Prof. Carmen Muller-Karger, PhD

Florida International University

Figures and content adapted from
Textbook: Singiresu S. Rao. Mechanical Vibration, Pearson sixth edition.
Chapter 3: Harmonically Excited Systems



Learning Objectives

* Find the responses of undamped and viscously damped single-degree-
of-freedom systems subjected to different types of harmonic force,
including base excitation and rotating unbalance.

* Distinguish between transient, steady-state, and total solutions.

* Understand the variations of magnification factor and phase angles with
the frequency of excitation and the phenomena of resonance and beats.

 Study the responses of a damped system to a simple harmonic force,
harmonic motion of the base and under a rotating unbalance, and the
force transmitted to the base in each case.

* |dentify self-excited problems and investigate their stability aspects.



Force Vibration g

A mechanical or structural system is said to undergo forced .
vibration whenever external energy is supplied to the system l _l
during vibration.

The applied force or displacement excitation may be
harmonic, nonharmonic but periodic, nonperiodic, or random
In nature.

The nonperiodic excitation may have a long or short duration.
The response of a dynamic system to suddenly applied
nonperiodic excitations is called transient response.

A harmonic, nonharmonic but periodic excitation will produce a
steady-state response as long as the excitation is applied.



Harmonic excitation

The response of a system to a harmonic excitation is also harmonic, and

with same frequency of excitation.

The vibration produced by an unbalanced rotating machine, the
oscillations of a bridge or a tall tower due to a steady wind, and the
vertical motion of an automobile on a sinusoidal road surface are

examples of harmonically excited vibration.
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Equation of motion [rEERE=Ew) & i T T

Since this equation is nonhomogeneous, its general solution x(t) is m

given by the sum of the homogeneous solution, x5 (t), and the m _l

particular solution, x,(t) l ) l +x
+x F(t)

x(t) = xp(t) + xp(t)

F(t)  With x measure

(a) from static (b) Free-body diagram

The particular solution will have the same form as the external function and can be equ.”fb"‘ulf;
calculated following : position (EP)
%, (t) = AF(t) + BF(t) + CF(t) + -+ CF™(¢) -

The homogeneous solution represent the
free vibration of the system, that dies out
with time under each of the three possible xp(t) = ==
conditions of damping (underdamping,
critical damping, and overdamping) and
under all possible initial conditions.

=

{ =0,x(t) = Xo cos(w ,t — )
{ < 1,x(t) = Xge ¢t cos(w 4t — ¢)
£ = 1,x(t) = Cyemont + Cyreont

{>1,x(t) = Cle(—fwn+wn\/62—1)t n Cze(_(w"_w" /(—2—1)t



Transient and steady-state solution

If damping is present, It can be seen that x, (t) dies out and
x(t) becomes x,,(t) after some time.

The part of the motion that dies out due to damping (the
free-vibration part) is called transient.

The rate at which the transient motion decays depends on
the values of the system parameters k, ¢, and m.

To do the analysis of harmonic motion we ignore the
transient motion and derive only the particular solution,
which represents the steady-state response, under harmonic
forcing functions.
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in undamped motion there is no transient.  All of it is steady state.


Solution to a constant force e P

The particular solution will have the same form as the function and can be
calculated following :

F(t) =F, mx + cx + kx = F(t)

x,(t) = AF(t) + BF (t) + CF(t) + - + CF™(t)

—
+4
-

F(1)
x,(t) = AFy,  %,(t) =%, (£) =0 } mO0 + c0 + kAF, = F, x(t)
1 F,
. o A== M) =—
e total solution will be k k e=S@nt[C, cosw 4t + Cysinw 4t]
1 d 2 d
Fo
x(t) = xp(t) + xp(t) = A + xp(t) ||
AN
=2 AW PN
For a undamped system B =7 . J V V VA
F, |
x(t) = x,(t) + xp(t) = ?O + e‘g‘”nt[Cl cosw 4t + Cysinw dt] 0 | 4t
| Fo )
with Ci=x9— ? # Transient response ‘IA Steady-state response .
x(0) = x, vy + (oo (xo __o) 1 ]
%(0) = vy C, = u
Wq
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Solution to a harmonic force (mass-spring system)

Equation of motion: ~ m¥ + kx = F(t)

The total solutionis: x(t) = x,(t) + xp ()

Where: x,(t) = C; cos(w,t) + C, sin(w,t) xp(t) = AcosQt + Bsin(t

The constants C; and C, on the homogeneous solution depend on the
initial conditions, and have to be calculated for the whole equation.

To find A and B, derivate the particular
solution and substitute in the equation

of motion

Before we find the final solution lets
introduce the following concepts:

xy(t) = —AQsinQt + BQcosQt
X,(t) = —AQ% cosQt — BQ*sin Ot

Q
r — — [Frequency

wn Ratio

5 - Fo Static
st — | deflection

F(t) = F,cosQt l
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don't use the same symbol to mean different things.  Students will make mistakes.
call it Xo
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Solution to a harmonic force (vass-spring system) E

Equation of motion: ~ m¥ + kx = F(t)

The particular solution is: Xp(t) = AcosQt+ BsinQt F(E) = 7, cos bt l "
= COS
and the derivatives: Xp(t) = —AQsinQ + BQcosQt
X,(t) = —AQ% cosQt — BQ*sin Ot R /\ /\ /\ F([)
m(—AQ% cosQt —BOQ?sinQt) + k(AcosQt + BsinQt) = Fycos Qt [ \/ \/ \/ \
(—AmQ? + Ak) cosQt + (—BmQ? + kB) sinQt = Focos Qt -7
(—AmQ? + Ak) = Fo AT 1 In term of natural 4 = Fo 1 5., 1
, °k —mQ2 frequency, frequency k 0 \?2 1 —1r2
(—BmQ? +kB) =0 B =0 ratio r and static 1= (w_n)
deflection
The 1 X 1 Magnification
particular Xp(t) = Ost Tz cos Lt M=-—=7—73 factor, or
solution: ot amplitud ratio
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Solution to a harmonic force

