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Learning Objectives

• Define Free Vibrations

• Derive the equation of motion of a single-degree-of-freedom system 
using different approaches as Newton’s second law of motion and the 
principle of conservation of energy.

• Linearize a nonlinear equation of motion.

• Solve a spring-mass-damper system for different types of free-vibration 
response depending on the amount of damping.

• Compute the natural frequency, damping ratio, and frequency of 
damped vibration.

• Find the responses of systems with Coulomb and hysteretic damping.

• Determine the stability of a system.
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Free Vibration 

A system is said to undergo free vibration when it oscillates only under 
an initial disturbance with no external forces acting afterward.

Examples: 
• A child in a swing

• A Pendulum or

• Inverted pendulum 
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Single Degree of Freedom (SDOF) system
• One coordinate (x) is sufficient to 

specify the position of the mass at any 
time.

• Several mechanical and structural 
systems can be idealized as single-
degree-of-freedom systems. In many 
practical systems, the mass is 
distributed, but for a simple analysis, it 
can be approximated by a single point 
mass.

• The study of the free vibration of 
undamped and damped single-degree-
of-freedom systems is fundamental to 
the understanding of more advanced 
topics in vibrations.

• EXAMPLE: All parameter in term of x. 

𝜃𝑝 =
𝑥

𝑟𝑝
𝜃1 =

𝑥

𝑟𝑝
𝑥2 =

𝑥𝑙1
𝑟𝑝

𝜃𝐶 =
𝑥𝑙1
𝑟𝑝𝑟𝐶
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Undamped SDOF system
When there is no element 
that causes dissipation of 
energy during the motion 
of the mass:

• The amplitude of motion 
remains constant with 
time.

• The system vibrates at 
its natural frequency
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Governing equation of an 
undamped SDOF system using 
equation of motion

𝐹𝑆 = 𝑘𝑥

𝑚 ሷ𝑥

𝑁1 𝑁2

𝑊 ෍𝐹𝑥 = −𝑘𝑥 = 𝑚 ሷ𝑥

෍𝐹𝑥 =m𝑎𝑥

𝑚 ሷ𝑥 + 𝑘𝑥 = 0

𝐹𝑆 = 𝑘𝑡𝜃

𝐽𝑜 ሷ𝜃 ෍𝑀𝑧 = −𝑘𝑡𝜃 = 𝐽𝑜 ሷ𝜃

𝐽𝑜 ሷ𝜃 + 𝑘𝑡𝜃 = 0

𝑥

𝑦

𝑥

𝑧

𝑦

𝑧

𝑜

෍𝐹𝑦 =m𝑎𝑦

෍ ഥ𝑀𝑝𝑧 = 𝐼𝑝𝑧𝑧 ത𝛼𝑧 + 𝑚 ҧ𝑟𝐺 × ത𝑎𝑝

FBD=KD

FBD=KD
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Governing equation using Principle 
of Conservation of Energy 

𝑚 ሷ𝑥 + 𝑘𝑥 = 0

T + U = constant

𝑑

𝑑𝑡
T + U = 0

𝑇 =
1

2
𝑚( ҧ𝑣𝑝)

2+
1

2
𝐼𝑝𝑧𝑧(𝜔𝑧)

2+ ҧ𝑣𝑝 ∙ ഥ𝜔𝑧 ×𝑚 ҧ𝑟𝐺

Kinetic energy

Potential energy for 

Spring 

𝑈1−𝟐 = 𝑊∆𝑦
𝑈1−𝟐 =

1

2
𝑘 𝑠2

2 −
1

2
𝑘 𝑠1

2

Potential energy 

for Weight

𝑈 =
1

2
𝑘 𝑥 2

𝑇 =
1

2
𝑚( ሶ𝑥)2

𝑑𝑈

𝑑𝑡
=
2

2
𝑘(𝑥) ሶ𝑥

𝑑𝑇

𝑑𝑡
=
2

2
𝑚( ሶ𝑥) ሷ𝑥

𝑚( ሶ𝑥) ሷ𝑥 +𝑘 𝑥 ሶ𝑥=0

𝑚 ሷ𝑥 + 𝑘𝑥 ሶ𝑥 =0

ሶ𝑥 ≠0Since:
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Equation of Motion of a Spring-
Mass System in Vertical Position

At rest, the mass will hang in a position called the static equilibrium 
position.
In this position the length of the spring is 𝑙𝑜 + 𝛿𝑠𝑡, where 𝛿𝑠𝑡 is the 

static deflection—the elongation due to the weight W of the mass m. 

Using equation of motion
FBD=KD

෍𝐹𝑥 = 𝑘(𝛿𝑠𝑡 + 𝑥) −𝑚𝑔 = 𝑚 ሷ𝑥

𝑚 ሷ𝑥

𝐹𝑆 = 𝑘(𝛿𝑠𝑡 + 𝑥)

𝑊 = 𝑚𝑔

𝑘 𝛿𝑠𝑡 = 𝑚𝑔

Since

𝑚 ሷ𝑥 + 𝑘𝑥 = 0

Using energy method

𝑈 =
1

2
𝑘 𝛿𝑠𝑡 + 𝑥 2 −𝑚𝑔(𝛿𝑠𝑡 +x)

𝑇 =
1

2
𝑚( ሶ𝑥)2

𝑑𝑈

𝑑𝑡
= 𝑘 𝛿𝑠𝑡 + 𝑥 ሶ𝑥 − 𝑚𝑔 ሶ𝑥 = 𝑘𝑥 + 𝛿𝑠𝑡 −𝑚𝑔 ሶ𝑥

𝑑𝑇

𝑑𝑡
= 𝑚( ሶ𝑥) ሷ𝑥 𝑚 ሷ𝑥 + 𝑘𝑥 ሶ𝑥 =0

With x measure 
from static 
equilibrium 
position
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Solution to the equation of motion

𝑥 = 𝐶𝑒𝑠𝑡

𝑚 ሷ𝑥 + 𝑘𝑥 = 0

ሶ𝑥 = 𝑠𝐶𝑒𝑠𝑡

ሷ𝑥 = 𝑠2𝐶𝑒𝑠𝑡

• The solution of this second order differential equation can be found by assuming

𝑚𝑠2 + 𝑘 𝐶𝑒𝑠𝑡 = 0

𝑚𝑠2 + 𝑘 =0 𝑠1,2 = ± −
𝑘

𝑚

• Since C 𝑒𝑠𝑡 cannot be zero, what is in parenthesis which 
is the characteristic equation is zero. The solution 
represent the eigenvalues of the equation

𝑠1,2 = ±𝑖
𝑘

𝑚

𝑥 = 𝐶1𝑒
𝑖𝜔𝑛𝑡 + 𝐶2𝑒

−𝑖𝜔𝑛𝑡

𝑠1,2 = ±𝑖𝜔𝑛 𝜔𝑛 =
𝑘

𝑚

• We define the natural frequency as 
:

• The solution becomes: 

• Characteristic equation: 
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Solution to the equation of motion 𝑚 ሷ𝑥 + 𝑘𝑥 = 0

• The solution becomes:

𝑥 = 𝐶1𝑒
𝑖𝜔𝑛𝑡 + 𝐶2𝑒

−𝑖𝜔𝑛𝑡 = 𝐶1(𝑐𝑜𝑠𝜔𝑛𝑡 + 𝑖sin𝜔𝑛𝑡)+𝐶2 𝑐𝑜𝑠𝜔𝑛𝑡 − 𝑖sin𝜔𝑛𝑡

𝜔𝑛 =
𝑘

𝑚

𝐶1 = a + ib

𝐶2 = a − ib

𝐶1 + 𝐶2 = 2a

𝐶1 − 𝐶2 𝑖 = 2b𝑖2
If 

𝐴1 = 2a

𝐴2 = −2b

𝑥(𝑡) = 𝐴1𝑐𝑜𝑠𝜔𝑛𝑡 + 𝐴2sin𝜔𝑛𝑡Then  𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑛𝑡 − 𝜑)or 𝑨 = 𝑨𝟏
𝟐 + 𝑨𝟐

𝟐 𝝋 = 𝒕𝒂𝒏−𝟏
𝑨𝟐
𝑨𝟏

• Recall Euler formula that establishes the fundamental relationship between the trigonometric functions and 
the complex exponential function:

𝑥 = 𝐶𝑒𝑖𝑠 = 𝐶(cos(𝑠) + 𝑖sin(𝑠))

𝑥 = 𝐶1 + 𝐶2 (𝑐𝑜𝑠𝜔𝑛𝑡)+ 𝐶1 − 𝐶2 𝑖(sin𝜔𝑛𝑡)
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Solution to the equation of motion 𝑚 ሷ𝑥 + 𝑘𝑥 = 0 𝜔𝑛 =
𝑘

𝑚

• For particular initial conditions: 𝑥(𝑜) = 𝑥𝑜 ሶ𝑥(𝑜) = 𝑣𝑜

𝑥(0) = 𝐴1

ሶ𝑥 𝑡 = −𝜔𝑛𝐴1𝑠𝑖𝑛𝜔𝑛𝑡 + 𝜔𝑛𝐴2cos𝜔𝑛𝑡

ሶ𝑥 0 = 𝜔𝑛𝐴2

𝐴1 = 𝑥𝑜

𝐴2 = 𝑣𝑜/𝜔𝑛

𝑥(𝑡) = 𝑥𝑜𝑐𝑜𝑠𝜔𝑛𝑡 + 𝑣𝑜/𝜔𝑛 sin𝜔𝑛𝑡

𝑥(𝑡) = 𝑥𝑜
2 + (𝑣𝑜/𝜔𝑛)

2 1/2
𝑐𝑜𝑠(𝜔𝑛𝑡 − 𝜑) 𝝋 = 𝒕𝒂𝒏−𝟏

𝑣𝑜
𝑥𝑜𝜔𝑛

or

𝑥(𝑡) = 𝐴1𝑐𝑜𝑠𝜔𝑛𝑡 + 𝐴2sin𝜔𝑛𝑡 𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑛𝑡 − 𝜑)or 
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Different ways to write the solution

1.

