Charles Augustin de Coulomb sure. In 1784, he obtained the cor-
ms only (1736-1806) was a French military rect solution to the problem of the
engineer and physicist. His early small oscillations of a body sub-
work on statics and mechanics was jected to torsion, He is well known
presented in 1779 in his great mem- for his laws of force for electro-
oir The Theory of Simple Machines, static and magnetic charges. His
fr which describes the effect of resis- name is remembered through the
tance and the so-called *'Cou- unit of electric chacge. (Courtesy
lomb’s law of proportionality”™ of Applied Mechanics Reviews).
n. between friction and normal pres
15 in.

CHAPTER 3

Harmonically
Excited Vibration

3.1 Introductlon

_A mechanical or structural system is said to undergo forced vibration whenever
exterhal energy is supplied to the system during vibration. External energy can be -
supplied to the system through either an applied force or an imposed displacement
excitation. The applied force or displacement excitation may be harmonic, nonhar-
monic but periodic, nonperiodic, or random in nature. The response of a system to
" a harmonic excitation is called harmonic response. The nonperiodic excitation may
have a long or short duration: The response of a dynamic system to suddenly applied
nonperiodic excitations is called transient response.
Tii this chapter, we shall consider the dynamic response of a single degree of
b'freedom system under harmonic excitations of the form F(f) = Foe“*# or F(1)
= Fycos(wt + @) or F(t) = Fgsin(wt + ¢), where Fy 1s the amplitude, w is
the frequency, and ¢ is the phase angle of the harmonic excitation. The value of ¢
.depends on the value of F(¢) att =0 and is usually taken to be zefo. Under a harmonic
excitation, the response of the system will also be harmonic. If ‘the frequency of
excitation coincides with the natural frequency of the system, the response of the
- system will be very large. This condition, known as resonance, is to be avoided to
prevent failure of the system. The vibration produced by an unbalanced rotating
machine, the oscillations of a tall chimney due to vortex shedding in a steady wind,
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and the vertical motion of an autornobile on a sinusoidal road surface are examples
of harmonically excited vibration.

of Motion

If a force F(t) acts on a viscously damped spring-mass system as shown in Fig.
3.1, the equation of motion can be obtained using Newton’s second law: :

mi + ¢cx + kx = F(t) (3.1)

Since this equation is nonhomogeneous, its general solution x(¢) is given by the
sum of the homogeneous solution, x,(#), and the particular solution, x,(¢). The
homogeneous solution, which is the solution of the homogeneous equation

mx + cx +‘kx=0 ' - (3.2)

represents the free vibration of the system and was discussed in Chapter 2. As seen
in Section 2.6.2, this free vibration dies out with time under each of the three
possible conditions of damping (underdamping, critical damping, and overdamping)
and under all possible initial conditions. Thus the general solution of Eq. (3.1)
eventually reduces to the particular solution x,(#), which represents the steady-state
vibration. The steady-state’ motion is present as long as the forcing function is
present. The variations of homogeneous, particular, and general solutions with time
for a typical case are shown in Fig. 3.2. It can be seen that x,(f) dies out and x(f)
becomes x,(t) after some time (7 in Fig. 3.2). The part of the motion that dies out
due to damping (the free vibration part) is called transient. The rate at which the
transient motion decays depends on the values of the system parameters k, ¢, and
m. In this chapter, except in Section 3.3, we ignore the transient motion and derive
only the particular solution of Eq. (3.1), which represents the steady-state response,
under harmonic forcing functions.

0
F(Q)
(a) (b) Free-body diagram

FICURE 3.1 A spring-mass-damper system.
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xamples 500 4
'\ A VAN PN : >
.in Fig.
o]
(3.1
| by the - x(1) = x,(0) + x,(0)
). The '
® : o
1
(3.2)
As seen FIGURE 3.2 Homdgenous, particular, and general solutions
ne three v of Eq. (3.1) for an underdamped case.
amping) '
iq- 3.1)
dy-state .
ciion is 3.3 Response of an Undamped System under Harmonic Force
ith time ' Before studying the response of a damped system, we consider an undamped system
and x() subjected to a harmonic force, for the sake of simplicity. If a force F() = Fy cos wt
dies out E acts on the mass m of an undamped system, the equation of motion, Eq. 3.1),
hich the . - . reduces to
;, ¢,-and K N ) -
d derive B : : _ mx + kx = Fycos wt ’ i (3.3)
“Sponse, The homogeneous solution of this equation is giVen by
xp(t) = Cycos ot + C; sin w,t - (3.4)
where w, = (k/m)"? is the natural frequency of the system. Because the exciting
force F(¢) is harmonic, the particular solution x,(t) is also harmonic and has the
same frequency w Thus we assume a solution in the form '
' x,(1) = X cos wt (3.5)
where X is a constant that denotes the maximum amplitude of x,(1). By substituting
Eq. (3.5) into Eq. (3.3) and solving for X, we obtain

. Fq
X = ———————
t — mw? - | (3.6)
Thus the total solution of Eq. (3.3) is
| | . . Fo
x(t) = Cycos wyt + Cysin wyt + 3COs @t 3.7
. k — mw
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Using the initial conditions x(t = 0) = xpand X (t = U) = Xp, W€ find that

Fo

k — mw

- _ o Xo ) g
x(t) = <x0 . mw2> cos w,l + (%) sin wyt
+ Fo > cos wt
k ~ mw?

The maximum amplitude X in Eq. (3.6) can also be expressed as

=

X0
Cl:XO_ 3 C7:

2 w,

(3.8)

n

where 8, = Fo/k denotes the deflection of the mass under a force Fy and is
sometimes called “static deflection” since Fo is a constant (static) force. The quantity
X/6,, represents the ratio of the dynamic to the static amplitude of motion and is
called the magnification factor, amplification factor, ot amplitude ratio. The variation
of the amplitude ratio, X/8, with the frequency ratio r = w/w, (Eq. 3.10) is shown
in Fig. 3.3. From this figure, the response of the system can be identified to be of
three types. '

Case 1. When 0 < o/w, < 1, the denominator in qu, (3.10) 1s i)ositive and the
response is given by Eq. (3.5) without change. The harmonic response of the system
x,(t) is said to be in phase with the external force as shown in Fig. 3.4.

Case 2. When w/w, > 1, the denominator in Eq. (3.10) is negative, and the steady-
state solution can be expressed as

x,() = — X cos wt 3.1DH)

where the amplitude of motion X is redefined to be a positive quantity as

(3.12)

The variations of F(#) and x,(f) with time are shown in Fig. 3.5. Since x,(f) and
F(#) have opposite signs, the response 1§ said to be 180° out of phase with the
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(3.9)

(3.10)

and 1is
juantity
1 and is
ariation
s shown
to be of

and the
L system

z. steady-

(3.11)

S gk
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Xid,,

-

e e e e e =

FIGURE 3.3

external force. Further, as w/w, — 0, X — 0. Thus the response of the system to
a harmonic force of very high frequency is close to zero.

Case 3. Wher w/w, = 1, thé amplitude X given by Eq. (3.10) or (3.12) becomes
infinite. This condition, for which the forcing frequency w is equal to the natural -

frequency of the system w,, is called resonance. To find the response for lhls
condition, we rewrite Eq. (3.9) as .

Xg . COS wt — COS w,t
x(t) = xg cos w,t + =Zsin w,t + &, =

E )
S\ w,

(3.13)
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F(f) = Fycos w " F\ = F, cos wf

1 !

(7
]

Xp(1) = A zos wt x ) = —Xcoswt

FIGURE 3.4 . FIGURE 3.5

Since the last term of this equation takes an indefinite form for @ = «,, we apply
L’Hospital’s rule [3.1] to evaluate the limit of this term:

d
—-(cos wt — COS w,t)
dw

)

. COS wt — COS w,t .
lim ~ = lim

W= W, | - ﬁ_ 2 w—w, ——d__ [ -
w.) L dw

:EN l EN

[ sin wt

= -lim = sin wpt.
wrw, w 2
25
L "
Thus the response of the system at resonance becomes
Xp . S5 wat .
x(t) = xp cos wyt + Z0sin w,t + 5‘2" sin w,t (3.15)

h

It can be seen from Eq. (3.15) that at resonance, x(f) increases indefinitely. The last
term of Eq. (3.15) is shown in Fig. 3.6, from which the amplitude of the response
can be seen to increase linearly with time.

3.3.1 _ The total response of the system, Eq. (3.7) or Eg. (3.9), can also be expressed as
Total Response 5 ©
: x(t) = A cos (@t ~ ¢) + —————5C05 0l forw—< 1(3.16)
‘W . n
. | -

x(t) = Acos (w,t — ¢) — 5COS wt; for 5)—> 1(3.17)

n




we apply

(3.14)

(3.15)

The lést

3.3.2
Beating
Phenomenon
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x,(0) lr -7
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FIGURE 3.6

where A and ¢ can be determined as in the case of Eq. (2.21). Thus the complete
motion can be expressed as the sum of two cosine curves of different frequencies.
In Eq. (3.16), the forcing frequency w is smaller than the natural frequency, and
the total response is shown in Fig. 3.7(a). In Eq. (3.17), the forcing frequency is

greater than the natural frequency, and the total response appears as shown in
Fig. 3.7(b).