The total solution is: x(t) = xp(t) + x,(t)

0]
1
Then: x(t) = Cq cos(wyt) + C, sin(w,t) + 6st >cos )t F(E) = F, cost l
The constants C; and C, on the homogeneous solution depend on the h /\ /\ /\ F‘('[)
Initial conditions, and have to be calculated for the whole equation.
When applying initial conditions x, and v [ \/ \/ . \
pplying 0 0 RN Q:z?ﬁ
F, 1 Vo
WX T T TR T 0T Ty ,
E() = F, cos Q¢ x(t) = xp(t) + &5 5cos (1t

The total solution is:

x(t)=(xo—5stﬁ>cos(wnt)+:)—osin(wnt) \j\/ w Y/ \W ﬁt
+ 8¢ ! ——cosQt :1; S;; -2

St —

Transient e Steady-state
response response

A
A
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what you drew here cannot be.  This is only true for a damped system.  In this case where there is no damping, there is no transient response.  The results will always be steady state.


Magnification factor (M) =5 =1

Also called amplification factor or amplitude ratio

Casel:r<1 M o
F(t) = F,cosQt

xp(t) = 6tM cosQt

oA
AU - /

ANNNNNNNY

F(t) =F,cosQt
Xp(t) = 65 M cosQt kg 1
O
Case2:r > 1 l m
F(t) = F,cosQt A

N/

N/ ,

VAR,

T

Response in phase
with excitation ,

Xp(t) = —85¢eM cos QO t = 8 M cos(Q2t — 180)

Response in out of
phase with excitation
by 180°




X 1

Magnification factor (M) ¥=5 =1== 07

L : , Xp(t) = 85t McosQt
Also called amplification factor or amplitude ratio

M Case3:r=1

1 1% 1
. x(t) = <x ) —) cos(wpt) + — cos(wpt) + 8 ———= cos Q. t
The amplitude X becomes R T wy " 112
infinite. This condition, for which

v, cosQt — cos(wy,t)
the forcing frequency is equal to x(8) = (xo) cos(wnt) + 7= cos(wnt) + st —

the natural frequency of the
system is called resonance. Since the last term of this equation takes an indefinite form
' for Q= w,,, we apply L'Hospital’s rule to evaluate the limit

1 of this term, and the response of the system at resonance
I _ O becomes . 5ot
0 3 = w, x(t) = (x,) cos(wy,t) + w—ocos(wnt) + = Sinw,t
[ n
x(t) r = w— =1 /\

The transient
response

|
\ |
avy v \ \\/ / \/ \ \\ increases

linearly with
time




Beating Phenomenon 8

Cased: 0 —w, =¢

Occurs when the forcing frequency is close to, but not exactly equal to, the natural frequency of 7
the system. In this kind of vibration, the amplitude builds up and then diminishes in a regular F(t) = E, cos .t l .
pattern

The total solution is : h /\ /\ /\ F(r)
x(t) = (/4— 1F0_/f2> cos(wy,t) +7w%cos(a)nt) + 1F0_/f2 cosQt [ \/ \_/ \/ \

T

If we have x, = v, = 0 E, /k
0 0 x(t) = (1 0_/7,.2) (cosQt — cos(wnt))

F,/m (= w, (4 w,
« Using a trigonometry identity, the response becomes: ~ x(t) = .2 —2 sin > t |sin t
n

— 02 2
e With: Fo/k — Fo/m
1-1r? w,?—0?
QO+ w, ~ 20

QA—w,=¢ x(t) = (%gg) <2 sin <(§) t) sin(Qt)>

wy? — 0% = (w,—0) (W, +0) = —2£0




Beating Phenomenon 8

Cased: 2 —w, = ¢

* When the forcing frequency () be slightly less (&) than the natural frequency, the response becomes: l

x(t) = (one/{n;) (2 sin ((%) t) sin(ﬂt)) o ;(r[)

F(t) = F,cosQt

* The frequency of beating is equal to ¢ = () — w,,.

* Itrepresent the time when the response magnitude atains a minimun or maximum.
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Formula Sheet for Natural Frequency o on Magnification
. . Frequency ratio factor
Force vibration kg
. k Q Fo — i — ;
Transient response o= [F r=— 85t = — a M= ==
e n ;

Undamped systems ¢ =0 s ‘f -
Governing +x
equation  mX + k.x = F(t) Force F(t) = F,cosQt F\(r)

: 1 t
¥+ wix = F(t)/m Response :  x(t) = x,(t) + xp(t) i
n ; 1
r =
x(t)
1 v, . 1 For no initial [\ /\ /\ /\ t
r=+1 x(t) =(x, — 6stﬁ cos(w,t) + —sin(w,t) + SStﬁcos(Qt — ) conditions the ' ' ' '
—r wWn r system vibrates at [ \«4 2 \/ \/ \
r<1l @=0° r>1 @=180° forcing frequency T
r=1 (©) = (x,) cos(wnt) + 22 cos(wyt) + 22 siney, t 0
= x(t) = (x,) cos(w, — cos(wy, sinwy,
Wy, Resonance N /\A/\ /\ /\
@ = 90° /\/2_71\ \/\/\] \/\/\
For no initial conditions the system vibrates _ x(t) -
following : Beating ﬂ /\ : 2? | j(%%\f) i (g) t
f ‘u I
. / '\\/“\ o ,1\ /\ “/H\/\ /\ ‘}
_ (Fo/m , € : e=0—w \/\f/\f'\Hrr‘\/\”-”\/i?\”ﬁ“\/”/ur-”mt
r=1 0= (5g) (2 () ne) o
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CASES TO STUDY:

Case 1: Harmonic force Case 2: Moving base Case 3: Rot?ting unbalance

/
[Tlec ' k
kg m 2 é ‘ 5
X measure
| from EP a) M w
1] N w
k :

g |:ﬂt 2 ew COS wl == l

| AL ,§7 \;‘\ B
F(t) = F,cosQt \\\\\\\\“\“},; W \/ \/ \/U \/ \/ _ew ’;’ Zsin w/ 5 ew’
y(t) =Y, sinQt
“ /\ /\ /\ t F(t) = mew*sin(wt)
[\/ T\/ \/2” \ Absolute response:
ksl o-T x(t)

Relative Response:
P Absolute response:

Absolute response: 2(t) = (x —y) x(t)
x(t)

Force Transmitted to the base:
Fr(t) = cx + kx

Force Transmitted to the base: Force Transmitted to the base:

Fr(t) = cx + kx Fr(t) = cx + kx
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this should not be shaded, as it denotes a fixed surface.


SOIUtiOn tO d ha rmoniC force (Mass-Damper=Spring System)

Equation of motion: mx + cx + kx = F(t)

The total solutionis:  x(t) = x,(t) + x5 (t)

Where: x,(t) = AcosQt+ BsinQt

To find A and B, derivate the particular
solution and substitute in the equation
of motion

m—

{ < 1,x(t) = Cre ¢nt cos(w 4t) + Cre~$@nt sin(w 4t)

xh(t) = - ( = 1,x(t) = Cle_wnt + Czte—wnt

{>1,x(t) = Cle(—fwn+wn\/(2—1)t n Cze(_(wn_wn /(—2—1)t

—

The constants C; and C, depend on the initial conditions,
and have to be calculated for the whole equation.

xp(t) = —AQsinQt + BQcosQt
X,(t) = —AQ% cos At — BQ*sinQt

The homogeneous solution represent
the free vibration of the system, that dies
out with time under each of the three
possible conditions of damping
(underdamping, critical damping, and
overdamping) and under all possible
initial conditions.



SOIUtiOn tO d ha rmOniC fOrce (Mass-Damper=Spring System) e e

The particular solution xp(t) = AcosQt + BsinQt
xp(t) = —AQsinQt + BQcosQt m
X, (t) = —AQ cosQt — BQ*sin Ot l _1
+x
substitute in the equation of motion mx + cx + kx = F(t) F(t) = F, cos .t

m(—AQ? cosQt — BQ?sinQt) + c(—AQsinQt + BQcosQt) + k(Acos Qt + BsinQt) = Fycos Q¢

(—AmQ? + BcQ + Ak) cos Q¢ + (—BmQ? — AcQ + kB) sinQ ¢t = FocosQt

(—AmQZ? + BeQ + Ak) = Fo ) A(k —mQ?) + BeQ = Fo ) _ Fo(k—mQ?) 5 Fo(cQ)
(—BmQ? — AcQ + kB) = 0 B(k —mQ?) = AcQ ~ (k—mQ2)2 + (c)? (k= mQ2)2 + (cO)?
In terms of
k ¢ 0 Fo  (1—-72) Fo 20r
w., = — ( == Y = — — =
tom 2Vkm @n ) 4= (1 —12)2 + (20r)? P=% (1 —72)%+ (2{r)?




SOIUtiOn tO d ha rmOniC fOrce (Mass-Damper=Spring System) e e

The particular solution  xp(t) = AcosQt + BsinQt = Xp cos(Qt — @)

Fo  (1-1%) Fo\®> (1-12)2 + (20r)? _1
A= _ (A pz—
k (1—12)? 4+ (20r)? ) Ko = VAT BT J< k ) [(1—72)%+ (2{r)?]? l o
F(t) = F,cosQt
_Fo 20r B 2T
. : (1 - TZ)Z " (2{1’)2 P 4 - 1= F(t) = F,cosQt
The amplitude of the solution Magnification factor \ /\ /\ /\
Vel
P Fo 1 M = X _ 1 |‘—L’
Pk -2 + @0 Ssc (L= 172 + (20r)2 «@ . Mcos<%> «
@ {_ 2 xp(t) = ?Mcos(ﬂt — @)
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same comment regarding delta st.  students will mix it up with static deflection


[ ] [ ] [ ] X
M =— Magnification factor
Maghnification factor (M) =g, Masnification focter
(Also called amplification factor or amplitude ratio) harmonic force

0

» Maximum take place at 1

oM —[2(1—r*)(=2r) +2(40%)r]
or  [(A—-rD2+ (222 [ ¢
_/

4r[-1+712+23*] =0

{=
N s oot

=01

» The critical frequency will be a little
bit less than the natural frequency:

1
rcrit=\/1_2(2 7‘=1M=2—(

chit

Terit =
Wn

Phase angle is 90 o
180°) ¢ =tan o3 |
M, =— for r=1, regarless F
Ccri
2¢y1-¢* the value of
maximum value of M damping ratio.
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remove this.  When zeta is .5, rcrit is .7071 a 30% decrease, which is not a little bit less.


