MATLAB Problems

5.21 A centrifugal pump has the nonlinear pressure-flow relation

$$P = 3.645(10^5)\sqrt{1 - \frac{Q}{0.019}} \text{ Pa}$$

where Q is the volumetric-flow rate (in m³/s) and P is the pressure output of the pump (in Pa). The pump model is valid for $0 < Q \le 0.0175 \,\mathrm{m}^3/\mathrm{s}$. The nominal (operating) volumetric-flow rate is $0.008 \,\mathrm{m}^3/\mathrm{s}$. Derive a linear model for the pump pressure about the operating (nominal) point. Plot the true (nonlinear) pump pressure and approximate (linearized) pump pressure vs. volumetric-flow rate for $0 < Q < 0.0175 \,\mathrm{m}^3/\mathrm{s}$. Comment on the range of accuracy for the linear pump model.

5.22 The inductance of a solenoid actuator varies with armature position (or stroke) x and can be modeled by the nonlinear expression

$$L(x) = \frac{L_0}{1 - x/d}$$

For a particular solenoid coil, the constant d = 7.8 mm and the inductance at zero stroke is $L_0 = 0.006$ H. Note that inductance L(x) increases with stroke x as the armature moves toward the center of the coil.

- **a.** Develop a linearized approximation for inductance L(x) about a nominal stroke $x^* = 1$ mm.
- **b.** Plot the (true) nonlinear inductance L(x) and the approximate (linearized) inductance for a stroke 0 < x < 3 mm.
- c. Plot the percent error between the nonlinear and linear inductances vs. stroke and comment on the accuracy of the linear approximation.

Engineering Applications

5.23 Figure P5.23 shows the hydromechanical actuator from Example 4.2 in Chapter 4. Obtain a complete set of state-variable equations for this system (note that the piston position is redefined as z so that x may be used as the state variable). Identify the state and input variables.

Figure P5.23

5.24 Figure P5.24 shows an electrical system known as a buck converter, which is a circuit used to step the source voltage $e_{\rm in}(t)$ "down" to a lower desired output voltage (see Problem 3.27 in Chapter 3). The step-down voltage converter uses a switch to connect and disconnect the voltage supply $e_{\rm in}(t)$ from the remainder of the circuit until output voltage $e_O = e_C$ is equal to the desired voltage. Obtain a complete SSR of the buck

This problem IF the fluid side of piston aglander B= bulk modules hes capacitance C_ = V/B

$$\begin{array}{lll}
-S=b & S=2 & n=4 & p=2 \\
\hline
-S=b & \underline{n-p=2} \\
Q_c = C_f d \underline{P}_{ig} & Q_{-Q_c-Q_T=0} \\
F_m = m d \underline{V}_{ig} & F_0 + F_m + F_k + F_b + F_b=0 \\
F_b = b \underline{V}_{ig} & \underline{b-(n-p)=6} \\
d F_k = k \underline{V}_{ig} & \underline{-P_0 + P_{ig}=0} \\
d t & -P_0 + P_{ig}=0
\end{array}$$

Fo= pig. A Qr = -Vig.A

b=8 s=2

Q_T = - V.A Fo = Pig A = -Fx-F-F-Fm PgA=F = - Ekx - bx-F - mx mx + bx + kx = - F - pigA = - F - (Pi-pg)A

SV+Sources

$$V_{1g}$$
, p_{1g} , F_{K} ; $Q \neq F_{L}$

$$\frac{dV_{1g}}{dt} = \frac{F_{m}}{m} = \frac{1}{m} \left[-F_{0} - F_{K} - F_{0} - F_{L} \right]$$

$$= \frac{1}{m} \left[-Ap_{1g} - F_{K} - bV_{1g} - F_{L} \right]$$

$$\frac{dp_{1g}}{dt} = \frac{Q_{c}}{C_{f}} = \frac{\left[Q - Q_{T} \right]}{C_{f}} = \left[\frac{Q + V_{1g}A}{C_{f}} \right]$$

$$\frac{dF_{K}}{dt} = kV_{1g}$$

Note problem in class review had no day fluid capacitance Note line graph for Cf is stilled since fluid is not in central with ref. pressure

= \$ U dPig