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CHAPTER 2

Free Vibration of
Single Degree of
Freedom Systems

2.1 Introduction

R

Sir Isaac Newton (1642-1727)
was an English natural philosopher,
a professor of mathematics at Cam-
bridge University, and President of
the Royal Society. His Principia
Mathematica (1687), which deals
with the laws and conditions of mo-
tion, is considered to be the greatest
scientific work ever produced. The
definitions of force, mass, and mo-
mentum, and his three laws of
motion crop up conttnually in dy-

namics. Quite fittingly, the unit of
force named “Newton” in §] units
happens to be the approximate
weight of an average apple, which
inspired him to study the laws of
gravity. (Photo courtesy of David
Eugene Smith, History of Mathe-
matics, Volume I—General Survey
of the History of Elementary Math-
ematics, Dover Publications, Inc.,
New York, 1958.)

A system is said to undergo free vibration when it oscillates only under an initial

disturbance with no external forces actin
tions of the pendulum of a grandfather ¢
a bicyclist after hitting a road bump,
an initial push represent a few examp

Figure 2.1(a) shows a s
vibratory system. It is cal

g after the initial disturbance. The oscilla-
lock, the vertical oscillatory motion felt by
and the motion of a child on a swing under
les of free vibration.

pring-mass system that represents the simplest possible
led a single degree of freedom System since one coordinate

(x) is sufficient to specify the position of the mass at any time. There is no external

force applied to the mass;
will be a free vibration. Sin

hence the motion resulting from an initial disturbance
ce there is no element that causes dissipation of energy

during the motion of the mass, the amplitude of motion remains constant with time;

it is an undamped system. In actual
free vibration diminishes graduall
surrounding medium (such as air). Such vibrations are s

practice, except in a vacuum, the amplitude of
y over time, due to t}

he resistance offered by the

aid to be damped. The study
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FIGURE 2.1 A spring-mass system in horizontal position.

of the free vibration of undamped and damped single degree of freedom systems
is fundamental to the understanding of more advanced topics in vibrations.

Several mechanical and structural systems can be idealized as single degree of
freedom systems. In many practical systems, the mass is distributed, but for a simple
analysis, it can be approximated by a single point mass. Similarly, the elasticity of
the system, which may be distributed throughout the system, can also be idealized
by a single spring. For the cam-follower system shown in Fig. 1.32, for example,
the various masses were replaced by an equivalent mass (m.q) in Example 1.7. The
elements of the follower system (pushrod, rocker arm, valve, and valve spring) are
all elastic but can be reduced to a single equivalent spring of stiffness k.q. For a
simple analysis, the cam-follower system can thus be idealized as a single degree
of freedom spring-mass system, as shown in Fig. 2.2.

Similarly, the structure shown in Fig. 2.3 can be considered a cantilever beam
that is fixed at the ground. For the study of transverse vibration, the top mass can
be considered a point mass and the supporting structure (beam) can be approximated
as a spring to obtain the single degree of freedom model shown in Fig. 2.4. The
building frame shown in Fig. 2.5(a) can also be idealized as a spring-mass system,
as shown in Fig. 2.5(b). In this case, since the spring constant k is merely the ratio
of force to deflection, it can be determined from the geometric and material properties
of the columns. The mass of the idealized system is the same as that of the floor
if we assume the mass of the columns to be neglgible.

2.2 Free Vibration of an Undamped Translational System

2.2.1 Using Newton’s second law of motion, we will consider the derivation of the

Equation of equation of motion in this section. The procedure we will use can be summarized

Motion Using as follows: '

Newton’s Second -

Law of Motion 1. Select a suitable coordinate to describe the position of the mass or rigid body

S in the system. Use a linear coordinate to describe the linear motion of a point

mass or the centroid of a rigid body, and an angular coordinate to describe the
angular motion of a rigid body.
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Rigid floor
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FIGURE 2.5 Idealization of a building frame.

2. Determine the static equilibrium configuration of the systerm and measure the
displacement of the mass or rigid body from its static equilibrium position.

3. Draw the free-body diagram of the mass or rigid body when a positive displace-
ment and velocity are given to it. Indicate all the active and reactive forces
acting on the mass or rigid body.

4. Apply Newton’s second law of motion to the mass or rigid body shown by the
free-body diagram. Newton’s second law of motion can be stated as follows:

The rate of change of momentum of a mass is equal to the Jorce acting on it.

Thus, if mass m is displaced a distance x(t) when acted upon by a resultant force
F(t) in the same direction, Newton’s second law of motion gives

F(t) = i(m %Q>

If mass m is constant, this equation reduces to

Fi) =m d’f% =m3 2.1)

where

5 az*x(
T e

is the acceleration of the mass. Equation (2.1) can be stated in words as

Resultant force on the mass = mass X acceleration




2

ire the
ion.

splace-
forces

iby the
lows: ..

t force

»

2.2.2
Equation of
Motion Using
Other Methods
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For a rigid body undergoing rotational motion, Newton’s law gives

M) =78 (2.2)
&)

where M is the resultant moment acting on the body and Bandd = 2

resulting angular displacement and angular acceleration, respectively. Equation (2.1)
or (2.2) represents the equation of motion of the vibrating system.