Characteristics of the Magnification factor (m=2)

1. Foran undamped system ((=0),and M - o as r = 1 -
2.  Any amount of damping ((>0) reduces the magnification factor (M) for all

values of the forcing frequency.

3. Inthe degenerate case of a constant force (when r=0), the value of M = 1.
4. The reductionin M in the presence of damping is very significant at or near resonance.

5. The amplitude of forced vibration becomes smaller with increasing values of the forcing frequency
(ie., M>0as r —» o)

6. The maximum value of M occurs when 1.y = /1 — 2¢2, valid for values 0 < { < 1/+/2

: 1 :
7. The maximum value of M = e which occurs at 1,

8 Forr=1 M=i
2¢

9. Forvalues ¢ > 1/+/2 the graph of M monotonically decreases with increasing values of



Force transmitted to the base of a viscous damped

SyStem * The steady-state Fo _ ! 2
t) = — M cos(Qt — M = _ qr
) = cosa response wp(0) =5 Meos(r = ¢) Ja-mDz+ @iz e =t
WAWAWAWAWAWA
l\/ VUV | e The spring and the damper transmit force to the base:
m : Fo Fo . c . .
| Fr(t) =kx +cx = k?Mcos(Qt — @) — C?M.Q sin(Qt — @) = FeM [cos(ﬂt — @) — Eﬂsm(ﬂt — (p)]
. | X +x E _ K
g = ko,
SORIIIIISNS
* We can write this sum of cos and sin in a single cos function with a phase angle
F. (t) = cx+ kx
2{r)? +1
Fy(t) = F, V(&) cos(Qt — @, — a)
kx| | X V(A —12)2 + (2{r)2
)
2013
4 2r _ =@, +a=tan"?! < )
@, = tan 11_,,2 a =tan"1(2{r) $=¢ 1+ (472 —1D)r?




F, (t) = cx+kx

kx

.

Force transmitted to the base of a viscous damped

S Ste m _Fr ¢=0 Force transmissibility
y Ty = F, | / For M-D-S system with
o4 harmonic force
F(t) = F,cosQt - // ¢=0.
VAAAAAS \/ S (C DL
l-\/ VAVAVAVAY | 3\ N O IERCTOE

Lo The ratio of the amplitude
ké Ly P
S NNNNNNNNANNN T Fr \/ (2 4 r)2+1

d

"R V(1 =122+ (20r)?

_ 2013
CX‘ @ = tan 1 <1 m (4{2 — 1)7~2>
_ J@ir)z+1
Fr(t) = F, \/(1 S WO cos(Qt — @)




Characteristics of the transmissibility factor (T;)

1. Thevalue of T, isunity at r = 0 and close to unity for small
values of r.

2. For an undamped system ((=0), T; ->°° at resonance (r=1).

3. Thevalue of T, isless than unity (T, <1) for values of r > V2 (for any amount of damping 7).

4. The value of Ty is unity for all values of Zat r = /2.

5. Forr < /2, smaller damping ratios lead to larger values of T; On the other hand, for r >
V2, smaller values of damping ratio lead to smaller values of T,.

6. The transmissibility factor, T, attains a maximum for 0<{<1 at the frequency ratio r = r;,, given
by

= 2—1([~/1 + 872 — 1]2



CASES TO STUDY:

Case 1: Harmonic force Case 2: Moving base Case 3: Rot?ting unbalance

/
[Tlec ' k
kg m 2 é ‘ 5
X measure
| from EP a) M w
1] N w
k :

g |:ﬂt 2 ew COS wl == l

: DA AAS _ B
FOO =‘|'FO st * \\\\\\\\\\\\\*l W \/ \/ \/\/ \/ \/ _/}w/ 'g o wz/(\_g:')
y(t) =Y, sinQt
“ /\ /\ /\ t F(t) = mew*sin(wt)
[\/ T\/ \/2” \ Absolute response:
b—l o7 x(t)

Relative Response:
P Absolute response:

Absolute response: 2(t) = (x —y) x(t)
x(t)

Force Transmitted to the base:
Fr(t) = cx + kx

Force Transmitted to the base: Force Transmitted to the base:

Fr(t) = cx + kx Fr(t) = cx + kx



Response of a Damped System Under the Harmonic
Motion of the Base

Forces in vertical direction:

" X measure
from EP cx—vy)+k(x—y)=—-mx

Ré =k | y(t) =Y,sinQt
\\\\\\\\\\\\—\Tr WW\/\A/ y(t) — YOQ cos Ot

y(t) =Y,sinQt

FBD Governing equation: M% 4 cx + kx = cy + ky

mg

MX + cx + kx =cY,QcosQt+ kY,sin()t

v

Mx + cx + kx = [YO\/(CQ)Z + (k)z] cos(Qt — ¢1)
KG—y)  cGi—9) 2T
F(t) = Y,4/(cQ)? + (k)2 cos(Qt — ¢;) @, =tan"! T2




Response of a Damped System Under the Harmonic
Motion of the Base

Governing equation:  M¥ + cx + kx = F(t)
" X measure 2¢r
_1 from EP F(t) = Yo\/(CQ)Z + (k)? cos(Qt — 1) @1 =tan"’ 1 2
+x -
ké . ' : :
= The particular solution
T WW\/\/\/ Fo
v | xp(t) = —M cos(Qt — @1 — a)
y(t) =Y,sinQt k
Y/ (cQ)? + (k)2 1
FBD %, (£) = o (2 + () cos(Qt — @, — ) a = tan™'(2{r)
mg k V(1 —72)2 +(2(r)?
v
m (2{7.)2 +1 2 7"3
| Xp(t) =Y, \/ cos(Qt — @) @ =tan™" ( (2 2)
[ [ Y VA =712)2 + (2¢r)2 14 (4¢2 - Dr

k(x—y) c(x-y)
The ratio of the amplitude of the response to that of the base motion y(t), is called the
displacement transmissibility.



