
0][9‘2] = [ OO]e 1 (538)
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Primary system Viscous absorber

added to a primary mass (with no
damping) to form a viscous vibration
absorber.

|
I
)
I
AW e e 1 Figure 519  Damper-mass system
]
|
|
I

U S

Casing of
" rotational inertia J,
pe

/ Internal disk
.

~~. of inertia J,
and rotational
‘£ coordinate 6,

e

Figure 5.20 Viscous damper and mass
added to a rotating shaft for broadband
vibration absorption. Often called a
Houduaille damper.

Viscous oil with
damping coefficient ¢,

This is a rotational equivalent to the translaticnal model given in Figure 5.19. It is easy
to calculate the undamped natural frequencies of this two-degree-of-freedom sys-

tem. They are
[k
w, = 71 and w, = 0

The solution of this set of equations is given by equations (5.32) and (5.33) with m
and m, replaced by J, and J,, respectively,c = 0,k, = 0,and F replaced by M. Equa-
tion (5.32) is given in nondimensional form as equation (5.37). Hence letting
B = w,/w, = 0in equation (5.37) yields that amplitude of vibration of the primary

* inertia Jy [i.e., the amplitude of 8,(¢)] is described by

£lf—\/ S (539
M, 4(r* + pr? — 1)2 + (r? - 1)2r2 (539)

where { = c/(Zsz,,), r = w/w,,and p = J,/J;. Figure 5.21 illustrates several plots
of Xk/M, for various values of { for a fixed p. as a function of r. Note again that the
highest damping does not correspond to the largest-amplitude reduction.

The various absorber designs discussed previously, excluding the undamped
case, result in a number of possible “good” choices for the various design parame-
ters. When faced with a number of good choices, it is natural to ask which is the best
choice. Looking for the best possible choice among a number of acceptable or good
choices can be made systematic by using methods of optimization introduced in the
next section.
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Figure 5.21 Amplitude curves for a system with a viscous absorber, a plot of equa-
tion (5.39), for the case p = 0.25 and for three different values of £.

5.5 OPTIMIZATION

3N

In the design of vibration systems the best selection of system parameters is often
sought. In the case of the undamped vibration absorber of Section 5.3 the best se-
lection for values of mass and stiffness of the absorber system is obvious from ex-
amining the expression for the amplitude of vibration of the primary system. In this
case the amplitude could be driven to zero by tuning the absorber mass and stiffness
to the driving frequency. In the other cases, especially when damping is included, the
choice of parameters to produce the best response is not obvious. In such cases op-
timization methods can often be used to help select the best performance. Opti-
mization techniques often produce results that are not obvious. An example is in the
case of the undamped primary system or the damped absorber system discussed in
the preceding section. In this case Figures 5.16 to 5.18 indicate that the best selection
of parameters does not correspond to the highest value of the damping in the system
as intuition might dictate. These figures essentially represent an optimization by trial

and error. In this section a more systematic approach to optimization is sugges

taking advantage of calculus.

ted by




392

Design for Vibration Suppression Chap. 5

Recall from clementary calculus that minimums and maximums ol particular
functions can be obtained by examining certain derivatives. Namely, if the first de- .
rivative vanishes and the second derivative of the function is positive, the function hag
obtained a minimum value. This section presents a few examples where optimization
procedures are used to obtain the best possible vibration reduction for various iso-
lator and absorber systems. A major task of optimization is first deciding what quan-
tity should be minimized to best describe the problem under study. The next question
of interest is to decide which variables to allow to vary during the optimization. Op-
timization methods have developed over the years that allow the parameters during
the optimization to satisfy constraints, for example. This approach is often used in
design for vibration suppression.

Recall from calculus that a function f(x) experiences a maximum (or mini-
mum) at value of x = x,, given by the solution of

fl(xm) [f(xm)] =0

_d
| = x (5.40)
If this value of x causes the second derivative,f”(x,,,), to be less than zero, the value
of f(x)atx = x,, is the maximum value that f(x) takes on in the region near x = x,,.
Similarly, if "(x,,) is greater than zero, the value of f(x,,) is the smallest or mini-
mum value that f(x) obtains in the interval near x,,,. Note thatif f"(x) = 0,atx = x
the value f(x,,,) is neither a minimum or maximum for f{x).The points where f’(;),
vanish are called critical points.