The procedure is now applied to the undamped single degree of freedom system
shown in Fig. 2.1(a). Here the mass is supported on frictionless rollers and can have
translatory motion in the horizontal direction. When the mass is displaced a distance
+x from its static equilibrium position, the force in the spring is kx and the free-
body diagram of the mass can be represented as shown in Fig. 2.1(c). The application
of Eq. (2.1) to mass m yields the equation of motion

F(t) = —kx=m#x
or ‘
mi+ kx=0 (2.3)
As stated in Section 1.6, the equations of motion of a vibrating system can be
derived using several methods. The applications of D’Alembert’s principle, the

principle of virtual displacements, and the principle of conservation of energy are
considered in this section. -

D’Alembert’s Principle The equations of motion, Egs. (2.1) and (2.2), can be
rewritten as

!
(-

F(t) - m 3 = (2.42)

M) -~ T8

0 (2.4b)

These equations can be considered equilibrium equations provided that — mx and
~J6 are treated as a force and a moment. This fictitious force (or moment) is known
as the inertia force (or inertia moment) and the artificial state of equilibrium implied
by Eq. (2.4a) or (2.4b) is known as dynamic equilibrium. This principle, implied
in Eq. (2.4a) or (2.4b), is called the D’Alembert’s principle. The application of

D’Alembert’s principle to the system shown in Fig. 2.1(c) yields the equation _

of motion:

—kx -mi=20 or mxi+ kx =0 2.3)

Principle of Virtual Displacements The principle of virtual displacements states

- that “if a system that is in equilibrium under the action of a set of forces is subjected

to a virtual displacement, then the total virtual work done by the forces will be
zero.” Here the virtual displacement is defined as an imaginary infinitesimal dis-
placement given instantaneously. It must be a physically possible displacement that

are the
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1s compatible with the constraints of the system. The virtual work is defined as the
work done by all the forces, including the inertia forces for a dynamic problem,
due to a virtual displacement.

Consider a spring-mass system in a displaced position as shown in Fig. 2.6(a),
where x denotes the displacement of the mass. Figure 2.6(b) shows the free-body
diagram of the mass with the reactive and inertia forces indicated. When the mass
is given a virtual displacement 8x, as shown in Fig. 2.6(b), the virtual work done
by each force can be computed as follows:

Virtual work done by the spring force = § W,

5w,

—(k x) éx

Virtual work done by the inertia force

il
i

- (m X) éx
When the total virtual work done by all the forces is set equal to zero, we obtain

-midéx —kxéx =20 (2.5)

Since the virtual displacement can have an arbitrary value, 8x # 0, Eq. (2.5) gives
~the equation of motion of the spring-mass system as

mi+ kx =20 (2.3)
Principle of Conservation of Energy A system is said to be conservative if no
energy is lost due to friction or energy-dissipating nonelastic members. If no work
1s done on a conservative system by external forces (other than gravity or other
potential forces), then the total energy of the system remains constant. Since the
energy of a vibrating system is partly potential and partly kinetic, the sum of these
two energies remains constant. The kinetic energy T is stored in the mass by virtue
of its velocity, and the potential energy U is stored in the spring by virtue of its
elastic deformation. Thus the principle of conservation of energy can be expressed
as:

T + U = constant
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or
i(TJr Uy =20 (2.6)
: dt
The kinetic and potential energies are given by
T = imx? 2.7
and
U = Lix? 2.8)
" Substitution of Egs. (2.7) and (2.8) into Eq. (2.6) yields the desired equation
mi + kx = Q (2.3)
2,23 Consider the configuration of the Spring-mass éystem shown in Fig. 2.7(a). The

Equation of
Motion of a
Spring-Mass
System in Vertical
Position

mass hangs at the lower end of a spring, which in turn is attached to a rigid support
at its upper end. At rest, the mass will hang in a position called the stazic equilibrium
position, in which the upward spring force exactly balances the downward gravita-

Static equilibrium
- position

~ Final position
+x

\ Potential

W Haﬂ \0.1 ™~ Static equilibrium X

position

(c) (d)

FIGURE 2.7 A spring-mass systen{ in vertical position.
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tional force on the mass. In this position the length of the spring is [y + &, where
. 1s the static deflection—the elongation due to the weight W of the mass m. From
Fig. 2.7(a), we find that, for static equilibrium,

W = mg = kb (2.9)
where g is the acceleration due to gravity. Let the mass be deflected a distance -+ x

from its static equilibrium position; then the spring force is — k(x + &), as shown
in Fig. 2.7(c). The application of Newton’s second law of motion to mass m gives

~k(x + 6y) + W

mx =
and since k&, = W, we obtain

mi + kx =0 2.10)

Notice that Egs. (2.3) and (2.10) are identical. This indicates that when a mass
moves in a vertical direction, we can ignore its weight, provided we measure x from
its static equilibrium position.

Note: Equation (2.10), the equation of motion of the system shown in Fig.
2.7, can also be derived using D’Alembert’s principle, the principle of virtual dis-
placements, or the principle of conservation of energy. For example, if the principle
of conservation of energy is to be used, we note that the expression for the kinetic
energy, 7, remains the same as Eq. (2.7). However, the expression for the potential
energy, U, is to be derived by considering the weight of the mass. For this we note
that the spring force at static equilibrium position (x = 0) is mg. When the spring
deflects by an amount x, its potential energy is given by (see Fig. 2.7d):

mg x + %k}c2

Furthermore, the potential energy of the system due to the change in elevation of
the mass (note that +x is downward) is —mgx. Thus the net potential energy of
the system about the static equilibrium position is given by