Response of a Damped System Under the Harmonic
Motion of the Base

*é Ly

IS = = T

y

" X measure
from EP

WA

y(t) =Y,sinQt
The ratio of the amplitude

_— Xy J2ir)Z +1
Y V(A =12)2 + (20r)2
~ 2013
¢ =tan™ <1 + (402 — 1)r2>
B J@i2z+1
x,(0) =Y, TGy rany cos(Qt — @)

Displacement transmissibility.
For M-D-S system, under
harmonic motion of base

X

A Td = _p (=0
Yo e /
W, ¢=01 . J@mr? +1
\ CJaA=7+ @y




Force transmitted to the moving base of a viscous

2{r)2 +1
damped system . Jewrer o
. V(1 —12)2 + (20r)?
" X measure 22 + 1
_1 from EP Xp(t) = —Q%Y, v cos(Qt — @)
8 V(1 =12)2 + (20r)?
T V(@) +1
Y r)e +
ANNNNNAN \\\\—\Tr W/\/\/\/ FT(t) — _mjc‘p — mQZYO S > - COS(.Qt i (,0)
"y =Y, sinQt V(@ =722+ (20r)
FBD
2{r)2 +1
‘ | . Fr(t) = kY,r? V&) cos(Qt — ¢)
k(X—Y) C(x_Y) \/(1_7-2)2 +(2(7‘)2
NN The amplitude or maximum value of the force transmitted to the base is called Force
Fr(t) = c(k — ) + k(x — y) transmissibility , and is in phase with the motion of the mass x(t)
. 3
Fr(t) = —mX Fr_ . @241 @ =tan! ( - )

kY, r JA =712)2 + (27r)?




Force transmitted to the moving base of a viscous

damped system

" X measure
from EP

+x
Ré e y(t) =Y,sinQt

y

IS = = T

v

Fr(t) =c(x—y) +k(x—y)
k(x—vy) c(x —7v)
Fr(t) = —mk

AAANNNNNNNNN

Fr_ . @2?+1
kYo JA —72)2 + (20r)?

Force transmissibility
For M-D-S system, under
harmonic motion of base

N ﬂ = 12T, 127, — 2 J2r2 +1
kY, : JA =17+ (201)?




Response of a Damped System Under the Harmonic
Motion of the Base (relative motion z)

Forces in vertical direction:

" measured
_1 1)‘(rom EI;J cx—y)+k(x—y)=—mi
8 L 7 e(2) + k(2) = —m(Z + )

\\\\\\“\“@r N\/W\/\A/ mz+ cz + kz = —m(y)

y(t) =Y,sinQt

FBD
- Governing equation:  mz + cz + kz = —m(y)

v with:  (t) = —0Q2%Y,sinQt

m
‘[ ‘[ | mz + cz + kz = mQ?Y, sinQt

+Xx

o mzZ+czZ+ kz = F(t)
k(x—y) c(x—y)

z=(x—y)
x=(z+7y)

F(t) = mQ?Y,sinQt



Response of a Damped System Under the Harmonic
Motion of the Base (relative motion z)

Governing equation: ; ; _
m _lxmeasured g €q mzZ +cz + kz = F(t)
fromEP F(t) = mQ2Y, sinQ t

Ré == The steady state solution
< = —T—y AT F
by WA 0= ot o

y(t) =Y,sinQt k
FBD 02y )
m 0 .
me z(t) = sin(Qt — ¢,)
ko JO =757 + (20r)2 '
v
L T‘Z 2(
| z(t) =Y, sin(Qt — ¢4) 1 r
‘[ ‘[ A 0 \/(1 —12)2 4 (20r)? 1 @, = tan 1,2
k(x—y) c(i—y) The amplitude or maximum value can be expressed as
Z r?

z=(x—1y) 7= — 2=7‘2M
x=(z+y) 0 \/(1—7‘ )%+ (24r)




Response of a Damped System Under the Harmonic
Motion of the Base (relative motion z)

Relative amplitude variation

m « measure fora M-P-S syftem, under
from EP harmonic motion of base
. é +x
[

y
NN VRV YR VRYAVERY »  The maximum
v take place at :

y(t) =Y,sinQt

1,.2

"= JA =122+ (2(r)?

FBD
or’mM B

or

mg

Y 1 1

m r. =
[ [ | crit 1_242 \ =07 r

+Xx

k(x—y) c(x—yp) 180 |
(v 20r 90
Z = \X —
(x—) @ = tan! T2 0 r .
x=(z+y) i




Characteristics of the factor (Z=rm )

Yo

1. All the curves begin at zero amplitude.

2. The amplitude near resonance (w = w,,) is markedly affected by
damping. Thus if the machine is to be run near resonance, damping
should be introduced purposefully to avoid dangerous amplitudes.

3. Atvery high speeds (w large, r — 0), % is almost unity, and the effect of damping is negligible.

: 2 1 .