These simple rules were used in Section 2.2, Example 2.2.3, for computing the
value (7yeq) Where the maximum value of normalized magnitude of the steady-state
response of a harmonically driven single-degree-of-freedom system occurs. The sec-
ond derivative test was not checked because several plots of the function clearly in-
dicated that the curve contains a global maximum value rather than a minimum. In
both absorber and isolator design, plots of the magnitude of the response can be used
to avoid having to calculate the second derivative (second derivatives are often un-
pleasant to calculate).

If the function f to be minimized (or maximized) is a function of two variables
[ie.,f = f(x,y)],the preceding derivative tests become slightly more complicated and
involve examining the various partial derivatives of the function f(x, y). In this case
the critical points are determined from the equations

o - 82
fi(x,y) = i}%"y—) =0 (5.41)

Whether or not these critical points (x, y) are a maximum of the value f (x,y)ora
minimum depend on the following: ’

1 If fxx(x’ y) > 0 and fxx(x’ Y)fyy(x, )’) > f,z\:y(x’ y), then f(x, Y) has a relative
minimum value at x, y.
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2. If fxx(x’ Y) < 0and fxx(x, y)fyy(X, }’) > f?cy(x, )’), then f(x, }’) has a relative
maximum value at x, y. :

3. I fo(xy) > Fex(%5 Y)fyy( X, y), then f(x,y) is neither a maximum nor a mini-

mum value, the point x, y is a saddle point.

4. I f2(x,y) = Fesl, ¥)fyy(X, ¥), the test fails and the point X, y could be any or
none of the above.

Plots of f(x, y) can also be used to determine whether or not a given critical
point is a maximum, minimum, saddle point or neither. These rules can be used to help
solve vibration design problems in some circumstances. As an example of using these
optimization formulations for designing a vibration suppression system, recall the
damped absorber system of Section 5.4. In this case the magnitude of the primary
mass normalized with respect to the input force (moment) magnitude is given in
equation (5.39) to be

Xk
M,

_ f 4¢2 + r? 3
AL + wr? — 1)2 + (r? - 1)2r2 = fint)

which is considered to be a function of the mixed damping ratio { and the frequency
ratio r for a fixed mass ratio . :

In Section 5.4, values of f(r) are plotted versus r for several values of { in an
attempt to find the value of { that yields the smallest maximum value of f(r, (). This
is illustrated in Figure 5.21. Figure 527 illustrates the magnitude as a function of both
¢ and r. From the figure it can be concluded that the derivative 3f /ar = 0 yields the
maximum value of the magnitude for each fixed L.

Looking along the { axis, the partial derivative 3f/3f = 0 yields the minimum
value of f(r, {) for each fixed value of r. The best design, corresponding to the small-
est of the largest amplitudes, is thus illustrated in Figure 5.22. This point corresponds

(5.42)

&
LY
<$35%

et e29:%,
5533385052082
sRRsny
%3

233333
SIS

0.1 0

Figure 522 Plot of the normalized magnitude of the primary system versus both {
and r[i.e,a two-dimensional plot of equation (5.42) for p = 0.25]. This illustrates that

the most desirable response is obtained at the saddle point.
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to a saddle point and can be calculated by evaluating the appropriate first partial

derivatives.

First consider a( X k/M,)/0¢. From equation (5.42), the function to be differen-
tiated is of the form

Al/2

= B (5.43)

where A = 422 + rPand B = 40(¥* + pr? — 1 )2 + (rr = 1)2r2.Differentialing and

equating the resulting derivatives to zero yields
of _L1AA 1 ,dB
aL ) B2 2 B2
Solving this yields the form [BdA — A dB)/2B** = O or

=0 (5.44)

BdA = AdB (5.45)

where A and B are as defined previously and
dA =8 and dB =8 + prt — 1) (5.46)

Substitution of these values of A, d A, B, and dB into equation (5.45) yields
(1-rY=01-r-pw? (5.47)
For w # 0,r > 0, this has the solution

' 2

r=w/2_|_LL (5.48)

Similarly, differentiating equation (5.42) with respect to r and substituting the value
for r obtained previously yields

_ 1
CV2(p + D(p +2)