2.

3.

𝑚 ሷ𝑥 + 𝑘𝑥 = 0 𝜔𝑛 =
𝑘

𝑚

𝑥(𝑡) = 𝑥𝑜𝑐𝑜𝑠𝜔𝑛𝑡 +
𝑣𝑜
𝜔𝑛

sin𝜔𝑛𝑡

𝑥(𝑡) = 𝑥𝑜
2 +

𝑣𝑜
𝜔𝑛

2
1
2

𝑐𝑜𝑠(𝜔𝑛𝑡 − 𝜑)

𝜑 = 𝑡𝑎𝑛−1
𝑣𝑜

𝑥𝑜𝜔𝑛

𝑥 𝑡 = 𝑥𝑜
2 +

𝑣𝑜
𝜔𝑛

2
1
2

𝑠𝑖𝑛(𝜔𝑛𝑡 + 𝜑′)

𝜑′ = 𝑡𝑎𝑛−1
𝑥𝑜𝜔𝑛
𝑣𝑜

𝜏𝑛 =
2𝜋

𝜔𝑛
𝑓𝑛 =

1

𝜏𝑛
𝜔𝑛 = 2𝜋𝑓𝑛

Period Frequency
Circular 
Frequency
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Equation of Motion of a Spring-
Mass System in Vertical Position

At rest, the mass will hang in a position called the static equilibrium 
position.
In this position the length of the spring is 𝑙𝑜 + 𝛿𝑠𝑡, where 𝛿𝑠𝑡 is the 

static deflection—the elongation due to the weight W of the mass m. 

FBD=KD

𝑚 ሷ𝑥

𝐹𝑆 = 𝑘(𝛿𝑠𝑡 + 𝑥)

𝑊 = 𝑚𝑔

𝑘 𝛿𝑠𝑡 = 𝑚𝑔

𝑚 ሷ𝑥 + 𝑘𝑥 = 0

With x measure 
from static 
equilibrium 
position

𝜔𝑛 =
𝑘

𝑚
=

𝑔

𝛿𝑠𝑡

𝑓𝑛 =
1

2𝜋

𝑘

𝑚
=

1

2𝜋

𝑔

𝛿𝑠𝑡

𝜏𝑛 =
2𝜋

𝜔𝑛
𝑓𝑛 =

1

𝜏𝑛

equilibrium position
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Position, velocity and Acceleration
1. Position

𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑛𝑡 − 𝜑)

2. Velocity

ሶ𝑥(𝑡) = −𝜔𝑛𝐴𝑠𝑖𝑛(𝜔𝑛𝑡 − 𝜑)

ሶ𝑥 𝑡 = 𝜔𝑛𝐴𝑐𝑜𝑠 𝜔𝑛𝑡 − 𝜑 +
𝜋

2

3. Acceleration

ሷ𝑥 𝑡 = −𝜔𝑛
2𝐴𝑐𝑜𝑠(𝜔𝑛𝑡 − 𝜑)

ሷ𝑥 𝑡 = 𝜔𝑛
2𝐴𝑐𝑜𝑠(𝜔𝑛𝑡 − 𝜑 + 𝜋)

𝑚 ሷ𝑥 + 𝑘𝑥 = 0 𝜔𝑛 =
𝑘

𝑚

The velocity leads the 

displacement by
𝜋

2
and 

the acceleration leads the 
displacement by 𝜋.
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Particular cases: 
1. If the initial displacement 𝑥𝑜 is zero, the solution becomes

𝑥(𝑡) =
𝑣𝑜
𝜔𝑛

𝑐𝑜𝑠 (𝜔𝑛𝑡 −
𝜋

2

2. If the initial velocity 𝑣𝑜 is zero, the solution becomes 

𝑥(𝑡) = 𝑥𝑜𝑐𝑜𝑠(𝜔𝑛𝑡)

3. The value of the phase angle ϕ given, needs to be calculated with care. Tan ϕ can be positive when 

both 𝑥𝑜 and
𝑣𝑜

𝜔𝑛
are either positive or negative. 

Thus, we need to use the first quadrant value of ϕ when both x0 and
𝑣𝑜

𝜔𝑛
are positive and the third quadrant value 

of ϕ when both x0 and
𝑣𝑜

𝜔𝑛
are negative. Similarly, since tan ϕ can be negative when x0 and

𝑣𝑜

𝜔𝑛
have opposite 

signs, we need to use the second quadrant value of ϕ when x0 is negative and
𝑣𝑜

𝜔𝑛
is positive and the fourth 

quadrant value of ϕ when x0 is positive and ˙
𝑣𝑜

𝜔𝑛
is negative.

𝜔𝑛 =
𝑘

𝑚

𝑥(𝑡) = 𝑥𝑜𝑐𝑜𝑠𝜔𝑛𝑡 +
𝑣𝑜
𝜔𝑛

sin𝜔𝑛𝑡

𝑥(𝑡) = 𝑥𝑜
2 +

𝑣𝑜
𝜔𝑛

2
1
2

𝑐𝑜𝑠(𝜔𝑛𝑡 − 𝜑)

𝝋 = 𝒕𝒂𝒏−𝟏
𝑣𝑜

𝑥𝑜𝜔𝑛
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Natural frequency for Equivalent systems

𝑚 ሷ𝑥 + 𝑘𝑥 = 0

𝜔𝑛 =
𝑘

𝑚

• For any other system, we will find 
the governing equation and if we 
are able to write it in the following 
form:

𝑚𝑒𝑞 ሷ𝑥 + 𝑘𝑒𝑞𝑥 = 0

• We define the natural frequency as 
:

𝜔𝑛 =
𝑘𝑒𝑞
𝑚𝑒𝑞

• We define the natural frequency as 
:
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Free Vibration of an Undamped Torsional System

𝐽𝑜 ሷ𝜃 + 𝑘𝑡𝜃 = 0

FBD=KD
𝑀𝑡 = 𝑘𝑡𝜃 =

𝐺𝐼𝑜
𝑙
𝜃

From the theory of torsion of circular shaft, we have the relation

where 𝑀𝑡 is the torque that produces the twist θ, G is the shear 

modulus, l is the length of the shaft, 𝐼𝑜 is the polar moment of 

inertia of the cross section of the shaft, and d is the diameter of 
the shaft.

𝐽𝑜 ሷ𝜃

𝑀𝑡

𝑧

𝐼𝑜 =
𝜋𝑑4

32

torsional spring with a torsional spring constant

𝑘𝑡 =
𝑀𝑡

𝜃
=
𝐺𝐼𝑜
𝑙

=
𝐺𝜋𝑑4

32𝑙

𝑥

𝑧

𝑦

𝜔𝑛 =
𝑘𝑡
𝐽𝑜

𝐽𝑜 =
𝜌ℎ𝜋𝐷4

32
=
𝑊𝐷2

32

The polar mass moment of inertia of a disc is given by

where ρ is the mass density, h is the thickness, D is the diameter, 

and W is the weight of the disc

Also called torsional pendulum.

𝜔𝑛 =
𝐺𝜋𝑑4

𝑙𝑊𝐷2
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Free Vibration of an simple Pendulum

for small angular displacements,

we linearize the equation using :

sin 𝜃 ≈ 𝜃

Simple  Pendulum

𝑚𝑙 ሷ𝜃 + 𝑚𝑔𝑠𝑖𝑛𝜃 = 0

𝜔𝑛 =
𝑔

𝑙

෍𝐹𝑡 = −𝑚𝑔𝑠𝑖𝑛𝜃 = 𝑚𝑙 ሷ𝜃

𝑙 ሷ𝜃 + 𝑔𝜃 = 0

Linearized equation of motion:

Natural frequency: 

FBD=KD

T

𝑚𝑔

𝑚𝑙 ሷ𝜃

Ƹ𝑡

ො𝑛

𝑈 = 𝑚𝑔𝑙(1 − 𝑐𝑜𝑠𝜃)

𝑇 =
1

2
𝑚(𝑙 ሶ𝜃)2

𝑑𝑈

𝑑𝑡
= 𝑚𝑔𝑙(𝑠𝑖𝑛𝜃) ሶ𝜃

𝑑𝑇

𝑑𝑡
=
2

2
𝑚𝑙2( ሶ𝜃) ሷ𝜃

𝑚𝑙2( ሶ𝜃) ሷ𝜃 + 𝑚𝑔𝑙(𝑠𝑖𝑛𝜃) ሶ𝜃=0

𝑚𝑙 ሷ𝜃 + 𝑚𝑔(𝑠𝑖𝑛𝜃) 𝑙 ሶ𝜃 =0

ሶ𝜃 ≠0Since:

Using Newton’s Law: 

Using Conservation of Energy: 

𝑚𝑙 ሷ𝜃 + 𝑚𝑔𝑠𝑖𝑛𝜃 = 0

𝑚𝑙( ሶ𝜃)2
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Free Vibration of an Compound Pendulum

𝐽𝑜 ሷ𝜃 +𝑚𝑔𝑑𝑠𝑖𝑛𝜃 = 0

Any rigid body pivoted at a point other than its center of mass will 
oscillate about the pivot point under its own gravitational force

𝜔𝑛 =
𝑚𝑔𝑑

𝐽𝑜

෍𝑀𝑜𝑧 = −𝑊𝑑𝑠𝑖𝑛𝜃 = 𝐽𝑜 ሷ𝜃

O

𝐽𝑜 ሷ𝜃 + 𝑚𝑔𝑑𝜃 = 0

Natural frequency: 

𝜔𝑛 =
𝑔𝑑

𝑘𝑜
2

Linearized equation of motion: In terms of radius of gyration: 

Compound Pendulum

𝑊 = 𝑚𝑔

Equivalent length of a compound 
pendulum compared to a simple 
pendulum : 

𝑙 =
𝑘𝑜
2

𝑑

Using Newton’s Law: 
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Effect of Mass of a Spring
• Static analysis: we will assume 

that we have n spring on series 

For a limit of ∞  spirals the deflection
half the mass.    Therefore would be 
equivalent to place a concentrated mass
of 1/2 the mass of the spring at the end.    

