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Learning Objectives

e Define Free Vibrations

* Derive the equation of motion of a single-degree-of-freedom system
using different approaches as Newton’s second law of motion and the
principle of conservation of energy.

* Linearize a nonlinear equation of motion.

* Solve a spring-mass-damper system for different types of free-vibration
response depending on the amount of damping.

 Compute the natural frequency, damping ratio, and frequency of
damped vibration.

* Find the responses of systems with Coulomb and hysteretic damping.
* Determine the stability of a system.



Free Vibration

A system is said to undergo free vibration when it oscillates only under
an initial disturbance with no external forces acting afterward.

Examples:
* Achildin aswing
* A Pendulum or
* Inverted pendulum




Single Degree of Freedom (SDOF) system

* One coordinate (x) is sufficient to e EXAMPLE: All parameter in term of x.
specify the position of the mass at any
time. Pulley, mass mpmetm ;ﬁ ‘S’_»X(t) i
« Several mechanical and structural e § e E
systems can be idealized as single- | 0'li> - T
degree-of-freedom systems. In many Fglae ol N
practical systems, the mass is T h
distributed, but for a simple analysis, it . -
can be approximated by a single point % =D+
mass. Q e Slip? - / — \1\Rigid link 2 (mass 1,)

xot) <—1F b !

* The study of the free vibration of
undamped and damped single-degree-
of-freedom systems is fundamental to N
. 6., = - _
the_ungler.f.tano.llng of more advanced P ! m 2= Oc = .
topics in vibrations.



Undamped SDOF system o

When there is no element T /
that causes dissipation of |
energy during the motion 0o
of the mass: T -

(a) Idealization of the
tall structure

* The amplitude of motion
remains constant with

X

time. k —
. \ 700000 m :
*Th b | \
e SySt e m V I ra te S a t (a) Slider-crank- (b) Spring-mass system (c) Torsional system
spring mechanism

its natural frequency



Governing equation of an
undamped SDOF system using
equation of motion
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(b) Spring-mass system
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(¢) Torsional system
(c) Torsional system
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Governing equation using Principle T+ U = constant

. d
of Conservation of Energy T+ =0
e : i Potential energy for
+y S o
. Potential energy pring Kinetic energy
for Weight FM’WWM‘_Q
Uiz = WAy 1 , 1 2 1 2.1 205 L (— =
Ui—2 = Ek(SZ) - Ek(sl) T = Em(vp) +§Ipzz(wz) Ty (@, X mig)

m(x)x +k(x)x=0

1
x U =k(x0)* /&[k(x)x

k |'_> [mx + kx] x =0
—0000—  m .
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(b) Spring-mass system
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Equation of Motion of a Spring- 8

Mass System in Vertical Position

0 ) T __ Static eq'l.tl‘ilibrium
At rest, the mass will hang in a position called the static equilibrium l m m _Finalp:;;:;
position. Y l =
In this position the length of the springis [, + &4, where §4; is the W = mg
static deflection—the elongation due to the weight W of the mass m. (a)
FBD=KD Using equation of motion Since )
Fs = k(65 +x)
‘ ZFx=5@+x>—mg/=mﬁc‘ k(8se) = mg - R
- mx
I Using energy method With x measure
l U =lk(65t+x)2 —mg(8s¢ +X) d—U= k(8g; + x)x —mg(x) = [kx +/5/ —y@x i
wmg > a1t st st fron7 .stqtlc
equilibrium
1 position
T=5m@®’ % = m(x)¥ [m# + kx] % =0

.~



Solution to the equation of motion  [EEFE=a

* The solution of this second order differential equation can be found by assuming

_

x = Cest
* Since CeSt cannot be zero, what is in parenthesis which
® 2 St —_— . . . . ! . .
x = sCe"t = (ms T k)Ce =0 is the characteristic equation is zero. The solution
¥ = s2Cest represent the eigenvalues of the equation

« Characteristic equation: * We define the natural frequency as

k

k . :
(TI’LS2 + k)=0 =) S;,=+|—— =) Sip=Fi|— = S12= Tiwy,
) m m

* The solution becomes:




Solution to the equation of motion pEwE= -

 Recall Euler formula that establishes the fundamental relationship between the trigonometric functions and

the complex exponential function:
x = Ce" = C(cos(s) + isin(s))

* The solution becomes:

x = Ciet¥nt + C et = C, (cosw,t + isinw,t)+C,(cosw,t — isinw,t)

x = (C; + C,) (cosw,t)+(C; — Cy)i(sinw,t)

C1=a+ib C1+C2=23 A1=Za
Cz =a—ib (Cl_Cz)l = Zblz

A
_ -1 (%2
Then _ or _ A= \JA% T A% ¢ =tan (A1>




Solution to the equation of motion pEwE= -

x(t) = Ajcosw,t + Aysinw,t | O | x(t) = Acos(w,t — @)