4. The maximum of r“M occurs when 7.,.;; = T valid for values 0 < ¢ < 1/4/2

5. The maximum value of 7*M = 2{\/%, which occurs at 7.,

6.  Forvalues ¢ > 1/+/2 the graph of r2M does not attain a maximum, its value grows from 0 to 1 when r —
00,

7. The transmitted force



CASES TO STUDY:

Case 1: Harmonic force Case 2: Moving base Case 3: Rotzlzlting unbalance

/
[Tlec ' k
kg m 2 é ‘ 5
X measure
| from EP a) M w
1] N w
k :

g |:ﬂt 2 ew COS wl == l

: DA AAS _ B
FOO =‘|'FO st * \\\\\\\\\\\\\*l W \/ \/ \/\/ \/ \/ _/}w/ 'g o wz/(\_g:')
y(t) =Y, sinQt
“ /\ /\ /\ t F(t) = mew*sin(wt)
[\/ T\/ \/2” \ Absolute response:
b—l o7 x(t)

Relative Response:
P Absolute response:

Absolute response: 2(t) = (x —y) x(t)
x(t)

Force Transmitted to the base:
Fr(t) = cx + kx

Force Transmitted to the base: Force Transmitted to the base:

Fr(t) = cx + kx Fr(t) = cx + kx



Response of a Damped System Under rotating
unbalaqce

Forces in vertical direction: Governing equation:
N

ké e ék cx + kx — mew?sin(wt) = —MX ]— M% + cx + kx = mew?sin(wt)
2 T 2

X measure

_ F(t) = mew?sin(wt
‘“\ M‘} fromEP The steady state solution (t) (wt)
7 e’ ! +%ew2coswtvlv

2

5 ew coswt:}—t 7 N > _ mew 1 . .
X"\ i K 0 O = Tamage (@t — ¢u)
2

%ew M ow? sin wt %ewz
’ ividi d multiplying by the mass M:
FBD . . Dividing an plying by :
27 e 27 mew?M 1
x(t) = sin(wt —
%ewz COS wi -—— e ° —_— ﬂew2 CcOS wi

2
The amplitude or maximum value can be expressed as

|
l
Y
Mz me r2

me » 20r
M ow? sin wt - = r°M — -1
2 M \/(1 —12)2 4 (20r)? M @, = tan 12
In steady-state the angular acceleration of the

unbalance masses is zero



Response of a Damped System Under rotating

unbalance
|

k e — k
2 é T é “ X measure
M ow? \ }-rmewzcoswtvlv

A €W COS wl < 17— -

2 wt ! | NFowr 2
VI"\ ,ll / ‘Il x0)
2

m m,.2
2 ew % ew” sin wt 2 ew
FBD
ke 0 ki
2 cXx 2
% ewz COS wl <—— L L) —_— n ew2 COS wi

2

]

m .
) ew” sIn wf

In steady-state the angular acceleration of the
unbalance masses is zero

180

90

7,.2

~ -2+ 201




Characteristics of the factor (Z=rM ;

1. All the curves begin at zero amplitude.

2. The amplitude near resonance (w = w,,) is markedly affected by
damping. Thus if the machine is to be run near resonance, damping
should be introduced purposefully to avoid dangerous amplitudes.

3. Atvery high speeds (w large, r — ), % is almost unity, and the effect of damping is negligible.

4. The maximum of 72M occurs when 7,4 = \/%2(2, valid for values 0 < { < 1/4/2
5. The maximum value of M = 26\/1—762' which occurs at 1+

6. Forvalues { > 1/+/2 the graph of 72 M does not attain a maximum, its value grows from 0 to 1
when 7 — oo,



Transmitted force of Damped System Under rotating

unbalance

ew COS wl <= 1 — ew Ccos wl
;{ | y\ &
A

X measure
from EP

!

—6(1) 2 —6(1)

sin wt

FBD ANAAARARAAMAAA ALY

k
2 7™

2

M J(l r2)2+(20r)2

x(t) =

Fr(t) = cx + kx

sin(wt — @)

me me
Fr(t) =cx+kx = CWTZM cos(wt — @q) + kﬁrzM sin(wt — ¢4)

Fr(t) = %rzM [\/(ca))2 + (k)z] sin(wt — ¢, — )

Fr(t) = mTekrzM [\/(2(1‘)2 + 1] sin(wt — ¢, — a)

,  J@Nr+1
J(@ —12)2 + (27r)?

The amplitude or maximum value of the force transmitted to
the base is called again Force transmissibility

jo _ .2 J@{r?z+1
mewn? (1 =122+ (2012

@ =tan~! ( 2¢r )
1+ (4¢%2 — 1)r?

Fr(t) = mew,*r sin(wt — @ — )

= Tsz




Force transmitted viscous damped system under
rOtat|ng unbalance Force transmissibility
|

For M-D-S system, under
= rotating unbalance

k c k

2Ty =71

4 Mw from Elp mew,? e Ja-mrr e
2 ew COS w! ==

- ew cos wt
Xw\ [|1 /\g\ (1) =01

~ e(t) 2 - eﬂ)
sin wt

FBD

AN .
Fr(t) = cx + kx

k
200 W

2

(0 = ey

sin(wt — @)
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Formu |a Sheet for Non-dimentional Magnification Transmissibility Mok + CoX + kox = F(t) e
ill ited parameters factor Coefficient ke e
Harmqnl y_ excite 0 2 x(t) = x,(8) + 2%, (1)
Vibration r=u, M= 1 = ey +1 Steady-state response Me Tk
Wn, \/(1 —12)2 + (20r)? \/(1 —1r2)2 + (2(r)? :
Steady state response £ = %,(® F e
de SEP

For a simple harmonic force: Response: Force transmitted to the base 0, = tan! 2(r 180 P------ 'ﬁ/.ﬁ
1—1r?