2

i

n

1

Deflection of first spiral due to the weight 
of the rest of the spring below

Deflection of second spiral due to the 
weight of the rest of the spring below

Last spiral does not have any deflection

1

𝑘𝑇
=

1

𝑘1
+

1

𝑘2
+⋯+

1

𝑘𝑛
= 𝑛

1

𝑘𝑖

𝑘𝑖 = 𝑛𝑘𝑇

𝑚𝑖 =
𝑚𝑠

𝑛

𝛿1 =
𝑚𝑠𝑔 𝑛 − 1

𝑛

1

𝑛𝑘𝑇

𝛿2 =
𝑚𝑠𝑔 𝑛 − 2

𝑛

1

𝑛𝑘𝑇

𝛿𝑖 =
𝑚𝑠𝑔 𝑛 − 𝑖

𝑛

1

𝑛𝑘𝑇

𝛿𝑛 = 0

𝛿𝑇 =෍

𝑖=1

𝑛
𝑚𝑠𝑔 𝑛 − 𝑖

𝑛

1

𝑛𝑘𝑇
=
𝑚𝑠𝑔

𝑛2𝑘𝑇
෍

𝑖=1

𝑛

𝑛 − 𝑖

෍

𝑖=1

𝑛

𝑛 − 𝑖 =
𝑛 𝑎1 + 𝑎1

2
=
𝑛 𝑛 − 1 + 0

2
=
𝑛 𝑛 − 1

2

𝛿𝑇 =
𝑚𝑆𝑔

2𝑘𝑇

Deflection of i spiral due to the weight 
of the rest of the spring below

𝑚𝑒𝑞 =
𝑚𝑆

2

𝛿𝑇 =
𝑚𝑠𝑔

2𝑘𝑇

𝑛 𝑛 − 1

𝑛2
𝛿𝑇 =

𝑚𝑠𝑔

2𝑘𝑇
log𝑛→∞

𝑛 − 1

𝑛
= 1

, 𝑚𝑠

𝑚𝑠

2

=
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Effect of Mass of a Spring
• Dynamic analysis: we will 

assume a differential of mass 
𝑑𝑚𝑠 at 𝑑𝑦

𝑑𝑚𝑠 =
𝑚𝑠

𝑙
𝑑𝑦

𝑇 =
1

2
𝑚 ሶ𝑥2 +

1

2
0׬
𝑙 𝑦

𝑙
ሶ𝑥
2
𝑑𝑚𝑠 =

1

2
𝑚 ሶ𝑥2 +

1

2
0׬
𝑙 𝑦

𝑙
ሶ𝑥
2 𝑚𝑠

𝑙
𝑑𝑦

𝑇 =
1

2
𝑚 ሶ𝑥2 +

1

2

𝑚𝑠 ሶ𝑥2

𝑙3
อ

𝑦3

3
0

𝑙

=
1

2
𝑚 ሶ𝑥2 +

1

2

𝑚𝑠

𝑙3
𝑙 3

3
ሶ𝑥2

• We assume linear velocity along the 
spring, therefore the velocity of the 
differential  dy is: 

𝑣𝑑𝑦 =
𝑦

𝑙
ሶ𝑥

• The kinetic energy : 

𝑇 =
1

2
𝑚 +

𝑚𝑠

3
ሶ𝑥2

𝑚𝑒𝑞 = 𝑚+
𝑚𝑆

3

Would be equivalent to place a 
concentrated mass of 1/3 the mass of
the spring at the end.    

, 𝑚𝑠

𝑚+
𝑚𝑠

3

=

ሶ𝑥

𝑣𝑑𝑦
𝑚𝑠
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Examples of natural frequency 

𝑘𝑒𝑞 = 𝑘1 + 𝑘2x

A(m)

k1

x

k2

y
p

𝑘𝑒𝑞 =
𝑘1𝑘2 + 𝑘3𝑘1 + 𝑘3𝑘2

𝑘1 + 𝑘2

A(m)

k1

k2

k3

A(m,R)

Bar 
(R,L)

ሷ𝜃

Bar 
(2R,L)

Bar 
(RL)

𝑘𝑒𝑞 =
𝑘𝑡1𝑘𝑡2

𝑘𝑡1 + 𝑘𝑡2
+ 𝑘𝑡3

𝑘𝑡𝑖 =
𝐺𝑖𝐼𝑝𝑖

𝐿𝑖
𝐹1 = 𝑘1𝑥

𝐹2 = 𝑘2 𝑥

𝑚 ሷ𝑥

𝑚 ሷ𝑥 + (𝑘1 + 𝑘2)𝑥 = 0

𝜔𝑛 =
𝑘1 + 𝑘2
𝑚

FBD and KD Equation of Motion

𝑚 ሷ𝑥 +
𝑘1𝑘2
𝑘1 + 𝑘2

+ 𝑘3 𝑥 = 0

𝜔𝑛 =
𝑘1𝑘2 + 𝑘3𝑘1 + 𝑘3𝑘2

𝑘1 + 𝑘2 𝑚

𝐹1,2 =
𝑘1𝑘2
𝑘1 + 𝑘2

𝑥

𝐹3 = 𝑘3 𝑥

FBD and KD 

𝑚 ሷ𝑥 𝑘𝑒𝑞 =
𝑘𝑡1𝑘𝑡2 + 𝑘𝑡3𝑘𝑡1 + 𝑘𝑡3𝑘𝑡2

𝑘𝑡1 + 𝑘𝑡2

𝐽0 ሷ𝜃 +
𝑘𝑡1𝑘𝑡2

𝑘𝑡1 + 𝑘𝑡2
+ 𝑘𝑡3 𝜃 = 0

𝜔𝑛 =
𝑘𝑡1𝑘𝑡2 + 𝑘𝑡3𝑘𝑡1 + 𝑘𝑡3𝑘𝑡2

𝑘𝑡1 + 𝑘𝑡2 𝐽0

Equation of Motion

For a torsional system

Equation of Motion
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Natural frequency of pulley system 

FBD 1

FBD 2

B
C

D

T T

Ck

A(m) x

mg

T

𝐹𝑌
𝐸 = 2𝑇 − 𝑘1Δ𝐹 = 0

Δ𝐹 =
2𝑇

𝑘1

𝐹𝑌
𝐸 = −2𝑇 + 𝑘2Δ𝐶 = 0

Δ𝐶 =
2𝑇

𝑘2

𝐹𝑌
𝐸 = 𝑇 −𝑚𝑔 = −𝑚 ሷ𝑥E

T

F
G

T

Fk

F

E= 2F

EG

C

x=B= 2F+2C

BD
𝑥 = 2

2𝑇

𝑘1
+ 2

2𝑇

𝑘2
=
4𝑇 𝑘1 + 𝑘1

𝑘1𝑘2

𝑇 =
𝑥 𝑘1𝑘2
4 𝑘1 + 𝑘1

𝐹𝑌
𝐸 =

𝑘1𝑘2
4 𝑘1 + 𝑘1

𝑥 − 𝑚𝑔 = −𝑚 ሷ𝑥

𝑚 ሷ𝑥 +
𝑘1𝑘2

4 𝑘1 + 𝑘1
𝑥 = 𝑚𝑔

𝜔𝑛 =
𝑘1𝑘2

4 𝑘1 + 𝑘1 𝑚

Ideal pulleys have no 
mas and no friction

Analysis of motion, G 
is a fixed point.

Relation of displacement of mass 
respect to center of pulleys

Solving for Tension T

FBD 3

Natural Frequency

Equation of Motion
mg cancel out if 
you take x respect 
to the equilibrium 
position

𝜔𝑛 =
𝑘𝑒𝑞

𝑚𝑒𝑞

B

G
F

E

D
C

B= 2C
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Mechanical Vibrations

Free vibration with viscous damping

Prof. Carmen Muller-Karger, PhD

Florida International University 

Figures and content adapted from 

Textbook: Singiresu S. Rao.  Mechanical Vibration, Pearson sixth edition.

Chapter 2: Free vibrations of a sigle degree of freedom system  
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Free vibration with viscous damping
The viscous damping force F is proportional to 
the velocity and can be expressed as

𝐹 = −𝑐𝑣 = −𝑐 ሶ𝑥

where c is the damping constant or coefficient of 
viscous damping and the negative sign indicates 
that the damping force is opposite to the 
direction of velocity.