* For particular initial conditions:  x(0) = x, x(0) = v,

x(0) = 4, Ay =X,
x(t) = —w,A{sinw,t + w,A,cosw,t
x(0) = w4, Ay = v,/ wy

%(0) = XoC05wnt + (Vp/wa)sinwnt  or
v

_ Q= tan_1< , >

XoWn




Different ways to write the solution  pEsE=w -

vO .
. x(t) = x,cosw — | sinw
1 (t) (0] nt + nt

Wn

Velocity maximum

&b ¢ :
— —1(_Yo w, |
¢ = tan n [ Amplitud
X 5 Wy mplitude,
v
el
x(1) = A cos (w,t — &) o

, "
3. x(t)= (xoz + (:)—0> ) sin(w,t + @)

n
. P
¢ = tan‘l( - n) -

: Circular
Period Frequency Frequency
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Equation of Motion of a Spring- 8 e
Mass System in Vertical Position f

0 Y __ Static equilibrium
position
At rest, the mass will hang in a position called the static equilibrium l m m _ N
. —Final position
position. !} l +x
X
In this position the length of the springis [, + &4, where §4; is the W = mg
static deflection—the elongation due to the weight W of the mass m. (a)
FBD=KD

Fs = k(8¢ + x)

Velocity maximum

« equilibrium position

W Amplitude,
1
s T
wﬂ

x(r) = A cos (w,t — ¢)

from static
equilibrium
W =mg position

. I mi  With x measure




Position, velocity and Acceleration  psm=m -

1. Position
x(t) = Acos(w,t — @)

2. Velocity

x(t) = —wpAsin(wyt — @) The velocity leads the

e displacement by = and
x(t) = w,Acos (a)nt — @+ E) 2

| the acceleration leads the
3. Acceleration displacement by .

¥(t) = —w2Acos(wyt — @)

¥(t) = wiAcos(w,t — @ + 1)




Particular cases:

1. If the initial displacement x, is zero, the solution becomes
(t) = 2 cos  (wat —
x(t) =—cos| (w,t — =
w no2

n

2. If the initial velocity v, is zero, the solution becomes - -

x(t) = x,cos(wy,t)

3. The value of the phase angle ¢ given, needs to be calculated with care. Tan ¢ can be positive when

both x, and :)—O are either positive or negative.
n

Thus, we need to use the first quadrant value of ¢ when both x, and :)—0 are positive and the third quadrant value
n
of ¢ when both x, and :)—O are negative. Similarly, since tan ¢ can be negative when x, and :)—" have opposite
n n

signs, we need to use the second quadrant value of ¢ when x, is negative and :)—" is positive and the fourth

n

quadrant value of ¢ when x, is positive and :)—0 is negative.
n




Natural frequency for Equivalent systems

N
N —
N0~ e
\\ oo * For any other system, we will find
N . the governing equation and if we
Spring-mass system are able to write it in the following
form:

* We define the natural frequency as

* We define the natural frequency as




Free Vibration of an Undamped Torsional System

FBD=KD

t<— Shaft

e d

Also called torsional pendulum.

From the theory of torsion of circular shaft, we have the relation

Gl,
Mt = kte == TB

where M; is the torque that produces the twist 6, G is the shear
modulus, | is the length of the shaft, I, is the polar moment of

inertia of the cross section of the shaft, and d is the diameter of
the shaft.
B md?

lo =37

torsional spring with a torsional spring constant
M, Gl, Gnd*
6 1 321

kt=

The polar mass moment of inertia of a disc is given by
_ phnD* WD?
° 32 = 32

where p is the mass density, h is the thickness, D is the diameter,
and W is the weight of the disc




Free Vibration of an simple Pendulum

Simple Pendulum Using Newton’s Law:

— L
1

ZFt = —mgsing = mlé

FBD=KD

Using Conservation of Energy: ml2(0)6 + mgl(sin®)6=0

U =mgl(1 — cost) Z—IZ = mgl(sin6)6
[ml@ + mg(sinf) ]l@ =0
1 . .
_ _ 2 o
T = 2m(lé?) % _ %mlz(é)é Since: 0 +0

>_

for small angular displacements,
we linearize the equation using :

Linearized equation of motion:

Natural frequency:




Free Vibration of an Compound Pendulum

Compound Pendulum Any rigid body pivoted at a point other than its center of mass will
oscillate about the pivot point under its own gravitational force

Using Newton’s Law:

z M,, = —Wdsin6 = J,0

Linearized equation of motion: Natural frequency: In terms of radius of gyration:

Equivalent length of a compound
pendulum compared to a simple
pendulum :




Effect of Mass of a Spring

1

 Static analysis: we will assume _=_+_+ +__n_
that we have n spring on series kr ki ke fn ki
5, = msgm =D 1 peflection of first spiral due to the weight
n nkr  of the rest of the spring below
ki - nkT
_myg(n—2) 1 Deflection of second spiral due to the
mg 8z = n nk; weight of the rest of the spring below
m; = —
n
b 1 5 = msg(n—1i) 1  Deflection of i spiral due to the weight
¢ n nkr  of the rest of the spring below
l 5, =0 Last spiral does not have any deflection
2 5 stg(n D1 msg Z( )
= n—i
i ’ kr
n n
Z(n—i) _nla;+a) nfn—-1)+0] nn-1)
_ B 2 N 2 T2
mggn(n—1) l (n—1) . P
6T ZkT le logn—wo n =1 T 2kT

For a limit of oo spirals the deflection
half the mass. Therefore would be
equivalent to place a concentrated mass
of 1/2 the mass of the spring at the end.

