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Learning Objectives

• Find the responses of undamped and viscously damped single-degree-
of-freedom systems subjected to different types of harmonic force, 
including base excitation and rotating unbalance.

• Distinguish between transient, steady-state, and total solutions.

• Understand the variations of magnification factor and phase angles with 
the frequency of excitation and the phenomena of resonance and beats.

• Study the responses of a damped system to a simple harmonic force, 
harmonic motion of the base and under a rotating unbalance, and the 
force transmitted to the base in each case. 

• Identify self-excited problems and investigate their stability aspects.
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Force Vibration

A mechanical or structural system is said to undergo forced 
vibration whenever external energy is supplied to the system 
during vibration.

The applied force or displacement excitation may be 
harmonic, nonharmonic but periodic, nonperiodic, or random 
in nature.

The nonperiodic excitation may have a long or short duration. 
The response of a dynamic system to suddenly applied 
nonperiodic excitations is called transient response.

A harmonic, nonharmonic but periodic excitation will produce a 
steady-state response as long as the excitation is applied.
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Harmonic excitation 

The response of a system to a harmonic excitation is also harmonic, and 
with same frequency of excitation.

The vibration produced by an unbalanced rotating machine, the 
oscillations of a bridge or a tall tower due to a steady wind, and the 
vertical motion of an automobile on a sinusoidal road surface are 
examples of harmonically excited vibration.
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Equation of motion 𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝐹(𝑡)

With x measure 
from static 
equilibrium 
position (EP)

Since this equation is nonhomogeneous, its general solution x(t) is 
given by the sum of the homogeneous solution, 𝑥ℎ(𝑡), and the 
particular solution, 𝑥p(𝑡)

The particular solution will have the same form as the external function and can be 
calculated following :

𝑥(𝑡) = 𝑥ℎ(𝑡) + 𝑥𝑝(𝑡)

𝑥ℎ(𝑡) =

𝜁 = 0, 𝑥(𝑡) = 𝑋0 cos 𝜔 𝑛𝑡 − 𝜙

𝜁 < 1, 𝑥(𝑡) = 𝑋0𝑒
−𝜁𝜔𝑛𝑡 cos 𝜔 𝑑𝑡 − 𝜙

𝜁 = 1, 𝑥(𝑡) = C1𝑒
−𝜔𝑛𝑡 + C2𝑡𝑒

−𝜔𝑛𝑡

𝜁 > 1, 𝑥(𝑡) = C1𝑒
−𝜁𝜔𝑛+𝜔𝑛 𝜁2−1 𝑡

+ C2𝑒
−𝜁𝜔𝑛−𝜔𝑛 𝜁2−1 𝑡

𝑥𝑝(𝑡) = 𝐴𝐹(𝑡) + 𝐵𝐹´(𝑡) + 𝐶𝐹´´(𝑡) + ⋯+ 𝐶𝐹𝑛(𝑡)

The homogeneous solution represent the 
free vibration of the system, that dies out 
with time under each of the three possible 
conditions of damping (underdamping, 
critical damping, and overdamping) and 
under all possible initial conditions.
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Transient and steady-state solution
If damping is present, It can be seen that 𝑥ℎ(𝑡) dies out and 
x(t) becomes 𝑥𝑝(𝑡) after some time. 

The part of the motion that dies out due to damping (the 
free-vibration part) is called transient. 

The rate at which the transient motion decays depends on 
the values of the system parameters k, c, and m. 

To do the analysis of harmonic motion we ignore the 
transient motion and derive only the particular solution, 
which represents the steady-state response, under harmonic 
forcing functions.

𝑥ℎ(𝑡)

𝑥𝑝(𝑡)

𝑥(𝑡) = 𝑥𝑝(𝑡) + 𝑥ℎ(𝑡)

Steady-state
response

Transient response

levy
Sticky Note
in undamped motion there is no transient.  All of it is steady state.
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Solution to a constant force

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝐹 𝑡

𝑚0 + 𝑐0 + 𝑘𝐴𝐹𝑜 = 𝐹𝑜

𝐹 𝑡 = 𝐹𝑜

The particular solution will have the same form as the function and can be 
calculated following :

𝑥𝑝(𝑡) = 𝐴𝐹0, ሶ𝑥𝑝(𝑡) = ሷ𝑥𝑝 (𝑡) = 0

𝑥𝑝(𝑡) = 𝐴𝐹(𝑡) + 𝐵𝐹´(𝑡) + 𝐶𝐹´´(𝑡) + ⋯+ 𝐶𝐹𝑛(𝑡)

𝐴 =
1

𝑘

𝑥(𝑡) = 𝑥𝑝(𝑡) + 𝑥ℎ(𝑡) =
𝐹0
𝑘
+ 𝑥ℎ(𝑡)

0

Transient response Steady-state response

𝑥𝑝 𝑡 =
𝐹𝑜
𝑘

𝑒−𝜁𝜔𝑛𝑡 C1 cos𝜔 𝑑𝑡 + C2 sin𝜔 𝑑𝑡

t

𝑥(𝑡)

The total solution will be

𝑥(𝑡) = 𝑥𝑝(𝑡) + 𝑥ℎ(𝑡) =
𝐹0
𝑘
+ 𝑒−𝜁𝜔𝑛𝑡 C1 cos𝜔 𝑑𝑡 + C2 sin𝜔 𝑑𝑡

For a undamped system

with C1 = 𝑥0 −
𝐹0
𝑘

C2 =
𝑣0 + 𝜁𝜔𝑛 𝑥0 −

𝐹0
𝑘

𝜔𝑑

𝑥 𝑜 = 𝑥0

ሶ𝑥 𝑜 = 𝑣0

𝑥𝑝(𝑡) =
𝐹0
𝑘

levy
Highlight
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Sticky Note
should be underdamped
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Solution to a harmonic force (Mass- spring System) 

To find A and B, derivate the particular 

solution and substitute in the equation 

of motion

𝑚 ሷ𝑥 + 𝑘𝑥 = 𝐹 𝑡

𝐹 𝑡 = 𝐹𝑜 cosΩ 𝑡

:

𝑟 =
Ω

𝜔𝑛

Frequency

Ratio

ሶ𝑥𝑝 𝑡 = −𝐴Ω sinΩ 𝑡 + 𝐵Ω cosΩ 𝑡

ሷ𝑥𝑝(𝑡) = −𝐴Ω2 cosΩ 𝑡 − 𝐵Ω2 𝑠𝑖𝑛 Ω 𝑡

𝑥𝑝(𝑡) = 𝐴 cosΩ 𝑡 + 𝐵 sinΩ 𝑡

Equation of motion:

The total solution is : 𝑥(𝑡) = 𝑥𝑝(𝑡) + 𝑥ℎ(𝑡)

𝑥ℎ 𝑡 = C1 cos 𝜔𝑛𝑡 + C2 sin 𝜔𝑛𝑡Where: 

𝛿𝑠𝑡 =
𝐹𝑜

𝑘

Static

deflection

T

2
=

t

T

Before we find the final solution lets 

introduce the following concepts: 

The constants C1 and C2 on the homogeneous solution depend on the 

initial conditions, and have to be calculated for the whole equation. 

levy
Highlight
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don't use the same symbol to mean different things.  Students will make mistakes.call it Xo
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Solution to a harmonic force (Mass –Spring System) 

and the derivatives:
𝐹 𝑡 = 𝐹𝑜 cosΩ 𝑡

In term of natural 

frequency, frequency

ratio r and static

deflection

ሶ𝑥𝑝 𝑡 = −𝐴Ω sinΩ + 𝐵Ω cosΩ 𝑡

ሷ𝑥𝑝(𝑡) = −𝐴Ω2 cosΩ 𝑡 − 𝐵Ω2 𝑠𝑖𝑛 Ω 𝑡

𝑚 −𝐴Ω2 cosΩ 𝑡 − 𝐵Ω2 sin Ω 𝑡 + 𝑘 𝐴 cosΩ 𝑡 + 𝐵 sinΩ 𝑡 = 𝐹0 𝑐𝑜𝑠 Ω 𝑡

−𝐴𝑚Ω2 + 𝐴𝑘 cosΩ 𝑡 + −𝐵𝑚Ω2 + 𝑘𝐵 sinΩ 𝑡 = 𝐹𝑜 𝑐𝑜𝑠 Ω 𝑡

−𝐴𝑚Ω2 + 𝐴𝑘 = 𝐹𝑜

−𝐵𝑚Ω2 + 𝑘𝐵 = 0

𝐴 = 𝐹𝑜
1

𝑘 − 𝑚Ω2

𝐵 = 0

𝐴 =
𝐹𝑜

𝑘

1

1 −
Ω
𝜔𝑛

2 = 𝛿𝑠𝑡
1

1 − 𝑟2

𝑥𝑝(𝑡) = 𝐴 cosΩ 𝑡 + 𝐵 sinΩ 𝑡The particular solution is : 

The

particular 

solution:

𝑥𝑝(𝑡) = 𝛿𝑠𝑡
1

1 − 𝑟2
cosΩ 𝑡

T

2
=

t

T

𝑴 =
𝑋

𝛿𝑠𝑡
=

1

1 − 𝑟2

Magnification

factor, or

amplitud ratio

𝑚 ሷ𝑥 + 𝑘𝑥 = 𝐹 𝑡Equation of motion:

levy
Highlight
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Solution to a harmonic force 
The total solution is : 𝑥 𝑡 = 𝑥ℎ 𝑡 + 𝑥𝑝(𝑡)

Then: 𝑥(𝑡) = C1 cos 𝜔𝑛𝑡 + C2 sin 𝜔𝑛𝑡 + 𝛿𝑠𝑡
1

1 − 𝑟2
cosΩ 𝑡

The constants C1 and C2 on the homogeneous solution depend on the 

initial conditions, and have to be calculated for the whole equation. 