U = potential energy of the spring

+ changein potential energy due to change in elevation of the mass m

= mgx + %k)c2 - mgx = %k‘x2

Since the expressions of T and U remain unchanged, the application of the principle
of conservation of energy gives the same equation of motion, Eq. (2.3).
The solution of Eq. (2,3) can be found by assuming

x(t) = Ce¥ (2.11)

where C and s are constants to be determined. Substitution of Eq. (2.11) into Eq.
(2.3) gives

C(ms? + k) =0
Since C cannot be zero, we have

ms2 + k = 0 (2.12)
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and hence
X 172
= - —_— = g
s _< m> *iw, (2.13)
where i = (~1)12 gpq
172
w, = (X
n " (2.14)

x(1) = Cre'®nt 4+ C,g-t@nt

(2.15)
where C; and C; are constants. By using the identities
e*'* = cos at + i sin at
Eq. (2.15) can be rewritten as
x(r) =-A1cos Wnt + Ajsin w,t (2.16) V

where A; and A are new constants, The constants C,
determined from the Initial conditions of the System

specified to evaluate these constants uniquely. Note that the number of conditions

to be specified is the same as the order of the governing differentia) equation. In
the present case, if the values of displacement x(¢) and

are specified as x, and Xo at ¢t = 0, we have, from Eq. (2.16),

and C, or 4, and A, can be
- Two conditions are to be

x(t=0)=A1:x0

. : . 2.7
x(f = O) = &)nAz = Xp

Hence 4, = Xp and A, = Xy/w,. Thus the solution of Eq. (2.3) subject to the initial

conditions of Eq. (2.17) is given by .

Xg .
x(2) = xgcos Wpt + —sin w,t
w

2.2.5
Harmonic Motion

represents the natural frequency of vibration of the system.
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Equation (2.16) can be expressed in a different form by introducing the notation
Ay
Ay

Il

A cos ¢

2.
A sin ¢ (2.19)

il

where A and ¢ are the new constants which can be expressed in terms of Ay and
A, as

29172
2 2\1/2 2 Xo - ;
(A7 + A35) =1 x5+ | — = amplitude

A =
wn
’ (2.20)
¢ = tan~! (%) = tan~! (X;C:)) = phase angle
Introducing Eq. (2.19) into Eq. (2.16), the solution can be written as
x(1) = A cos{w,t — ¢) (2.21)
By using the relations
Al = Aosin ¢0
A, = Agcos ¢ (2.22)
Eq. (2.16) can also be expressed as
x(t) = Agsin(w,t + ¢p) (2.23)
where
SN271/2
Ag = A = [x% + (%) :l (2.24)
and
do = tan’l(M> (2.25)
Xp .

The nature of harmonic oscillation can be represented graphically as in Fig.
2.8(a). If A denotes a vector of magnitude A, which makes an angle w,t — ¢ with
respect to the vertical (x) axis, then the solution, Eq. (2.21), can be seen to be the
projection of the vector A on the x-axis. The constants A, and A; of Eq. (2.16),
given by Eq. (2.19), are merely the rectangular components of 4 along two orthogonal
axes making angles ¢ and — (3 — ¢) with respect to the vector A. Since the angle

w,t — ¢ 1s a linear function of time, it increases linearly with time; the entire
diagram thus rotates anticlockwise at an angular velocity w,. As the diagram (Fig.
2.8a) rotates, the projection of A onto the x-axis varies harmonically so that the
motion repeats itself every time the vector A sweeps an angle of 2. The projection
of A namely x(), is shown plotted in Fig. 2.8(b) as a function of time. The phase
angle @ can also be interpreted as the angle between the origin and the first peak.
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Thus, when the mass vibrates in a vertical direction, we can compute the natural
frequency and the period of vibration by simply measuring the static deflection
8. It is not necessary that we know the spring stiffness k and the mass m.

2. From Eq. (2.21), the velocity x(r) and the acceleration x(z) of the mass m at
time t can be obtained as

() = %—':(r) = —w,A sin(w,t ~ ¢) = w,A cos< Wt — ¢+ g)

2 (2.31)
¢ d’x 2 2
X() = ?d—r?(t) = ~wlA cos(w,t — ¢) = wiA cos(w,t — ¢ + )
Equation (2.31) shows that the velocity leads the displacement by 7/2 and the

acceleration leads the displacement by 7.
3. If the initial displacement (xp) is zero, Eq. (2.21) becomes

x(1) = iCQCOS( wpt _7Z> = Zsin Wyt (2.32)
7] 2 Wy

n

On the other hand, if the initial velocity () is zero, the solution becomes
x(t) = xpC0S Wyt (2.33)

4. The response of a single degree of freedom system can be represented in the
displacement (x)-velocity (x) plane, known as the state space or phase plane.
For this we consider the displacement given by Eq. (2.21) and the corresponding
velocity:

x(t) = Acos (w, t — &)

or

cos (w, t — @) = (2.34)

x| =

x('r) = —A w,sin(w, t — ¢)

or

sm(%t~¢)=—A2 =—% (2.35)

where y = x/w,. By squaring and adding Eqgs. (2.34) and (2.35), we obtain

cos? (wy t — @) + sin? (w, t — @) =1
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FIGURE 2.8 Graphical representation of the motion of a harmonic oscillator.