If the forcing frequency is close to, but not exactly equal to, the natural frequency
of the system, a phenomenon known as beating may occur. In this kind of vibration,
the amplitude builds up and then diminishes in a regular pattern. The phenomenon
of beating can be explained by considering the solution given by Eq. (3.9). If the
Initial conditions are taken as Xo = Xy = 0, Eq. (3.9) reduces to

(Fo/m) -
T et t —
x(t) . wz(cos w COS wy,t)
(Fo/m) .. w+ w, w, —w |
= m 2 sin 5 - sin 5 4 (318)

Let the forcing frequency w be slightly less than the natural frequency:
W, ~ w = ¢ A (3.19)
where ¢ is a small positive quantity. Then @, ~ w and
| O+ =20 (3.20)

Multiplication of Eqgs. (3.19) and (3.20) gives

w2~ w? = deow




(3.22)

, 1s large.
w and-of

NSRRI
EXAMPLE 3.1
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(g

FIGURE 3.8

or the points of maximum amplitude is called the period of beating (7,) and is gi?en
by '

_m 27 (323)

o = 2 W, — W
with the frequency of beating defined as

w, = 26 = w, - ©

Plate Supporting a Pump

A reciprocating pump, weighing 150 1b, is mounted at the middle of a steel plate of thickness
0.5 in., width 20 in., and length 100 in. clamped along two edges as shown in Fig. 3.9.
During operation of the pump, the plate is subjected to a harmonic force, F(r) = 50 cos
62.832 ¢ 1b. Find the amplitude of vibration of the plate.

0.51 '/r.
) Sin. - , ,
7, 1 | ) A\\__/l o 9
7
A 4
I F(0), x(9) T
,L 100 in. {

FIGURE 3.9
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Given: Pump weight = 150 Ib; plate dimensions: thickness (1) = 0.5 in., width (w) = 20
in., and length (/) = 100 in.; and harmonic force: F(t) = 50 cos 62.832 ¢ 1b.

Find: Amplitude of vibration of the plate, X.

Approach: Find the stiffness of the plate by modeling it as a clamped beam, Use the equation
for the response under harmonic excitation.

Solution: The plate can be modeled as a fixed-fixed beam having Young’s modulus (E) =
30 X 10° psi, length (/) = 100 in, and area moment of inertia {[) = Tli(20)(0.5)3 =
0.2083 in*. The bending stiffness of the beam is given by

p = L92EI 192(30 X 10%)(0.2083) _
3 (100)?

1200.0 1b/in. (E.1)
The amplitude of harmonic response is given by Eq. (3.6) with F =50 1b,m = 150/386.4
1b-sec?/in. (neglecting the weight of the steel plate), k = 1200.0 Ib/in., and v = 62.832 rad/
sec. Thus Eq. (3.6) gives

k — me®  1200.0 - (150/386.4)(62.832)% 1504 in (E-2)

The negative sign indicates that the response x(f) of the plate is out of phase with the
excitation F(r). ‘ . u

3.4 Response of a Damped System under Harmonic Force

If the forcing function is given by F(f) = Fy.cos wt, the equation of motion becomes

mi + cx + kx = Fpcos wt (3.24)

The particular solution of Eq. (3.24) is also expected to be harmonic; we assume
it'in the form!
x, () = X cos (wt ~ @) (3.25)

where X and ¢ are constants to be determined. X and ¢ denote the amplitude and
phase angle of the response, respectively. By substituting Eq. (3.25) into Eq. (3.24),
we arrive at

X{(k - mw?)cos(wt ~ @) .— cosin(wt — ¢)] = Fycos ot (3.26)

Using the trigonometric relations

1l

cos(wt — @)

sin(wt — @)

cos &t cos ¢ + sin wt sin ¢

il

sin wt cos ¢ — cos wt sin ¢

! Alternatively, we can assume x,(t) to be of the form x,(t) = C( cos wt + C; sin o, which alsoinvolves
two constants C, and C,. But the final result will be the same in both the cases,



equation

(E.D)
50/386.4
832 rad/

(E.2)

with the
a

xecomes
(3.24)

assume
(3.25)
ude and

L (3.24),

1 (3.26)
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in Eq. (3.26) and equating the coefficients of cos wt and sin wt on both sides of the
resulting equation, we obtain

X[(k — maw?)cos ¢ + cwsin qs] = F,
X[(k - mw?)sin ¢ — cw cos qs] =0 (3.27)
Solution of Egs. (3.27) gives
. L
X = 2 s (3.28)
{(k - mw?2) + czwz]
and
_ af_ce Y} |
¢ = tan <k — mw2> | - (3.29)

.By inserting the expressions of X and ¢ from Eqgs. (3.28) and (3.29) into Eq. (3.29)

we obtain the particular solution of Eq. (3.24). Figure 3.10 shows typical plots of
the forcing function and (steady-state) response. Dividing both the numerator and

 denominator of Eq. (3.28) by k and making the following substitutions

l

w, = \/}_ = undamped natural frequency,
m

c < ¢
= — = = VT = 2 ny
¢ C. 2mw, 2Vmk m ‘
8, = EkQ = deflection under-the static force Fgy, and
r = Lo frequency ratio
Wn
F(t), x,(2) 4
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we obtain

X 1 _ 1
wn” (1= )+ 27

(3.30)

tan‘l(—l—{—{%z-> (3.31)

Wp

As stated in Section 3.3, the quantity M = X/5, is called the magnification factor,
amplification factor, or amplitude ratio. The variations of X/8, and ¢ with the
frequency ratio r and the damping ratio { are shown in Fig. 3.11.

The following characteristics of the magnification factor (M) can be noted from
Eq. (3.30) and Fig. 3.11(a):

1. For an undamped system (& = 0), Eg (3.30) reduces to Eq. (3.10), and
M- ®asr -1

- Phase angle: ¢

::.CT\‘ 1.0
L t=05
£=025
L— =005
.
0.5 1.0 1.5 2.0 2.5
) t =200
Frequency ratio: r = f’i ' Frequency ratio: r = =

(@ | (®)

Amplitude ratio: M

FIGURE 3.11 Variation of X and ¢ with frequency ratio .




(3.31)

sation factor,
| ¢ with the

e noted from

(3.10), and

[8]

wy

- For any specified value of 7 a hig
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. Any amount of damping (£ > 0) reduces the magnification factor (M) for aqy

values of the forcing frequency.

her value of damping reduces the value
of M.

- In the degenerate case of 3 constant force (when r = 0), the value of M = |
- ‘The reduction in M in the presence of damping is very significant at or

near
resonance.

The amplitude of forced vibration becomes smaller with increasin

‘ g values of
the forcing frequency (that s, M -5 0asr— ).

- For0< /< \/LE the maximum value of M occurs when (see Problem 3.19)

r:-\/l_2(2 or a):(f)n\/l“zfz (332)

which can be seen to be lower than the undamped natural frequency w, and the
damped natural frequency vy = w, VI = 22

- The maximum value of X (when r = V] — 209 is given by

x\ 1 ,
'<5 )max VT - P (3.33)

st
and the value of X at @ = w, by

X I '
e = — 3.34
<65t>w 2 034
Equation (3.33) can be used for the experimental determination of the measure
of damping present in the system. In a vibration test, if the maximum amplitude
of the response (Omax 1s measured, the damping ratio of the System can be
found using Eq. (3.33). Conversely, if the amount of damping is known, one
can make an estimate of the maximum amplitude of vibration.
1 daMm : 1

For{ = — == = O whenr = 0. For {> =, the graph of M monotonicall

{ 5 dr { /' he grap y

decreases with increasing values of r

The follo.wing characteristics of the phase angle can be observed from Eq. (3.31)
and Fig. 3.11(b):

1.

. For{>0and r> 1, the phase angle is given by 90° < ¢ < 180°

- For/>0and r = |, the phase angle is given by ¢ = 90°

For an undamped system (£ = 0), Eq. (3.31) shows that the phase angle is 0
for 0 <r <1 and 180° for r > 1. This implies that the excitation and response
are in phase for 0 < r < 1 and out of phase for » > 1 when {=0. -

For {>0and 0 <r < 1, the phase angle is given by 0 < ¢ < 90°, implying
that the response lags the excitation.

, implying that
the response leads the excitation.

, implying that the
phase difference between. the excitation and the response is 90°.
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5. For {> 0 and large values of r, the phase angie approaches 180°, implying that
the response and the excitation are out of phase.

The complete solution is given by x(1) = xi(1) + x,(f) whete x,(£) 1s given by Eq.
(2.64). Thus

x(t) = Xge-9 cos(wat = ¢p) + X cos(wt — ®) (3.35)

where
wy = V1 - 7 ow, (3.36)
r= (3.37)

w
Wy

X and ¢ are given by Egs. (3.30) and (3.31), respectively, and Xy and ¢y can be
determined from the initial conditions. :

For small values of d.amping (¢ < 0.05), we can take

X (X =1
<?>m "(65),‘): ST

The value of the amplitude ratio at resonance 1s also called Q factor or quality
factor of the system, in analogy with some electrical-engineering applications,
“such as the tuning circuit of a radio, where the interest lies in an amplitude at
resonance that is as large as possible {3.2]. The points R; and R,, where the
amplification factor. falls to 0/\2, are called half power points because the
power absorbed (AW) by the damper (or by the resistor in an electrical circuit),
responding harmonically at a given frequency, is proportional to the square of
the amplitude (see Eq. 2.94):

(3.38)

ax

AW = mc wX* (3.39)
The difference between the frequencies associated with the half power points R,
and R, is called the bandwidth of the system (see Fig. 3.12). To find the values of
R, and Ry, we set X/8, = Q/V2.in Eq. (3.30) 5o that
1 0 1
/2

V- 2 r Qo V2o 2V

-2 -4 (-8 =0 (3.40)

" The solution of Eq. (3.40) gives

r%=1—2[2—-2(\/1,+[2, r%

=1 - 202+ 2V + 2 (3.41)




Pressure
chanics,
merican
176.