Using Newton’s Law

෍𝐹𝑥 = 𝑘 𝛿𝑠𝑡 + 𝑥 + 𝑐 ሶ𝑥 −𝑚𝑔 = 𝑚 ሷ𝑥 𝑘 𝛿𝑠𝑡 = 𝑚𝑔
𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 0

With x measure from static equilibrium position (EP)

Equation of Motion
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Solution to the equation of motion

𝑥 = 𝐶𝑒𝑠𝑡

ሶ𝑥 = 𝑠𝐶𝑒𝑠𝑡

ሷ𝑥 = 𝑠2𝐶𝑒𝑠𝑡

• The solution of this second order differential equation can be found by assuming

𝑚𝑠2 + 𝑐𝑠 + 𝑘 𝐶𝑒𝑠𝑡 = 0

𝑚𝑠2 + 𝑐𝑠 + 𝑘 =0 𝑠1,2 =
−𝑐 ± 𝑐2 − 4𝑚𝑘

2𝑚

• Since C 𝑒𝑠𝑡 cannot be zero, we have the characteristic 
equation, which solution represent the eigenvalues of 
the equation

𝑥 = 𝐶1𝑒
𝑠1𝑡+ 𝐶2𝑒

𝑠2𝑡

• The solution becomes: 

• Characteristic equation: 

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 0

𝑠1 =
−𝑐

2𝑚
+

𝑐

2𝑚

2

−
𝑘

𝑚
𝑠2 =

−𝑐

2𝑚
−

𝑐

2𝑚

2

−
𝑘

𝑚

𝑥 = 𝐶1𝑒
−𝑐

2𝑚
+

𝑐

2𝑚

2
−
𝑘

𝑚
𝑡
+ 𝐶2𝑒

−𝑐

2𝑚
−

𝑐

2𝑚

2
−
𝑘

𝑚
𝑡
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 Natural 
frequency

Critical damping constant, damping ratio

𝜔𝑛 =
𝑘

𝑚

𝜁 =
𝑐

𝑐𝑐
=

𝑐

2 𝑘𝑚

 Critical damping

constant

𝑐

𝑚
=

2𝑐 𝑘

2 𝑚 𝑚 𝑘
= 2𝜁𝜔𝑛

𝑠1,2 = −𝜁𝜔𝑛 ±𝜔𝑛 𝜁2 − 1

 Divide by the mass

ሷ𝑥 +
𝑐

𝑚
ሶ𝑥 +

𝑘

𝑚
𝑥 =0

ሷ𝑥 + 2𝜁𝜔𝑛 ሶ𝑥 + 𝜔𝑛
2𝑥 = 0

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 0

 Some algebra: 

• The equation and solution in term of 𝜔𝑛 and 𝜁 becomes: 

 Damping ratio

𝑐𝑐 = 2 𝑘𝑚

The critical damping 𝑐𝑐 is defined as the 

value of the damping constant c for 

which the radical becomes zero:

𝑠1,2 =
−𝑐

2𝑚
±

𝑐

2𝑚

2

−
𝑘

𝑚

𝑥 = 𝐶1𝑒
−𝜁𝜔𝑛+𝜔𝑛 𝜁2−1 𝑡

+ 𝐶2𝑒
−𝜁𝜔𝑛−𝜔𝑛 𝜁2−1 𝑡
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Types of solution will depends upon the magnitude of 
damping

CASES TYPE OF SYSTEMS
COEF.

TYPE OF SOLUTION VALUE OF THE ROOTS TYPE OF MOTION

1 Undamped
Conjugate imaginary
roots, no real part in the
solution

Oscillatory

2 Underdamped
Conjugate imaginary
roots, with real part in 
the solution

𝑠1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛𝑖 1 − 𝜁2 Oscillatory

3
Critically damped
system

Both roots real and 
equal

No oscillatory

4
Overdamped
system

Two different real roots No oscillatory

𝜁 = 0

𝜁 < 1

𝜁 = 1

𝜁 > 1

𝜁

𝑠1,2 = ±𝜔𝑛𝑖

𝑠1,2 = −𝜁𝜔𝑛

𝑠1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛 𝜁2 − 1
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Case 1. Undamped System 𝜁 = 0

𝑚 ሷ𝑥 + 𝑘𝑥 = 0

𝑥 = 𝑎𝑒𝑖𝜔𝑛𝑡 + 𝑏𝑒−𝑖𝜔𝑛𝑡

𝑥 = 𝑎 cos𝜔𝑛𝑡 + 𝑖 sin𝜔𝑛𝑡 + 𝑏 cos𝜔𝑛𝑡 − 𝑖 sin𝜔𝑛𝑡 𝑥 = 𝑎 + 𝑏 cos𝜔𝑛𝑡 + 𝑎 − 𝑏 𝑖 sin𝜔𝑛𝑡

𝑎 = 𝑐 + 𝑑𝑖, 𝑏 = 𝑐 − 𝑑𝑖

𝐴 = 𝑋0 cos𝜙

𝐵 = 𝑋0 sin𝜙

𝑋0 = 𝐴2 + 𝐵2

𝜙 = tan−1
𝐵

𝐴

A= 𝑎 + 𝑏 = 2𝑐, 𝐵 = 𝑎 − 𝑏 𝑖 = 2𝑑𝑖. 𝑖

𝑥 = 𝑋0 cos 𝜔𝑛𝑡 − 𝜙𝑥 = 𝐴 cos𝜔𝑛𝑡 + 𝐵 sin𝜔𝑛𝑡

Equation of Motion x measure from static equilibrium position (EP)

𝑠1,2 = ±𝜔𝑛𝑖Value for the roots: 

Solution to the EoM: 

Solution can be written as a sum of cos and sin or a cos with a phase angle 

a and b are complex number: 

If we name A and B as
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Case 1. Undamped System 𝜁 = 0

𝑥 = 𝑋0 cos 𝜔 𝑛𝑡 − 𝜙𝑥 = 𝐴 cos𝜔 𝑛𝑡 + 𝐵 sin𝜔 𝑛𝑡

𝑚 ሷ𝑥 + 𝑘𝑥 = 0EoM

𝑥0 = 𝑥(0) = 𝐴 cos𝜔 𝑛0 + 𝐵 sin𝜔 𝑛0

ሶ𝑥(𝑡) = −𝐴𝜔 𝑛sin𝜔 𝑛𝑡 + 𝐵𝜔 𝑛cos 𝜔 𝑛𝑡

𝑣𝑜 = ሶ𝑥(0) = −𝐴𝜔 𝑛sin𝜔 𝑛0 + 𝐵𝜔 𝑛cos𝜔 𝑛0

𝐴 = 𝑥0
𝑋0 = 𝑥0

2 +
𝑣0
𝜔𝑛

2

𝜔𝑛 =
2𝜋

t𝑛

When applying initial conditions 𝑥0 and 𝒗0

𝐵 =
𝑣𝑜
𝜔𝑛

𝜙 = tan−1
𝑣0

𝑥0𝜔𝑛

System oscillates at 
its natural frequency
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Case 2. Underdamped System 𝜁 < 1

𝑥 = 𝑎 + 𝑏 𝑒−𝜁𝜔𝑛𝑡cos𝜔𝑑𝑡 + 𝑎 − 𝑏 𝑖 𝑒−𝜁𝜔𝑛𝑡sin𝜔𝑑𝑡
𝑎 = 𝑐 + 𝑑𝑖, 𝑏 = 𝑐 − 𝑑𝑖

𝐴 = 𝑋0 cos𝜙

𝐵 = 𝑋0 sin𝜙

𝑋0 = 𝐴2 + 𝐵2

𝜙 = tan−1
𝐵

𝐴

𝑥 = 𝑋0 𝑒
−𝜁𝜔𝑛𝑡cos 𝜔𝑑𝑡 − 𝜙𝑥 = 𝐴𝑒−𝜁𝜔𝑛𝑡 cos𝜔𝑑𝑡 + 𝐵𝑒−𝜁𝜔𝑛𝑡 sin𝜔𝑑𝑡

Equation of Motion x measure from static equilibrium position (EP)

Value for the roots: 

Solution to the EoM: 

Solution can be written as a sum of cos and sin or a cos with a phase angle 

a and b are complex number: 

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 0

𝑠1,2 = −𝜁𝜔𝑛 ± 𝑖𝜔𝑛 1 − 𝜁2

𝜔𝑑 = 𝜔𝑛 1 − 𝜁2

Damped frequency: 

𝑥 = 𝑎𝑒 −𝜁𝜔𝑛+𝜔𝑑𝑖 𝑡 + 𝑏𝑒 −𝜁𝜔𝑛±𝜔𝑑𝑖 𝑡

𝑥 = 𝑎𝑒−𝜁𝜔𝑛𝑡 𝑐𝑜𝑠𝜔𝑑𝑡 + 𝑖𝑠𝑖𝑛𝜔𝑑𝑡 + 𝑏𝑒−𝜁𝜔𝑛𝑡 cos𝜔𝑑𝑡 − 𝑖𝑠𝑖𝑛𝜔𝑑𝑡

A= 𝑎 + 𝑏 = 2𝑐, 𝐵 = 𝑎 − 𝑏 𝑖 = 2𝑑𝑖. 𝑖
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Case 2. Underdamped System 𝜁 < 1 EoM