When applying initial conditions 𝒙𝟎 and 𝒗𝟎

C1 = 𝑥𝑜 −
𝐹𝑜

𝑘 −𝑚Ω2
= 𝑥𝑜 − 𝛿𝑠𝑡

1

1 − 𝑟2
C2 =

𝑣𝑜
𝜔𝑛

Transient 
response

Steady-state 
response

𝑥(𝑡) = 𝑥ℎ(𝑡) + 𝛿𝑠𝑡
1

1 − 𝑟2
cos Ω 𝑡𝐹𝑜 𝑡 = 𝐹𝑜 cosΩ 𝑡

t

T
T

2
=

T

𝑥 𝑡 = 𝑥𝑜 − 𝛿𝑠𝑡
1

1 − 𝑟2
cos 𝜔𝑛𝑡 +

𝑣𝑜
𝜔𝑛

sin 𝜔𝑛𝑡

+ 𝛿𝑠𝑡
1

1 − 𝑟2
cosΩ 𝑡

𝐹 𝑡 = 𝐹𝑜 cosΩ 𝑡

T

2
=

t

T

The total solution is : 

levy
Sticky Note
what you drew here cannot be.  This is only true for a damped system.  In this case where there is no damping, there is no transient response.  The results will always be steady state.
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Magnification factor (M) 𝐹 𝑡 = 𝐹𝑜 cosΩ 𝑡

Also called amplification factor or amplitude ratio 

𝑀 =
𝑋

𝛿𝑠𝑡
=

1

1 − 𝑟2

𝑀Case 1: 𝑟 < 1

Response in phase 

with excitation

𝐹 𝑡 = 𝐹𝑜 cosΩ 𝑡

𝑥𝑝 𝑡 = 𝛿𝑠𝑡𝑀cosΩ 𝑡

Case 2: 𝑟 > 1

Response in out of 

phase with excitation 

by 180°

𝐹 𝑡 = 𝐹𝑜 cosΩ 𝑡

𝑥𝑝 𝑡 = −𝛿𝑠𝑡𝑀cosΩ 𝑡 = 𝛿𝑠𝑡𝑀 cos Ω𝑡 − 180

𝑟 = 1
1

𝒓 =
𝜴

𝝎𝒏

𝑥𝑝(𝑡) = 𝛿𝑠𝑡 𝑴cosΩ 𝑡
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𝑀

𝑟 = 1
1

𝑟 =
Ω

𝜔𝑛

Magnification factor (M) 𝐹 𝑡 = 𝐹𝑜 cosΩ 𝑡

Also called amplification factor or amplitude ratio 

𝑀 =
𝑋

𝛿𝑠𝑡
=

1

1 − 𝑟2

Case 3: 𝑟 = 1
𝑥 𝑡 = 𝑥𝑜 − 𝛿𝑠𝑡

1

1 − 𝑟2
cos 𝜔𝑛𝑡 +

𝑣𝑜
𝜔𝑛

cos 𝜔𝑛𝑡 + 𝛿𝑠𝑡
1

1 − 𝑟2
cosΩ 𝑡

The amplitude X becomes 
infinite. This condition, for which 
the forcing frequency is equal to 
the natural frequency of the 
system is called resonance. 

𝑥 𝑡 = 𝑥𝑜 cos 𝜔𝑛𝑡 +
𝑣𝑜
𝜔𝑛

cos 𝜔𝑛𝑡 + 𝛿𝑠𝑡
cosΩ 𝑡 − cos 𝜔𝑛𝑡

1 − 𝑟2

Since the last term of this equation takes an indefinite form 

for Ω= 𝜔𝑛,, we apply L’Hospital’s rule to evaluate the limit 

of this term, and the response of the system at resonance 

becomes

𝑥 𝑡 = 𝑥𝑜 cos 𝜔𝑛𝑡 +
𝑣𝑜
𝜔𝑛

cos 𝜔𝑛𝑡 +
𝛿𝑠𝑡𝜔𝑛𝑡

2
sin𝜔𝑛𝑡

𝜏 =
2𝜋

𝜔𝑛

𝑥 𝑡 𝑟 =
Ω

𝜔𝑛
= 1

The transient 

response 

increases 

linearly with 

time

𝑥𝑝(𝑡) = 𝛿𝑠𝑡 𝑴cosΩ 𝑡
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Beating Phenomenon
Case 4: 𝜴 −𝝎𝒏 = 𝜺

Occurs when the forcing frequency is close to, but not exactly equal to, the natural frequency of 
the system.  In this kind of vibration, the amplitude builds up and then diminishes in a regular 
pattern

If we have 𝑥0 = 𝑣0 = 0

𝑥 𝑡 = 𝑥𝑜 −
𝐹𝑜/𝑘

1 − 𝑟2
cos 𝜔𝑛𝑡 +

𝑣𝑜
𝜔𝑛

cos 𝜔𝑛𝑡 +
𝐹𝑜/𝑘

1 − 𝑟2
cosΩ 𝑡

The total solution is : 

𝑥 𝑡 =
𝐹𝑜/𝑘

1 − 𝑟2
cosΩ 𝑡 − cos 𝜔𝑛𝑡

• Using a trigonometry identity, the response becomes: 𝑥 𝑡 =
𝐹𝑜/𝑚

𝜔𝑛
2 − Ω2

−2 sin
Ω − 𝜔𝑛

2
𝑡 sin

Ω + 𝜔𝑛

2
𝑡

Ω + 𝜔𝑛 ≈ 2Ω

• With: 

Ω − 𝜔𝑛 = 𝜀

𝜔𝑛
2 − Ω2 = (𝜔𝑛−Ω)(𝜔𝑛+Ω) = −2𝜀Ω

𝑥 𝑡 =
𝐹𝑜/𝑚

2𝜀Ω
2 sin

𝜀

2
𝑡 sin Ω𝑡

𝐹𝑜/𝑘

1 − 𝑟2
=

𝐹𝑜/𝑚

𝜔𝑛
2 − Ω2

𝐹 𝑡 = 𝐹𝑜 cosΩ 𝑡

T

2
=

t

T
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Beating Phenomenon
Case 4: 𝜴 −𝝎𝒏 = 𝜺

• When the forcing frequency Ω be slightly less (𝜀) than the natural frequency, the response becomes:

𝑥 𝑡 =
𝐹𝑜/𝑚

2𝜀Ω
2 sin

𝜀

2
𝑡 sin Ω𝑡

• The frequency of beating is equal to 𝜀 = Ω − 𝜔𝑛.

• It represent the time when the response magnitude atains a minimun or maximum.

𝐹 𝑡 = 𝐹𝑜 cosΩ 𝑡

2𝜋

Ω

2𝜋

𝜀
𝐹𝑜/𝑘

2𝜀Ω
sin

𝜀

2
𝑡

2 sin Ω𝑡

𝑥 𝑡

𝑡
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Formula Sheet for
Force vibration

Transient response
Undamped systems

𝑚𝑒 ሷ𝑥 + 𝑘𝑒𝑥 = 𝐹(𝑡)

ሷ𝑥 + 𝜔𝑛
2𝑥 = 𝐹(𝑡)/𝑚 𝑥(𝑡) = 𝑥ℎ(𝑡) + 𝑥𝑝(𝑡)

Governing

equation

𝑟 =
Ω

𝜔𝑛
𝜁 = 0

Response : 

specific damping capacity

𝑥 𝑡 = 𝑥𝑜 − 𝛿𝑠𝑡
1

1 − 𝑟2
cos 𝜔𝑛𝑡 +

𝑣𝑜
𝜔𝑛

sin 𝜔𝑛𝑡 + 𝛿𝑠𝑡
1

1 − 𝑟2
cos(Ω 𝑡 − 𝜑)𝑟 ≠ 1

𝑟 < 1 𝜑 = 0°

𝑟 = 1 𝑥 𝑡 = 𝑥𝑜 cos 𝜔𝑛𝑡 +
𝑣𝑜
𝜔𝑛

cos 𝜔𝑛𝑡 +
𝛿𝑠𝑡𝜔𝑛𝑡

2
sin𝜔𝑛𝑡

𝜑 = 90°

𝑟 ≈ 1 𝑥 𝑡 =
𝐹𝑜/𝑚

2𝜀Ω
2 sin

𝜀

2
𝑡 sin Ω𝑡

𝐹 𝑡 = 𝐹𝑜 cosΩ 𝑡Force : 