/stem to
. 11, no.

dction,”

nping in
. Stress,

L Wiley,

to those

idy-state

«d to the -

equency
damped
1 system

cases”?

d system

tf
3 .
uadratic

313
3.14

3.13

3.16
317

3.18
3.19
3.20

321
3.22
3.23

Problems

PROBLEMS 243

How does the force transmitted to the base change as the speed of the machine
increases?

If a vehicle vibrates badly while moving on a uniformly bumpy road, will a change
in the speed improve the condition?

Is it possible to find the maximum amplitude of a damped forced vibration for any
value of 7 by equating the energy dissipated by damping o the work done by the

external force?

What assumptions are made about the motion of a forced vibration with nonviscous
damping in finding the amplitude? .

Is it possible to find the approximate value of the amplitude of a damped forced
vibration without considering damping at ali? If so, under what circumstances?

Is dry friction effective in limiting the reasonant amplitude?
How do you find the response of a viscously damped system under rotating unbalance?

What is the frequency of the response of a viscously damped system when the external

force is Fy sin wt? Is this response harmonic?

‘What is the difference between the peak afriplitude and the resonant amplitude?

Why is viscous damping used in most cases rather than other types of damping?

‘What is self-excited vibration?

The ﬁroblem assignments are organized as follows:

Problems Section Covered . Topic Covered
3.1-3.16 S 33 Undamped systems ¥ 7 7%, 500
317332 . . ' 34 Damped systems
3.33-3.41 ' ] 3.6 - . Base excitation
342352 - - 37 Rotating unbalance ¢ 7,
3.53-3.55 . 3.8 . Response under Coulomb damping
3.56-3.57 - 39 Response under hysteresis damping
3.58-3.61 : . 310 Response under other types of damping
362-3.65 - 311 Self excitation and stability '
3.66-3.69 . 312 ' A Computer program
3.70-3.71 : — _ Projects

A weight of 50N is suspended from a spring of stiffness 4000 N/m and is subjected to

3.1

a harmonic force of amplitude 60 N and frequency 6 Hz. Find (a) the extension of the
spring due to the suspended weight, (b) the static displacement of the spring due to the
-maximum applied force, and (c) the amplitude of forced motion of the weight.

A spring-mass system is subjected to a harmonic force whose frequency is close to
the natural frequency of the system. If the forcing frequency is 39.8 Hz and the natural
frequency is 40.0 Hz, determine the period of beating. :




33

34

3.5

3.6

3.7
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A spring-mass system consists of a mass weighing 100 N and a spring with a stiffness
of 2000 N/m. The mass is subjected to resonance by a harmonic force F(z)

25 cos wt N. Find the arnphtude of the forced motion at the end of (a) 1 cycle,

(b) 2— cycles, and (c) 52 7 cycles. .
A mass m is suspended from a spring of stiffness 4000 N/m and is subjected to a
harmonic force having an amplitude of 100 N and a frequency of 5 Hz. The amplitude
of the forced motion of the mass is observed to be 20 mm. Find the value of m.

A spring-mass system with m = 10 kg and k = 5000 N/m is subjected to a harmonic
force of amplitude 250 N and frequency o. If the maximum amplitude of the mass
is observed to be 100 mm, find the value of w.

In Fig. 3.1(a), a periodic force F(r) = Fy cos wt is applied at a point on the spring
that is located at a distance of 25 percent of its length from the fixed support. Assuming
that ¢ = 0, find the steady-state response of the mass m.

An air¢raft engine has a rotating unbalanced mass m at radius r. If the wing can be
modeled as a cantilever beam of uniform cross section a X b, as shown in Fig.
3.34(b), determine the maximum deflection of the wing at an engine speed of N rpm.
Assume damping to be negligible.

FIGURE 3.34 .
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stiffness 3.8 A three-bladed wind turbine (Fig. 3.352) has a small unbalanced mass m located at
lFm 1= a radius r in the plane of the blades. The blades are located from the central vertical
z cycie, ;

(y) axis at a distance R and rotate at an angular velocity of w. If the supporting truss
can be modeled as a hollow steel shaft of cuter diameter 0.1 m and inner diameter

tted to a 0.08 m, determine the maximum stresses developed at the base of the support (point
mplitude A). The mass moment of inertia of the turbine system about the vertical (y) axis is
of m. Jo. Assume R = 0.5m,m = 0.1 kg, r = 0.1 m, Jo = 100 kg-m*>, A = 8 m, and w
1armonic = 31.416 rad/sec.
the mass . 3.9  Anelectromagnetic fatigue testing machine is shown in Fig. 3.36 in which an alternat-
ing force is applied to the specimen by passing an alternating current of frequency f
1e spring e through the armature. If the weight of the armature is 40 1, the stiffness of the spring
“ssumir‘\g e (k,) is 10,217.0296 lb/in and the stiffness of the steel.specimen is 75 X 10 1b/in,
- determine the frequency of the a.c. current that induces a stress in the specimen that
g can be is twice the amount generated by the magnets.
1in Fig. - he * 3.10 The spring actuator shown in Fig. 3.37 operates by using the air pressure from
f N rpm.

a pneumatic controller (p) as input and providing an output displacement to a
“valve (x) proportional to the input air pressure. The diaphragm, made of a fabric-
base rubber, has an area A and deflects under the input air pressure against a
spring of stiffness k. Find the response of the valve under a harmonically fluctoating
input air pressure p(t) = po sin @f for the following datd: py = 10 psi, w = 8
rad/s, A = 100 in% k = 400 lbfin, weight of spring = 15 1b, and weight of
valve and valve rod = 20 1b.

Rotor
- - B —_——x
w
! wf
/ I m
]
z/ . \ h
]
'
i . e L TIITTTTITT Y 777
@ O

FIGURE 3.35 (Photo courtesy of Power Transmission Design)
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l Pushrod (A, £, {),

/ + spring constant = k = 5—15

Circular
cam —

FIGURE 3.38

311 Inthecam-follower system shown in Fig. 3.38, the rotation of the cam imparts a vertical
motion to the follower. The pushrod, which acts as a spring, has been compressed by
an amount x, before assembly. Determine the following: (a) equation of motion of
the follower, including the gravitational force; (b) force exerted on the follower by
the cam; and (c) conditions under which the follower loses contact with the cam.

3.12* Design a solid steel shaft supported in bearings which carries the rotor of a turbme
at the middle. The totor weighs 500 1b and delivers a power of 200 hp at 3000 rpm.
In order to keep the stress due to the unbalance in the rotor small, the critical speed
of the shaft is to be made one-fifth of the operating speed of the rotor. The length of
the shaft is to be made equal to at least 30 times its diameter.

3.13 A hollow steel shaft, of length 100 in., outer diameter 4 in. and inner diameter, 3.5
in., carries the rotor of a turbine, weighing SO0 1b, at the middle and is supported at -
the ends in bearings. The clearance between the rotor and the stator is 0.5 in. The

- rotor has an eccentricity equivalent to a weight of 0.5 Ib at a radius of 2 in. A limit
switch is installed to stop the rotor whenever the rotor touches the stator. If the rotor
operates at resonance, how long will it take to activate the limit switch? Assume the
initial displacement and velocity of the rotor perpendicular to the shaft to be zero.

314 A steel cantilever beam, carrying a weight of 0.1'1b at the free end, is used as a
frequency meter.b The beam has a length of 10 in., width'of 0.2 in., and thickness of

*The asterisk denotes a design type problem or a problem with no unique answer.

6The use of cantilever beams as frequency meters is discussed in detail in Section 10. 4
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0.05 in. The internal friction is equivalent to a damping ratio of 0.01. When the fixed
end of the beam is subjected to a harmonic displacement y(r) = 0.05 cos @, the
maximum tip displacement has been observed to be 2.5 in. Find the forcing frequency.

3.15 Derive the equation of motion and find the steady-state response of the system shown
in Fig. 3.39 for rotational motion about the hinge O for the following data: k; = ky
~ 5000 Nfm, @ = 025m, b =05m [ =1m M = 50kg, m = 10 kg, Fy = 500
N, @ = 1000 rpm.

F()=Fy sin ot

Uniform rigid bar, mass m

FIGURE 3.39

3.16 Derive the equation of motion and find the steady-state solution of the system shown
in Fig. 3.40 for.rotational motion about the hinge O for the following data: k = 5000
N/m, [ =1m,m= 10kg Mo = 100 N-m, @ = 1000 rpm.