L S

k,mg = é k
mS
2

x(1)



Effect of Mass of a Spring

Would be equivalent to place a

* Dynamic analysis: we will . concentrated mass of 1/3 the mass of
assume a differential of mass | the spring at the end.
dmg atd Y
s A P4 omy B ,
T ay
d _ mg d Ay
x(1)
* We assume linear velocity along the y . ,
spring, therefore the velocity of the Vay = Tx L, L
differential dy is:
e The kinetic energy : kmg, = k
Clma2 4 22 dme = i + L (2 ) M
T =-mx +2f0(lx) dmg =-mx +2f0(lx) =dy
1 1mgx?y3 b 1mg ()3 m m+ %
T = = ¢ 2 - —_ = — - 2 27 y2
Mt T 3| T2 Ty e l
0

x(1)

1 mg
T == — | %2
2[m+ 3 b



Examples of natural frequency

For a torsional system

" FBD and KD Equation of Motion o
ka F,=k, x ki k
[t mit Ot k)x =0 b = 2,
(2R,L) t1 t2
A(m) X l lmx keq = kl + k2
Bar
% k, T F o= kox (R.L) Gy
1=K ke =
N kl + kz 5 te L;
Wn = o A(m,R)
Bar
(RL)
Equation of Motion V7 Equation of Motion
AR FBD and KD
§ k3 TFg == k3 X
A(m) Xl l mi kik, + ksky + ksk, k,, = keikez + keskey + keskeo
— q
keq = kep + kea
I K + Ky
ky e ke
Y27k +k
p 1 2
X l koky + kaky + ksk, o [kake + keke + keke
w, = n
\mz " (k1 + ky)m (k1 + ke2)lo
N




Natural frequency of pulley system

CHL LS LTS LM o
Ideal pulleys have no
mas and no friction
FBD1 - T
k, Ff =2T — kyAF =0
= k
KAF
Pulley
FBD 2 KkAC
Ff = =2T + k,AC =0
Analysis of motion, G 2T
is a fixed point. D B AC = k_z
m AE=2AF
T T
G E
Relation of displacement of mass
respect to center of pulleys
D B _, 2T o 2T\ 4T (ky + ky)
LIS SLLT S AB=2AC * ky kp)  kiko

x=AB= 2AF+2AC

Solving for Tension T
X (kiky)
4(ky + k1)

FBD 3
A(m) lx Ff =T —mg = —m#
mg
(kikz)
FE 1tz — —m¥
T kl)x mg mx

Equation of Motion
mg cancel out if

you take x respect
to the equilibrium
position

Natural Frequency

wnz\/::lT; ‘ -
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Free vibration with viscous damping

i

The viscous damping force F is proportional to
the velocity and can be expressed as

K L ‘
T T F=—-—cv=—cx

where c is the damping constant or coefficient of
viscous damping and the negative sign indicates
l that the damping force is opposite to the
direction of velocity.

+x
System Free-body diagram

_ Equation of Motion
Using Newton’s Law

Skt et omg=mE k(o) = mg mi ok thr=0

With x measure from static equilibrium position (EP)



Solution to the equation of motion  [mEcsE=0

* The solution of this second order differential equation can be found by assuming

_

x = Ce*t

2 K)CeSt = 0 * Since C et cannot be zero, we have the characteristic
x = sCe*St — (ms tes+ ) e = equation, which solution represent the eigenvalues of
%= s2Cest the equation

I

* Characteristic equation:

— 2k —C c\¢ k
2 _ —c++Vc? —4mk _ ¢ (L) _ __ - (_) _ -
(ms + cs + k)—O -—) S12 = =) | S1 m +\/ m m S2 om om m

2m

* The solution becomes:

x = Ces1t+ C ezt




Critical damping constant, damping ratio

The critical damping ¢, is defined as the
value of the damping constant c for
which the radical becomes zero:

L » Natural
“n= I frequency
c. =2vkm » Ciritical damping
constant
c c

» Damping ratio

mxX+cx+kx=0

» Divide by the mass

# 4<% +~x =0
m m

_—c_l_ (6)2 k
Sl’z_Zm_ 2m m

» Some algebra:

i _ ZC\/E _ 5
m g o

___* The equation and solution in term of w,, and { becomes:




Types of solution will depends upon the magnitude of
damping

CASES  TYPE OF SYSTEMS TYPE OF SOLUTION VALUE OF THE ROOTS TYPE OF MOTION

Conjugate imaginary
1 Undamped ¢=0 roots, no real part in the S12 = Twyl Oscillatory
solution

Conjugate imaginary

2 Underdamped ¢<1 roots, with real part in S1p = —(w, + wyifJ1 — {2 Oscillatory

the solution
3 SC;’fclec;IIy damped (=1 z;zf;lroots real and S12 = —(wy No oscillatory
— — [72 —
4 Overdamped ¢>1 Two different real roots 51,2 (wn T Wpy/¢ 1 No oscillatory

system




Case 1. Undamped System (=0 5
k
Equation of Motion x measure from static equilibrium position (EP) _
. (0]
Value for the roots:  S1,2 = Twpl l N
Solution to the EoM: x = ge'®nt 4+ pe~@nt x

x = a(cos Wnt + isinwy,t) + b(cos w,t — i sin wyt) ) x = (a+ b)cosw,t + (a— b)isinw,t
If we name A and B as
a and b are complex number: a=c+di,b=c—di ) A=(a+b)=2c, B=(a—b)i=2di.i

Solution can be written as a sum of cos and sin or a cos with a phase angle

A = X,cos ¢ Xo =A% + B?

B = X,sing 1 B
_t -
¢ = tan



Case 1. Undamped System

When applying initial conditions x; and v

A= X0
x(t) = —Aw psinw ,t + Bw pcosw ,t
Vo
X0 =x(0) =Acosw ,0+ Bsinw ,0 B=w—
n
v, =x(0) = —Aw ,sinw ,0+ Bw ,cosw ,0 Slope = %,
x(r)
i Tn = %_"I

System oscillates at
its natural frequency

Velocity maximum

_Zn

=

x(r) = A cos (w,l — )

-1 W =
n
Tn

Amplitude,
1

RN Ly
2




L

Case 2. Underdamped System (<1

Equation of Motion x measure from static equilibrium position (EP) _

— : _ 72 .
Value for the roots: 512 = —$Wn T iwpy1—¢ Damped frequency: " 0

Solution to the EoM: x = qe(~fwntwaidlt 4 po(-Swntwai)t _ T

+x

x = ae $®nt(coswyt + isinwyt) + be $@nt(cos wyt — isinwyt) a and b are complex number:
) a=c+di,b=c—di

x = (a+b)e $®ntcoswyt + (a — b)ie $“ntsin wyt
A=(a+b)=2c, B=(a—Db)i=2di.i

Solution can be written as a sum of cos and sin or a cos with a phase angle

A = X,cos ¢ Xo =A% + B?

B = X,sing B
=t —
¢ = tan y



LA

Case 2. Underdamped System ¢ <1 v  [misasia=o] e

0
mn
When applying initial conditions x; and v T
xo = x(0) = Ae~$¥n0 cosw ;0 + Be $®n%sinw 40 = x, ) A=xg +x
x(t) = —Alw pe~$“nt cosw 4t — Ae Sty ssinw 4t — Blw pe $®ntsinw 4t + Be $®ntw jcosw 4t
v, = %(0) = —Alw ne 5% cosw 40 — Ae ¢ ;sinw ,0 — Blw e "’ sinw 40 + Be $¥n%w ,scosw 40 = v,

x(f)

System oscillates at
its damped frequency

2T
(Ud = —
! Ta

w, =, 1-¢°




LA

Case 2. Underdamped System ¢ <1  fov  [meEesia=or

+x

We can also represent the solution by a single cos

System oscillates at
its damped frequency

2T
wg = —
"ol ‘T
Vo + XolWw
(p — tan_]_( 0 0( Tl) ;
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Case 2. Underdamped System ¢ <1 v  [mEesia=or

0

+Xx

We can also represent the solution by a single sin

System oscillates at
its damped frequency

2T
Wgqg = —
ikl Ta

Wy = W, 1_4/2
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Case 2. Underdamped System (<1 & L.
Logarithmic Decrement

The logarithmic decrement represents the rate at which the amplitude of a free-damped
vibration decreases

x(ty) = Xpe $@nts Cos(a) at1 — ¢) tr =1 ttg Cos(w at1 — (p) = cos(a) ity — (]5)

- {wn2m
x(tz) = Xoe_{wntz COS(CU dtZ —_ ¢) X(tl) . Xoe ((Untl COS(O) dtl —_ ¢) 1

X(tz) B Xoe—anhe—Cwan COS((U atz — ¢) - e—Swn(Tq) -

The logarithmic decrement & can be obtained, and we can solve for { in term of 6
x(f)

Also can be found by two displacements separated by any
number of complete cycles.