𝑟 > 1 𝜑 = 180°

t

T

2
=

2𝜋

Ω

2𝜋

𝜀
𝐹𝑜/𝑘

2𝜀Ω
sin

𝜀

2
𝑡

2 sin Ω𝑡

𝑥 𝑡

𝑡

2𝜋

𝜔𝑛

𝑥 𝑡

𝑥 𝑡

For no initial

conditions the

system vibrates at 

forcing frequency

𝜔𝑛 =
𝑘𝑒
𝑚𝑒

𝛿𝑠𝑡 =
𝐹𝑜

𝑘

Static
deflection

Frequency
ratio

Resonance

Beating

𝜀 = Ω − 𝜔𝑛

𝑴 =
𝑋

𝛿𝑠𝑡
=

1

|1 − 𝑟2|

Magnification
factor

For no initial conditions the system vibrates

following : 

Natural 
Frequency

𝑟 = 1
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CASES TO STUDY:

𝐹 𝑡 = 𝐹𝑜 cosΩ 𝑡

T

2
=

t

T

Case 1: Harmonic force Case 2: Moving base

x measure

from EP

y

Absolute response: 

𝒙(𝒕)

Force Transmitted to the base: 

Absolute response: 

Force Transmitted to the base: 

𝑭𝑻 𝒕 = 𝒄 ሶ𝒙 + 𝒌𝒙

z(𝒕) = 𝒙 − 𝒚

Relative Response: 

𝒙(𝒕)

𝑭𝑻 𝒕 = 𝒄 ሶ𝒙 + 𝒌𝒙

Case 3: Rotating unbalance

𝐹(𝑡) = 𝑚𝑒𝜔2sin(𝜔𝑡)

Absolute response: 

Force Transmitted to the base: 

𝑥(𝑡)

𝑭𝑻 𝒕 = 𝒄 ሶ𝒙 + 𝒌𝒙

𝑦 𝑡 = 𝑌𝑜 sinΩ 𝑡

levy
Highlight

levy
Sticky Note
this should not be shaded, as it denotes a fixed surface.
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Solution to a harmonic force (Mass-Damper–Spring System) 

Equation of motion:

The total solution is : 𝑥(𝑡) = 𝑥𝑝(𝑡) + 𝑥ℎ(𝑡)

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝐹(𝑡)

To find A and B, derivate the particular 

solution and substitute in the equation 

of motion

ሶ𝑥𝑝 𝑡 = −𝐴Ω sinΩ 𝑡 + 𝐵Ω cosΩ 𝑡

ሷ𝑥𝑝(𝑡) = −𝐴Ω2 cosΩ 𝑡 − 𝐵Ω2 𝑠𝑖𝑛 Ω 𝑡

𝑥𝑝 𝑡 = 𝐴 cosΩ 𝑡 + 𝐵 sinΩ 𝑡Where: 

𝑥ℎ(𝑡) =

𝜁 < 1, 𝑥(𝑡) = C1𝑒
−𝜁𝜔𝑛𝑡 cos 𝜔 𝑑𝑡 + C2𝑒

−𝜁𝜔𝑛𝑡 𝑠𝑖𝑛 𝜔 𝑑𝑡

𝜁 = 1, 𝑥(𝑡) = C1𝑒
−𝜔𝑛𝑡 + C2𝑡𝑒

−𝜔𝑛𝑡

𝜁 > 1, 𝑥(𝑡) = C1𝑒
−𝜁𝜔𝑛+𝜔𝑛 𝜁2−1 𝑡

+ C2𝑒
−𝜁𝜔𝑛−𝜔𝑛 𝜁2−1 𝑡

The homogeneous solution represent 

the free vibration of the system, that dies 

out with time under each of the three 

possible conditions of damping 

(underdamping, critical damping, and 

overdamping) and under all possible 

initial conditions.

𝐹 𝑡 = 𝐹𝑜 cosΩ 𝑡

T

2
=

t

T

The constants C1 and C2 depend on the initial conditions, 

and have to be calculated for the whole equation. 
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Solution to a harmonic force (Mass-Damper–Spring System) 

The particular solution

ሶ𝑥𝑝 𝑡 = −𝐴Ω sinΩ 𝑡 + 𝐵Ω cosΩ 𝑡

ሷ𝑥𝑝(𝑡) = −𝐴Ω2 cosΩ 𝑡 − 𝐵Ω2 𝑠𝑖𝑛 Ω 𝑡

𝑥𝑝 𝑡 = 𝐴 cosΩ 𝑡 + 𝐵 sinΩ 𝑡

In terms of

𝑚 −𝐴Ω2 cos Ω 𝑡 − 𝐵Ω2 sinΩ 𝑡 + 𝑐 −𝐴Ω sinΩ 𝑡 + 𝐵Ω cos Ω 𝑡 + 𝑘 𝐴 cos Ω 𝑡 + 𝐵 sinΩ 𝑡 = 𝐹0 cos Ω 𝑡

−𝐴𝑚Ω2 + 𝐵𝑐Ω + 𝐴𝑘 cosΩ 𝑡 + −𝐵𝑚Ω2 − 𝐴𝑐Ω + 𝑘𝐵 sinΩ 𝑡 = 𝐹𝑜 cosΩ 𝑡

−𝐴𝑚Ω2 + 𝐵𝑐Ω + 𝐴𝑘 = 𝐹𝑜

−𝐵𝑚Ω2 − 𝐴𝑐Ω + 𝑘𝐵 = 0

𝐴 𝑘 − 𝑚Ω2 + 𝐵𝑐Ω = 𝐹𝑜

𝐵 𝑘 −𝑚Ω2 = 𝐴𝑐Ω
𝐴 =

𝐹𝑜 𝑘 − 𝑚Ω2

𝑘 − 𝑚Ω2 2 + 𝑐Ω 2 𝐵 =
𝐹𝑜 𝑐Ω

𝑘 − 𝑚Ω2 2 + 𝑐Ω 2

𝐵 =
𝐹𝑜

𝑘

2𝜁𝑟

1 − 𝑟2 2 + 2𝜁𝑟 2𝐴 =
𝐹𝑜

𝑘

1 − 𝑟2

1 − 𝑟2 2 + 2𝜁𝑟 2
𝜁 =

𝑐

2 𝑘𝑚
𝜔𝑛 =

𝑘

𝑚
𝑟 =

Ω

𝜔𝑛

substitute in the equation of motion 𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝐹(𝑡) 𝐹 𝑡 = 𝐹𝑜 cosΩ 𝑡
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Solution to a harmonic force (Mass-Damper–Spring System) 

𝑥𝑝 𝑡 = 𝐴 cosΩ 𝑡 + 𝐵 sinΩ 𝑡 = 𝑋𝑃 cos Ω𝑡 − 𝜑

𝑋𝑃 = 𝐴2 + 𝐵2 =
𝐹𝑜

𝑘

2
1 − 𝑟2 2 + 2𝜁𝑟 2

1 − 𝑟2 2 + 2𝜁𝑟 2 2

𝑋𝑃 =
𝐹𝑜

𝑘

1

1 − 𝑟2 2 + 2𝜁𝑟 2

𝜑 = tan−1
𝐵

𝐴
= tan−1

2𝜁𝑟

1 − 𝑟2

𝑴 =
𝑋

𝛿𝑠𝑡
=

1

1 − 𝑟2 2 + 2𝜁𝑟 2

𝜑 = tan1
2𝜁𝑟

1 − 𝑟2

Magnification factor

𝐹 𝑡 = 𝐹𝑜 cosΩ 𝑡

𝑇 =
2𝜋

Ω

𝑇 =
2𝜋

Ω

𝑥𝑝(𝑡) =
𝐹0
𝑘
𝑴cos Ω𝑡 − 𝜑

The amplitude of the solution

The particular solution

𝑥𝑝(𝑡) =
𝐹0
𝑘
𝑴cos Ω𝑡 − 𝜑

𝐵 =
𝐹𝑜

𝑘

2𝜁𝑟

1 − 𝑟2 2 + 2𝜁𝑟 2

𝐴 =
𝐹𝑜

𝑘

1 − 𝑟2

1 − 𝑟2 2 + 2𝜁𝑟 2

𝐹 𝑡 = 𝐹𝑜 cosΩ 𝑡

levy
Sticky Note
same comment regarding delta st.  students will mix it up with static deflection
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Magnification factor (M)
(Also called amplification factor or amplitude ratio) 

𝑴 =
𝑋

𝛿𝑠𝑡

𝜑 = tan1
2𝜁𝑟

1 − 𝑟2

𝑟 = 1

r0

90

180°

 Maximum take place at

𝜕𝑴

𝜕𝑟
=
− 2 1 − 𝑟2 −2𝑟 + 2 4𝜁2 𝑟

1 − 𝑟2 2 + 2𝜁𝑟 2 3/2
= 0

4𝑟 −1 + 𝑟2 + 2𝜁2 = 0

𝑟𝑐𝑟𝑖𝑡 = 1 − 2𝜁2

 The critical frequency will be a little

bit less than the natural frequency:

𝑟𝑐𝑟𝑖𝑡 =
Ω𝑐𝑟𝑖𝑡
𝜔𝑛 Phase angle is 90 

for r=1, regarless
the value of
damping ratio. 