Uniform rigid bar,

m
M, cos wt 7 mas

FIGURE 3.40

3.17 A four-cylinder automobile engine 1is to be supported on three shock mounts, as
indicated in Fig. 3.41. The engine block assembly weighs 500 1b. If the unbalanced
force generated by the engine is given by 200 sin 100 o ¢ 1b, design the three shock
mounts (each of stiffness k and viscous damping constant ¢) such that the amplitude
of vibration is less than 0.1 in.

The propeller of a ship, of weight 10° N and polar mass moment of inertia 10,000
kg-m?, is connected to the engine through a hollow stepped steel propeller shaft, as
shown in Fig. 3.42. Assuming that water provides a viscous damping ratio of 0.1,
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Shock mounts

FIGURE 3.41

319

3.20

determine the torsional vibratory response of the propeller when the engine induces
a harmonic angular displacement of 0.05 sin 314.16 ¢ rad at the base (point A) of the

-propeller shaft. :

Find the frequency ratio r = w/w, at which the amplitude of a single degree of
freedom damped systemn attains the maximum value. Also find the value of the
maximum amplitude.

Figure 3.43 shows a permanent-magnet moving coil ammeter. When current (1) flows
through the coil wound on the core, the core rotates by an angle proportional to the
magnitude of the current that is indicated by the pointer on a scale. The core, with
the coil, has a mass moment of inertia Jo, the torsional spring constant of k,, and the
torsional damper has a damping constant of ¢,. The scale of the ammeter is calibrated
such that when a d.c. current of magnitude 1 ampere is passed through the coil, the
pointer indicates a current of 1 ampere. The meter has to be recalibrated for measuring
the magnitude of a.c. current. Determine the steady-state value of the current indicated
by the pointer when an a.c. current of magnitude 5 amperes and frequency 50 Hz is
passed through the coil. Assume Jq = 0.001 N-m?, k, = 62.5 N-my/rad and ¢, =05
N-m-s/rad. .
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A spring-mass-damper system is subjected to a harmonic force. The amplitude is
found to be 20 mm at resonance and 10 mm at a frequency 0.75 times the resonant
frequency. Find the damping ratio of the system.

For the system shown in Fig. 3.44, x and y denote, respectively, the absolute displace-
ments of the mass m and the end Q of the dashpot ¢,. (a) Derive the equation of
motion of the mass m, (b) find the steady state displacemcnt of the mass m, and {¢)
find the force transmitted to the support at P, when the end Q is subjected to the
harmonic motion y(t) = ¥ cos wt.

7 |
7 2 0 y(f) = Y cos ot
i G I
P k : : l———c
7 2 m
Z l (o] o] : 0
I YL/
FIGURE 3.44
3.23 Show that, for small values of damping, the damping ratio [ can be expressed as

-+ 3.24

: 328

3.26

3.27

3.28

Wy — Wy
[ =2t

w, + W,
where w, and w, are the frequencies corresponding to the half power points.

A torsional system consists of a disc of mass moment of inertia Jop = 10 kg-m?, a
torsional damper of damping constant ¢, = 300 N-m-s/rad, and a steel shaft of diameter
4 cm and length 1 m (fixed at one end and attached to the disc at the other end). A
steady angular oscillation of amplitude-2° is observed when a harmonic torque of
magnitude 1000 N-m is applied to the disc. (a) Find the frequency of the applied
torque, and (b) find the maximum torque transmitted to the support.

For a vibrating system, m = 10 kg, k¥ = 2500 N/m, and ¢ = 45 N-s/m. A harmonic
force of amplitude 180 N and frequency 3.5 Hz acts on the mass. If the initial
displacement and velocity of the mass are 15 mm and 5 m/s, find the complete solution
representing the motion of the mass.

The peak amplitude of a single degree of freedom system, under a harmonic excitation,
is observed to be 0.2 in. If the undamped natural frequency of the system is 5 Hz,
and the static deflection of the mass under the maximum force 15 0.1 in., (a) estimate
the damping ratio of the system, and (b) find the frequencies corresponding to the
amplitudes at half power.

~ The landing gear of an airplane can be idealized as the spring-mass-damper system

shown in Fig. 3.45. If the runway surface is described y(z) = yp cos w t, determine
the values of k and ¢ that limit the amplitude of vibration of the airplane (x) to
0.1 m. Assume m = 2000 kg, yo = 0.2 m and w = 157.08 radss.

A precision grinding machine (Fig. 3.46) is supported on an isolator that has a stiffness
of 1 MN/m and a viscous damping constant of 1 kN-s/m. The floor on which the
machine is mounted is subjected to a harmonic disturbance due to the operation of
an unbalanced engine in the vicinity of the grinding machine. Find the maximum
acceptable displacement amplitude of the floor if the resulting amplitude of vibration



252  CHAPTER3  HARMONICALLY EXCITED VIBRATION

Housing with
strut and
viscous damping

Mass of
aircratt, m

FIGURE 3.45

of the grinding wheel is to be restricted to 10‘v6 m. Assume that the grinding machine
and the wheel are arigid body of weight 5,000 N. :

Derive the equation of motion and find the steady-state response of the system shown
in Fig. 3.47 for cotational motion about the hinge O for the following data: k = 5000
Nm,l=1m¢c= 1000 N-s/m, m = 10 kg, Mo = 100 N-m, w = 1000 rpm.

An air compressor of mass 100 kg is mounted on an elastic foundation. It has been
observed that, when a harmonic force of amplitude 100 N is applied to the compressor,
the maximum steady-state displacement of 5 mm occurred at a frequency of 300 rpm.
Determine the equivalent stiffness and damping constant of the foundation.

Find the steady-state response of the system shown in Fig. 3.48 for the following -
data: k; = 1000 N/m, kp = 500 N/m, ¢ = $00 N-s/m, m = 10kg, r = Sem, Jo =
1 kg-m?, Fo = SON, w = 20 rad/s.

A uniform slender bar of mass m may be supported in one of two ways indicated in .
Figs. 3.49(a) and (b). Determine the arrangement that results in a reduced steady-
state response of the bar under a harmonic force, Fg sin @ £, applied at the middle of
the bar, as shown in the figure. - :
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Grinding —,
machine

L ﬂ y(t) =Y sin wi

i= Y sin 200mtm

Isolator — 2

TYYY
vy
Y

—
N

Floor

FIGURE 3.46

Puliey, mass moment of inertia Jy

Fy sin wt

. Uniform )
rigid bar,
wl i ic mass m k m
- machine V\/ o T v l LTL
_.},L ¢ D x(1}
:m shown 7 : ' Ky c
¢ = 5000 / l [ l
rpm. 4 ! 2 |
has been . :
TIPressor, FIGURE 3.47 FIGURE 3.48
300 rpm.
‘ollowing 1
xm, Jp = ' 3.33 A single story building frame is subjected to a harmonic ground acceleration as shown
: in Fig. 3.50. Find the steady-state motion of the floor (mass m).
licated in 3.34  Find the horizontal displacement of the floor (mass m) of the building frame shown ‘
q..;‘;—fd)/'f in Fig. 3.50 when the ground acceleration is given by ¥, = 100 sin wr mm/sec?. i
eo

Assume m = 2000 kg, k = 0.1 MN/m, & = 25 radfsec, and x,(t = 0) = %, (1 = ¥
0) =x(t =0 =x(t =0 =0.
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" CHAPTER 4

Vibration Under
General Forcing
Conditions

| 4.1 Introduction

The response of a single degree of freedom system under general, nonharmonic,
forcing functions is considered in this chapter. A general forcing function may be
periodic (nonharmonic) or nonperiodic. A nonperiodic forcing function may be
acting for a short, long, or infinite duration. If the duration of the forcing function
or excitation is small compared to the natural time period of the system, the forcing
function or excitation is called a shock. The motion imparted by a cam to the
follower, the vibration felt by an instrument when its package is dropped from a
height, the force applied to the foundation of a forging press, the motion of an
automobile when it hits a pothole, and the ground vibration of a building frame
during an earthquake are examples of general forcing functions.

If the forcing function is periodic but not harmonic, it can be replaced by a
sum of harmonic functions using the harmonic analysis procedure discussed in

then be determined by superposing the responses due to the individual harmonic
forcing functions. On the other hand, if the system is subjected to a suddenly

263

Section 1.11. Using the principle of superposition, the response of the systemn can
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the response will involve transient vibration. The transient

applied nonperiodic force,
be found by using what is known as the convolution

response of a system can
integral.

4.2 Response Under a General Periodic Force
When the external force F(f) is periodic with period 7= 27/w, it can be expanded
in a Fourier series (see Section 1.1

F(t) = 929 + 2 a;cos jwt + 2 bjsinja)t 4.1
=1 : j=1
where
o = 2 P cosjurde  j=0.1L2 (4.2)
0 .
and
b; = zj F(t) sinjwtdt, j =172, ... (4.3)
7)o _

The equation of motion of the system can be expressed as
mi + ck + kx = F(t) = %0- + 3, ajc0s jot + S bysinjot (4.4)
j=1 j=1

The right-hand side of this equation is a constant plus a sum of harmonic functions.
Using the principle of superposition, the steady-state solution of Eq. (4.4) is the
sum of the steady-state solutions of the following equations: : :

mi 4 ok +kx = 3 (4.5)
mi + cx + kx = ajcos jwt (4.6)
mi + ci + kx = bjsin jot ' (4.7)

Noting that the solution of Eq. (4.5) is given by

a :

x,(0) = o7 4.8)

and using the results of Section 3.4, we can express the solutions of Egs. (4.6) and
(4.7), respectively, as ' o
x,(1) = ' cos(jwt = ¢;) (4.9 "

Jau = ey’ K

b;lk ‘ -

(b0 sin(jwt = ;) (4.10)

xp(1) = A :
‘ Ja =+t



transient
nvolution

:xpanded

(4.1)

(4.2)

(4.3).