𝐴 = 𝑥0

𝜔𝑑 =
2𝜋

t𝑑

When applying initial conditions 𝑥0 and 𝒗0

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 0

𝑥 = 𝐴𝑒−𝜁𝜔𝑛𝑡 cos𝜔𝑑𝑡 + 𝐵𝑒−𝜁𝜔𝑛𝑡 sin𝜔𝑑𝑡

ሶ𝑥(𝑡) = −𝐴𝜁𝜔 𝑛𝑒
−𝜁𝜔𝑛𝑡 cos 𝜔 𝑑𝑡 − 𝐴𝑒−𝜁𝜔𝑛𝑡𝜔 𝑑sin𝜔 𝑑𝑡 − 𝐵𝜁𝜔 𝑛𝑒

−𝜁𝜔𝑛𝑡 sin𝜔 𝑑𝑡 + 𝐵𝑒−𝜁𝜔𝑛𝑡𝜔 𝑑cos 𝜔 𝑑𝑡

𝐴 = 𝑥0𝑥0 = 𝑥(0) = 𝐴𝑒−𝜁𝜔𝑛0 cos 𝜔 𝑑0 + 𝐵𝑒−𝜁𝜔𝑛0 sin𝜔 𝑑0 = 𝑥0

𝑣𝑜 = ሶ𝑥(0) = −𝐴𝜁𝜔 𝑛𝑒
−𝜁𝜔𝑛0 cos𝜔 𝑑0 − 𝐴𝑒−𝜁𝜔𝑛0𝜔 𝑑sin𝜔 𝑛0 − 𝐵𝜁𝜔 𝑛𝑒

−𝜁𝜔𝑛0 sin𝜔 𝑑0 + 𝐵𝑒−𝜁𝜔𝑛0𝜔 𝑑cos𝜔 𝑑0 = 𝑣0

𝐵 =
𝑣0 + 𝑥0𝜁𝜔𝑛

𝜔𝑑

𝑥 = 𝑋0 𝑒
−𝜁𝜔𝑛𝑡cos 𝜔𝑑𝑡 − 𝜙

21  −= nd

System oscillates at 
its damped frequency
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Case 2. Underdamped System 𝜁 <1 EoM

𝐴 = 𝑥0

𝑋0 = 𝑥0
2 +

𝑣0 + 𝑥0𝜁𝜔𝑛
𝜔𝑑

2

𝜔𝑑 =
2𝜋

t𝑑

System oscillates at 
its damped frequency

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 0

𝑥 = 𝐴𝑒−𝜁𝜔𝑛𝑡 cos𝜔𝑑𝑡 + 𝐵𝑒−𝜁𝜔𝑛𝑡 sin𝜔𝑑𝑡 𝐵 =
𝑣0 + 𝑥0𝜁𝜔𝑛

𝜔𝑑

𝑥 = 𝑋0 𝑒
−𝜁𝜔𝑛𝑡𝑠𝑖𝑛 𝜔𝑑𝑡 + 𝜙0

We can also represent the solution by a single cos 

𝑥 = 𝑋0 𝑒
−𝜁𝜔𝑛𝑡cos 𝜔𝑑𝑡 − 𝜙

𝜙 = tan−1
𝑣0 + 𝑥0𝜁𝜔𝑛

𝑥0𝜔𝑑
21  −= nd
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Case 2. Underdamped System 𝜁 < 1 EoM

𝐴 = 𝑥0

𝑋0 = 𝑥0
2 +

𝑣0 + 𝑥0𝜁𝜔𝑛
𝜔𝑑

2

𝜔𝑑 =
2𝜋

t𝑑

System oscillates at 
its damped frequency

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 0

𝑥 = 𝑋0 𝑒
−𝜁𝜔𝑛𝑡𝑠𝑖𝑛 𝜔𝑑𝑡 + 𝜙0

𝑥 = 𝐴𝑒−𝜁𝜔𝑛𝑡 cos𝜔𝑑𝑡 + 𝐵𝑒−𝜁𝜔𝑛𝑡 sin𝜔𝑑𝑡 𝐵 =
𝑣0 + 𝑥0𝜁𝜔𝑛

𝜔𝑑

𝜙0 = tan−1
𝑥0𝜔𝑑

𝑣0 + 𝑥0𝜁𝜔𝑛

𝑥 = 𝑋0 𝑒
−𝜁𝜔𝑛𝑡𝑠𝑖𝑛 𝜔𝑑𝑡 + 𝜙0

We can also represent the solution by a single sin  

21  −= nd
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Case 2. Underdamped System
Logarithmic Decrement

𝜁 < 1

The logarithmic decrement represents the rate at which the amplitude of a free-damped 
vibration decreases

𝑥(𝑡1) = 𝑋0𝑒
−𝜁𝜔𝑛𝑡1 cos 𝜔 𝑑𝑡1 − 𝜙

𝑥(𝑡2) = 𝑋0𝑒
−𝜁𝜔𝑛𝑡2 cos 𝜔 𝑑𝑡2 − 𝜙

𝑡2 = 𝑡1 + 𝑡𝑑 cos 𝜔 𝑑𝑡1 − 𝜙 = cos 𝜔 𝑑𝑡2 − 𝜙

𝑥(𝑡1)

𝑥(𝑡2)
=

𝑋0𝑒
−𝜁𝜔𝑛𝑡1 cos 𝜔 𝑑𝑡1 − 𝜙

𝑋0𝑒
−𝜁𝜔𝑛𝑡1𝑒−𝜁𝜔𝑛𝑇𝑑 cos 𝜔 𝑑𝑡𝟐 − 𝜙

=
1

𝑒−𝜁𝜔𝑛(𝑇𝑑)
= 𝑒

𝜁𝜔𝑛2𝜋

𝜔𝑛 1−𝜁2

𝛿 = ln
𝑥(𝑡1)

𝑥(𝑡2)
=

2𝜋𝜁

1 − 𝜁2

𝛿 = ln
𝑥(𝑡1)

𝑥(𝑡𝑛+1)
=

2𝜋𝜁 𝑛

1 − 𝜁2

The logarithmic decrement  δ can be obtained, and we can solve for 𝜁 in term of δ 

Also can be found by two displacements separated by any 
number of complete cycles. 

𝛿 =
1

𝑛
ln

𝑥(𝑡1)

𝑥(𝑡𝑛+1)
=

2𝜋𝜁

1 − 𝜁2
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Case 2. Underdamped System
Logarithmic Decrement

𝜁 < 1

The logarithmic decrement is dimensionless and is another 
form of the dimensionless damping ratio ζ

𝜁 =
𝛿

4𝜋2 − 𝛿2

𝜁 ≪ 1For  small damping:

𝛿 = 2𝜋𝜁

𝛿 =
2𝜋𝜁

1 − 𝜁2

𝛿 = 2𝜋𝜁

𝛿 =
2𝜋𝜁

1 − 𝜁2

𝜔𝑑 = 𝜔𝑛 1 − 𝜁2
𝑐

𝑚
= 2𝜁𝜔𝑛recall: 

The logarithmic decrement can also be 

written as: 

𝛿 =
2𝜋

𝜔𝑑

𝑐

2𝑚

𝜁 =
𝛿

2𝜋
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Case 3. Critically damped system 𝜁 = 1

Equation of Motion x measure from static equilibrium position (EP)

Value for the roots: 

Solution to the EoM: 

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 0

𝑠1,2 = −𝜔𝑛

𝑥 = 𝐴𝑒−𝜔𝑛𝑡 + 𝐵𝑡𝑒−𝜔𝑛𝑡

ሶ𝑥(𝑡) = −𝐴𝜔 𝑛𝑒
−𝜔𝑛𝑡 − 𝐵𝑡𝜔 𝑛𝑒

−𝜔𝑛𝑡 + 𝐵𝑒−𝜔𝑛𝑡
𝐴 = 𝑥0𝑥0 = 𝑥(0) = 𝐴𝑒−𝜔𝑛0

𝑣0 = ሶ𝑥(0) = −𝐴𝜔 𝑛𝑒
−𝜔𝑛0 − 𝐵0𝜔 𝑛𝑒

−𝜔𝑛0 + 𝐵𝑒−𝜔𝑛0 𝑣0 = −𝐴𝜔𝑛 + 𝐵

When applying initial conditions 𝑥0 and 𝒗0

𝐵 = 𝑣0 + 𝑥0𝜔𝑛

𝑥 = 𝑥0𝑒
−𝜔𝑛𝑡 + 𝑣0 + 𝑥0𝜔𝑛 𝑡𝑒−𝜔𝑛𝑡

The solution becomes:

The motion represented is aperiodic, eventually 
diminish to zero 
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Case 4. Overdamped system 𝜁 > 1

Equation of Motion x measure from static equilibrium position (EP)

Value for the roots: 

Solution to the EoM: 

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 0

When applying initial conditions 𝑥0 and 𝒗0

The motion represented is aperiodic, 
eventually diminish to zero  but much 
slower than critically damped system

𝑠1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛 𝜁2 − 1

𝑥 = 𝐴𝑒
−𝜁𝜔𝑛+𝜔𝑛 𝜁2−1 𝑡

+ 𝐵𝑒
−𝜁𝜔𝑛−𝜔𝑛 𝜁2−1 𝑡

𝐴 =
𝑣0 + 𝜁 + 𝜁2 − 1 𝜔𝑛𝑥0

2𝜔𝑛 𝜁2 − 1
𝐵 =

𝑣0 − 𝜁 − 𝜁2 − 1 𝜔𝑛𝑥0

2𝜔𝑛 𝜁2 − 1

X

0

t

X0

v0
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Comparison of motion with different types of 
damping
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Energy dissipated in viscous damping
In a viscously damped system, the rate of change of energy with time (dW/dt) is given by

𝑑𝑊

𝑑𝑡
= force x velocity = 𝐹𝑣 = − 𝑐𝑣 𝑣 = −𝑐

𝑑𝑥

𝑑𝑡

2

∆𝑊 = න
0

2𝜋/𝜔𝑑

−𝑐
𝑑𝑥

𝑑𝑡

2

𝑑𝑡 = න
0

2𝜋/𝜔𝑑

−𝑐 𝜔𝑑 cos 𝜔𝑑𝑡
2𝑑𝑡 = න

0

2𝜋

−𝑐 𝜔𝑑)(cos(𝜔𝑑𝑡)
2𝑑(𝜔𝑑𝑡)

In the case of a damped system, simple harmonic motion, 𝑥 = 𝑋 𝑠𝑖𝑛 𝜔𝑑𝑡

∆𝑊 = 𝜋𝑐 𝜔𝑑𝑋
2

This shows that the energy dissipated is proportional to the square of the amplitude of motion and 𝜔𝑑.