Magnification factor 
For M-D-S system with 
harmonic force

𝑴𝑐𝑟𝑖𝑡 =
1

2𝜁 1−𝜁2

maximum value of 𝑴

𝑟 = 1 𝑴 =
1

2𝜁

𝜁 = 0

𝑴 =
1

1 − 𝑟2 2 + 2𝜁𝑟 2

𝜁 = 0.2

𝜁 = 0.1

𝜁 = 0.7

𝜁 = 0.3

𝜁 = 0.4

𝑟 = 1
r

𝑴

levy
Highlight

levy
Sticky Note
remove this.  When zeta is .5, rcrit is .7071 a 30% decrease, which is not a little bit less.
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Characteristics of the Magnification factor M =
𝑋

𝛿𝑠𝑡

1. For an undamped system (ζ=0),and 𝑴 → ∞ 𝑎𝑠 𝑟 → 1

2. Any amount of damping (ζ>0) reduces the magnification factor (𝑴) for all 
values of the forcing frequency.

M=
1

1−𝑟2 2+ 2𝜁𝑟 2

3. In the degenerate case of a constant force (when r=0), the value of 𝑴 = 1.

4. The reduction in 𝑴 in the presence of damping is very significant at or near resonance.

5. The amplitude of forced vibration becomes smaller with increasing values of the forcing frequency 
(i.e., 𝑴 → 𝟎 𝑎𝑠 𝑟 → ∞)

6. The maximum value of 𝑴 occurs when 𝑟𝑐𝑟𝑖𝑡 = 1 − 2𝜁2, valid for values 0 < 𝜁 < 1/ 2

7. The maximum value of 𝑴 =
1

2𝜁 1−𝜁2
, which occurs at 𝑟𝑐𝑟𝑖𝑡

8. For 𝑟 = 1 𝑴 =
1

2𝜁

9. For values 𝜁 > 1/ 2 the graph of 𝑴monotonically decreases with increasing values of 𝑟
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Force transmitted to the base of a viscous damped 
system • The steady-state

response

X

𝐹 𝑡 = 𝐹𝑜 cosΩ 𝑡

𝑥𝑝(𝑡) =
𝐹0
𝑘
𝑴cos Ω𝑡 − 𝜑 𝑴 =

1

1 − 𝑟2 2 + 2𝜁𝑟 2 𝜑 = tan1
2𝜁𝑟

1 − 𝑟2

• The spring and the damper transmit force to the base:

𝐹𝑇 𝑡 = 𝑘𝑥 + 𝑐 ሶ𝑥 = 𝑘
𝐹0
𝑘
𝑴𝑐𝑜𝑠 Ω𝑡 − 𝜑 − 𝑐

𝐹0
𝑘
𝑴Ωs𝑖𝑛 Ω𝑡 − 𝜑 = 𝐹0𝑴 cos Ω𝑡 − 𝜑 −

𝑐

𝑘
Ωsin Ω𝑡 − 𝜑

𝐹𝑇 𝑡 = 𝐹0
2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2
cos Ω𝑡 − 𝜑1 − 𝛼

𝑐

𝑘
=
2𝜁

𝜔𝑛

• We can write this sum of cos and sin in a single cos function with a phase angle

xckx

( ) kxxctFT += 

𝜑1 = tan−1
2𝜁𝑟

1 − 𝑟2
𝛼 = tan−1(2 𝜁𝑟)

𝜑 = 𝜑1 + 𝛼 = tan−1
2𝜁𝑟3

1 + 4𝜁2 − 1 𝑟2
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Force transmitted to the base of a viscous damped 
system 

X

xckx

𝐹 𝑡 = 𝐹𝑜 cosΩ 𝑡

𝜁 = 0

𝜁 = 0.2

𝜁 = 0.1

𝜁 = 0.7

𝜁 = 0.3

𝜁 = 0.4

𝑟 = 1

𝑟

𝑇𝑑 =
2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2

𝑟 = 2

1
( ) kxxctFT += 

𝑇𝑑 =
𝐹𝑇
𝐹0

=
2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2

The ratio of the amplitude

𝜑 = tan−1
2𝜁𝑟3

1 + 4𝜁2 − 1 𝑟2

Force transmissibility
For M-D-S system with 
harmonic force

𝑻𝒅 =
𝐹𝑇
𝐹0

𝐹𝑇 𝑡 = 𝐹0
2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2
cos Ω𝑡 − 𝜑 0

𝑟 = 1
𝑟

90

180
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Characteristics of the transmissibility factor (𝑇𝑑)

1. The value of 𝑇𝑑 is unity at 𝑟 = 0 and close to unity for small 
values of 𝑟.

2. For an undamped system (ζ=0), 𝑇𝑑 →∞ at resonance (r=1).

𝑟𝑚 =
1

2𝜁
1 + 8𝜁2 − 1

2

𝑇𝑑 =
2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2

3. The value of 𝑇𝑑 is less than unity (𝑇𝑑 <1) for values of r > 2 (for any amount of damping ζ).

4. The value of 𝑇𝑑 is unity for all values of ζ at r = 2.

5. For r < 2, smaller damping ratios lead to larger values of 𝑇𝑑 On the other hand, for 𝑟 >
2, smaller values of damping ratio lead to smaller values of 𝑇𝑑.

6. The transmissibility factor, 𝑇𝑑, attains a maximum for 0<ζ<1 at the frequency ratio 𝑟 = 𝑟𝑚 given 
by
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CASES TO STUDY:

𝐹 𝑡 = 𝐹𝑜 cosΩ 𝑡

T

2
=

t

T

Case 1: Harmonic force Case 2: Moving base

x measure

from EP

y

Absolute response: 

𝒙(𝒕)

Force Transmitted to the base: 

Absolute response: 

Force Transmitted to the base: 

𝑭𝑻 𝒕 = 𝒄 ሶ𝒙 + 𝒌𝒙

z(𝒕) = 𝒙 − 𝒚

Relative Response: 

𝒙(𝒕)

𝑭𝑻 𝒕 = 𝒄 ሶ𝒙 + 𝒌𝒙

Case 3: Rotating unbalance

𝐹(𝑡) = 𝑚𝑒𝜔2sin(𝜔𝑡)

Absolute response: 

Force Transmitted to the base: 

𝑥(𝑡)

𝑭𝑻 𝒕 = 𝒄 ሶ𝒙 + 𝒌𝒙

𝑦 𝑡 = 𝑌𝑜 sinΩ 𝑡
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Response of a Damped System Under the Harmonic 
Motion of the Base

Forces in vertical direction:

x measure

from EP 𝑐 ሶ𝑥 − ሶ𝑦 + 𝑘 𝑥 − 𝑦 = −𝑚 ሷ𝑥

Governing equation: 

y

𝑦 𝑡 = 𝑌𝑜 sinΩ 𝑡

ሶ𝑦 𝑡 = 𝑌𝑜ΩcosΩ 𝑡

mg

𝑐 ሶ𝑥 − ሶ𝑦𝑘 𝑥 − 𝑦

𝑀 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝑐 ሶ𝑦 + 𝑘𝑦

𝑀 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝑐𝑌𝑜ΩcosΩ 𝑡 + 𝑘𝑌𝑜 sin Ω 𝑡

𝑦 𝑡 = 𝑌𝑜 sinΩ 𝑡

FBD

𝑀 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝑌𝑜 𝑐Ω 2 + 𝑘 2 𝑐𝑜𝑠 Ω𝑡 − 𝜑1

𝜑1 = tan−1
2𝜁𝑟

1 − 𝑟2
𝐹 𝑡 = 𝑌𝑜 𝑐Ω 2 + 𝑘 2 𝑐𝑜𝑠 Ω𝑡 − 𝜑1
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Response of a Damped System Under the Harmonic 
Motion of the Base

x measure

from EP

Governing equation: 

𝑥𝑝 𝑡 =
𝑌𝑜 𝑐Ω 2 + 𝑘 2

𝑘

1

1 − 𝑟2 2 + 2𝜁𝑟 2
cos Ω𝑡 − 𝜑1 − 𝛼

y

𝑦 𝑡 = 𝑌𝑜 sinΩ 𝑡

mg

𝑐 ሶ𝑥 − ሶ𝑦𝑘 𝑥 − 𝑦

FBD

𝑀 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝐹(𝑡)

𝜑1 = tan−1
2𝜁𝑟

1 − 𝑟2

The particular solution

𝛼 = tan−1 2𝜁𝑟

The ratio of the amplitude of the response to that of the base motion y(t), is called the 
displacement transmissibility.