£o(ad) -

unctions. -
4) is the .

(4.5)

"EXAMPLE 4.1

- It can be seen from the solution, Eq. (4.13
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where

¢ = tan-! (Ji{f—L) (@11

and

\
I
S le

(4.12)

Thus the complete steady-state solution of Eq. (4.4) is given by

XORE- 25 (e /k)

cos(jowt — @;)
j=1

(1 = 222+ (20)r)

+ i (b,/6) sin(jot ~ ¢;)  (4.13)
""\/UA = P+ 24y |

), that the amplitude and phase shift
corresponding to the jth term depend on j. If jo = w,, for any j, the amplitude -of

the corresponding harmonic will be comparatively large. This will be particularly
true for small values of j and ¢ Further, as j becomes larger, the amplitude becomes
smaller and the corresponding terms tend to zero. Thus the first few terms are
usually sufficient to obtain the response with reasonable accuracy. »
The solution given by Eq. (4.13) denotes the steady-state response of the system.
The transient part of the solution arising from the initial conditions can also be
incladed to find the complete solution. To find the complete solution, we need to
evaluate the arbitrary constants by setting the value of the complete solution. and
its derivative to the specified values of initial displacement x(0) and the initial

velocity x(0). This results in a complicated expression for the transient part of the
total solution.

Periodic Vibration of a Hydraulic Valve

In the study of vibrations of valves used in hydraulic control systems, the valve and its |
elastic stem are modeled as a damped spring-mass system as shown in Fig. 4.1(a). In addition
to the spring force and damping force, there is a fluid pressure force on the valve that
changes with the amount of opening or closing of the valve. Find the steady-state response

of the valve when the pressure in the chamber varties as indicated in Fig. 4.1(b). Assume
k = 2500 N/m, ¢ = 10 N-s/m, and m = 025 kg.

Given: Hydraulic control valve with m = 025kg k =

2500 N/m, and ¢ = 10 N-s/m and
pressure on the valve as given in Fig: 4.1(b). .
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The natural frequency of the valve is given by

w, = \/z - (2200 _ 100 rad/sec (E.14)
m 2

and the forcing frequency w by

8]
[en

|

<o
w

w = L. T mrad/sec » (E.135)
T 2
Thus the frequency ratio can be obtained:
w m B
= — = — = 0.031416 . -
r o, - 100 0.03141 ‘ (E.16)

and the damping ratio:

c 10.0

c.
(= 07 e, 2(025)(100) (E.17)
The phase angles ¢, and ¢; can be computed as follows:
24r
= -1
b1 tan (1 — r2>
2 x 0.2 X 0.031416 ' '
= -1 = 0.0125664 -
tan < = 00314162 ) 0.0125664 rad . (E.18)

‘and

6
¢3 = tan~! (l —{;ﬂ)

gt [(£X02 X 0.031416
1 — 9(0.031416)2

> = 0.0380483 rad - (E.19)

In view of Eqgs. (E.2) and (E.14) to (E.19), the solution can be written as
x,(t) = 0.019635 — 0.015930 cos(mt —~ 0.0125664)
— 0.0017828 cos(3mt — 0.0380483) m (E.20)

4.3 AResponse Under a Periodic Fbrce of Trregular Form

In some cases, the force acting on a system may be quite irregular and may be
determined only experimentally. Examples of such forces include wind-and earth-
quake-induced forces. In such cases, the forces will be available in' graphical form
and no analytical expression can be found to describe F(f). Sometimes, the value
of F(f) may be available only at a number of discrete points ty, t, . . ., fy. In all
these cases, it is possible to find the Fourier coefficients by using a numerical
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(E.16) CF |-
= NAt -
FIGURE 4.2
(E.17)
integration procedure, as described in Section 1.11. If Fy, F;, . . ., Fydenote the |
values of F(r) at 1), t,, . . ., ty, respectively, where N denotes an even number of .
(E 18) ' equidistant points in one time period 7(r = NA#), as shown in Fig. 4.2, the application
’ ' : of trapezoidal rule [4.1] gives '
2 Y '
ao = N,E F; (4.14)
i=1 .
2 X 2jrt,
i a, = — F.cos L = 1,2, ... .
(E19) A i NZ{ §COS T J (4.15)
. . : i=
2 Y . 2jmt, . .
bj:'ﬁg Fisin p =12 ... . v (4.16)
(E.Zoz ~ Once the Fourier coefficients ag, a;, and Bj are known, the steady-state response of
' : the system can be found using Eq. (4.13) with
29
r =
TW,
may be TR IR - o
d earth- EXAMPLE 4.2 Steady-State Vibration of a Hydraulic Valve
cal form
?e value Find the Stéady-state response of the valve in Example 4.1 if the pressure fluctuations in
‘v In all_ the chamber are found to be periodic. The values of pressure measured at 0.01 second
Umerical - .

intervals in one cycle are given below.
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Time, 1 0 001 002 003 004 0.05 006 007 0.08 009 0.10 011 Q.12
(seconds)
pi=plty 0 20 4 42 49 53 70 60 36 22 16 7 0
(kN/m?)

Given: Arbitrary pressure fluctuations on the valve, shown in Fig. 4.1(a).

Find: Steady-state response of the valve.

Approach: Find Fourier series expansion of the pressure acting on the valve using nurmerical
procedure. Add the responses due to individual harmonic force components.

Solution: The Fourier analysis of the pressure fluctuations (see Example 1.13) gives the

~ result
p(r) = 340833 - 26996.0 cos 52.36¢ + 8307.7 sin 52.36¢

+ 1416.7 cos 104.72¢ + 3608.3 sin 104.72¢
— 5833.3 cos 157.08¢ + 2333.3 sin 157.08t + . . . N/m? (E.1)

Other quantities needed for the computation are

w = L 27 ='52.36 rad/sec

r 0.12
w, = 100 rad/sec

;=2 = 05236
a)ﬁ.

(=02
A = 0.0006257 m?

2r 2 x 0.2 X 0.5236
-1 ———e = -1 = e
tan ( 2> tan ( = 052362 > 16.1

S = 1 —r
{  alr 4 %X 0.2 X 0.5236 '
- -1 =t -1 - o
¢ = tan” <1 = 4r2> an < 1 - 4x 0.52362> 7.0
6¢r 6 x 0.2 X 0.5236
- tan-! = tan-! = - .
¢y = tan <1 - 9r2> ran ( -9 x 0.52362> 23.18

The steady-state response of the valve can be expressed, using Eq. (4.13), as

34083.34 (26996.047K) (5236t — ¢,)
- - 1

xp(0) =
’ \/; -y )

(8309.7A/k)

ot 2
(1= + QM

sin(52.36t — ¢)
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012 . (1416.7A7k)

2 N
o X \/(1 = 4r2) 4 (4¢r)

(3608.3A/k)

cos(104.72t — ¢,)

+ — sin(104.72r — ¢,)
\/(1 — 4y (4
(3833 34/K) cos(157.08t — ¢,)
umerical /(1 - 9r2)2 + (6{r)2
yives the + (2333.347K) sin(157.08¢ — #3) '
\/u ~ o) + (600" .
(E.1) 4.4 Response Under a Nonperiodic Force

We have seen that periodic forces of any general wave form can be represented by
Fourier series as a superposition of harmonic components of various frequencies.
The response of a linear system is then found by superposing the harmonic response
to each of the exciting forces. When the exciting force F(¢) is nonperiodic, such as
that due to the blast from an explosion, a different method of calculating the response
is required. Various methods can be used to find the response of the system to an
arbitrary excitation. Some of these methods are as follows: '

- Representing the excitation by a Fourier integral

- Using the method of convolution integral

. Using the method of Laplace transformation

- First approximating F(z) by ‘a suitable interpolation model and then using a
numerical procedure ‘

5. Numerically integrating the equations of motion

£ o

We shall discuss Methods 2, 3, and 4 in the following sections and Method S in
Chapter 11.

- 4.5 Convolution Integral

A nonperiodic exciting force usually has a magnitude that varies with time: it acts
for a specified period of time and then stops. The simplest form of such a force is
the impulsive force. An impulsive force is one that has a large magnitude F and
acts for a very short period of time 4r. From dynamics we know that impulse can
be measured by finding the change in momentum of the system caused by it [4.2]
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4.5.1
Response to an
Impulse
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If %, and %, denote the velocities of the mass m before and after the application of
the impulse, we have

Impulse = FAL = miy — mx; (4.17)
By designating the magnitude of the impulse FAt by F, we can write, in general,

r+ AL
F = j F dt (4.18)
- t

A unit impulse () is defined as

r+Al

f= 1‘1er Fdt = Fdt=1 (4.19)
- ar—0 7t

It can be seen that in order for F dt to have a finite value, F tends to infinity (since

dt tends to zero). Although the unit impulse function has no physical meaning, it

is a convenient tool in our present analysis.