Equation (5.49) reveals the value of { that yields the smallest amplitude at the point
of largest amplitude (resonance) for the response of the primary mass. The maxi-
mum value of the displacement for the optimal damping is given by

MO max L

which is obtained by substitution of (5.48) and (5.49) into equation (5.42). This last
expression suggests that p. should be as large as possible. However, the practical con-
sideration that the absorber mass should be smaller than the primary mass requires
p < 1.Thevalue p. = 0.25 is fairly common. -

The second derivative conditions for the function f to have a saddle point (con-
dition 3 in the preceding list) are too cumbersome to calculate. However, the plot of
Figure 5.22 clearly illustrates that these conditions are satisfied. Furthermore, the
plot indicates that f as a function of { is convex and f as a function of 7 is concave so

Lop (5.49)

(5.50)
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that the saddle point condition is also the solution of minimizing the maximum value
f(r, 0), called the min-max problem in applied mathematics and optimization.

Example 5.5.1 -

A viscous damper—mass absorber is added to the shaft of an engine. The mass moment
of inertia of the shaft system is 1.5 kg - m?/rad and has a torsional stiffness of
6 X 10°N - m/rad. The nominal running speed of the engine is 2600 rpm. Calculate the
values of the added damper and mass moment of inertia such that the primary system
has a magnification (X k/My,) of less than 5 for all speeds and is as small as possible at
the running speed.

Solution Since w, = V k/J , the natural frequency of the engine system is

\[6.0 X 10°N « m/rad 6324 rad/
o, = = 63.
i 1.5 kg - m?/rad rad/s

The running speed of the engine is 2000 rpm or 209.4 rad/s, which is assumed to be the
driving frequency (actually, it is a function of the number of cylinders). Hence the fre-
quency ratio is

0 2094
Y TR

so that the running speed is well away from the maximum amplification as illustrated in
Figures 5.21 and 5.22 and the absorber is not needed to protect the shaft at its running
speed. However, the engine spends some time getting to the running speed and often runs
at lower speeds. The peak response occurs at

® 2

Y. = — =
peak ), 2+

as given by equation (5.48) and has a value of

(&g) .2
MO max M

as given by equation (5.50). The magnification is restricted to be 5, so that

2
1+;s5, or p=05

Thus p = 0.5 is chosen for the design. Since the mass of the primary system is
J; = 1.5 kg + m*/rad and p = J,/J;, the mass of the absorber is

1
h=ph=5 (1.5)kg - m?/rad = 0.75 kg + m* » rad

The damping value required for equation (5.50) to hold is given by equation (5.49) or
1 _ 1
V2w + D +2)  V2(15)(2.5)

Lop = = 0.3651
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Recall from Section 5.4 [just following equation (5.39)] that { = ¢/(2/,0,). 50 that the
optimal damping constant becomes

Cop = 2oplawy = 2(03651)(0.75)(6324) = 34638 N - m - s/rad

The two values of J, and ¢ given here form an optimal solution to the problem of de-
signing a viscous damper—mass absorber system so that the maximum deflection of the
primary shaft is satisfied | X k/M,| < 5. This solution is optimal in terms of a choice of
¢, which corresponds to the saddle point of Figure 5.22 and yiclds a minimum value of

all maximum amplifications.
O

Optimization methods can also be useful in the design of certain types of vi-
bration isolation systems. For example, consider the model of a machine mounted on
an elastic damper and spring system as illustrated in Figure 5.23.The equations of mo-
tion of the system of Figure 5.23 are

mx; + c(xl - XZ) + kyx, = Fycosw!
(¥ = X3) = kaxy (5.51)

Because no mass term appears in the second equation, the system given by equation
(5.51) is of third order. Equation (5.51) can be solved by assuming periodic motions

of the form
x () = X,e,  and  x(1) = X,eM ) (5.52)

and considering the exponential representation of the harmonic driving force. Sub-
stitution of equation (5.52) into (5.51) yields

(k; = mw? + jew)X; — jewX, = Fy
jewX, — (ky + jew)X, =0 (5.53)
SolVing for the amplitudes X; and X; yields
| B Fo(k2 + jew)
kz(k1 - mmz) + jcw(kl + ky — mwz)

X (5.54)

Fycoswt

Figure 5.23 Model of a machine
mounted on an elastic foundation
through an elastic damper to provide
vibration isolation.
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and

N CU)Foj
- k2(k1 - m(.l)z) + C(J.)('kl + k2 - me)j
These two amplitudé expressions can be simplified further by substituting the nondi-

mensional quantitiesr = o/Vk/m,y = ky/ky,and { = c/(ZVklm).The force trans-
mitted to the base is the vector sum of the two forces k;x;, and k,x,. Using complex

X, (5.55)

* arithmetic and a vector sum (recall Section 2.3) the force transmitted can be writienas”

Fr V1 + 41+ y)r?