𝑥𝑝 𝑡 = 𝑌𝑜
2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2
cos Ω𝑡 − 𝜑

𝐹 𝑡 = 𝑌𝑜 𝑐Ω 2 + 𝑘 2 𝑐𝑜𝑠 Ω𝑡 − 𝜑1

𝜑 = tan−1
2𝜁𝑟3

1 + 4𝜁2 − 1 𝑟2

𝑥𝑝 𝑡 =
𝐹𝑜
𝑘
𝑴cos Ω𝑡 − 𝜑1 − 𝛼
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Response of a Damped System Under the Harmonic 
Motion of the Base

x measure

from EP

𝑇𝑑 =
𝑋𝑝
𝑌0

=
2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2

y

𝑦 𝑡 = 𝑌𝑜 sinΩ 𝑡

𝑇𝑑 =
𝑋𝑝
𝑌0

Displacement transmissibility.
For M-D-S system, under 
harmonic motion of base

𝜑 = tan−1
2𝜁𝑟3

1 + 4𝜁2 − 1 𝑟2

𝜁 = 0

𝜁 = 0.2

𝜁 = 0.1

𝜁 = 0.7

𝜁 = 0.3

𝜁 = 0.4

𝑟 = 1

𝑟

𝑇𝑑 =
2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2

𝑟 = 2

1

The ratio of the amplitude

𝑥𝑝 𝑡 = 𝑌𝑜
2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2
cos Ω𝑡 − 𝜑
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Force transmitted to the moving base of a viscous 
damped system 

x measure

from EP

y

𝐹𝑇 𝑡 = 𝑐 ሶ𝑥 − ሶ𝑦 + 𝑘 𝑥 − 𝑦

𝑐 ሶ𝑥 − ሶ𝑦𝑘 𝑥 − 𝑦

𝐹𝑇 𝑡 = −𝑚 ሷ𝑥

𝑥𝑝 𝑡 = 𝑌𝑜
2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2
cos Ω𝑡 − 𝜑

𝐹𝑇 𝑡 = −𝑚 ሷ𝑥𝑝 = 𝑚Ω2𝑌𝑜
2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2
cos Ω𝑡 − 𝜑

𝐹𝑇
𝑘𝑌𝑜

= 𝑟2
2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2

The amplitude or maximum value of the force transmitted to the base is called Force 
transmissibility , and is in phase with the motion of the mass x(t)

𝑦 𝑡 = 𝑌𝑜 sinΩ 𝑡

𝜑 = tan−1
2𝜁𝑟3

1 + 4𝜁2 − 1 𝑟2

ሷ𝑥𝑝 𝑡 = −Ω2𝑌𝑜
2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2
cos Ω𝑡 − 𝜑

𝐹𝑇 𝑡 = 𝑘𝑌𝑜𝑟
2

2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2
cos Ω𝑡 − 𝜑

FBD
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Force transmitted to the moving base of a viscous 
damped system 

x measure

from EP

y

𝐹𝑇 𝑡 = 𝑐 ሶ𝑥 − ሶ𝑦 + 𝑘 𝑥 − 𝑦

𝑐 ሶ𝑥 − ሶ𝑦𝑘 𝑥 − 𝑦

𝐹𝑇 𝑡 = −𝑚 ሷ𝑥

Force transmissibility
For M-D-S system, under 
harmonic motion of base

𝐹𝑇
𝑘𝑌𝑜

= 𝑟2𝑇𝑑𝑦 𝑡 = 𝑌𝑜 sin Ω 𝑡 𝜁 = 0

𝜁 = 0.2

𝜁 = 0.1

𝜁 = 0.7

𝜁 = 0.3 𝜁 = 0.4

𝑟 = 1

r

𝑟 = 2

1

𝑟2𝑇𝑑 = 𝑟2
2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2

𝐹𝑇
𝑘𝑌𝑜

= 𝑟2
2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2
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Response of a Damped System Under the Harmonic 
Motion of the Base (relative motion z)

Forces in vertical direction:
x measured

from EP 𝑐 ሶ𝑥 − ሶ𝑦 + 𝑘 𝑥 − 𝑦 = −𝑚 ሷ𝑥

Governing equation: 

y

𝑦 𝑡 = 𝑌𝑜 sinΩ 𝑡

mg

𝑐 ሶ𝑥 − ሶ𝑦𝑘 𝑥 − 𝑦

FBD

𝑐 ሶ𝑧 + 𝑘 𝑧 = −𝑚( ሷ𝑧 + ሷ𝑦)

z = 𝑥 − 𝑦

x = 𝑧 + 𝑦

𝑚 ሷ𝑧 + 𝑐 ሶ𝑧 + 𝑘𝑧 = −𝑚( ሷ𝑦)

𝑚 ሷ𝑧 + 𝑐 ሶ𝑧 + 𝑘𝑧 = −𝑚( ሷ𝑦)

𝑚 ሷ𝑧 + 𝑐 ሶ𝑧 + 𝑘𝑧 = 𝑚Ω2𝑌𝑜 sinΩ 𝑡

𝐹(𝑡) = 𝑚Ω2𝑌𝑜 sin Ω 𝑡

𝑚 ሷ𝑧 + 𝑐 ሶ𝑧 + 𝑘𝑧 = 𝐹(𝑡)

ሷ𝑦 𝑡 = −Ω2𝑌𝑜 sinΩ 𝑡with:
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Response of a Damped System Under the Harmonic 
Motion of the Base (relative motion z)

x measured

from EP

Governing equation: 

𝑧 𝑡 = 𝑌𝑜
𝑟2

1 − 𝑟2 2 + 2𝜁𝑟 2
sin Ω𝑡 − 𝜑1

y

𝑦 𝑡 = 𝑌𝑜 sinΩ 𝑡

mg

𝑐 ሶ𝑥 − ሶ𝑦𝑘 𝑥 − 𝑦

𝑍

𝑌0
=

𝑟2

1 − 𝑟2 2 + 2𝜁𝑟 2
= 𝑟2𝑴

FBD

The steady state solution

The amplitude or maximum value can be expressed as

z = 𝑥 − 𝑦

x = 𝑧 + 𝑦

𝜑1 = tan−1
2𝜁𝑟

1 − 𝑟2

𝑧 𝑡 =
𝑚Ω2𝑌𝑜

𝑘

1

1 − 𝑟2 2 + 2𝜁𝑟 2
sin Ω𝑡 − 𝜑1

𝐹(𝑡) = 𝑚Ω2𝑌𝑜 sin Ω 𝑡

𝑚 ሷ𝑧 + 𝑐 ሶ𝑧 + 𝑘𝑧 = 𝐹(𝑡)

𝑧 𝑡 =
𝐹𝑜
𝑘
𝑴sin Ω𝑡 − 𝜑1
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Response of a Damped System Under the Harmonic 
Motion of the Base (relative motion z)

x measure

from EP

y

𝑦 𝑡 = 𝑌𝑜 sinΩ 𝑡

mg

𝑐 ሶ𝑥 − ሶ𝑦𝑘 𝑥 − 𝑦

FBD

z = 𝑥 − 𝑦

x = 𝑧 + 𝑦

𝜁 = 0

𝜁 = 0.2

𝜁 = 0.1

𝜁 = 0.7

𝜁 = 0.3

𝜁 = 0.4

𝑟 = 1

r

𝜕𝑟2𝑴

𝜕𝑟
= 0

𝜑 = tan1
2𝜁𝑟

1 − 𝑟2

𝑟 = 1

r0

90

180

1

𝑟2𝑴 =
𝑟2

1 − 𝑟2 2 + 2𝜁𝑟 2

 The maximum

take place at :

221

1

−
=critr

Relative amplitude variation  
for a M-D-S system, under 
harmonic motion of base

𝑍

𝑌0
= 𝑟2𝑴
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Characteristics of the factor     𝑍

𝑌0
= 𝑟2𝑴

1. All the curves begin at zero amplitude.

2. The amplitude near resonance (𝜔 = 𝜔𝑛) is markedly affected by 
damping. Thus if the machine is to be run near resonance, damping 
should be introduced purposefully to avoid dangerous amplitudes.

3. At very high speeds (𝜔 large, 𝑟 → ∞),
𝑀𝑋

𝑚𝑒
is almost unity, and the effect of damping is negligible.