Case 2. Underdamped System o<1 For small damping: ¢ <« 1
Logarithmic Decrement

The logarithmic decrement is dimensionless and is another

form of the dimensionless damping ratio 14
12 //I
) 21
- - O eT % :
SuIPY ¢ /
— c i \7
recall: wa = wpy1—7? o 2¢wp f /
« 6 / >
1; -
: : -
The logarithmic decrement can also be 4 g
written as: 4»




LA

Case 3. Critically damped system ¢=1
Equation of Motion x measure from static equilibrium position (EP) _

Value for the roots: S1,2 = —Wn m —l’

When applying initial conditions x, and v,

+x

Xo = x(0) = Ae~@n0 ) [4=x x(t) = —Aw pe~“nt — Btw ,e~%nt + Be~%nt

vo = %(0) = —Aw e~ n® — B0w e~ n® + Be™n® ) vy =—-Aw,+B ) B = vy + xyw,

The solution becomes:

The motion represented is aperiodic, eventually
diminish to zero




LA

Case 4. Overdamped system {>1

Equation of Motion x measure from static equilibrium position (EP)

Value for the roots:  S12 = —{wy, + wpy/{? — 1 m T

When applying initial conditions x; and v

+x

A_vo+(c+JcZ—1)wnxo B_vo—(c—JzZ—l)wnxo
- 20372 — 1 - 20,372 — 1

The motion represented is aperiodic,
eventually diminish to zero but much
slower than critically damped system




Comparison of motion with different types of
damping

x(1)
A

/ Overdamped (£ > 1) Undamped ({ = 0)
Critically Underdamped (£ < 1)

damped (£ = 1) (w,1is smaller
~




Energy dissipated in viscous damping

In a viscously damped system, the rate of change of energy with time (dW/dt) is given by

W . _ _ dx 2
— = force x velocity = Fv = —(cv)v = —c (dt)

In the case of a damped system, simple harmonic motion, x = X sin(wg4t)

21T/ wg dx 2 2t/ wqg 21
AW = J —c (E) dt = J —c(wgy cos(wyt))?dt = f —c(wg)(cos(wgyt))?d(wyt)
0 0 0
This shows that the energy dissipated is proportional to the square of the amplitude of motion and w,.

The energy loss in each cycle can be compute dividing by the maximum kinetic or potential energy

This term is called
specific damping
capacity




K, N
Formula Sheet for O =" %
_ ) Important parameters m, k=[] c
Free vibration c, |
o =0, -7 ST TR Am) |-
¢ e X ...measured from SEP
Governing M X +C X +K x = f(t) Response: X(t) = X, (t) + X, (t) 2
equation ) S, o, =2nf, @, =_—
X+ 2w X+ x=f(t)/m T,

Undamped X = Acosw, t+ Bsinw,t _ _
systems A=X, B=v,/o,

{=0 X=X, cos(a,t-p) X,=/A?+B? p=tan'B/A
Underdamped o —Coft Lot i _ LX)
oystoms Xx=Ae " coswyt+Be " sinogt  A=x,  B=(v,+X, (w0, ) o, " SN

(<1 X=X " cos(w,t— ) X, ="/A"+B",p=tan" B/ A -
Critically damped A=X,
SyStemS X = Ae—a)nt + Bte—a)nt

( —1 B:V0+X00)n IO 1,

2 2
Sy\;et;?g;n Ped y_ pgldenron 7k palamn-on el [
A=VO+(§+\/ﬁ}0nXo B:VO_(é/_\/m%)nXO R
{>1 20,2 -1 20,./¢*-1 !

Dissipated _ 2 - : AW
energy, viscous AW = mc wgX igs;gfydamplng — =4n{ = 20
damping system W
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Free Vibration with Coulomb Damping

Coulomb damping arises when bodies slide on dry = +x

k
surfaces. " kx ~—o L > ot ~—— — ¥
N , uN = uN

The force required to produce sliding is proportional to
the normal force acting in the plane of contact.

I =
I =

Z —FT
—

(a) (b) (c)
F =puN =puW = umg
Equation of Motion is a piecewise function

The friction force acts in a direction opposite to the

The value of the coefficient of friction depends . ) .
direction of velocity.

on the materials in contact and the condition of
the surfaces in contact. X positive ———  m¥+kx =—uN

X negarive «—— mx + kx = uN

can be expressed as a single equation (using signum

function)



Free Vibration with Coulomb Damping

w W
The equation of motion: ) . l l
m kx «—— m [—>x kx «— m |e—x
e g )+ =0 B =
where sign(x) value is defined as: N N
1 for x >0, -1 for x <0, and O for x =0 @ ®) ©
For the solution we will assume the equation of motion is a piecewise function
1. When x >0, the sign function is positive and the equation becomes,
¥ = — and the solution is a harmonic : um
mi + kx Hmg : ) x =Aicosw pt+ A;sinw nt——g
motion plus a constant: k
2. When x <0, the sign function is negative and the equation becomes,
¥ = and the solution is a harmonic : um
mx + kx = pmg : ) x=A3coswnt+A4sma)nt+—g
motion plus a constant: k