This term is called 
specific damping 
capacity

∆𝑊

𝑊
=
𝜋𝑐 𝜔𝑑𝑋

2

1
2
𝑚𝜔𝑑

2𝑋2
= 2

2𝜋

𝜔𝑑

𝑐

2𝑚
= 4𝜋𝜁 ≈ 2𝛿

The energy loss in each cycle can be compute dividing by the maximum kinetic or potential energy 
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Formula Sheet for
Free vibration

A(m)

k c

X …measured from SEP

)(tfxkxcxm eee =++ 

mtfxxx nn /)(=++ 22 

)()()( txtxtx ph +=Governing

equation

n

n
T




2
=nn f= 2

e

e
n

m

k
=

ee

e

km

c

2
=21  −= nd

Response : 

Important parameters

Undamped

systems

ABBAX /tan, 122

0

−=+= ( ) −= tXx ncos0

tBtAx nn  sincos +=
0xA = nvB /0=

X

Tn

t

X0

v0

Underdamped

systems ( ) dnxvB  /00 +=

𝜁 < 1 ( )
−=

−
teXx d

tn cos0

tBetAex d

t

d

t nn  
sincos

−−
+=

0xA =

𝜁 = 0

Critically damped

systems

Overdamped

systems

𝜁 = 1

𝜁 > 1

tX0

Td

𝜁 =
𝛿

4𝜋2 + 𝛿2

tt nn BteAex
 −−

+=
nxvB 00 +=

0xA =

0
t

( )
12

1
2

0

2

0

−

−++
=





n

nxv
A

( ) ( )tt nnnn BeAex
11 22 −−−−+−

+=


( )
12

1
2

0

2

0

−

−−−
=





n

nxv
B

𝛿 = ln
𝑥(𝑡1)

𝑥(𝑡2)
=

2𝜋𝜁

1 − 𝜁2

specific damping capacity

Dissipated

energy, viscous

damping system

∆𝑊 = 𝜋𝑐 𝜔𝑑𝑋
2 ∆𝑊

𝑊
= 4𝜋𝜁 ≈ 2𝛿

𝛿 =
1

𝑛
ln

𝑥(𝑡1)

𝑥(𝑡𝑛+1)

ABBAX /tan, 122

0

−=+= 
d

d
T




2
=

specific damping 

capacity
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Mechanical Vibrations

Coulomb and Hysteretic Damping

Prof. Carmen Muller-Karger, PhD

Florida International University 

Figures and content adapted from 

Textbook: Singiresu S. Rao.  Mechanical Vibration, Pearson sixth edition.

Chapter 2: Free vibrations of a sigle degree of freedom system  
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Free Vibration with Coulomb Damping
Coulomb damping arises when bodies slide on dry 
surfaces.

The force required to produce sliding is proportional to 
the normal force acting in the plane of contact. 

𝐹 = 𝜇𝑁 = 𝜇𝑊 = 𝜇𝑚𝑔

The value of the coefficient of friction depends 
on the materials in contact and the condition of 
the surfaces in contact.

The friction force acts in a direction opposite to the 
direction of velocity. 

Equation of Motion is a piecewise function

𝑚 ሷ𝑥 + 𝑘𝑥 = −𝜇𝑁ሶ𝑥 positive

𝑚 ሷ𝑥 + 𝑘𝑥 = 𝜇𝑁ሶ𝑥 negarive

can be expressed as a single equation (using signum 
function)

𝑚 ሷ𝑥 + 𝜇𝑚𝑔 𝑠𝑖𝑔𝑛 ሶ𝑥 + 𝑘𝑥 = 0
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Free Vibration with Coulomb Damping
The equation of motion:

For the solution we will assume the equation of motion is a piecewise function

𝑚 ሷ𝑥 + 𝜇𝑚𝑔 𝑠𝑖𝑔𝑛 ሶ𝑥 + 𝑘𝑥 = 0

where 𝑠𝑖𝑔𝑛 ሶ𝑥 value is defined as: 
1 for ሶ𝑥 >0, -1 for ሶ𝑥 <0, and 0 for ሶ𝑥 =0

𝑚 ሷ𝑥 + 𝑘𝑥 = −𝜇𝑚𝑔

1. When ሶ𝑥 >0, the sign function is positive and the equation becomes,  

and the solution is a harmonic 
motion plus a constant: 

𝑥 = 𝐴1 cos𝜔 𝑛𝑡 + 𝐴2 sin𝜔 𝑛𝑡 −
𝜇𝑚𝑔

𝑘

𝑚 ሷ𝑥 + 𝑘𝑥 = 𝜇𝑚𝑔

2. When ሶ𝑥 <0, the sign function is negative and the equation becomes,  

and the solution is a harmonic 
motion plus a constant: 

𝑥 = 𝐴3 cos𝜔 𝑛𝑡 + 𝐴4 sin𝜔 𝑛𝑡 +
𝜇𝑚𝑔

𝑘
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Free Vibration with Coulomb Damping
If we solve the equation for initial conditions x 0 = 𝑥0 and 𝒗0 = 0.
Since the mass started with an initial displacement, it moves from right to left with a negative velocity.  Starting in case 2: 

x 0 = 𝑥0 = 𝐴3 cos𝜔𝑛(0) + 𝐴4 sin𝜔𝑛(0) −
𝜇𝑁

𝑘 𝐴3 = 𝑥0 −
𝜇𝑁

𝑘

ሶ𝑥 0 = −𝐴3𝜔𝑛 sin𝜔𝑛(0) + 𝐴4𝜔𝑛𝑐𝑜𝑠𝜔𝑛(0) 𝐴4 = 0

This solution is valid for 
half the cycle only—that 

is,  for 0 < 𝑡 <
𝜋

𝜔𝑛

𝑡 =
𝜋

𝜔𝑛
𝑥

𝜋

𝜔𝑛
= 𝑥0−

𝜇𝑁

𝑘
cos𝜔𝑛

𝜋

𝜔𝑛
+
𝜇𝑁

𝑘
= − 𝑥0−

2𝜇𝑁

𝑘

When 𝑡 =
𝜋

𝜔𝑛
, the mass will be at its extreme left position and its displacement from equilibrium 

position can be found from

Since the motion started with a displacement of 𝑥0 and, in a half cycle, the value of x became − 𝑥0−
2𝜇𝑁

𝑘
, the 

reduction in magnitude of x in time 
2𝜇𝑁

𝑘
, it can be demonstrated that for the other half to the cycle the reduction 

is  
4𝜇𝑁

𝑘
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Free Vibration with Coulomb Damping important 
equations: 

The motion stops when 𝑥n<
𝜇𝑁

𝑘
, since the 

restoring force exerted by the spring (𝑘x) will 
then be less than the friction force μN. Thus 
the number of cycles (n) that elapse before the 
motion ceases is given by

Frequency is 𝜔𝑛

The amplitude reduces linearly with Coulomb 

damping and amount of:

Therefore: 

4𝜇𝑁

𝑘

𝑥n= 𝑥0 − 𝑛
4𝜇𝑁

𝑘
≤
𝜇𝑁

𝑘

𝑥𝑚= 𝑥m−1 −
4𝜇𝑁

𝑘

n ≥
𝑥0 −

𝜇𝑁
𝑘

4𝜇𝑁
𝑘

Number of 
cycles to stop

∆𝑡𝑠𝑡𝑜𝑝 = 𝑛𝜏𝑛 = 𝑛
2𝜋

𝜔𝑛
Time to stop

−

4𝜇𝑁
𝑘
2𝜋
𝜔𝑛

=
2𝜇𝑁𝜔𝑛
𝜋𝑘

Slope of the 

enveloping 
straight lines
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Free Vibration with Hysteretic Damping

• Also called solid or structural damping, 
is caused by the friction between the 
internal planes that slip or slide inside 
the material. 

• This causes a hysteresis loop to be 
formed in the stress-strain or force-
displacement curve. The energy loss in 
one loading and unloading cycle is equal 
to the area enclosed by the hysteresis 
loop.

• It was found experimentally that the 
energy loss per cycle due to internal 
friction is independent of the frequency 
but approximately proportional to the 
square of the amplitude.
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Free Vibration with Hysteretic Damping

𝑐 =
ℎ

𝜔
𝑚 ሷ𝑥 +

ℎ

𝜔
ሶ𝑥 + 𝑘𝑥 = 0

The damping coefficient c is assumed to be inversely 
proportional to the frequency, where h is called the 
hysteresis damping constant.

∆𝑊 = 𝜋ℎ 𝑋2

Energy loss for viscous damping 

Another dimensionless constant used to describe the 

hysteric damping is

𝛽 =
ℎ

𝑘
∆𝑊 = 𝜋𝑘𝛽 𝑋2Energy loss in term of 𝛽

The motion can be considered to be nearly 
harmonic, and the decrease in amplitude per cycle 
can be determined using energy balance. 

Vibrating frequency is 𝜔𝑑

The equivalent viscous 

damping is 𝜁𝑒𝑞 =
𝛽

2
=

ℎ

2𝑘

Logarithmic decrement 𝛿 = ln
𝑋𝑗

𝑋𝑗+1
≈ ln(1 + π𝛽) ≈ π𝛽 ≈ 2𝜋𝜁𝑒𝑞 =

πℎ

𝑘

∆𝑊 = 𝜋𝑐 𝜔𝑑𝑋
2

In term of h: 

𝑥 = 𝑥0𝑒
−𝜁𝜔𝑛𝑡 cos𝜔𝑑𝑡 +

𝑣0 + 𝑥0𝜁𝜔𝑛
𝜔𝑑

𝑒−𝜁𝜔𝑛𝑡 sin𝜔𝑑𝑡
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Free Vibration with Hysteretic Damping
Characteristics of the hysteretic loop:

• The graph force- deflection is usually obtained from 
experimental measurements on a structure. 