4. The maximum of 𝑟2𝑴 occurs when 𝑟𝑐𝑟𝑖𝑡 =
1

1−2𝜁2
, valid for values 0 < 𝜁 < 1/ 2

5. The maximum value of 𝑟2𝑴 =
1

2𝜁 1−𝜁2
, which occurs at 𝑟𝑐𝑟𝑖𝑡

6. For values 𝜁 > 1/ 2 the graph of 𝑟2𝑴 does not attain a maximum, its value grows from 0 to 1 when 𝑟 →
∞.

7. The transmitted force 

𝑟2𝑴 =
𝑟2

1 − 𝑟2 2 + 2𝜁𝑟 2



Prof. Carmen Muller-Karger, PhD
Figures and content adapted from  Textbook: 

Singiresu S. Rao.  Mechanical Vibration, Pearson sixth editionMechanical Vibrations

CASES TO STUDY:

𝐹 𝑡 = 𝐹𝑜 cosΩ 𝑡

T

2
=

t

T

Case 1: Harmonic force Case 2: Moving base

x measure

from EP

y

Absolute response: 

𝒙(𝒕)

Force Transmitted to the base: 

Absolute response: 

Force Transmitted to the base: 

𝑭𝑻 𝒕 = 𝒄 ሶ𝒙 + 𝒌𝒙

z(𝒕) = 𝒙 − 𝒚

Relative Response: 

𝒙(𝒕)

𝑭𝑻 𝒕 = 𝒄 ሶ𝒙 + 𝒌𝒙

Case 3: Rotating unbalance

𝐹(𝑡) = 𝑚𝑒𝜔2sin(𝜔𝑡)

Absolute response: 

Force Transmitted to the base: 

𝑥(𝑡)

𝑭𝑻 𝒕 = 𝒄 ሶ𝒙 + 𝒌𝒙

𝑦 𝑡 = 𝑌𝑜 sinΩ 𝑡
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Response of a Damped System Under rotating 
unbalance

Forces in vertical direction: Governing equation: 

x 𝑡 =
𝑚𝑒𝜔2

𝑘

1

1−𝑟2 2+ 2𝜁𝑟 2
sin 𝜔𝑡 − 𝜑1

FBD

The amplitude or maximum value can be expressed as

𝑐 ሶ𝑥 + 𝑘𝑥 − 𝑚𝑒𝜔2sin(𝜔𝑡) = −𝑀 ሷ𝑥

𝜑1 = tan−1
2𝜁𝑟

1 − 𝑟2

x measure

from EP

In steady-state the angular acceleration of the

unbalance masses is zero

𝑀 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝑚𝑒𝜔2sin(𝜔𝑡)

𝐹(𝑡) = 𝑚𝑒𝜔2sin(𝜔𝑡)
The steady state solution

Dividing and multiplying by the mass M:

𝑥(𝑡) =
𝑚𝑒𝜔2𝑀

𝑀𝑘

1

1−𝑟2 2+ 2𝜁𝑟 2
sin 𝜔𝑡 − 𝜑1

𝑋 =
𝑚𝑒

𝑀

𝑟2

1 − 𝑟2 2 + 2𝜁𝑟 2
=
𝑚𝑒

𝑀
𝑟2𝑴
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Response of a Damped System Under rotating 
unbalance

FBD

x measure

from EP

In steady-state the angular acceleration of the

unbalance masses is zero

𝜁 = 0

𝜁 = 0.2

𝜁 = 0.1

𝜁 = 0.7

𝜁 = 0.3

𝜁 = 0.4

𝑟 = 1

r

𝑟 = 1

r0

90

180

1

𝑟2𝑴 =
𝑟2

1 − 𝑟2 2 + 2𝜁𝑟 2

221

1

−
=critr

𝑀𝑋

𝑚𝑒
= 𝑟2𝑴

𝜑1 = tan−1
2𝜁𝑟

1 − 𝑟2
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Characteristics of the factor     𝑍

𝑌0
= 𝑟2𝑴 ;

𝑀𝑋

𝑚𝑒
= 𝑟2𝑴

1. All the curves begin at zero amplitude.

2. The amplitude near resonance (𝜔 = 𝜔𝑛) is markedly affected by 
damping. Thus if the machine is to be run near resonance, damping 
should be introduced purposefully to avoid dangerous amplitudes.

3. At very high speeds (𝜔 large, 𝑟 → ∞),
𝑀𝑋

𝑚𝑒
is almost unity, and the effect of damping is negligible.

4. The maximum of 𝑟2𝑴 occurs when 𝑟𝑐𝑟𝑖𝑡 =
1

1−2𝜁2
, valid for values 0 < 𝜁 < 1/ 2

5. The maximum value of 𝑟2𝑴 =
1

2𝜁 1−𝜁2
, which occurs at 𝑟𝑐𝑟𝑖𝑡

6. For values 𝜁 > 1/ 2 the graph of 𝑟2𝑴 does not attain a maximum, its value grows from 0 to 1 
when 𝑟 → ∞.

𝑟2𝑴 =
𝑟2

1 − 𝑟2 2 + 2𝜁𝑟 2
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Transmitted force of Damped System Under rotating 
unbalance

FBD

x measure

from EP

𝐹𝑇 𝑡 = 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝑐
𝑚𝑒

𝑀
𝑟2𝑴cos 𝜔𝑡 − 𝜑1 + 𝑘

𝑚𝑒

𝑀
𝑟2𝑴sin 𝜔𝑡 − 𝜑1

𝐹𝑇 𝑡 = 𝑐 ሶ𝑥 + 𝑘𝑥

𝜑 = tan−1
2𝜁𝑟3

1 + 4𝜁2 − 1 𝑟2
𝑥(𝑡) =

𝑚𝑒

𝑀

𝑟2

1−𝑟2 2+ 2𝜁𝑟 2
sin 𝜔𝑡 − 𝜑

𝐹𝑇 𝑡 =
𝑚𝑒

𝑀
𝑟2𝑴 𝑐𝜔 2 + 𝑘 2 sin 𝜔𝑡 − 𝜑1 − 𝛼

𝐹𝑇 𝑡 =
𝑚𝑒𝑘

𝑀
𝑟2𝑴 2𝜁𝑟 2 + 1 sin 𝜔𝑡 − 𝜑1 − 𝛼

𝐹𝑇 𝑡 = 𝑚𝑒𝜔𝑛
2𝑟2

2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2
sin 𝜔𝑡 − 𝜑1 − 𝛼

The amplitude or maximum value of the force transmitted to 
the base is called again Force transmissibility

𝐹𝑇
𝑚𝑒𝜔𝑛

2
= 𝑟2

2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2
= 𝑟2𝑇𝑑𝑐 ሶ𝑥

𝑘

2
𝑥

𝑘

2
𝑥
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Force transmitted viscous damped system under 
rotating unbalance Force transmissibility

For M-D-S system, under 
rotating unbalance

𝜁 = 0

𝜁 = 0.2

𝜁 = 0.1

𝜁 = 0.7

𝜁 = 0.3 𝜁 = 0.4

𝑟 = 1

r

𝑟 = 2

1

𝑟2𝑇𝑑 = 𝑟2
2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2

FBD

x measure

from EP

𝑥(𝑡) =
𝑚𝑒

𝑀

𝑟2

1−𝑟2 2+ 2𝜁𝑟 2
sin 𝜔𝑡 − 𝜑

𝐹𝑇
𝑚𝑒𝜔𝑛

2
= 𝑟2𝑇𝑑

𝐹𝑇 𝑡 = 𝑐 ሶ𝑥 + 𝑘𝑥

𝑐 ሶ𝑥
𝑘

2
𝑥

𝑘

2
𝑥
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0

90

180

𝜑1

1

r

Formula Sheet for
Harmonilly excited

Vibration
Steady state response 

me

ke
ce

x …  
Measure
de SEP

For a simple harmonic force: 

𝑟 =
Ω

𝜔𝑛

Non-dimentional
parameters

Rotating unbalance me

𝑴 =
1

1 − 𝑟2 2 + 2𝜁𝑟 2
𝑻𝒅 =

2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2

Magnification
factor 

Transmissibility 
Coefficient 

)(tF

𝐹 𝑡 = 𝐹𝑜 cos Ω 𝑡 𝑥𝑝(𝑡) =
𝐹0
𝑘𝑒

𝑴cos Ω𝑡 − 𝜑1

𝜑1 = tan−1
2𝜁𝑟

1 − 𝑟2

𝑚𝑒 ሷ𝑥 + 𝑐𝑒 ሶ𝑥 + 𝑘𝑒𝑥 = 𝐹 𝑡

Absolute response: 

Force transmitted to the base 

𝐹𝑇 𝑡 = 𝐹0𝑻𝒅 cos Ω𝑡 − 𝜑1 − 𝛼

𝑥𝑝(𝑡) =
𝑚𝑒

𝑀
𝒓𝟐𝑴sin Ω𝑡 − 𝜑1𝐹(𝑡) = 𝑚𝑒Ω2 sinΩ 𝑡 𝐹𝑇 𝑡 = 𝑚𝑒𝜔𝑛

2𝒓𝟐𝑻𝒅 sin Ω𝑡 − 𝜑1 − 𝛼 ,

𝐹 𝑡 = 𝑐𝑌𝑜ΩcosΩ 𝑡 + 𝑘𝑌𝑜 sinΩ 𝑡 𝑋𝑝 = 𝑌𝑜𝑻𝒅 sin Ω𝑡 − 𝜑1 − 𝛼

Response: 