We first consider the response of a single degree of freedom system to an impulse
excitation; this case is important in studying the response under more general
excitations. Consider a viscously damped spring-mass system subjected to a unit
impulse at t = 0, as shown in Figs. 4.3(2) and (b). For an underdamped system,

the solution of the equation of motion

mi 4+ ok + kx = 0 (420

is given by Eq. (2.72) as follows:

Xg + {wyXg .
x(t) = e~ font {XOCOS wgt + —°—~£J—031n wdt} .20
Wy

F(o)
(@)

FIGURE 4.3

H
H
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where
) c
= 4.22
{ T (4.22)
- wVT - 2= K C>7 (4.23)
u)d = Wy 4 = _V 2/71 .
W, = \/E (4.24)
y m

If the mass is at rest before the unit impulse is applied (x = ¥ = O for ¢ < 0 or at
t = 07), we obtain, from the impulse-momentum relation,

Impulse = f =1 =mi(t=0)-mi(t=0")=miz (4.25)
Thus the initial conditions are given by
x(t =0) = x5 =0
Wt =0) =% = 1 (4.26)
In view of Eq. (4.26), Eq. (4.21) reduces to
V . e—[w,,r
x(t) = g(t) = sin wyt 4.27)
. ma)d

Equation (4.27) gives the response of a single degree of freedom system to a unit

- impulse, which is also known as the impulse response function, denoted by g(®).

The function g(#), Eq. (4.27), is shown in Fig. 4.3(c).
If the magnitude of the impulse is F instead of unity, the initial veloc1ty Xg 1S
F/m and the response of the system becomes

Fe-fwat
x(t) = =

sin wyt = Fg(f) (4.28)

ma)d
If the impulse F is applied at an arbitrary time ¢t = 7, as shown in Fig. 4.4(a), it
will change the velocity at ¢+ = 7 by an amount F/m. Assuming that x = 0 until
the impulse is applied, the displacement x at any subsequent time ¢, caused by a
change in the velocity at time 7, is given by Eq. (4.28) with ¢ replaced by the time
elapsed after the application of the impulse, that is, ¢ — 7 Thus we obtain

x(1) = Fg(t - 1)

(4.29)
This is shown in Fig. 4.4(b). )
Now we consider the response of the system under an arbitrary external force F(r),
shown in Fig. 4.5. This force may be assumed to be made up of a series of impulses
of varying magnitude. Assuming that at time 7, the force F(r) acts on the system
for a short period of time 47, the impulse acting at ¢t = 7is given by F(7) Ar. At .
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(o)
Iy
F(x)
i 5
i | |
i 7 E |
H Vg
| A L
i 0 . / t
(® } T T+ At
FIGURE 4.4 FIGURE 4.5 An arbitraryv (nonperiodic)

forcing function.

any time ¢, the elapsed time since the impulse ist — 7, so the response of the systemn
at ¢ due to this impulse alone is given by Eq. (4.29) with F = F(7) Ar:

Ax(f) = F(r) Arg (t — 1) (4.30)

The total response at time ¢ can be found by summing all the responses due to the
elementary impulses acting at all times 7:

x(t) = F(nNg(t — 7) AT (4.31)

Letting AT — O and replacing the summation by integration, we obtain
. .
x(0) = [ Flog(t = 7 dr (4.32)
0

By substituting Eq. (4.27) into Eq. (4.32), we obtain

t
X(f) — .__l__j F(T)e—{‘b'n(f—T) Sin Wy (t — T) d'r (433)
mawgy/ o .

which represents the response of an underdamped single degree of freedom system
to the arbitrary excitation F(f). Note that Eq. (4.33) does not consider the effect of
initial conditions of the system. The integral in Eq. (4.32) or Eq. (4.33) is called
the convolution or Duhamel integral. In many cases the function F(¢) has a form
that permits an explicit integration of Eq. {4.33). In case such integration is not
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Problems

CHAPTER 4

VIBRATION UNDER GENERAL FORCING CONDITIONS

4.3 What is the Duhamel integral? What is its use?

4.4 How are the initial conditions determined for a single degree of freedom system
subjected to an impulse at r = 0?

4.5 Derive the equation of motion of a system subjected to base excitation.

4.6 What is a response spectrum?

4.7 What are the advantages of the Laplace transformation method?

4.8 What is the use of the pseudo spectrum?

4.9 How is the Laplace transform of a function x(¢) defined?

4.10 Define these terms: generalized impedance and admittance of a system.

4.11 State the interpolation models that can be used for approximating an arbitrary forcing

4.12
4.13
4.14

The problem assignments are organized as follows:

function.

How many resonant conditions are there when the external force is not harmonic?

How do you compute the frequency of the first harmonic of a periodic force?

What is the relation between the frequencies of higher harmonics and the frequency
of the first harmonic for a periodic excitation?

Problems Section Covered Topic Covered

4.1-4.10 . 42 Response under general periodic force

4.11-4.13 43 Penodic force of irregular form

4.14-4.34 4.5 Convolution integral

4.35-4.44 4.6 Response spectrum

4.45-4.47 4.7 Lapléce transformation

4.48-451 4.8 Irregular forcing conditions using numeﬁcal methods
4.52-4.57 4.9 Computer program

4.58-4.60 — Projects

4.1- o

4.4 Find the steady-state response of the hydraulic control valve shown in Fig. 4.1(a) to

4.5  Find the steady-state response of a viscously damped system to the forcing function
obtained by replacing x(¢) and A with F(¢) and Fy, respectively, in Fig. 1.46(a).
4.6  The torsional vibrations of a driven gear mounted on a shaft (see Fig. 4.29) under

the forcing functions obtained by replacing x(r) with F(r) and A with Fy in Figs.
1.87-1.90. :

steady conditions are governed by the equation:

Job + k6 = M,




m systern

ry forcing

monic?
se?

frequency

i\l methods

1. 4.1(a) to
o in Figs.

g fuﬁction
46(a).

-29) under
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-4- —EF -
NI
! 4
N
Broken tooth ' > Driving gear

FIGURE 4.29

4.7

where k, is the torsional stiffness of the driven shaft, M, is the torque transmitted, Jg
is the mass moment of inertia, and @ is the angular deflection of the driven gear. If
one of the 16 teeth on the driving gear breaks, determine the resulting torsional
vibration of the driven geér for the following data.

Driven gear: Jo = 0.1 N—m-s?, speed = 1000 rpm, driven shaft: material - steel,
solid circular section with diameter 5 cm and length 1 m, M,q = 1000 N-m.

A slider crank mechanism is used to impart motion to the base of a spring-mass-
" damper system, as shown in Fig. 430. Approximating the base motion y(1) as a series
of harmonic functions, find the response of the mass form = 1 kg, ¢ = 10 N-s/m,
k= 100N/m, r = 10cm, ! = 1 m, and w = 100 rad/s.

FIGURE 4.30

4.8

4.9

The base of a spring-mass-damper system is subjected to the periodic displacement
shown in Fig. 4.3 1. Determine the response of the mass using the principle of superposi-
tion. . '

The base of a spring-mass system, with Coulomb damping, is connected to the slider
crank mechanism shown in Fig. 4.32. Determine the response of the system for a -
coefficient of friction u between the mass and the surface by approximating the motion
() as a series of harmonic functions for m = 1 kg, k = 100 N/m, r = 10cm, | =
l1m, z = 0.1, and @ = 100 rad/s. Discuss the Jimitations of your solution.
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x(1)

FIGURE 4.31

FIGURE 4.32

4.10 A rolier cam is used to impart a periodic motion to the base of the spring-mass system
shown in Fig. 4.33. If the coefficient of friction between the mass and the surface is

u, find the response of the system using the principle of superposition. Discuss the
validity of the result.

Find the tesponse of a damped system with m = 1kg k = 15 kN/m. and { = 0.1
under the action of a periodic forcing function, as shown in Fig. 1.92.

Find the response of a viscously damped system under the periodic force whose values

are given in Problem 1.69. Assume that M, denotes the value of the force in Newtons
at time #; seconds. Use m = 0.5 kg, k = 8000 N/m, and { = 0.06.

Find the displacement of the water tank shown in Fig. 4.34(a) under the periodic
force shown in Fig. 4.34(b) by treating it as an undamped single degree of freedom
system. Use the numerical procedure described in Section 4.3. '

Sandblasting is a process in which an abrasive material, entrained in a jet, is directed .
onto the surface of a casting to clean its surface. In a particular setup for sandblasting, .
the casting of mass m is placed on a flexible support of stiffness k as shown in Fig.




S§ system
surface is
scuss the

ise values -

Newtons

periodic
" freedom

3 directed -

Iblasting,
/m in Fig.
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-~

27

FIGURE 4.33

., x(@ F(f), kN
G 4
F(t) m=10Mg
400
k=5 MN/m
-+ { (seconds)
¢ 0 0.06 0.15 0.21 0.30 0.36
@ - () '
FIGURE 4.34

4.35(a). If the force exerted on the casting due to the sandblasting operation varies
as shown in Fig. 4.35(b), find the response of the casting.

4.1S The frame, anvil, and the base of the forging hammer, shown in Fig. 4.36(a), have a
total mass of m. The support elastic pad has a stiffness of k. If the force applied by
the hammer is given by Fig. 4.36(b), find the response of the anvil.