TR. = = (5.56), .

I3 \/(1 — Y + 41+ y - )

which describes the transmissibility ratio for the system of Figure 5.23.

The force transmissibility ratio can be optimized by viewing the ratio Fy/F, as
a function of r and ¢. Figure 5.24 yields a plot of Fr/Fyversus r for y = 0.333 and for
several values of . This illustrates that the value of the damping ratio greatly affects
the transmissibility at resonance. A three-dimensional plot of Fr/Fyversus r and { is
given in Figure 5.25, which illustrates that the saddle point value of { and r yields the
best design for the minimum transmissibility of the maximum force transmitted.

10*
10°

102

el

10!

100
Figure 5,24 Plot of equation (5.56)
illustrating the effect of damping on the
magnification of force transmitted to

r ground.
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Figure 5.25 Plot of equation (5.56)
illustrating Fy/Fy versus { versus r. The
plot shows the point where damping
minimizes the maximum transmissibility.
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A The saddle point illustrated in Figure 5.25 can be found from the derivative of
T.R. as given in cquation (5.56). These partial derivatives arc

a(TR) V2(1 + ) (557

=0 ylclds Foax =

ag 1+ 2y
and
a(T.R.) ) V201 + 2v)/y
Py 0 vyields Cop = 41+ ) (5.58)

These values of correspond to an optimal design of this type of isolation device. At

the saddle point, the value of T.R. becomes
(TR )pax = 1 + 2

n of equations (5.57) and (5.58) into equation (5.56).This
< 1,TR. <3 and the isolation system will not cause

(5.59)

which results from substitutio
illustrates that as long as y
much difficulty at resonance.

Example 5.5.2
An isolation system is to be designed foram
5.23 (i.e., an elasticity coupled viscous damper). The m
m = 100 kg and the stiffness k, = 400 N/m.The driving frequency is 10 rad/s at nom-
inal operating conditions. Design this system (i.e.,choose ky and ¢) such that the max-
imum transmissibility ratio at any speed is 2 (i.e., design the system for “start up” or
«run through”). What is the T.R. at the normal operating condition of a driving fre-

quency of 10 rad/s?
d k, = 400 N/m,w, = \/400/100 = 2 rad/s,so that the

esonance (i.e.,r = o/w, = 10/2 =5 at
alue for T.R.is

achine modeled by the system of Figure
ass of the machine is

Solution For m = 100 kg an
normal operating condition is well away from 1
running conditions). Equation (5.59) yields that the maximum v

(TR)mx =1 +2Y =2

sothaty = 0.5and k; = (0.5)(k,) = (0.5)(400 N/m) = 200 N/m.Withy = 0.5, the op-
timal choice of damping ratio is given by equation (5.58) to be

V2(1 + 2v)/y

B - . - CO{: 4(1 T 'Y) = 047:14
e of damping coefficient is
m = 2(0.4714)(2)(100)_ = 188.56 kg/s

w = 10 rad/s is given by equation

Hence the optimal choic
Cop = 2Cop(’)n

The T.R. value at nominal operating frequency of
(5.56) to be (r = 10/2 = 5)

/ﬂi@wz”’—'on

TR. =
(1 -5+ 4(0.4714)(5)H1 + 05 — 52(0.5))
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Hence the design k, = 200 N/m and ¢ = 188.56 kg/s will protect the surroundings by
aTR.of 0.12 (i.e., only 12% of the applied force is transmitted to ground) and limits the
force transmitted near resonance to a factor of 2.

]

5.6 VISCOELASTIC DAMPING TREATMENTS

A common and very effective way to reduce transient and steady-state vibration is to in-
crease the amount of damping in the system so there is greater energy dissipation. This
is especially useful in aerospace structures applications, where the added mass of an ab-
sorber system may not be practical. While a rigorous derivation of the equations of vi-
bration for structures with damping treatments is beyond the scope of this book, formulas
are presented that provide a sample of design calculations for using damping treatments.