Relative Response: 

𝑦𝑝(𝑡) = 𝑌𝑜𝒓
𝟐𝑴sin Ω𝑡 − 𝜑1

𝑴
𝑟2𝑴 𝑟2𝑻𝒅

r r r r
1 1 1 1

𝑟𝑐𝑟𝑖𝑡 =
1

1 − 2𝜁2𝑟𝑐𝑟𝑖𝑡 = 1 − 2𝜁2

𝑥(𝑡) = 𝑥ℎ(𝑡) + 𝑥𝑝(𝑡)

Steady-state response

𝑥(𝑡) = 𝑥𝑝(𝑡)

Harmonic Motion of the Base 

𝛼 = tan−1 2𝜁𝑟

𝑻𝒅

𝜑 = tan−1
2𝜁𝑟3

1 + 4𝜁2 − 1 𝑟2

𝐹𝑇 𝑡 = 𝑘𝑌𝑜𝒓
𝟐𝑻𝒅 cos Ω𝑡 − 𝜑

Force transmitted to the base 

Response: Force transmitted to the base 

𝑴𝑐𝑟𝑖𝑡 =
1

2𝜁 1 − 𝜁2
𝑟2𝑴𝑐𝑟𝑖𝑡 =

1

2𝜁 1 − 𝜁2
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Formula Sheet for
Harmonilly excited

Vibration
Total response 

me

ke
ce

x …  
Measure
de SEP

𝑟 =
Ω

𝜔𝑛

Non-dimentional
parameters

𝑴 =
1

1 − 𝑟2 2 + 2𝜁𝑟 2

Magnification
factor 

)(tF

𝑚𝑒 ሷ𝑥 + 𝑐𝑒 ሶ𝑥 + 𝑘𝑒𝑥 = 𝐹 𝑡

𝑥(𝑡) = 𝑥ℎ(𝑡) + 𝑥𝑝(𝑡)

Steady-state response

𝑥(𝑡) = 𝑥𝑝(𝑡)

𝑚𝑒 ሷ𝑥 + 𝑐𝑒 ሶ𝑥 + 𝑘𝑒𝑥 = 𝐹(𝑡)

ሷ𝑥 + 2𝜁𝜔𝑛 ሶ𝑥 + 𝜔𝑛
2𝑥 = 𝐹(𝑡)/𝑚 𝑥(𝑡) = 𝑥ℎ(𝑡) + 𝑥𝑝(𝑡)

Governing

equation
Response : 

𝐹 𝑡 = 𝐹𝑜 cosΩ 𝑡Force : 

Underdamped

systems 0 < 𝜁 <1 𝑥(𝑡) = 𝑋0𝑒
−𝜁𝜔𝑛𝑡 cos 𝜔 𝑑𝑡 − 𝜑0 + 𝑋 cos Ω𝑡 − 𝜑1

𝑥0 = 𝑋0cos𝜑0 + Xcos𝜑1Initial conditions

𝑥0, 𝑣0

𝑋0 = −𝑋0cos𝜑0
2 +

1

𝜔𝑑
2
𝜁𝜔𝑛𝑥0 + 𝑣0 − 𝜁𝜔𝑛𝑋𝑐𝑜𝑠𝜑1 − ΩXsin𝜑1

2

1
2

𝑣0 = −𝜁𝜔𝑛𝑋0cos𝜑0 + 𝜔𝑑𝑋0sin𝜑0 + ΩXsin𝜑1 𝜑0 = 𝑡𝑎𝑛−1
𝜁𝜔𝑛𝑥0 + 𝑣0 − 𝜁𝜔𝑛Xcos𝜑1 − ΩXsin𝜑1

𝜔𝑑 𝑥0 − Xcos𝜑1

𝑥(𝑡) = 𝑥ℎ(𝑡) + 𝑥𝑝(𝑡)𝑥𝑝(𝑡)𝑥ℎ(𝑡)

Steady State

response : 
Transient

response : 

𝛿𝑠𝑡 =
𝐹𝑜

𝑘

Static deflection

𝑋 =
𝐹0
𝑘𝑒

𝑴

𝑥𝑝 𝑡 = 𝑋 cos Ω𝑡 − 𝜑1

𝜑1 = tan−1
2𝜁𝑟

1 − 𝑟2
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Graphs:
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𝜑1 = tan1
2𝜁𝑟

1 − 𝑟2

r

r r

r

𝑴 =
1

1 − 𝑟2 2 + 2𝜁𝑟 2

𝑟2𝑴 =
𝑟2

1 − 𝑟2 2 + 2𝜁𝑟 2

𝑻𝒅 =
2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2

𝑟2𝑻𝒅 =
𝑟2 2𝜁𝑟 2 + 1

1 − 𝑟2 2 + 2𝜁𝑟 2

Magnification
factor (M)

Transmissibility 
Coefficient (𝑻𝒅)
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Response of a Damped System composited forces

𝐹(𝑡) = 𝐹1 cosΩ1 𝑡 + 𝐹2 cosΩ2 𝑡 + 𝐹3 cosΩ3 𝑡

𝑥𝑝(𝑡) =
𝐹1
𝑘
𝑴1 cos(Ω1𝑡 − 𝜑1) +

𝐹2
𝑘
𝑴2 cos(Ω2𝑡 − 𝜑2) +

𝐹3
𝑘
𝑴3 cos(Ω3𝑡 − 𝜑3)

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝐹 𝑡

𝑴𝑖 =
1

1 − 𝑟𝑖
2 2 + 2𝜁𝑟𝑖

2
,

2

1

1

2
tan

i

i
i

r

r

−
=




When the system is linear for small displacements, the steady state solution becomes the sumation of all

the individual responses to each force. 

tF 11 cos tF 22 cos tF 33 cos )(tF
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Governing equation: 
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Quality factor (Q) and Bandwith

• The steady-state response

X

𝐹 𝑡 = 𝐹𝑜 cosΩ 𝑡

𝑥𝑝 𝑡 = 𝑋𝑃 cos Ω𝑡 − 𝜑

𝑴 =
1

1 − 𝑟2 2 + 2𝜁𝑟 2

𝜑 = tan1
2𝜁𝑟

1 − 𝑟2

𝑄 =
𝑋

𝛿𝑠𝑡 𝑟𝑐𝑟𝑖𝑡

= 𝑴 𝑚𝑎𝑥

𝑋𝑃= = 𝛿𝑠𝑡𝑴

𝛿𝑠𝑡 =
𝐹0
𝑘

• The value of the amplitud ratio at resonance (r=1) is
also called Q factor or Quality factor

• For small values of damping (ζ<0.05) we can 
take 𝑟𝑐𝑟𝑖𝑡 ≅ 1

𝑋

𝛿𝑠𝑡 𝑚𝑎𝑥

≅
𝑋

𝛿𝑠𝑡 Ω=𝜔𝑛

= 𝑴 𝑟=1 =
1

2ζ
= 𝑄

𝑄
𝑴 =

𝑋

𝛿𝑠𝑡

𝜁 <0.05

1

2ζ

r=1
r
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Quality factor (Q) and Bandwith

• The difference between the frequencies associated with the 
half-power points R1 and R2 is called the bandwidth (∆𝜴), and 
can be calculated as:

• The points R1 and R2, called half-power points,  are set 

where the amplification factor falls to
𝑄

2
,  this is because 

the power absorbed (∆𝑊 = 𝜋𝑐Ω𝑋2)  by the damper, 
responding harmonically at a given frequency, is 
proportional to the square of the amplitude. They can be 
approximated 

𝑅1
2 = 1 − 2ζ 𝑅2

2 = 1 + 2ζ

∆Ω ≅ Ω2 − Ω1 ≅ 2ζ𝜔𝑛

• The quality factor Q can be used for estimating the equivalent viscous 
damping in a mechanical system, can also be calculated using the following 
expression: 

𝑄
𝑴 =

𝑋

𝛿𝑠𝑡

𝜁 <0.05

1

2ζ

r=1
r

𝑄

2

𝑅1 𝑅2

bandwidth (∆𝜴)

𝑄 ≅
1

2ζ
≅

𝜔𝑛

Ω2 − Ω1
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Mechanical Vibrations
Measurement instruments

Prof. Carmen Muller-Karger, PhD

Florida International University 

Figures and content adapted from 

Textbook: Singiresu S. Rao.  Mechanical Vibration, Pearson sixth edition.

Chapter 10, section 10.3: Vibration Pickups
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Importance of measuring vibration

• Measurement of vibration ensures adequate safety margins.

• Selecting the operational speeds of nearby machinery to avoid resonant 
conditions.

• Mechanical models may not represent actual values due to assumptions.

• Frequencies of vibration and the forces are necessary in the design and 
operation of active vibration-isolation systems

• Identification of the characteristics of a system in terms of its mass, stiffness, 
and damping.