4.16 Find the displacement of a damped single degree of freedom system under the foréing
function F(f) = Fpe~* where a is a constant.

4.17 A compressed air cylinder is connected to the spring-mass system shown in Fig.
4.37(a). Due to a small leak in the valve, the pressure on the piston, p(z), builds up




316  CHAPTER 4 VIBRATION UNDER GENERAL FORCING CONDITIONS

Nozzle Jet of abrasive _
material g

N 5

I':\\\/
1ily F(6) i

LT ~——

Casting, m

Foboe——
Flexible \
support, k ‘
o o — !
(a) (b)
FIGURE 4.35
F(o)
Fo-—
|
!
!
|
. |
Elastic |
pad, k |
' —>t
o fg S[n

(b)

FIGURE 4.36

as indicated in Fig. 4.37(b). Find the response of the piston for the following data:
m = 10 kg, k = 1000 N/m, and d = 0.1 m.

4.18 Find the transient response of an undamped sprin
the mass is subjected to-a force

g-mass system for ¢ > m/w when

Eg(l—cos wt) for0<t=<

SEE]

F() =

T
FQ ’ fort> —
. w




ving data:

m/w when
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—Hose

Compressed

atr
cylinder |__b (1)
\ ![ kK td
p(1) |m
L 4
7 7. 7777 7. 7 TIITT777
(a)
p(6), kPa
4
p() =50 (L -e™)
> ¢
(b)
FIGURE 4.37
(1) o) ()
& 4 : 4 u
- Fy(1 - cos ﬁ,)

Fo Fﬂ ___________
o} N ’t o t ﬁ

(2) (®)
FIGURE 4.38

Assume that the displacement and velocity of the mass are zero att = 0.

4.19- :

421 Use the Dahamel integral method to derive expressions for the response of an undamped
system subjected to the forcing functions shown in Figs. 4.38(a) to (c).

.
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4.22 Figure 4.39 shbws a one degree of freedom model of a motor vehicle traveling in the
horizontal direction. Find the relative displacement of the vehicle as it travels over 3
road bump of the form y(s) = Y sin m5/4.

k2 c Sk2

T NANNANNNNNNAN
6—4

'FIGURE 4.39

4.23 A vehicle traveling at a constant speed v in the horizontal direction encounters a
triangular road bump, as shown in Fig. 4.40. Treating the vehicle as an undamped
spring-mass system, determine the response of the vehicle in the vertical direction.

FIGURE 4.40

4.24  An automobile, having a mass of 1000 kg, runs over a road bump of the shape shown
in Fig. 4.41. The speed of the automobile is 50 km/hr. If the undamped natural period
of vibration in the vertical ditection is 1.0 second, find the response of the car by
assuming it as a single degree of freedom undamped system vibrating in the vertical
direction. ;




PROBLEMS 319 b

eling in the

Height of bump (m)
wvels over a

4
Olp———————
|
I
|
!
I
|
[
l » Distance along
0 0.25 0.50 road (m)
FIGURE 4.41

425 A camcorder of mass m is packed in a container using a flexible packing material.
" The stiffness and damping constant of the packing material are given by % and ¢,
respectively, and the mass of the container is negligible. If the container is dropped

accidentally from a height of h onto a rigid floor (see Fig. 4.42), find the motion of
the camcorder.

acounters a
. undamped. -
. direction.

Camcorder

(m)

+~—Container

L

N NN\\N ANNNANANUNNAN NNANNNNY

FIGURE 4.42
g PY il

4 26 An airplane, taxiing on a runway, encounters a bump. As a result, the root of the
- wing is subjected to a displacement that can be cxpressed as

1ape shown ) _ -

tural period - _ » ) = {Y(t 1t5), 0=sts1y
the car by 0, 1>t

‘t-hg vertical Find the response of the mass located at the tip of the wing if the snffness of the
wing is k (see Fig. 4.43).




320 CHAPTER 4  VIBRATION UNDER GENERAL FORCING CONDITIONS

Wing, k Equivalent
. mass, m
‘ Wing root

FIGURE 4.43

427 Derive Eq. (E.1) of Example 4.6.

4.28 1In a static firing test of a rocket, the rocket is anchored to a rigid wall by a spring-

Ayt g

damper system, as shown in Fig. 4. 44(a). The thrust acting on the rocket reaches its '
maximumn value F in a negligibly short time and remains constant unti} "the burnout -
time 1y, as indicated in Fig. 4.44(b). The thrust acting on the rocket is given by F =
mgv where mg is the constant rate at which fuel is burnt and v is the velocity of the
jet stream. The initial mass of the rocket is M, so that its mass at any time ¢ is given
by m = M — mgt, 0 <t < fo If the data are k = 7.5 X 105 N/m, ¢ = 0.1 X
106 N-s/m, my = 10 kg/s, v = 2000 m/s, M = 2000 kg, and 15 = 100 s, (1) de-
rive the equation of motion of the rocket, and (2) find the maximum steady state
displacement of the rocket by assuming an average (constant) mass of (M — 3mgtg).

F

>0 T

-l - [

o) (o

TIITTITTIT 7777777777777 777777777 TITI77777777777

(a)

FIGURE 4.44

429 Show that the response to a unit step function h(r) (Fp = 1 in Fig. 4.6b) is related

to the impulse response function g(r), Eq. (4.27), as follows:

dh(t)

g(t) = ar

4.30 Show that the convolution integral, Eq. (4.33), can also be expressed in terms of the

response 1o a unit step function h(r) as

x(t) = F(0) h(t) + h(t — r)dr

J"dF(T)
0
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[y

F(t) = Fye™!
ks

Uniform rigid bar,
mass m
DR

4 O M,e” 2
i ﬁr(
0 /
a—- TP
—, | P | u_ ]
- : l + ] 4 ]
FIGURE 4.45 FIGURE 4.46
4.31 Find the response of the r1g1d bar shown in Fxg 4.45 usmg convolutxon integral for
" the followmg data: k, = ky = 5000 N/m a _075 m b =-05m,1=10mM
=50 kg, m = 10 kg, Fy = 500 N.
432 Find the Tesponse of the rigid bar shown in Fig.. 4. 46 using convolunon integral for
the following data: k = 5000 N/m, | = 1 m, m = 10 kg, My = 100 N-m.
433 Find the response of the rigid bar shown in Fig. 4. 47 usmg convolunon mtcgral when
“the end P of the spring PQ is subjected to the dlsplacement x(1) = xg el Da[a k
5000N/ml—1mm=10kg,xo—lcm »
434 Find the Teésponse of the mass shown in Fw 4.48 under the force F(D Fye*
using convolution integral - Data: k; = 1000 N/m k2 =500 N/m, r= S5-cm, m =
].Okg,JO: kvm Fo——SON K
Pulley, mass'.moment of inertia Jy
Fye™!
x(f) = xye
Yy P
Uniform bar,
mass m
k k
CE—T D)
- O
B TS
] 3 )
a T 4 \
FIGURE 4.47

FIGURE 4.48
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The darﬁping ratios obtainable with different types of construction/arrangement
are indicated below: ’

Equivalent Viscous Damping
Type of Construction/Arrangement Ratio (%)

Welded construction : R ) ' : 1-4

Bolted construction . 3-10
Steel frame . ’ AR 5-6
Unconstrained- viscoelastic layer on - L 4-5
. steel-concrete girder ’

Constrained viscoelastic layer on o - o 5-8
steel-concrete girder V :

"Vibration isolation is a procedure by which the undesirable. effects of vibration are
reduced [9.21-9.24]. Basically, it involves the insertion of a resilient member- (or
isolator) between the vibrating mass (or equipment or payload) and the source of
vibration so that a reduction in the dynamic response of the system is achieved
under specified conditions of vibration excitation. An isolation system is said to be
active or passive depending on whether or not ‘external power is required for the
isolator to perform its function. A passive isolator consists of a resilient member
" (stiffness) and an energy dissipator (damping). Examples of passive isolators include
metal springs, cork, felt, pneumatic springs, and elastomer (rubber) springs. Figure
9.16 shows typical spring and pneumatic mounts that can be used as passive isolators,
and Fig. 9.17 illustrates the use of passive isolators in the mounting of a high-speed
punch press [9.25]. The optimal synthesis of vibration isolators is presented in Refs.
{9.26-9 30} )

An active isolator is comprised of a servomechanism with a sensor, signal
processor, and an actuator. The effectiveness of an isolator is stated in terms of its
transmissibility. The transmissibility (7}) is defined as the ratio of the amplitude of
the force transmitted to that of the exciting force. : o '

Vibration isolation can be used in two types of situations. In the first type, the
foundation or base of a vibrating machine is protected against large unbalanced
forces (as in the case of reciprocating and rotating machines) or impulsive forces
(as in the case of forging and stamping presses). In these cases, if the system is
modeled as a single degree of freedom system as shown in Fig. 9.18(a), the force
is transmitted to the foundation through the spring and the damper. The force
transmitted to the base (F,) is given by

FA1) = kx(t) + cx(?) (9.79)
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(c)

FIGURE 9.16 (a) Undamped spring mount; (b) damped spring mount; (c) pneumatic
rubber mount. (Courtesy of Sound and Vibration.)