Note the following aspects of the spring-mass system:

1. If the spring-mass system is in a vertical position, as shown in Fig. 2.7(a), the
circular natural frequency can be expressed as

k 1/2 :
w, = <—> (2.26)

as

k= — = 28 (2.27)

Substitution of Eq. (2.27) into Eq. (2.14) yields

172
_ [ & )
W, = <5St> (2.28)

Hence the natural frequency in cycles per second and the natural period are
given by

l 1/2
- (&
I h(&m) (2.29)

L 5 172
T, = f_ =27 <7;—‘> (2.30)
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FIGURE 2.9
(2.32)
mes The graph of Eq. (2.36) in the (x, y)-plane is a circle, as shown in Fig. 2.9(a),
i g and it constitutes the phase plane or state space representation of the undamped
(2.33) system. The radius of the circle, A, is determined by the initial conditions of
lin the S motion. Note that the graph of Eq. (2.36) in the (x, X) plane will be an ellipse,
”;ane i as shown in Fig. 2.9(b).
- .
vonding ¢
EXAMPLE 2.1 Natural Frequency of a Water Tank
The column of the water tank shown in Fig. 2.10 is 300 ft high and is made of reinforced
: concrete with a tubular cross section of inner diameter 8 ft and outer diameter 10 ft. The
(2.34) tank weighs 6 X 10° Ib with water. Find the natural frequency of transverse vibration of
the water tank by neglecting the mass of the column.
Given: Water tank of Fig. 2.10.
) Find: Natural frequency of vibration of the tank in transverse direction.

-Approach.' Find the stiffness of the column and consider the tank as a single degree of
freedom system.

Assumptions:

L 1. Water tank is a point mass.
0) : 2. Column has a uniform cross section.
3. Mass of the column is negligible.
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FIGURE 2.10 Elevated tank. (Photo
courtesy of West Lafayetie Water
Company.)

Solution: The water tank can be considered as a cantilever beam with a concentrated load
(weight) at the free end. The transverse deflection of the beam, S, due to a load P is given

3 .
by % where [ is the length, E is the Young’s modulus and / is the arca moment of inertia

of the cross section of the beam. The stiffness of the beam (column of the tank) is given by

P 3 EI
k=Lt =22t
) P?
In the present case, [ = 3600 in, E = 4 X 10° psi,

= Tooq8 — 44y = o 4 _ 4y — 4 4
I 64(d0 d?) 64(120 96%) 600.9554 x 10% in

and hence

_3(4 X 10%) (600.9554 X 10%) _

45. i
008 1545.6672 1b/in

k
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The natural frequency of the water tank in transverse direction is given by

. X 4
o = JEo [lsasecr xsses oo
m 6 X 10 , n

Natural Frequency of Cockpit of a Firetruck

The cockpit of a firetruck ig located at the end of a telescoping boom, as shown in Fig.
2.11(a). The cockpit, along with the fireman, weighs 2000 N. Find the natural frequency of
vibration of the cockpit in the vertical direction.

Data: Young’s modulus of the material: £ = 2.1 x 10U N/m?, Lengths: L=16 =14
3 m, cross-sectional areas: A = 20cm? A, = 10 cm?, A = 5cm?

FIGURE 2.11
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up by a distance 2 W/k,, and the center of pulley 2 (point B) moves down by 2 W/k,. Thus
the total movement of the mass m (point O) is

2W 2w
2 =—— +
ky ko
as the rope on either side of the pulley 1s free to move the mass downward. If kg denotes
the equivalent spring constant of the system,

Weight of the mass
Equivalent spring constant

= Net displacement of the mass

wo_ 4W<L . L) _ AWy + ky)
keq ky ks kiky
_ kiky
keq = 4k, + ky) (E.1)

By displacing mass m from the static equilibrium position by x, the equation of motion of
the mass can be written as

mi + kegx =0 (E.2)

and hence the natural frequency is given by

kea /2 k ks 12
@, = < ;l > = [m} rad/sec (E.3)
or
e L Kk 12
£ = = 4W[m] cycles/sec (E.4)
2

2.3 Free Vibration of an Undamped Torsional System

If a ngid body oscillates about a specific reference axis, the resulting motion is
called rorsional vibration. In this case, the displacement of the body is measured
in terms of an angular coordinate. In a torsional vibration problem, the restoring
moment may be due to the torsion of an elastic member or to the unbalanced moment
of a force or couple.

Figure 2.13 shows a disc, which has a polar mass moment of inertia J;, mounted
at one end of a solid circular shaft, the other end of which is fixed. Let the angular
rotation of the disc about the axis of the shaft be &, 8 also represents the angle of
twist of the shaft. From the theory of torsion of circular shafts [2.1], we have the .
relation

Gl,
!

M, = (2.37)




¢. Thus

denotes

(E.1)

tion of

(B.2)

(E.3)

(E.4)"

]

i
H

2.3.1
Equation of
Motion

2.3 FREE VIBRATION OF AN UNDAMPED TORSIONAL SYSTEM 115

UL L Ll

-

— ¥ Tt
lwl
]

(a) o (b)

FIGURE 2.13 Torsional vibration of a disc.

where M, is the torque that produces the twist 6, G is the shear modulus, [ is the
length of the shaft, 1, is the polar moment of inertia of the cross section of the shaft
given by

I, = (2.38)

and d 1s the diameter of the shaft. If the disc is displaced by @ from its equilibrium
position, the shaft provides a restoring torque of magnitude M,. Thus the shaft acts
as a torsional spring with a torsional spring constant

M, GI, 7Gd*

k=g =T 5y (2.39)