A damping treatment consists of adding a layer of viscoelastic material,such as
rubber, to an existing structure. The combined system often has a higher damping
level and thus reduces unwanted vibration. This procedure is described by using the
complex stiffness notation. The concept of complex stiffness results from considering
the harmonic response of a damped system of the form

mi + cx + kx = Fye (5.60)

Recall from Section 2.3 that the solution to equation (5.60) can be calculated by as-
suming the form of the solution to be x(f) = Xel*', where X is a constant and
j = V—1. Substitution of the assumed form into equation (5.60) and dividing by the
nonzero function e/ yields

[-me? + (k + joc)]X = K (5.61)
This can be written as
[—mwz + k(l + %jﬂX = F, (5.62)
or
[~m? + k*]X = F, (5.63)

where k* = k(1 + 7j). Bere f = wc/k is called the loss factor and k* is called the
complex stiffness. This illustrates that in steady state, the viscous damping in a system
can be represented as an “undamped” system with a complex-valued stiffness. The
imaginary part of the stiffness, 1, corresponds to the energy dissipation in the system.
Since the loss factor has the form

q = %m (5.64)

the loss factor depends on the driving frequency and hence is said to be frequency de-
pendent. Hence the value of the energy dissipation term depends on the value of the
driving frequency of the external force exciting the structure.
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MOD50

Modal Behaviour

e The Dynamic Response of a structure
is the sum of a discrete set
of independent predictable motions

® These motions are called
% Normal Modes

® A Mode is described by
% Natural Frequency & Damping
+ Mode Shape

Xty = a{@ ) + ado{e} + a0{2h .. +aitio],

@ Modal Analysis is the process of determining
these modal parameters ‘ |
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MODAL PARAMETERS

EIGENVALUES ———— RESONANT FREQUENCIES
DAMPING COEFFICIENTS

EIGENVECTORS ——— MODE SHAPES

RESIDUES —————— SCALING FACTORS
(Engineering units)



EIGENVALUE

Resonant frequency
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EIGENVECTOR
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RESIDUE

m|x

Guitar String
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Frequency

Residue indicates the strength of a mode



REVIEW: MODAL MODEL

1) SPATIAL MODEL: DOF'S

_—_————_.————_———_-_

2) EQUATIONS OF MOTION: N
2

FRF matrix -1, :

—-— wvm e et et e e am e e ew SR e e e

3) Measurements

' FRF's (one row or column)

Freq. | Damp. | Mode shape

4) MODAL MODEL: W, | % ul,
Each element of the matrix
- . o (4)2 2;2 julz
is written in terms of the : .

,mnodal parameters. (:‘)r' ?.;P fl.,(ir



REVIEW: MODAL MODEL

SUMMARY:

THE MODAL MODEL GIVES THE RESPONSE
AT ONE OR MORE DOF's DUE TO A FORCE
EXCITATION AT ONE OR MORE DOF's.

THE PROBLEM SIZE HAS BEEN REDUCED
FROM THE NUMBER OF SPATIAL DOF's TO
THE NUMBER OF MODES.



FREQUENCY TERMS

//

UNDAMPED NATURAL FREQUENCY:
K

Wp= [~
"M
DAMPED NATURAL FREQUENCY:

wdz(*)n 1"C2



DAMPING TERMS

/7

DAMPING:
C (force/velocity or mass/time)

CRITICAL DAMPING:
Cc (no oscillations)

C, = 2/KW™

DAMPING RATIO:
¢ (Zeta)
C= c/ Ce

DECAY RATE:
-~ (1/time, Hz)

¢ =% w, = /K/M



FFT FUNDAMENTALS

T = record length —>|

W Wm Time (sec)
o

—>7r

TIME RECORD =2048 SAMPLES -

|

FT

e r-
i /\ {

SPECTRUM = 1024 LINES

TWW | ' DISPLAY = 800 LINES
il -

Frequency (Hz)

b Freq span >

FFT PARAMETERS:
Af = FREQ SPAN / 800
T=1/af
At =T / 2048



FFT FUNDAMENTALS

CONSEQUENCES OF USING A TIME LIMITED SIGNAL
IN AN FFT ANALYZER.