If the force transmitted to the base F (1) varies harmonicaliy, asinthe case of unbalang
reciprocating and rotating machines, the resulting stresses in the foundation bolts al
vary harmonically, which might lead to fatigue failure. Even if the fofce transmit
is not harmonic, its magnitude is to be limited to safe permissible values.

“In the second type, the system is protected against the motion of its foundati
or base (as in the case of protection of a delicate instrument or equipment from
motion of its container). If the delicate instrument is modeled as a single degreg
freedom systemn, as shown in Fig. 9.18(b), the force transmitted to the instrume
(mass m in Fig. 9.18b) is given by

Tt = mE) = M) = y(®] T D = 0] ©8
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FIGURE 9.17 High-speed punch press mounted
on pneumatic rubber mounts. (Courtesy of Sound
and Vibration.) )

where (x — y) and (¥ - ) Henote-ehefe}at~i~veﬂisphrcemem and Telative velocity

of the spring and the damper, respectively. In many practical problems, the package
1s to be designed properly to avoid transmission of large forces to the delicate
instrument to avoid damage.

Reduction of the Force Transmitted to Foundation. When a machine is bolted
directly to arigid foundation or floor, the foundation will be subjected to a harmonic
load due to the unbalance in the machine in addition to the static load due to the
weight of the machine. Hence an elastic or resilient member is placed between the
machine and the rigid foundation to reduce the force transmitted to the foundation.
The system can then be idealized as a single degree of freedom system, as shown
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Vibrating

machine Delicate

instrument
or machine

Rigid base or
foundation Base

(package)

T777777777777. 7.

(@)

FIGURE 9.18

in Fig. 9.19(a). The resilient member is assurned to have both elast1C1ty and damp;
and is modeled as a spring & and a dashpot ¢, as shown in Fig. 9.19(b). It is assumeg
that the operation of the machine gives rise to a haxmomcally varying' f
F() = Focos wt. The equation of motion of the machine (of mass m) is given
‘ mi + cx + kx = Fgcos wt
Since the transient solution dies out after some time, only the steady-state solu
will be left. The steady state solutlon of Eq. (9.81) is given by (see Eq. 3. 25

x(t) X cos (wt - ¢>)

Fo
[(k - mw?)? + o 2027172

X =

F(1) = Fycos ot F(t) = Fycos wt
Machine (m) . Machine (m)
/ /

Resilient . } __I_
Resilient _f~ k ¢

member

member
777777 7 777777, 77 77

Foundation or base Foundation or base

() - (b)

FIGURE 9.19 Machine and resilient member on rigid foundation.
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¢ = tan-! (TQE—Z> (9.84)

- moe
The force transmitted to the foundation throﬁgh the spring and the dashpot, F,(z),
is given by '
F1) = kx(t) + ci(t) = kX cos (wf — ¢) — cwX sin (of — @) (9.85)
The magnitude of the total transmitted force (F7) is given by
Fr = [(kx)? + (cx)?]V? = X k? + 0%c?

FO(kZ + w2c2)1/2
[(k — mw2)2 + (4)262]1/2

(9.86)

The transmissibility or transmission ratio of the isolator (7,) is defined as the ratio
of the magnitude of the force transmitted to that of the exciting force:

k2 + wc? V2

- {(k -~ mw?)? + wzcz}

‘ 2

1+ (24“3)

_ o,
. ; 242 2
- (2) ] ()
, w,

where r = — 1is the frequency ratio. The variation of 7, with thé frequency ratio

w . n . . . . . .
r = — 1s shown in Fig. 9.20. In order to achieve isolation, the force transmitted
a)n- ) . . - R
to the foundation needs to be less than the excitation force. It can be seen, from
Fig. 9.20, that the forcing frequency has to be greater than V2 times the natural

frequency of the system in order to achieve isolation of vibration.

The magnitude of the force transmitted to the foundation can be reduced by
decreasing the natural frequency of the system (w,).

The force transmitted to the foundation can also be reduced by decreasing the
damping ratio. However, since vibration isolation requires » > \/5, the machine
should pass through resonance during start-up and stopping. Hence, some damp-
ing is essential to avoid infinitely large amplitudes at resonance.

Although damping reduces the amplitude of the mass (X) for all frequencies,
it reduces the maximum force transmitted to the foundation (F,) only if »
< V2. Above that value, the addition of damping increases the force
transmitted. _ .

If the speed of the machine (forcing frequency) varies, we must comprormise

inchoosing-the-amount_of damping to.minimize.the force transmitted. The
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2.5

2.0

1.5

1.0

0.5

=== Transmissibility (7,)

0.0

.

[ Amplification | Isotation
‘region region

FIGURE 9.20 Variation of transmission ratio (T,) with w.

amount of damping should be sufficient to limit the amplitude X an
force transmitted F, while passing through the resonance, but not so muc
to increase unnecessarily the force transmitted at the operating speed.’

Reduction of the Force Transmitted to the Mass. If a sensitive instrume
achine of mass m is to be isolated from the unwanted harmonic motion
the governing equation is given by Eq. (3.75):

mi + ¢ + kz = —my

where z = X~ y denotes the displacement of the mass relative to the base.'
base motion is karmonic, then the motion of the mass will also be harmonic. H

= ‘;—{, is given by Eq. (3.68)

: 1
B { 1+ 22 2
(1 - 'r2)2 + (Zg“r)2 ]
where the right-hand side expression 1 Eq (9 89) can be identified to be sam

that in Eq. (9.87). Note that Eq. (9.89) is\also equal to the ratio of the ma
steady state accelerations of the mass and th&“hase.

Reductio nﬂofﬁth&lloxua—'l?ransmxtted to-the Foundation-] Due—te—Retatm
balance. The excitation force caused by a rotating unba

F(f) = FO sin wf = mew? sin wt
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T'he natural frequencies of the system are given by the roots of the equation

(k — m,w?) -k

—k (k — myw?)| 0

The roots of Eq. (9.97) are given by

5 _ (my +m2)kA
wi = —————

2
TT_O,
l] 12

solution yields
_ (k — myw?)
[(k = mo?)(k -

X,

X

The force transmitted to the supporti
MyXy: ) ;

2k = met)(k = myw?) = k7]
of 'the isolator (T,) is given by

- mzk 0)2

1

<m, + mz _ m1w2>
ny k
where w, is the natural frequency of the system given by Eq. (9.98). Equatio

(9.102) shows, as in the case of an isolator on a rigid base, that the force transmit
to the foundation becomes less as the natural frequency of the system w, 1s redu

- . %
EXAMPLE 9.3 Spring Support for Exhaust Fan ‘

An exhaust fan, rotating at 1000 rpm, is to be supported by four.springs, each havin
stiffness of K. If only 10 percent of the unbalanced force of the fan’is to be transmitte
the base, what should be the value of X7 Assume the mass of the exhaust fan to be 40:

Given: Fxhaust fan with mass = 40 Kg, fotational speed—="1000 rpmm, ~and-permissibl
shaking force to be transmitted to base = 10 percent. :
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Find: Suffness (K) of each of the four supporting springs.
Approach: Use transmiésibility equation.

Solution: Since the transmissibility has to be 0.1, we have, from Eq. (9.87), -

. 2
w 1/2
1+ <2{w—n>
242 2
U= (@) ) ()
Wy, Wy,

where the forcing frequency is given by

w = 1000 X 27
60

= 104.72 rad/sec

and the natural frequency of the system by

(- ()"

wy =

m 40 T 31623
By assuming the damping ratio to be { =. 0, we obtain from Eq. (E.1),

+1

0.1 = B 5 (E.4)
{1 B (104.72 X 3.1623> }
VK

To avoid imaginary values, we need to consider the negative sign on the right-hand side of
Eq. (E.4). This leads to

331.1561

= 33166

K = 9969.6365 N/m

Isolation of Vibrating System

A vibrating system is to be isolated from its supporting base. Find the required damping
ratio that must be achieved by the isolator to limit the transmissibility at resonance to T, =
4. Assume the system to have a single degree of freedom.

Given: Transmissibility at resonance = 4.
Find: Damping ratio of the isolator.

Approach: Find the equation for the transmissibility at resonance.
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9.9.3

Vibration
[solation System
with Partially
Flexible
Foundation

VIBRATION CONTROL

Solution: By setting w = w,, Eq. (9.87) gives

Vi1+ 202

T:
r 2(

Figudg 9.22 shows a more realistic situation in which the base of the isolator, instead
of beiny completely rigid or completely flexible, is partially flexible [9.34]. We can
define th&\mechanical impedance of the base structure, Z(w), as the force at frequénéy
w required ‘@ produce a unit displacement of the base (as in Section 3.5):

Applied force of frequency o
Displacement

Z(w) =

The equations of motiog are given by®

+ k (xy — x,) = Focos ot
ki(xy — xy) = - x,Z{w)

By substituting the harmonic 0

x,(t) ‘= X.Cus wt,

F(t)y = Fy cos wt x (0
Machine (m;) ]

Isolator X_2(’)

Supporting (k)
structure (rmy) -_J
NN

\ Partially flexible

with mechanical
impedance Z(w)

FIGURE 9.22 Machine with isolator on a
partially_flexible foundation.

61f the base is completely flexible with an unconstrained mass of my, Z(w) = — w*my, and Eqé. o
and (9.105) lead to Eq. (9.94).
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