The equation of the angular motion of the disc about its axis can be derived by
using Newton’s second law or any of the methods discussed in Section 2.2.2. By
considering the free-body diagram of the disc (Fig.2.13b), we can derive the equation
of motion by applying Newton’s second law of motion:

Job + k6 = 0 (2.40)
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which can be seen to be identical to Eq. (2.3) if the polar mass moment of inertia
Jo, the angular displacement 6, and the torsional spring constant k, are replaced by
the mass m, the displacement x, and the linear spring constant &, respectively. Thus
the natural circular frequency of the torsional system is

L\
= | = 2.41
o = (] @.41)
and the period and frequency of vibration in cycles per second are
J 12
T, = 27 <—°> (2.42)
k,
L /% 1/2
= —{ = 2.4
fr = 5o ( JO> (2.43)

Note the following aspects of this system:

1. If the cross section of the shaft supporting the disc is not circular, an appropriate
torsional spring constant is to be used [2.4, 2.5].

2. The polar mass moment of inertia of a disc is given by

" phwD*  WD?

32 8g

where p is the mass density, & is the thickness, D 1s the diameter, and W is the
weight of the disc.

3. The torsional spring-inertia system shown in Fig. 2.13 is referred to as a torsional
pendulum. One of the most important applications of a torsional pendulum is
in a mechanical clock, where a ratchet and pawl convert the regular oscillation
of a small torsional pendulum into the movements of the hands.

2.3.2 The general solution of Eq. (2.40) can be obtained, as in the case of Eq. (2.3):

Solution : ,
O(t) = Aicos w,t + Ajs1n w,t (2.44)

where w, is given by Eq. (2.41), and A, and A, can be determined from the initial
conditions. If

_de

ot = 0) = 8, and (t = 0) = E(z =0) =48, (2.45)

the constants A; and A, can be found:

A, = by
A, = Gylw, (2.46)

Equation (2.44) can also be seen to represent a simple harmonic motion.
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Equation (2.54) shows that #(2) increases exponentially with time; hence the motjion
is unstable. The Physical reason for this is that the festoring moment dye to the
spring (2kI26), which tries to bring the System to equilibrium position, is less thap
the nonrestoring moment due to gravity [ — W(1/2) 8], which tries to move the mass
away from the equilibrium position. Although the stability conditions are iHlustrateq

to find the naturaj frequencies of single degree of freedom systems. The principle
of conservation of energy, in the context of an undamped vibrating system, can be
restated as

use the subscript 1 to denote the time when the mass is passing through its static
equilibrium position and choose U, = 0 as reference for the potential energy. If
we let the subscript 2 indicate the time corresponding to the maximum displacement
of the mass, we have T, = 0. Thus Eq. (2.55) becomes

T, +0=0+ U, (2.56)

If the system is undergoing harmonic motion, then Ty and U, denote the maximum
values of T and U, respectively, and Eq. (2.56) becomes

Number of cylinders x Speed of the engine
2
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FIGURE 2.18

Given: U-tube manometer, engine speed = 600 rpm, and natural frequency of oscilla-
tion = 3.5 times slower than the frequency of pressure fluctuations.

Find: Minimum length of the manometer tube.
Approach.: Use energy method to find the natural frequency.

Solution:

1. Natural frequency of oscillation of the liquid column: Let the datum in Fig. 2.18 be
taken as the equilibrium position of the liquid. If the displacement of the liquid column
from the equilibrium position is denoted by x , the change in potential energy is given
by :

U = potential energy of raised liquid column + potential energy of depressed
liquid column

= (weight of mercury raised X displacement of the C.G. of the segment) +
(weight of mercury depressed X displacement of the C.G. of the segment)

= (Axy)% + (Axy)’z—‘ = Ayx? (E.1)

where A is the cross-sectional area of the mercury column and v is the specific weight
of mercury. The change in kinetic energy is given by

T

i

%(mass of mercury)(velocity)?

A—;Z(xﬂ (E.2)

It

B |
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: where [ is the length of the mercury column. By assuming harmonic motion, we can
write
x(t) = X cos w,t (E.3)
where X is the maximum displacement and w, is the natural frequency. By substituting
Eq. (E.3) into Egs. (E.1) and (E.2), we obtain
U = Upaxcosw,t (E.4)
T = Toasino,t (E.5)
where
¢ Unmax = A7X? (E.6)
and
1 Aylw?
( . Tmax = E g X? (E7)
By equating Upay t0 Tax, We obtain the natural frequency:
g o) 2
oscilla: w, = ( 7g> (E.8)

2. Length of the mercury column: The frequency of pressure fluctuations in the silencer

1 X 600
B 2

1

300 rev/min

T - 300—612—@ = 107 rad/sec (E.9) :
2.18 be. F
columa Thus the frequency of oscillations of the liquid column in the manometer is
s given 107/3.5 = 9.0 rad/sec. By using Eq. (E.8), we obtain :
e\ 2
‘ressed (’Tg> ' = 90 (EIO) [
:nt) + . . or
gment) : 2.0 x 9.81
i ' = ——Z" = (.243 1
L | (9.0 m (E-1D
#UE 1) _ ' ]
t 3
]
EXAMPLE 2.7 Effect of Mass on o, of a Spring
g 2) : Determine the effect of the mass of the spring on the natural frequency of the spring-mass
system shown in Fig. 2.19.
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The maximum kinetic energy of the beam itself (T,,x) is given by

{ 2
|7 {y‘(x)} dx (E.2)
0

where m is the total mass and (m/[) is the mass per unit length of the beam. Equation (E.1)
can be used to express the velocity variation, y(x), as