Free Vibration with Coulomb Damping

If we solve the equation for initial conditions x(0) = x5 and vy = 0.
Since the mass started with an initial displacement, it moves from right to left with a negative velocity. Starting in case 2:

_ uN uN This solution is valid for
x(0) = xo = Az cos w, (0) + A4 sin w,(0) — K Az = x¢ — o half the cycle only—that
4 =0 is, for0 <t < —
x(0) = —Azw, sin w, (0) + A,w,cosw,(0) 4= Wn

When ¢t = —, the mass will be at its extreme left position and its displacement from equilibrium

wn

position can be found from

fo T\ uN T +,uN_ 2uN
o X o )= X p COS Wy, o Pl X P

. . . . : 2N
Since the motion started with a displacement of x, and, in a half cycle, the value of x became — ( xo—%) , the
o . . .. _2uN . .
reduction in magnitude of x in time % , it can be demonstrated that for the other half to the cycle the reduction
is il
k



Free Vibration with Coulomb Damping important
equations:

x(t)

A

: N .
The motion stops when x,< ”7, since the

restoring force exerted by the spring (kx) will
then be less than the friction force puN. Thus

X0

4uN the number of cycles (n) that elapse before the
Yo T) as motion ceases is given by
~ 3_77 L
w \\‘—'-—
_______ | B T 4uN  uN
0] f —_— —= > | Xn= Xan — N <
N T T
n - @,
N
Slope of the (M) Number of Xy — MT
enveloping k) 2uNw,, cycles to stop n= AuN
: straight lines (2_7T) k k
Frequency is w, Wn
The amplitude reduces linearly with Coulomb 4uN
damping and amount of: k _ 21
Time to stop Atsrop = NTp = nw—
Therefore: 4uN n
xm= xm—l _ k




Free Vibration with Hysteretic Damping

* Also called solid or structural damping,
is caused by the friction between the
internal planes that slip or slide inside Stress (force)
the material. |

* This causes a hysteresis loop to be ysteresi AN N
formed in the stress-strain or force- Unloading %
k

Loading

displacement curve. The energy loss in
one loading and unloading cycle is equal - Strain

to the area enclosed by the hysteresis / (displacement)
loop.

* |t was found experimentally that the
energy loss per cycle due to internal
friction is independent of the frequency
but approximately proportional to the
square of the amplitude.

Area

x(1) F(r)




Free Vibration with Hysteretic Damping

The motion can be considered to be nearly

The damping coefficient c is assumed to be inversely harmonic, and the decrease in amplitude per cycle
proportional to the frequency, where h is called the x(1) can be determined using energy balance.
hysteresis damping constant. 1
Vibrating frequency is wy
h h NT———
c=— ) m¥ +—x + kx = 0 \ /X ————————— Xji1
w W A i“'"‘—--__ \ -
0 [N o R~
3 R NSA-——--- .
- : 2 Xj+05 N \/__ -----
Energy loss for viscous damping AW =nc wgX?> | \ /  N\NA_-----
In term of h: AW = mh X? N
Another dimensionless constant used to describe the w: Vo + Xo8Wn _cpt
_ oI X = xge *“ntcoswyt + e *“ntsinwgt
hysteric damping is Wq
h
L= - Energy loss in term of 8 AW = nkf X?
i d 5 1[0 | =h The equivalent viscous
Logarithmic decrement § = In ~In(1l+np) =npf = 2nl,;, = — L h
9 P (1 +mf) ~mp Seq = % damping is {oq = g =




Free Vibration with Hysteretic Damping ...

Characteristics of the hysteretic loop:

* The graph force- deflection is usually obtained from
experimental measurements on a structure.

* The energy dissipated AW in a cycle is the area
enclosed by the hysteresis loop.

* The constant of the spring k is the slope of the force-
deflection curve.

* The graph give information about the maximum
deflection of the response.

* Using the equation for work we can related the energy
loss with the damping constant and the logarithmic
decrement.

* Under hysteretic damping the system behaves as
underdamped and the response is similar to the a
viscous damping system.
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Approximate the area using a square and 2 triangles.