• The energy dissipated ∆𝑊 in a cycle is the area 
enclosed by the hysteresis loop. 

• The constant of the spring k is the slope of the force-
deflection curve.

• The graph give information about the maximum 
deflection of the response. 

• Using the equation for work we can related the energy 
loss with the damping constant and the logarithmic 
decrement. 

• Under hysteretic damping the system behaves as 
underdamped and the response is similar to the a 
viscous damping system.

Approximate the area using a square and 2 triangles.

𝐴𝑅𝐸𝐴 = ∆𝑊

Max. deflection= 8 mm
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Free Vibration with Hysteretic Damping, important 
equations: 

∆𝑊 = Area in hysteretic loop

𝛽 =
ℎ

𝑘

𝛿 = 𝑙𝑛
𝑋𝑗

𝑋𝑗+1
≅ 𝑙𝑛 1 + π𝛽 ≅ π𝛽 =

πℎ

𝑘

𝜁𝑒𝑞 =
𝛽

2
=

ℎ

2𝑘

𝑥 = 𝑥0𝑒
−𝜁𝜔𝑛𝑡 cos𝜔𝑑𝑡 +

𝑣0 + 𝑥0𝜁𝜔𝑛
𝜔𝑑

𝑒−𝜁𝜔𝑛𝑡 sin𝜔𝑑𝑡
When the system is underdamped the answer 
would same as a viscous damping system: 

𝑐 =
ℎ

𝜔
Damping coefficient:

Dimensionless damping constant:

Energy loss :  ∆𝑊 = 𝜋ℎ 𝑋2 = 𝜋𝑘𝛽 𝑋2

Logarithmic decrement: 𝑋𝑗

𝑋𝑗+1
=
2 + 𝜋𝛽

2 − 𝜋𝛽
≅ 1 + π𝛽 𝛿 =

1

𝑛
𝑙𝑛

𝑋𝑜
𝑋𝑛

Damping ratio: 𝛿 ≅ 2𝜋𝜁𝑒𝑞 ≅ π𝛽 𝑐𝑒𝑞 = 𝑐𝑐𝜁𝑒𝑞 = 2 𝑚𝑘
𝛽

2
= 𝛽 𝑚𝑘 =

ℎ

𝑘
𝑚𝑘 =

ℎ

𝜔

Equivalent spring constant:  𝑘= Slope of hysteretic loop
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Mechanical Vibrations

Stability on Vibrating Systems

Prof. Carmen Muller-Karger, PhD

Florida International University 
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Chapter 2: Free vibrations of a sigle degree of freedom system  
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Stability of vibrating systems
• A system is said to be stable if its free-vibration 

response neither decays nor grows, but remains 
constant or oscillates as time approaches infinity. 

• A system is defined to be asymptotically stable if 
its free-vibration response approaches zero as 
time approaches infinity. 

• A system is considered to be unstable if its free-
vibration response grows without bound as time 
approaches infinity. 

• An unstable system can cause damage to the 
system, adjacent property, or human life. 
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Stability of vibrating systems
• The static equilibrium position of a system can be found by 

setting velocity and acceleration equals to zero in the 
equation of motion: ሷ𝑥 = 0, ሶ𝑥 = 0

• At the equilibrium position the potential energy is minimum, therefore static equilibrium 
position of a system can be found by setting the derivative of the potential energy 
respect to position equal to zero: 

ቝ
𝑑𝑈

𝑑𝑥
𝛿𝑠𝑡

= 0

𝑈 =
1

2
𝑘 𝑥 2 −𝑚𝑔(𝑥)

𝑑𝑈

𝑑𝑥
=
2

2
𝑘 𝑥 − 𝑚𝑔 = 0

𝑥 = 𝛿𝑠𝑡 =
𝑚𝑔

𝑘𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘(𝑥) − 𝑚𝑔 = 0

𝑥 = 𝛿𝑠𝑡 =
𝑚𝑔

𝑘
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Stability of vibrating systems
Stability of a system can be explained in terms of its energy. 
According to this scheme, a system is considered to be 
asymptotically stable, stable, or unstable if its energy decreases, 
remains constant, or increases, respectively, with time. 

The static equilibrium position will be stable following the behavior 
of the second derivative of the potential energy respect to position: 

𝜕2𝑈

𝜕𝑥2
> 0

𝜕2𝑈

𝜕𝑥2
= 0

𝜕2𝑈

𝜕𝑥2
< 0
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Stability of vibrating systems

• We can also describe the stability  of the system according to the signs 
of the coefficients of the characteristic equation

𝑚𝑠2 + 𝑐𝑠 + 𝑘 =0 𝑠1,2 =
−𝑐

2𝑚
±

𝑐

2𝑚

2

−
𝑘

𝑚
𝑥(𝑡) = 𝐶1𝑒

𝑠1𝑡+ 𝐶2𝑒
𝑠2𝑡

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 0

Governing Equation

𝑥(𝑡) = 𝐶𝑒𝑠𝑡

Solution is of the form:

• If the exponential is positive the response 
may grow without bounds. 

Characteristic equation :
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Example Consider a uniform rigid bar, of mass m and length L, pivoted at one end and connected 
by one spring at the other end and one damper at the middle of the bar. Assuming that 
the spring is unstretched when the bar is vertical, derive the equation of motion of the 
system for small angular displacements (θ) of the bar about the pivot point, and 
investigate the stability behavior of the system.
For small angular displacements the spring and the damper are considered to be always 
horizontal. 

STEPS FOR THE ANALYSIS:

1. Derive the equation of motion of the 
system for small angular displacements 
(θ) 

2. Find the equilibrium position, 
3. Analysis of stability
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Example  (cont.)

FBD

ሶ𝜃𝑙𝑐𝑜𝑠𝜃𝑙𝑐𝑜𝑠𝜃 + 𝑘4𝑙 sin 𝜃 𝑙𝑐𝑜𝑠𝜃 − 𝑚𝑔𝑙𝑠𝑖𝑛𝜃 = −
1

3
𝑚 2𝑙 2 ሷ𝜃

෍𝑀𝑜𝑧 = −𝑚𝑔𝑙𝑠𝑖𝑛𝜃 + ሶ𝜃𝑐𝑙𝑐𝑜𝑠𝜃𝑙𝑐𝑜𝑠𝜃 + 𝑘2𝑙 sin 𝜃 2𝑙𝑐𝑜𝑠𝜃 = −𝐽𝑜 ሷ𝜃

Governing Equation

4

3
𝑚𝑙2 ሷ𝜃 + ሶ𝜃𝑐𝑙2(𝑐𝑜𝑠𝜃)2 + 4𝑘𝑙2 sin 𝜃 𝑐𝑜𝑠𝜃 − 𝑚𝑔𝑙𝑠𝑖𝑛𝜃 = 0

ሷ𝜃 = 0, ሶ𝜃 = 0Equilibrium positions

4𝑘𝑙2 sin 𝜃 𝑐𝑜𝑠𝜃 − 𝑚𝑔𝑙𝑠𝑖𝑛𝜃 = 0

4𝑘𝑙2𝑐𝑜𝑠𝜃 − 𝑚𝑔𝑙 𝑠𝑖𝑛𝜃 = 0

𝜃1 = 0°
𝜃2 = 180°

𝜃3,4 = ±cos−1
𝑚𝑔

4𝑘𝑙

Applying Equation of Motion.   Moment respect to point “0” 
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Example (cont.) 

Equilibrium position

This is a nonlinear governing equation: 

4

3
𝑚𝑙2 ሷ𝜃 + ሶ𝜃𝑐𝑙2(𝑐𝑜𝑠𝜃)2 + 4𝑘𝑙2 sin 𝜃 𝑐𝑜𝑠𝜃 − 𝑚𝑔𝑙𝑠𝑖𝑛𝜃 = 0

sin 𝜃 ≈ 𝜃
cos 𝜃 ≈ 1For small rotational displacements: 

4

3
𝑚𝑙2 ሷ𝜃 + ሶ𝜃𝑐𝑙2 + 4𝑘𝑙2 −𝑚𝑔𝑙 𝜃 = 0

The equation of motion becomes linear for equilibrium position 𝜽 = 𝜽𝟏 = 𝟎°

𝑚𝑒𝑞 =
4

3
𝑚𝑙2 𝑘𝑒𝑞 = 4𝑘𝑙2 −𝑚𝑔𝑙𝑐𝑒𝑞 = 𝑐𝑙2

The equation can be written as the typical 2nd order differential equation: 

𝑚𝑒𝑞
ሷ𝜃 + 𝑐𝑒𝑞 ሶ𝜃 + 𝑘𝑒𝑞𝜃 = 0

𝑠1,2 =
−𝑐𝑒𝑞
2𝑚𝑒𝑞

±
𝑐𝑒𝑞
2𝑚𝑒𝑞

2

−
𝑘𝑒𝑞
𝑚𝑒𝑞𝜃(𝑡) = 𝐶𝑒𝑠𝑡 𝑚𝑒𝑞𝑠

2 + 𝑐𝑒𝑞𝑠 + 𝑘𝑒𝑞 𝐶𝑒𝑠𝑡 = 0

The solution has the form: The characteristic polynomial: 

Roots of the polynomial: 

𝜽 = 𝜽1 = 𝟎°
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Equation of motion for Equilibrium position 𝜃1 = 0

4

3
𝑚𝑙2 ሷ𝜃 + ሶ𝜃𝑐𝑙2 + 4𝑘𝑙2 −𝑚𝑔𝑙 𝜃 = 0

The spring is capable to overcome the weight. 