Tmax =

B =

y(x) = %"%‘-(3 X2 - x3) (E.3)

and hence Eq. (E.2) becomes

) 2 4
Tmax = i(ymax> J' (3 X2 - X3)2 dx
0

1 m Yiax [ 33 133\ .
= == =17 === 2
21 416<35 > 2(35"‘) Yinax (E.4)
If m,q denotes the equivalent mass of the cantilever (water tank) at the free end, its maximum
kinetic energy can be expressed as

1 .
Tmax = 5 Meq yrznax : (ES)
By equating Eqgs. (E.4) and (E.5), we obtain
33
Meq = gm (E.6)
Thus the total effective mass acting at the end of the cantilever beam is given by
Mcff =M+ Meq (E7)

where M is the mass of the water tank. The natural frequency of transverse vibration of the
water tank is given by

(E.8)

2.6 Free Vibration with Viscous Damping

2.6.1
Equation of
Motion

As stated in Section 1.9, the viscous damping force F is proportional to the velocity
x or v and can be expressed as

F = —cx (2.58)

where ¢ is the damping constant or coefficient of viscous damping and the negative
sign indicates that the damping force is opposite to the direction of velocity. A



(E.2)

E.D

(E.3)

(E.4)

imum

(E.5)

(E.6)

(E.7)
of the

2.6.2
Solution
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single degree of freedom system with a viscous damper is shown in Fig. 2.21. If x
1s measured from the equilibrium position of the mass m, the application of Newton’s
law yields the equation of motion:

mx = —cx — kx
or

mx + ¢cx + kx =0 (2.59)

To solve Eq. (2.59), we assume a solution in the form

x(t) = (et (260)

where C and s are undetermined constants. Inserting this function into Eq. (2.59)
leads to the characteristic equation

ms? 4+ cs + k=0 (2.61)

the roots of which are

—c + Ve? —- dmk c <c>2_£

= = - 4+ —_
1.2 2m 2m 2m m (2.62)
These roots give two solutions to Eq. (2.59):
x (1) = Cye’’ and x(8) = Cye™ (2.63)

Ll .
kx tex
B c
%
m m
+x l
+x
System Free-body diagram
(a) (b)

FIGURE 2.21 Single degree of fréedom system with viscous damper.
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Thus the general solution of Eq. (2.59) is given by a combination of the two solutions
x () and x,(1):

x(t) = Ce”V' + Cye’
FER s o O S s
C]e “om 2m T om + Cae “2m 2m T m

where C; and C, are arbitrary constants to be determined from the initial conditions
of the system.

il

(2.64)

Critical Damping Constant and the Damping Ratio. The critical damping ¢,
is defined as the value of the damping constant ¢ for which the radical in Eq. (2.62)

becomes zero:
g k
C
—c - = =0
( 2m > m

Ce = 2m\/~;- = 2Vkm = 2muw,
m

or

(2.65)

For any damped system, the damping ratio { is defined as the ratio of the damping
constant to the critical damping constant:

{ = cle, (2.66)
Using Eqgs. (2.66) and (2.65), we can write
5= c% S& = fw, (2.67)
and hence
si2= (¢ = VP - 1) o, (2.68)
Thus the solution, Eq. (2.64), can be written as
x(t) = Crel-{+VI-Dont 4, o(-{- VI Day (2.69)

The nature of the roots s, and s, and hence the behavior of the solution, Eq. (2.69),
depends upon the magnitude of damping. It can be seen that the case / = 0 leads
to the undamped vibrations discussed in Section 2.2. Hence we assume that { # 0
and consider the following three cases.

Case 1. Underdamped system ({ < 1 or ¢ < ¢, or ¢/2m < Vk/m). For this con-
dition, (£? — 1) is negative and the roots s, and s, can be expressed as

Sl:(_g_‘_i“l—{z)wn
32:(_Z_i'1—§,2)wn




lutions

(2.64)

iditions

ping .
. (2.62)

(2.65)

lamping

(2.66)

SRR
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and the solution, Eq. (2.69), can be written in different forms:
x(1) = Cle(—{+i\/1—{2)wnt + C2e(—{‘i\/1—ﬁ)wnf

It

= e—fwn'{(c1 + Cy)cosV1 — Zwyt + i(C, — Cz)sinmwnt}
= e—{“’n’{ CicosV1 - wyt + Cﬁsinmwnt}
= Xe‘{“"*’sin<mw,,t + ¢>

= Xoe_{w"{COS< V1 - {anf - ¢)0> (270)

where (C}, (3), (X, ¢), and (X,, ¢,) are arbitrary constants to be determined from
the initial conditions.

For the initial conditions x(t = 0) = x5 and x(t = 0) = X,, C} and C5 can be
found:

C,=x and C)= —"ilf———\/__;:j% 2.71)

and hence the solution becomes

x(t) = e“f“’"‘{xocos\/l -~ o,

+ %v;—%@sinVl - {zwnt} (2.72)
1 - o, :

The constants (X, ¢) and (X,, @) can be expressed as

X = Xo = V(C)? + (C)? (2.73)
¢ = tan-'(Cl/Ch) : (2.74)
¢o = tan~! (= Cy/CY) (2.75)

The motion described by Eq. (2.72) is a damped harmonic motion of angular
frequency V1 — {?w,, but because of the factor e~ ¢“»’, the amplitude decreases
exponentially with time, as shown in Fig. 2.22. The quantity

w; = V1 - 7w, (2.76)

1s called the frequency of damped vibration. It can be seen that the frequency of
damped vibration wy is always less than the undamped natural frequency w,. The
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o d m,,I

FIGURE 2.22 Underdamped solution.

decrease in the frequency of damped vibration with increasing amount of damping,
given by Eq. (2.76), is shown graphically in Fig. 2.23. The underdamped case is
very important in the study of mechanical vibrations, as it is the only case which
leads to an oscillatory motion {2.10].