1. FREQUENCY RESOLUTION:
af=1/T
2. RESOLUTION BIAS ERROR (LEAKAGE):

— PEAKS CAN BE MEASURED TOO LOW.
— VALLEYS CAN BE MEASURED TOO HIGH.

True spectrum —




FREQUENCY RESOLUTION

GOOD FREQUENCY RESOLUTION IS IMPORTANT
FOR ACCURACY WHEN MEASURING FREQUENCY
RESPONSE FUNCTIONS OF MECHANICAL
STRUCTURES.

TYPICALLY, MECHANICAL STRUCTURES EXHIBIT
VERY SHARP RESONANCE PEAKS.

IF FREQUENCY RESOLUTION IS INADEQUATE,
THESE PEAKS WILL BE MEASURED TOO LOW
(RESOLUTION BIAS ERROR).

INCREASE FREQUENCY RESOLUTION BY:
— ZOOM ANALYSIS

— USE A LARGE FFT TRANSFORM SIZE
(2048 time points = 800 lines)



AVERAGING: DUAL CHANNEL FFT

INPUT AUTOSPECTRUM:
(For modal analysis input is usually force)

AN
Can = hz(SA SA)

OUTPUT AUTOSPECTRUM: f’/fwe& M’("'l’“&V/’W
(Output is usually response) spechin

_ 1 *
Cap = nE(SB SB)
CROSS—SPECTRUM:

i Com
Gay =n2(ShSp) wes fhacre.

= gveraging number or ensemble size
Sp = instantaneous spectrum of channel A
Sg = instantaneous spectrum of channel B
x = complex congugate |



AVERAGING RANDOM NOISE

PUMP

— CONSIDER EXCITATION (FORCE) AT A SINGLE
FREQUENCY.

X (in) 1

— DUAL CHANNEL FFT AVERAGES RANDOM SCATTER
FOR FACH FREQUENCY LINE IN THE FREQUENCY
RESPONSE FUNCTION ESTIMATE.



CALCULATING FREQUENCY RESPONSE

Hy =GAB/GAA

AVERAGES OUT UNCORRELATED RANDOM NOISE
MIXED IN THE OUTPUT (RESPONSE) CHANNEL.
H, IS THE TRADITIONAL METHOD.

Hy = Gpg /Cga

AVERAGES OUT UNCORRELATED RANDOM NOISE
MIXED IN THE INPUT (FORCE) CHANNEL.

CAN BE BETTER SUITED THAN H, WHEN USING
SHAKER EXCITATION. -



COHERENCE FUNCTION

2
2 _ \GAB‘
AB - Gap” Cpgp

RELATES HOW MUCH OF THE MEASURED OUTPUT
SIGNAL IS LINEARLY RELATED TO THE
MEASURED INPUT SIGNAL.

CAN BE USED TO CHECK THE QUALITY OF THE
FREQUENCY RESPONSE FUNCTION.

2
O'<YAB< 1

Gag » Gpa AND Gy ARE AVERAGED OVER
MANY RECORDS.

FOR ONE RECORD ONLY (NO A\/ERAGING):
¥ (f) =1



The Coherence Function

o Definition

| Gagl 12
2, ] = —_—
YW= G Gesl)

function of frequency

0 < i) €1

Expresses degree of
Linear

relationship between A(f) and B(f)

840265/1

The Coherence Function

o Correlation Coefficient
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COHERENCE

REASONS FOR LOW COHERENCE:
— NON—LINEAR SYSTEM
— NOISE lN.MEASURED OUTPUT SIGNAL
— NOISE IN MEASURED INPUT SIGNAL

— OTHER INPUTS NOT CORRELATED WITH
MEASURED INPUT SIGNAL

— LEAKAGE (RESOLUTION BIAS ERROR)

— NO COMPENSATION FOR PROPAGATION
TIME



setting Up the Analyzer

- Frequency Range
— Trigger
~ Windows

- Attenuators

- D_isplay



FORCE WINDOW
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PURPOSE: . ELIMINATE NOISE



EXPONENTIAL WINDOW

Time

PURPOSE: ELIMINATE TRUNCAT!ON ERROR (LEAKAGE)