• Information about ground vibrations due to earthquakes, fluctuating wind 
velocities on structures, random variation of ocean waves, and road surface 
roughness are important in the design of structures, machines, oil platforms, 
and vehicle suspension systems.
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Vibration Measurement Scheme

Vibrating 
Machine or 

structure

Vibration 
transducer 
or pickup

Signal 
Conversion 
instrument

Display unit, 
recorder, or 
computer 

Data 
analysis

The motion (or dynamic force) of the vibrating body is converted into an electrical 

signal by the vibration transducer or pickup. 

Transducer transforms changes in mechanical quantities (such as displacement, 

velocity, acceleration, or force) into changes in electrical quantities (such as voltage or 

current). 

A signal conversion instrument is used to amplify the signal to the required value. 

Usually the output signal (voltage or current) of a transducer is too small to be 

recorded directly. 

The output from the signal conversion instrument can be 

presented on a display unit for visual inspection, or recorded by a 

recording unit, or stored in a computer for later use. 

The data can then be analyzed to determine the desired 

vibration characteristics of the machine or structure.
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Vibration Pickups
• Are instruments to measure vibration 

commonly known as seismic instrument.

• They consists of a mass-spring-damper 
system mounted on the vibrating body.

• The vibratory motion is measured by 
finding the displacement of the mass 
relative to the base.

• The bottom ends of the spring and the 
dashpot will have the same motion as the 
cage (to be measured).

• x denotes the vertical displacement of the 
suspended mass

k

c
X

y

y 𝑡 = 𝑌𝑜 sinΩ 𝑡

m

x measured

from EP

z = 𝑥 − 𝑦

Mg

𝑐 ሶ𝑥 − ሶ𝑦

𝑘 𝑥 − 𝑦

X

m

𝑐 ሶ𝑥 − ሶ𝑦 + 𝑘 𝑥 − 𝑦 = −𝑚 ሷ𝑥

Governing equation: 

FBD

Relative motion : 

𝑐 ሶ𝑧 + 𝑘 𝑧 = −𝑚( ሷ𝑧 + ሷ𝑦)

𝑚 ሷ𝑧 + 𝑐 ሶ𝑧 + 𝑘𝑧 = −𝑚( ሷ𝑦)
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Vibration Pickups

k

c
X

y

y 𝑡 = 𝑌𝑜 sinΩ 𝑡

m

x measured

from EP

z = 𝑥 − 𝑦

Mg

𝑐 ሶ𝑥 − ሶ𝑦

𝑘 𝑥 − 𝑦

X

m

𝑐 ሶ𝑥 − ሶ𝑦 + 𝑘 𝑥 − 𝑦 = −𝑚 ሷ𝑥

Governing equation: 

FBD

Relative motion : 

𝑐 ሶ𝑧 + 𝑘 𝑧 = −𝑚( ሷ𝑧 + ሷ𝑦)

𝑚 ሷ𝑧 + 𝑐 ሶ𝑧 + 𝑘𝑧 = −𝑚( ሷ𝑦)

Governing equation: 

𝑧 𝑡 = 𝑌𝑜
𝑟2

1 − 𝑟2 2 + 2𝜁𝑟 2
sin Ω𝑡 − 𝜑1

𝑍

𝑌0
=

𝑟2

1 − 𝑟2 2 + 2𝜁𝑟 2
= 𝑟2𝑴

The steady state solution

The amplitude or maximum value can be expressed as

𝑚 ሷ𝑧 + 𝑐 ሶ𝑧 + 𝑘𝑧 = 𝑚Ω2𝑌𝑜 sinΩ 𝑡

𝜑1 = tan−1
2𝜁𝑟

1 − 𝑟2

𝑧 𝑡 =
𝑚Ω2𝑌𝑜

𝑘

1

1 − 𝑟2 2 + 2𝜁𝑟 2
sin Ω𝑡 − 𝜑1

ሷ𝑦 = −𝑚Ω2𝑌𝑜 sinΩ 𝑡
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𝑧(𝑡) = 𝑌𝑜𝑟
2𝚱sin Ω𝑡 − 𝜑

𝜑 = tan1
2𝜁𝑟

1 − 𝑟2
1=r

r

1

𝑟2𝑴
𝑟2

1 − 𝑟2 2 + 2𝜁𝑟 2

 ACELEROMETERS measure the 

acceleration of a vibrating body. The 

natural frequency of the instrument is 

much higher than the frequency to 

measure

𝑴 ⇒ 1

𝑍 = 𝑌𝑜𝑟
2 =

1

𝜔𝑛
2 𝑌𝑜Ω

2

𝑟 ⇒ 0 𝜔𝑛 >>> Ω

 VIBROMETERS, measure the 

displacement of a vibrating body. The 

natural frequency of the instrument is 

much less than the frequency to 

measure.

𝑟2𝑴⇒ 1

𝑍 = 𝑌𝑜

𝑟 ⇒ ∞ 𝜔𝑛 <<< Ω

Vibration Pickups

n

𝑍

𝑌0
=

𝑟2

1 − 𝑟2 2 + 2𝜁𝑟 2
= 𝑟2𝑴

𝑍

𝑌0

k

c
X

y

y 𝑡 = 𝑌𝑜 sinΩ 𝑡

m

x measured

from EP

The steady state solution

𝜔𝑛 <<< Ω
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𝑧(𝑡) = 𝑌𝑜𝑟
2𝚱sin Ω𝑡 − 𝜑

𝜑 = tan1
2𝜁𝑟

1 − 𝑟2

 Measures the displacement of a vibrating body.

 The frequency to measure is very large relative to the natural 

frequency of the instrument (at least r>3). 

 The relative displacement between the mass and the base is 

essentially the same as the displacement of the base for 𝑟 ⇒ ∞.

 To obtain a low natural frequency, them mass must be large and the 

spring a low stiffness, this result in a bulky instrument. 

 If the value of r is not sufficiently height the Z value measured is not 

equal to 𝑌𝑜, in which case you have to use the whole equation 𝑟2𝑴. 

 The phase lag can be seen to be equal to 180° for ζ=0. Thus the 

recorded displacement 𝑧(𝑡) lags behind the displacement being 

measured 𝑦 𝑡 by time t′= 𝜑 / Ω. This time lag is not important if the 

base displacement 𝑦 𝑡 consists of a single harmonic component.

𝑟2𝑴⇒ 1

𝑍 = 𝑌𝑜

𝑟 ⇒ ∞ 𝜔𝑛 <<< Ω

Vibrometers

𝑍

𝑌0
=

𝑟2

1 − 𝑟2 2 + 2𝜁𝑟 2
= 𝑟2𝑴

𝑟 = 1

r

1

𝑍

𝑌0

𝑟
k

c
X

y

y 𝑡 = 𝑌𝑜 sinΩ 𝑡

m

x measured

from EP

𝜑 = tan1
2𝜁𝑟

1 − 𝑟2

0

90

180

𝑟
𝑟 = 1
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𝑧(𝑡) = 𝑌𝑜𝑟
2𝚱sin Ω𝑡 − 𝜑

𝜑 = tan1
2𝜁𝑟

1 − 𝑟2

 It is use to measure vibration with much lower frequency than the natural 

frequency of the instrument.

 For small values of r, 0≤r≤0.60  and values of ζ between 0.65 and 0.7, 𝑴
lies between of 0.96 and 1.04. 

 Measure the acceleration of a vibrating body, except for the phase lag 𝜑. 

The time by which the record lags the acceleration is given by t′= 𝜑 / Ω. 

If the acceleration ሷ𝑦 consists of a single harmonic component, the time 

lag will not be of importance.

 Since r is small, the natural frequency of the instrument has to be large 

compared to the frequency of vibration to be measured. The mass needs 

to be small and the spring needs to have a large value of k (i.e., short 

spring), so the instrument will be small in size. Due to their small size and 

high sensitivity, accelerometers are preferred in vibration measurements.

Accelerometer

𝑍

𝑌0
=

𝑟2

1 − 𝑟2 2 + 2𝜁𝑟 2
= 𝑟2𝑴

𝜑 = tan1
2𝜁𝑟

1 − 𝑟2

0

90

180

𝑟
𝑟 = 1

k

c
X

y

y 𝑡 = 𝑌𝑜 sinΩ 𝑡

m

x measured

from EP

𝑴 ⇒ 1

𝑦𝑝 = 𝑍𝑜𝑟
2 =

1

𝜔𝑛
2 𝑍𝑜Ω

2

𝑟 ⇒ 0 𝜔𝑛 >>> Ω

𝑟 = 1

r

1

𝑍

𝑌0

𝑟

𝑴



Prof. Carmen Muller-Karger, PhD
Figures and content adapted from  Textbook: 

Singiresu S. Rao.  Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Vibration Exciters

• The vibration exciters or shakers can be used in several applications such as 
determination of the dynamic characteristics of machines and structures 
and fatigue testing of materials. The vibration exciters can be mechanical, 
electromagnetic, electrodynamic, or hydraulic type.