Case 2. Critically damped system ({ = 1 or ¢ = ¢, or ¢/2m = Vk/m). Inthis
case the two roots s, and s, in Eq. (2.68) are equal:

S1 = 8§y = o = W, (2.77)

Wy
@,

0 1

FIGURE 2.23 Variation of w, with damping.
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Undamped (f = 0)

/ Overdamped (§ > 1)

Underdamped (L < 1)
A~ (w18 smaller
// \/ than w,,)
\
\

e —— \

Critically
N damped (€ = 1)
~

Xiy

2n
i Wy
w,

FIGURE 2.24 Comparison of motions with different types of damping.

Because of the repeated roots, the solution of Eq. (2.59) is given by [2.6]!
x(f) = (Cy + Cyt)e-ont (2.78)

The application of the initial conditions x(t = 0) = xpand x(t = 0) = Xg for this
case gives

Cr = xo
Cy = % + w,xq , (2.79)
and the solution becomes
x(1) = [xg + (Xg + w,xg)t]e-“nt (2.80)

It can be seen that the motion represented by Eq. (2.80) is aperiodic (i.e., nonperi-
odic). Since e~ -3 0 as t — o0, the motion will eventually diminish to zero, as
indicated in Fig. 2.24.

Case 3. Overdamped system (£ > 1 or ¢ > Ccorc/2m > NVik/m). As V{? — 1

" >0, Eq. (2.68) shows that the roots s, and s are real and distinct and are given by

s1 =(~{+ V2 - N, <0
So = (={~ V¢ - Dw, <0

YEquation (2.78) can also be obtained by making { approach unity in the limit in Eq. (2.72). As
{ > 1, wz > 0; hence cos wyr — 1 and sin wyt — wyt. Thus Eq. (2.72) yields

x(0) = e (C] + Cayt) = (C, + Cyt)e=wnt

where Cy = (] and C, = Chw, are new constants.
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with s, << §,. In this case, the solution, Eq. (2.69), can be expressed as
x(t) = Cel-¢rVP-Dut 4 Cel-(-VP-Der (23]

For the initial conditions x(t = 0) = xg and X(t =0) = X, the constants C; and
C, can be obtained:

o R, CF VT D) +
s : 2“)/1v {2 =1
: ; — — 2z — X
I o, mme (L= VT -k .99

20,V - 1

Equation (2.81) shows that the motion is aperiodic regardless of the initial conditions
imposed on the system. Since roots s, and s, are both negative, the motion diminishes
exponentially with time, as shown in Fig. 2.24.

Note the following aspects of these systems:

1. The nature of the roots s, and s, with varying values of damping ¢ or { can be
shown in a complex plane. In Fig. 2.25, the horizontal and vertical axes are
chosen as the real and imaginary axes. The semicircle represents the locus of
the roots s, and s, for different values of / in the range 0 < { < 1. This figure
permits us to see instantaneously the effect of the parameter { on the behavior
of the system. We find that for { = 0, we obtain the imaginary roots s, = i,
and s, = —liw,, leading to the solution given in Eq. (2.15). For 0 < { < 1, the
roots s; and s, are complex conjugate and are located symmetrically about the

Imaginary axis

|
I

I

I

% Real axis
*x

FIGURE 2.25 Locus of s, and s,.
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Logarithmic
Decrement
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FIGURE 2.26

real axis. As the value of { approaches 1, both roots approach the point — w,
on the real axis. If /> 1, both roots lie on the real axis, one increasing and the
other decreasing. In the limit when ¢ — o, 5, = 0 and s, - —o0. The value
¢ = 1 can be seen to represent a transition stage, below which both roots are
complex and above which both roots are real.

2. Acritically damped system will have the smallest damping required for aperiodic
motion; hence the mass returns to the position of rest in the shortest possible
time without overshooting. The property of critical damping is used in many
practical applications. For example, large guns have dashpots with critical damp-
ing value, so that they return to their original position after recoil in the minimum
time without vibrating. If the damping provided were more than the critical
value, some delay would be caused before the next firing.

3. The free damped response of a single degree of freedom system can be repre-
sented in phase plane or state space as indicated in Fig. 2.26.

The logarithmic decrement represents the rate at which the amplitude of a free
damped vibration decreases. It is defined as the natural logarithm of the ratio of
any two successive amplitudes. Let #; and £, denote the times corresponding to two
consecutive amplitudes (displacements), measured one cycle apart for an under-
damped system, as in Fig. 2.22. Using Eq. (2.70), we can form the ratio

x; _ Xoe=t“h cos(wgt; — ¢o)
Xy Xoe ¢z cos(wat, ~— o)

(2.83)

But t, = t; + 7, where 7, = 27/w, is the period of damped vibration. Hence
cos(wgty — o) = cos(Qm + wyty — ¢p) = cos(wyt; ~ o), and Eq. (2.83) can
be written as

-{w,t)
s W S R (2.84)

Xy - e~ f@nlti+Ta)
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FIGURE 2.27 Variation of logarithmic decrement with damping.
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The logarithmic decrement 8 can be obtained from Eq. (2.84):

27 2w 2m ¢

X
§ =l = fu, 7y = (o, = = — 2.85
P {w,7q = { T oy S (2°85)
For small damping, Eq. (2.85) can be approximated:
0= 2mu{ if {<< 1 (2.86)

Figure 2.27 shows the variation of the logarithmic decrement & with £ as given by
Eqgs. (2.85) and (2.86). It can be noticed that for values up to £ = 0.3, the two
curves are difficult to distinguish.