AREA = AW




Free Vibration with Hysteretic Damping, important
equations:

Damping coefficient: c = ﬁ
W

Dimensionless damping constant: B =

Sl S

Energy loss: | AW = mh X? = wkf X? | | AW = Area in hysteretic loop

Equivalent spring constant: k= Slope of hysteretic loop
When the system is underdamped the answer B Ceont Vo + xgl Wy, Ceont o
would same as a viscous damping system: X = Xo€ cos wgt + Y e sin wgt
Logarithmic decrement: | X; 2+ 7nf ( X; ) mh 1 (XO)
= =1+nB | 6=In =n(l+npB)=nf =— d=—In|—
Xj+1 2 - TL’,B Xj+1 ﬁ ﬁ k n XTL
. el " B h _ _ B _h _h
Damping ratio: | § = 2n{,, = f {oq = > =3 Ceq = CcCeq = vakE = fVvmk = E\/m =




Prof. Carmen Muller-Karger, PhD

Florida International University

Figures and content adapted from
Textbook: Singiresu S. Rao. Mechanical Vibration, Pearson sixth edition.
Chapter 2: Free vibrations of a sigle degree of freedom system



Stability of vibrating systems

* A system is said to be stable if its free-vibration
response neither decays nor grows, but remains @
constant or oscillates as time approaches infinity. £

* A system is defined to be asymptotically stable if
its free-vibration response approaches zero as Asymplotically stable sstem
time approaches infinity.

* A system is considered to be unstable if its free- |

vibration response grows without bound as time e (b drzent i)

approaches infinity.

* An unstable system can cause damage to the
system, adjacent property, or human life.

Unstable system (with flutter instability)

(@
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Stability of vibrating systems e

* The static equilibrium position of a system can be found by
setting velocity and acceleration equals to zero in the "
equation of motion: X = 0,x =0 T

_____ Static equilibrium
J position

________ — Final position
+x

I — 3 —5

+x W =mg W+ kx
mg
%I—;/x/-l—k(x)—mg=0 — x:5st=7
* At the equilibrium position the potential energy is minimum, therefore static equilibrium dU

position of a system can be found by setting the derivative of the potential energy dxl =
respect to position equal to zero: Ost

1 auv 2 mg

_ 2

U—Zk(x) mg(x) = a=§k(x)—mg= —> x=5st=7




L I SIS IS,

Stability of vibrating systems

Stability of a system can be explained in terms of its energy.
According to this scheme, a system is considered to be

asymptotically stable, stable, or unstable if its energy decreases, T
remains constant, or increases, respectively, with time.

The static equilibrium position will be stable following the behavior
of the second derivative of the potential energy respect to position:

02U 0 a2U _ 0 02U
dx2 axz a2 <0
O

a\‘%\\\\\\\\\\ﬂ i \



Stability of vibrating systems

* We can also describe the stability of the system according to the signs

of the coefficients of the characteristic equation

Governing Equation Solution is of the form:

mi+cx+kx=0 x(t) = CeSt

Characteristic equation :

2m -~ 2m

—c c\* k
(m52+cs+k)=0 m) Si12=5-1% (—) - —

* |f the exponential is positive the response
may grow without bounds.

+x

x(t) = Cies1t+ C e52t

x (1) -

Unstable system (with flutter instability)



Exa m ple Consider a uniform rigid bar, of mass m and length L, pivoted at one end and connected
by one spring at the other end and one damper at the middle of the bar. Assuming that
the spring is unstretched when the bar is vertical, derive the equation of motion of the
system for small angular displacements (0) of the bar about the pivot point, and
investigate the stability behavior of the system.

For small angular displacements the spring and the damper are considered to be always
horizontal.

L k. STEPS FOR THE ANALYSIS:

1. Derive the equation of motion of the

! system for small angular displacements
c c (9)
= E \ I_ 7 2. Find the equilibrium position,
— v L — é 3. Analysis of stability

-




E I Applying Equation of Motion. Moment respect to point “0”
xXam p e (cont.)

FBD Z M,, = —mglsin@ + Oclcosblcosd + k2l sin 6 2lcosd = —],0

. 1 ..
k2] sin 6 OlcosOlcosO + k4lsin 6 lcosd — mglsing = — (§ m(2l)2) 0

Governing Equation

4 .
(—mlz) 0 + 8cl?(cosO)? + 4kl? sin B cosd — mglsind = 0

3
2l cos o ) .
Equilibrium positions 6=006=0

4kl1? sin 0 cos® — mglsing = 0

01 - Oo
; 6, = 180°

[4k1?cos8 — mgl]sind = 0 — — tcos-1 (@)

634 = *cos Akl




Exa m p I e (cont ) This is a nonlinear governing equation:

— 0. —0° 4 .
6=06,=0 (—ml2> 0 + 0cl?(cos0)? + 4kl? sin 0 cos@ — mglsind = 0
Equilibrium position 3
k- ] ) _ sinf = 6
For small rotational displacements: cosf ~ 1