Free Mass Calibration

—_— Mass —»
Force Acceleration

H(f)=A/F=1/Mass

Calibrates the ehtire measuring chain

Mag = 1/Mass

A/F

Phase =0°

Frequency



MODAL PROPERTY CALCULATION

1. From the Magnitude of the Frequency Response
Function

]

i

i

¥
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|
Wy Wy W2 Frequency

The damped natural frequency wqy is the frequency of
maximum magnitude

The damping ¢, can be found from the half
power points w4, w2

Wy

Q = = Quality factor)

Wo— W4
¢ = s (= damping ratio, damping coefficient,
F2Q or percentage of critical damping)

o, ={ - wg (=decay rate)

831713



MODAL PROPERTY CALCULATION

1. From the Magnitude of the Frequency Response
Function

lH(wd)] """""
Mag

t—1

|
I
{
|
|
W1 Wg Wo Frequency

The damped natural frequency wy is the frequency of
maximum magnitude

The residue ,R, , can be found from the magnitude of the
frequency response function at w;.

R.=2 |H(wg)| o
0. = damping

NOTE:

The residue is indicative of the "strength" of a mode.
For example, an |—beam and a guitar string may haove
a mode with identical natural frequency and damping,

but the force necessary to excite the modes is very
different.



MODAL PROPERTY CALCULATION

» . From the Impulse Response
N\
\ e—at 2
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+ = time constant of the decay

Q = W‘Fd‘T
1
& = 2Q

R = Residue



IMPULSE RESPONSE FUNCTION

LOG (Mag)
A

R .

8.7 dB

R = Residue
0 = I/Tr
g2/ (emhr)

Q.= 7T, T,



MODS55

Modal Analysis

Step-by—Step Experimental Procedure

1 Setup ,
® Decide test point and directions (DOF’s)
@ Mount Structure. (“Free” or Fixed)
o0 Choose, Adjust Excitation
@ Setup Analyzer/Transducers
@ Calibrate Measuring Chain
@ Make Trial Measurements

~ 2 Measurements

® Measure one row or one column in
FRF matrix

3 Parameter Estimation

® Estimate — Natural Frequencies
— Dampings
— Residues

4 Draw Mode Shapes

831196
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In almost all modal analyses there will be one

Bruel & Kjaer Instruments, Inc.
185 Forest Street

Marlborough, MA 01752
617/481-7000

c-1
Multli Degree of Freedom Curve Fitting Procedure

or more well defined,

1ightly coupled, and 1ightly damped mode(s). The procedure presented
in this appendix 1s based on this assumption.

Procedure:

1. Document the frequency of as many peaks as possible.

2, Use an SDOF curve-fitting algorithm wherever possible and process
the assoclated mode shapes, which are from here on referred to as
"known modes".

. 3. Include one or more of these "known modes" 1in the MDOF frequency
: "band.

4. Select the number of poles (modes) expected in this frequency
range and at least two computational modes (one for 1lnertia
correction above the selected MDOF frequency range and one for
flexibility residuals below the selected MDOF frequency range.

5. The algorithm will yield a frequency and damping table each time
the MDOF, etc command 1s executed.

6. Compare the table of contents with the information gathered in
Step 1.

7. The process now becomes iterative. By changing the number of
poles (modes) and computational modes in the MDOF command, many
FRD (Frequency and damping) lists are generated.

8'

It 1s a good practice to synthesize the FRF used for the MDOF and
to compare 1t with experimental results. Keep a copy of the
synthesis and the frequency and damping table (FRD) for each
iteration. The "best" MDOF, is when the poles in the MDOF
generated FRD match the information gained in Step 1.

There may
also be other peaks that were not obvious in Step 1 that could be
actual modes.
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9.

10.

11.

12.

13.

When the best number of poles (modes) and computational modes have
been selected editing sometimes becomes necessary. Modes with
excessively high damping or that are out of order with the "known"
modes can be discarded prior to processing the mode shapes.

Proceed with generating the mode shapes.

Compare MDOF modes wlth common modes that were acqulred with a
SDOF fit.

If all informatlon llnes up, thelother modes in that necessitated .
an MDOF fit are most 1likely accurate. ‘

The section in the seminar that defines the Mode Indicator
Function 1is helpful and 1s easily implemented in an SMS
autosequence program.

For further software command information see the curve-fitting
section of the Modal 3.0 manuals.