F 90 _____________

F(t) = F,cosQt xp(t) = k_ZM cos(Qt — ¢1) Fr(t) = FyT 4 cos(Qt — ¢, — ) & = tan-1(2¢7) ) !_

Harmonic Motion of the Base Absolute response: Force transmitted to the base

F(t) = CYOQ cosQt+ kYo sin()t Xp = YOTd Sin(Qt — Q1 — Gf) FT(t) = kYorZTd COS(.Q.t — (p)

Relative Response:
Yp(t) = Y,r*M sin(Qt — ;)

Rotating unbalance me Response: Force transmitted to the base

2 .- me 2 .
F(t) = meQ“sinlt xp(t) = SV M sin(Qt — ¢4)

Fr(t) = mew?r®Tysin(Qt — @, — ),

@ =tan"! < 2r >
1+ (402 — Dr2




Non-dimentional

Formula Sheet for

NNNNNNNNNNNNNS

Magnification Static deflection MeX + CoX + kox = F(t) K ¢
H | | it d parameters factor e €
armc?nl y excite 0 ) x() = xp(t) + %, (t)
Vibration r= o M= ooy Sgp = % Steady-state response rlne x.
— Measure

Total response x(1) = %(®) F(t) " desr

Governing meX + cox + kox = F(t) Force : F(t) = F,cosQt x,(t) = X cos(Qt — 1)

equation _, r

¥+ 2(wyx + w2x = F(t)/m Response:  x(t) = xp(t) + xp(t) X = k_OM ¢, = tan 1_ 2
e
Underdamped
systems 0<(<1 x(t) = Xge~$@nt cos (w at — (po) + X cos(Qt — ¢4)

Initial conditions Xo = XpCcos@y + Xcosg,

X, = [( X0€05¢,)? +

(Ca)nxo + vy — {w,Xcosp,; — QXsing;) ]

+ vy — X — OX
X0 Vo vy = —{wpX(COSQy + wyXosing, + QXsing, o = tan™1 {@nXo + Vo — {@nXCOSPy SIngs
wq(xg — Xcosg;)
xp (t) Xp(t) x(t) = xp(t) + x,(0)

/\ /\ JANIAN
\;/ \/ e’ 1e —i8 2 22 24 28 28 32 34 38

INAWAWAWAWAW
VYV VY

I
wvvvvv

Transient Steady State
response : “ response :

—D
»

»
>




h . Magnification Transmissibility
G ra p S o factor (M) Coefficient (T ;)

‘ ‘ | ‘ ‘
N

_ 1 N (2¢r)? +1
M = _
}/ VA —7r2)2 4+ (2r)?2 }/ Ta= V(A =72)2 + (2¢r)2

/\ pil
\ / 180

_ﬁﬂ

/L
I e N 90
——‘RQ
r2J (22 +1

. | |
i 20 — r°Tq =
\ M Ao o /\ VA =727+ (202

I\ I\ T
A\ /\_— ——
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i r / r
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Response of a Damped System composited forces

Governing equation:

mX + cx + kx = F(t) F(t) =F cosQt+ F,cosQ,t+ F3cosQ;t _l
F cosQt F, cosQ,t Fg}cosﬂgt F(t) ké L. +x
[ F t _ SRR

When the system is linear for small displacements, the steady state solution becomes the sumation of all
the individual responses to each force.

_A _os 2 o . M, = ! et 2N =123
xp(t) = P M, cos(Qt — @) + . M, cos(Q,t — @,) + . M cos(Qst — @3) i \/(1 v (2(77)2, ¢, tan 1_ri2
» Response in term of frequency » Response in term of time
F, :' P
G %) () Hald) a0 %)

-
D%L V JAV/\V/\Vﬂ NU/\VAVAM V JAV/\V/\VI\‘ t

Lol




Quality factor (Q) and Bandwith

F(t) = F,cosQt

NANANNNS
l\/\/\/\/’\/\/

L é X 4y
Lye

SANENRIRRASNN

* The steady-state response
xp(t) = Xp cos(Qt — @)

XP= - SStM

* The value of the amplitud ratio at resonance (r=1) is

also called Q factor or Quality factor

* For small values of damping ((<0.05) we can

take .y = 1

(

X

Ost

>max

IR

¢

X

st

1
= (M)r: =5 =0
>Q:wn ' ZZ

Q - <5_st> - ( )max

Terit

1

M =
V(A —12)2 + (20r)?




Quality factor (Q) and Bandwith

X
M - 5—
* The points R1 and R2, called half-power points, are set i) st Q
where the amplification factor falls to %, this is because 2
the power absorbed (AW = mcQX?) by the damper, ¢ <005
responding harmonically at a given frequency, is 0 .
proportional to the square of the amplitude. They can be vz | T bandwidth (A)
approximated o
R? =1-21 R2=1+2C
* The difference between the frequencies associated with the R, 1 R, r

half-power points R1 and R2 is called the bandwidth (Af2), and

can be calculated as:
AQ = Q, — QO = 20w,

* The quality factor Q can be used for estimating the equivalent viscous 0= 1 . Wn
damping in a mechanical system, can also be calculated using the following 20 Q,— Oy
expression:



Prof. Carmen Muller-Karger, PhD

Florida International University

Figures and content adapted from
Textbook: Singiresu S. Rao. Mechanical Vibration, Pearson sixth edition.
Chapter 10, section 10.3: Vibration Pickups



Importance of measuring vibration

* Measurement of vibration ensures adequate safety margins.

* Selecting the operational speeds of nearby machinery to avoid resonant
conditions.

* Mechanical models may not represent actual values due to assumptions.

* Frequencies of vibration and the forces are necessary in the design and
operation of active vibration-isolation systems

* |dentification of the characteristics of a system in terms of its mass, stiffness,
and damping.