Solution CASE 1 : Radical is negative, 𝒔𝟏,𝟐 are complex , the system is STABLE and oscillates around the equilibrium position 

𝑘𝑒𝑞
𝑚𝑒𝑞

=
3 4𝑘𝑙2 −𝑚𝑔𝑙

4𝑚𝑙2
> 0 4𝑘𝑙2 > 𝑚𝑔𝐿

𝜃(𝑡) = 𝐴𝑒−𝜁𝜔𝑛𝑡 cos𝜔𝑑𝑡 + 𝐵𝑒−𝜁𝜔𝑛𝑡 sin𝜔𝑑𝑡

Solution CASE 2 : Radical is zero, 𝒔𝟏,𝟐 are real and negative , the system is STABLE the system is in critical damping. 

𝜃(𝑡) = 𝐴𝑒−𝜔𝑛𝑡 + 𝐵𝑡𝑒−𝜔𝑛𝑡𝑠1,2 =
−𝑐𝑒𝑞
2𝑚𝑒𝑞

Solution CASE 3 : Radical is positive, 𝒔𝟏,𝟐 are real and one is positive, the system is UNSTABLE. 

𝑘𝑒𝑞
𝑚𝑒𝑞

=
3 4𝑘𝑙2 −𝑚𝑔𝑙

4𝑚𝑙2
< 0 4𝑘𝑙2 < 𝑚𝑔𝑙 𝜃(𝑡) = 𝐴𝑒𝑠1𝑡 + 𝐵𝑒𝑠2𝑡

The spring is NOT capable to 
overcome the weight, 𝜃 𝑡
increases exponentially . 

Example (cont.)

𝑠1,2 =
−𝑐𝑒𝑞
2𝑚𝑒𝑞

±
𝑐𝑒𝑞
2𝑚𝑒𝑞

2

−
𝑘𝑒𝑞
𝑚𝑒𝑞

𝑚𝑒𝑞𝑠
2 + 𝑐𝑒𝑞𝑠 + 𝑘𝑒𝑞 𝐶𝑒𝑠𝑡 = 0𝜽 = 𝜽1 = 𝟎°
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Example  (cont.)

ሶ𝜃𝑙𝑐𝑜𝑠𝜃𝑙𝑐𝑜𝑠𝜃 + 𝑘4𝑙 sin 𝜃 𝑙𝑐𝑜𝑠𝜃 − 𝑚𝑔𝑙𝑠𝑖𝑛𝜃 = −
1

3
𝑚 2𝑙 2 ሷ𝜃

෍𝑀𝑜𝑧 = −𝑚𝑔𝑙𝑠𝑖𝑛𝜃 + ሶ𝜃𝑐𝑙𝑐𝑜𝑠𝜃𝑙𝑐𝑜𝑠𝜃 + 𝑘2𝑙 sin 𝜃 2𝑙𝑐𝑜𝑠𝜃 = −𝐽𝑜 ሷ𝜃

Governing Equation

4

3
𝑚𝑙2 ሷ𝜃 + ሶ𝜃𝑐𝑙2(𝑐𝑜𝑠𝜃)2 + 4𝑘𝑙2 sin 𝜃 𝑐𝑜𝑠𝜃 − 𝑚𝑔𝑙𝑠𝑖𝑛𝜃 = 0

ሷ𝜃 = 0, ሶ𝜃 = 0Equilibrium positions

4𝑘𝑙2 sin 𝜃 𝑐𝑜𝑠𝜃 − 𝑚𝑔𝑙𝑠𝑖𝑛𝜃 = 0

4𝑘𝑙2𝑐𝑜𝑠𝜃 − 𝑚𝑔𝑙 𝑠𝑖𝑛𝜃 = 0

𝜃1 = 0°
𝜃2 = 180°

𝜃3,4 = ±cos−1
𝑚𝑔

4𝑘𝑙

Applying Equation of Motion.   Moment respect to point “0” 
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Example 
𝜽 = 𝜽𝟐 = 𝟏𝟖𝟎° = 𝝅

Equilibrium position

This is a nonlinear governing equation: 

4

3
𝑚𝑙2 ሷ𝜃 + ሶ𝜃𝑐𝑙2(𝑐𝑜𝑠𝜃)2 + 4𝑘𝑙2 sin 𝜃 𝑐𝑜𝑠𝜃 − 𝑚𝑔𝑙𝑠𝑖𝑛𝜃 = 0

sin 𝛼 ≈ 𝛼
cos 𝛼 ≈ 1

For small rotational displacements  of 𝛂 respect to the equilibrium position: 

The equation can be written in term of 𝛂: 

𝜽

Change of variable 𝛉 = 𝛂 + 𝝅, ሷ𝜶 = ሷ𝜽, ሶ𝜶 = ሶ𝜽,

𝜶

4

3
𝑚𝑙2 ሷ𝛼 + ሶ𝛼𝑐𝑙2(cos(α + 𝜋))2 + 4𝑘𝑙2 sin(α + 𝜋) 𝑐𝑜𝑠(α + 𝜋) − 𝑚𝑔𝑙𝑠𝑖𝑛(α + 𝜋) = 0

sin(α + 𝜋)= sin(α) cos(𝜋)+ cos α sin 𝜋 = −sin α ≈ −𝛼

cos(α + 𝜋)= cos(α) cos(𝜋) − sin(α) sin 𝜋 = − cos α ≈ −1

4

3
𝑚𝑙2 ሷ𝛼 + ሶ𝛼𝑐𝑙2(−1)2 + 4𝑘𝑙2(−𝛼) (−1) − 𝑚𝑔𝑙 (−α) = 0

4

3
𝑚𝑙2 ሷ𝛼 + 𝑐 𝑙2 ሶ𝛼 + 4𝑘𝑙2 +𝑚𝑔𝑙 (α) = 0

The equation of motion becomes linear for equilibrium position, in term of 𝛂:  
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Example 
𝜽 = 𝜽𝟐 = 𝟏𝟖𝟎° = 𝝅

Equilibrium position

𝜽

𝜶

4

3
𝑚𝑙2 ሷ𝛼 + 𝑐 𝑙2 ሶ𝛼 + 4𝑘𝑙2 +𝑚𝑔𝑙 (α) = 0

The equation of motion becomes linear for equilibrium position, in term of 𝛂:  

𝑚𝑒𝑞 =
4

3
𝑚𝑙2 𝑘𝑒𝑞 = 4𝑘𝑙2 +𝑚𝑔𝑙𝑐𝑒𝑞 = 𝑐𝑙2

The equation can be written as the typical 2nd order differential equation: 

𝑚𝑒𝑞
ሷ𝜃 + 𝑐𝑒𝑞 ሶ𝜃 + 𝑘𝑒𝑞𝜃 = 0

𝑠1,2 =
−𝑐𝑒𝑞
2𝑚𝑒𝑞

±
𝑐𝑒𝑞
2𝑚𝑒𝑞

2

−
𝑘𝑒𝑞
𝑚𝑒𝑞

𝜃(𝑡) = 𝐶𝑒𝑠𝑡

𝑚𝑒𝑞𝑠
2 + 𝑐𝑒𝑞𝑠 + 𝑘𝑒𝑞 𝐶𝑒𝑠𝑡 = 0

The solution has the form: 

The characteristic polynomial: 

Roots of the polynomial: 

Solution: Radical is always less than first term, the system is STABLE and oscillates around the equilibrium 
position 

𝑘𝑒𝑞
𝑚𝑒𝑞

=
3 4𝑘𝑙2 +𝑚𝑔𝑙

4𝑚𝑙2
> 0

−𝑐𝑒𝑞
2𝑚𝑒𝑞

>
𝑐𝑒𝑞
2𝑚𝑒𝑞

2

−
𝑘𝑒𝑞
𝑚𝑒𝑞

𝑠1,2 = 𝑏𝑜𝑡ℎ 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
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Example 
𝜽 = 𝜽𝟐 = 𝟏𝟖𝟎° = 𝝅

Equilibrium position

𝜽

𝜶

4

3
𝑚𝑙2 ሷ𝛼 + 𝑐 𝑙2 ሶ𝛼 + 4𝑘𝑙2 +𝑚𝑔𝑙 (α) = 0

The equation of motion becomes linear for equilibrium position, in term of 𝛂:  

𝑚𝑒𝑞 =
4

3
𝑚𝑙2 𝑘𝑒𝑞 = 4𝑘𝑙2 +𝑚𝑔𝑙𝑐𝑒𝑞 = 𝑐𝑙2

With the definitions: 

𝑥(𝑡) =

𝜁 = 0, 𝑥(𝑡) = 𝑋0 cos 𝜔 𝑛𝑡 − 𝜙

𝜁 < 1, 𝑥(𝑡) = 𝑋0𝑒
−𝜁𝜔𝑛𝑡 cos 𝜔 𝑑𝑡 − 𝜙

𝜁 = 1, 𝑥(𝑡) = C1𝑒
−𝜔𝑛𝑡 + C2𝑡𝑒

−𝜔𝑛𝑡

𝜁 > 1, 𝑥(𝑡) = C1𝑒
−𝜁𝜔𝑛+𝜔𝑛 𝜁2−1 𝑡

+ C2𝑒
−𝜁𝜔𝑛−𝜔𝑛 𝜁2−1 𝑡

𝜁 =
𝑐𝑒𝑞

2 𝑘𝑒𝑞𝑚𝑒𝑞

𝜔𝑛 =
𝑘𝑒𝑞
𝑚𝑒𝑞

𝜔𝑑 = 𝜔𝑛 1 − 𝜁2

The solution is STABLE and could be any of the following depending on the 
parameters of the system : 