The equation of motion becomes linear for equilibrium position 8 = 8, = 0°

4 . .
‘. Y (gmlz) 0 + 0cl? + (4kl? —mgl)d = 0
gy
4 2 = cl? — 2
Meq = §ml Coqg = C keq = (4k1? —mgl)
The equation can be written as the typical 2nd order differential equation:
Mpy O + Cog6 + kg = 0
eq¥ T Ceq¥ T Keg Roots of the polynomial:
The solution has the form: The characteristic polynomial: 2
. —Ceq ( Ceq ) Keq
1,2 — — _
o(t) = Cest (TneqS2 + CeqS + keq)CeSt =0 2"leq 27neq Meq




k2lsin 0

Example (cont) 6=06,=0° (MegS? + CeqS + keg)CeSt =0 T "‘1
Equation of motion for Equilibrium position 6; = 0 2cos 8 glocos?
2
4 . —Ceq Ceq Keq T
2 2 2 — = + —
<§ml )9 + 6cl? + (4k1* —mgl)6 = 0 127 g, * (Zmeq> - *

Solution CASE 1 : Radical is negative, s; , are complex, the system is STABLE and oscillates around the equilibrium position

k 3(4k12 — mal The spring is capable to overcome the weight.
= ( > g)> =)  4kl* > mglL
Meq aml O(t) = Ae $®nt coswyt + Be $®nt sin wyt

Solution CASE 2 : Radical is zero, s, are real and negative, the system is STABLE the system is in critical damping.

= O(t) = Ae~®nt + Bte~@nt
2mg,

S1,2 =

Solution CASE 3 : Radical is positive, s;  are real and one is positive, the system is UNSTABLE.

The spring is NOT capable to
overcome the weight, 6(t)
increases exponentially .

keq  3(4kl* —mgl)
Megq B 4ml?

<0 =  4kl? < mgl 0(t) = Ae”1* + Be%?*




E I Applying Equation of Motion. Moment respect to point “0”
xXam p e (cont.)

Z M,, = —mglsin@ + Oclcosblcosd + k2l sin 6 2lcosd = —],0
: 1 .
k- OlcosBlcosO + k4lsin b lcosd — mglsinf = — (§ m(2l)2) 0

Governing Equation

4 .
(gmlz) 0 + 8cl?(cosO)? + 4kl? sin B cosd — mglsind = 0

Z Equilibrium positions 6=00=0
4kl1? sin 0 cos® — mglsing = 0
01 = (° l/
9, = 180°
2 _ i — s _1 (MY
[4kl“cos® — mgl]sing = 0 B34 = +cos™? (W)

—




Example

0=0,=180°=T

Equilibrium position

This is a nonlinear governing equation:

3

4 .
(— ml2> 0 + Ocl?(cosB)? + 4kl? sin B cos® — mglsind = 0

Change of variable 8 = a + T, a = 0, a =6, The equation can be written in term of a:

4
(— mlz> & + acl?(cos(a + m))?% + 4kl? sin(a + 7) cos(a + ) — mglsin(a + 7) = 0

3
For small rotational displacements of a respect to the equilibrium position: { zg;oc‘x 20{
N sin(a + m)= sin(a) cos(m)+ cos(a) sin() = —sin(a) = —a
cos(a + m)= cos(a) cos(m) — sin(a) sin(r) = —cos(a) = —1

3

(f‘mﬂ) i + acl?*(—1)? + 4kl*(—a) (-1) —mgl (—a) = 0

The equation of motion becomes linear for equilibrium position, in term of «:

4
(g mlz

) g+ (c1?)a + [4k1? + mgl](a) = 0




The equation of motion becomes linear for equilibrium position, in term of a:

Example

_ _ o _ 4
0=0,=180°=m (ng)oz + (c 1) + [4kI? + mgl](a) = 0
Equilibrium position 4 ,
Meg = gmﬂ Coq = Cl keq = (4k1? + mgl)

The equation can be written as the typical 2nd order differential equation:

meqé + Ceqé + kqu =0 The solution has the form:
. O(t) = Cest
\ |
k Roots of the polynomial:
The characteristic polynomial:
2
—C c k
2 st eq eq eq
(mes + CoyS t+ kg )Ce =0 S12 = + < > —
K q a 2Me, 2Me, Meg

Solution: Radical is always less than first term, the system is STABLE and oscillates around the equilibrium

position
2 2k
keq _ 3(4kl* + mgl) >0 — e < Ceq > _ teq == | 51, = bothnegative
Meq 4ml? 2Meq 2me, Meg



The equation of motion becomes linear for equilibrium position, in term of a:

Example

_ _ o _ 4
0=0,=180°=m (ng)oz + (c 1) + [4kI? + mgl](a) = 0
Equilibrium position 4 ,
Meg = gmﬂ Coq = Cl keq = (4k1? + mgl)

With the definitions:

c k
{ = ea w, = |—2 Wq = Wpy 1 — {2
2,/ keqMeg Meq

The solution is STABLE and could be any of the following depending on the
parameters of the system :

/77

gE—

{=0,x(t) =X, cos(a) nt — qb)

{ < 1,x(t) = Xge $¥nt cos(w 4t — ¢
d

x(t) = ==
( ) C — 1,x(t) — Cle—wnt + Czte_wnt
( > 1,x(t) — Cle(—fwn+wn./(2_1)t + Cze(—(wn_wn /(2—1)t