* Information about ground vibrations due to earthquakes, fluctuating wind
velocities on structures, random variation of ocean waves, and road surface
roughness are important in the design of structures, machines, oil platforms,
and vehicle suspension systems.



Vibration Measurement Scheme

Vibrating The motion (or dynamic force) of the vibrating body is converted into an electrical

Machine or signal by the vibration transducer or pickup.
structure

— Transducer transforms changes in mechanical quantities (such as displacement,
t\r/a:ggfjt:zgr velocity, acceleration, or force) into changes in electrical quantities (such as voltage or
or p|ckup Current).

Signal A signal conversion instrument is used to amplify the signal to the required value.
el  Usually the output signal (voltage or current) of a transducer is too small to be
LEICIUEUEY  recorded directly.

WoaEn | he output from the signal conversion instrument can be
recorder, or presented on a display unit for visual inspection, or recorded by a
computer recording unit, or stored in a computer for later use.

Data The data can then be analyzed to determine the desired
analysis vibration characteristics of the machine or structure.




Vibration Pickups

X measured
from EP

Governing equation:
c(x—y)+k(x—y)=—mi
Relative motion : z = (x —y)

c(z2)+k(z) =—m(Z+ )

mzZ+ cz+ kz = —m(y)

* Are instruments to measure vibration
commonly known as seismic instrument.

* They consists of a mass-spring-damper
system mounted on the vibrating body.

* The vibratory motion is measured by
finding the displacement of the mass
relative to the base.

* The bottom ends of the spring and the
dashpot will have the same motion as the
cage (to be measured).

* x denotes the vertical displacement of the
suspended mass




Vibration Pickups

X measured
from EP

A
[V

y(t) =Y,sinQt

|

Governing equation:
c(x—y)+k(x—y)=—mi

Relative motion : z = (x —y)

c(z2)+k(z) =—m(Z+ )

mzZ+cz +kz = —m(y)

Governing equation:

mz + cz + kz = mQ?Y, sinQt y = —mQ2Y, sinQt
The steady state solution
o mQ?Y, 1 n(Qe )
Z = Sin —
ko JA—1DZ+ (20r)? 71
r? 20r
z(t) =Y, sin(Qt — ¢;) @, = tan™1
*JA =122 + (20r)2 ' 1—r12

The amplitude or maximum value can be expressed as

VA r2

Yo V(1 —12)2 + (20r)2 B

— r“M

2




Vibration Pickups

X measured

from EP
XT

y(t) =Y,sinQt

The steady state solution

z(t) = Y,r*Ksin(Qt — @)

Yo V(A =122+ (20r)2 B

r’M

r2

N

,rZ

MJ (1—12)2 + (2{r)?

ACELEROMETERS measure the 4
acceleration of a vibrating body. The

natural frequency of the instrument is

much higher than the frequency to

measure

r>0 w,>>0 M=1

1
/ = YOT‘Z = w—nZYOQZ

VIBROMETERS, measure the
displacement of a vibrating body. The
natural frequency of the instrument is
much less than the frequency to
measure.

r = w, <<<Q r*M=1

Z=Y,




Vibrometers

X measured

from EP
XT

y(t) =Y,sinQt

z(t) = Y, r?Ksin(Qt — @)
24r
1—1r?

¢ = tan!

Z r? 20
-_——= —_ 'r
Yoo J(@—-72)2+(20r)2

r = w, <<< QO TPM=>1

r=1

Measures the displacement of a vibrating body.

The frequency to measure is very large relative to the natural
frequency of the instrument (at least r>3).

The relative displacement between the mass and the base is
essentially the same as the displacement of the base for r = oo.

To obtain a low natural frequency, them mass must be large and the
spring a low stiffness, this result in a bulky instrument.

If the value of r is not sufficiently height the Z value measured is not
equal to Y,, in which case you have to use the whole equation r?M.

The phase lag can be seen to be equal to 180° for =0. Thus the
recorded displacement z(t) lags behind the displacement being
measured y(t) by time t'= ¢ / Q. This time lag is not important if the
base displacement y(t) consists of a single harmonic component.




Accelerometer

X measured

from EP
XT

y(t) =Y,sinQt
z(t) = Y,r*Ksin(Qt — @)
2(0r
=t 1
¢ = tan' ———;
VA r?
— r’M

Yo V(@ =122+ (2{r)? B

ro=0 w,>>>0 M=1

1
Yp = ZOTZ = w—nzzoﬂz

r=1

» Itis use to measure vibration with much lower frequency than the natural
frequency of the instrument.

» For small values of r, 0<r<0.60 and values of { between 0.65 and 0.7, M
lies between of 0.96 and 1.04.

» Measure the acceleration of a vibrating body, except for the phase lag ¢.
The time by which the record lags the acceleration is given by t'= ¢/ Q.
If the acceleration y consists of a single harmonic component, the time
lag will not be of importance.

» Since r is small, the natural frequency of the instrument has to be large
compared to the frequency of vibration to be measured. The mass needs
to be small and the spring needs to have a large value of k (i.e., short
spring), so the instrument will be small in size. Due to their small size and
high sensitivity, accelerometers are preferred in vibration measurements.




Vibration Exciters

* The vibration exciters or shakers can be used in several applications such as
determination of the dynamic characteristics of machines and structures
and fatigue testing of materials. The vibration exciters can be mechanical,
electromagnetic, electrodynamic, or hydraulic type.

ﬁi’?w wﬁR\\ Girder
&= -

Y

Vioim, /] ¢ x(t) = rsin ot
F(t) = 2mRw? cos wt

——

F = mw*r sin wt

‘s 1p>
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