The logarithmic decrement is dimensionless and is actually another form of

the dimensionless damping ratio {. Once & is known, { can be found by solving
Eq. (2.85):

P
‘= V(2m)? + & @87

If we use Eq. (2.86) instead of Eq. (2.85), we have

)

é’:_

> (2.88)

If the damping in the given system is not known, we can determine it experimentally
by measuring any two consecutive displacements x, and x,. By taking the natural .
logarithm of the ratio of x; and x,, we obtain 8. By using Eq. (2:87), we can compute

14

12 /

10 Eq. (2.85)+
SEa
0 /
1]
w 6 /'/
T 7~

//
4 L




£ (2.85)
2m

(2.86)

; given by
3, the two

r form of

y solving

(2.87)

(2.88)

imentally
ie natural

compute
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the damping ratio £ In fact, the damping ratio ¢ can also be found by measuring
two displacements separated by any number of complete cycles. If x and x,,,,

denote the amplitudes corresponding to times ¢, and ¢,,,, = I + m7, where m is
an integer, we obtain

N XXX Lo (2.89)
X+ 1 X2 X3 X4 X+t

Since any two successive displacements separated by one cycle satisfy the equation

X

= efwny (2.90)
X/‘ +1
Eq. (2.89) becomes
1o (efwnTaym = pmlw,ry (2.91)
Xm+1
Equations (2.91) and (2.85) yield
' 1 X
-6 = —In (2.92)
m Xm+1
which can be substituted into Eq. (2.87) or Eq. (2.88) to obtain the viscous damping
ratio ¢,
2.6.4 In a viscously damped system, the rate of change of energy with time (dW/dt) is
Energy Dissipated given by
in Viscous
Damping daw

2
Tl force X velocity = Fy = —cy2 = —-c <Z—f> (2.93)
using Eq. (2.58). The negative signin Eq. (2.93) denotes that energy dissipates with
time. Assume a simple harmonic motion as x(#) = X'sin wyt, where Xis the amplitude
of motion and the energy dissipated in a complete cycle is given by?

Crtogy [ a2 2
AW f c [ Z) & =f CX?0,0082 w0yt - d(a )
4]

i

t=0 dt

TCwyX? (2.94)

I

2In the case of a damped system, simple harmonic motion x(f) = X cos wyt is possible only when the
steady-state response is considered vnder a barmonic force of frequency wy (see Section 3.4). The loss
of energy due to the damper is supplied by the excitation under steady-state forced vibration (2.7].
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2.6.5

Torsional
Systems with
Viscous Damping
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as the maximum kinetic energy (5mv2,, = smX?w?), the two being approximately
equal for small values of damping. Thus

AW C W X ? 27 ¢
- meeaX” S (27) (€} - 05~ dm¢ = constant (2.
W imw) X? ( wd) <2m> 7o = comstant (2.59)

using Eqs. (2.85) and (2.88). The quantity AW/W is called the specific damping
capacity and is useful in comparing the damping capacity of engineering materials.
Another quantity known as the loss coefficient is also used for comparing the
damping capacity of engineering materials. The loss coefficient is defined as the
ratio of the energy dissipated per radian and the total strain energy:

t —_— —_—
loss coefficient = = W

(2.100)

The methods presented in Sections 2.6.1 through 2.6.4 for linear vibrations with
viscous damping can be extended directly to viscously damped torsional (angular)
vibrations. For this, consider a single degree of freedom torsional system with a
viscous damper, as shown in Fig. 2.29(a). The viscous damping torque is given by
(Fig. 2.29b):

T =~ ¢ (2.101)

where ¢, is the torsional viscous damping constant, § = d&/dt is the angular velocity
of the disc, and the negative sign denotes that the damping torque is opposite the
direction of angular velocity. The equation of motion can be derived as

Job + c,6 + k0 =0 (2.102)

where J; = mass moment of inertia of the disc, k, = spring constant of the system
(restoring torque per unit angular displacement), and § = angular displacement of
the disc. The solution of Eq. (2:102) can be found exactly as in the case of linear
vibrations. For example, in the underdamped case, the frequency of damped vibration
is given by ’

wy = V1 = {?w, (2.103)

where

w, = [ (2.104)

and

Cy Cy Cy
il S = 2.105
Ce  2Jown 2V, ( )

where ¢, 1s the critical torsional damping constant.

=




142 CHAPTER 2

L
EXAMPLE 2.10

FREE VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS

ie.,

Vg =V
Ve = Vip + 2.504396 (E.5)
The solution of Eqs. (E.3) and (E.5) gives
Ve = 1.460898 m/s ; v,; = —1.043498 m/s
Thus the initial conditions of the anvil are given by
xo = 0; x5 = 1.460898 m/s
The damping coefficient is equal to

[ = c _ 1000

2ViM
2 /(5 X 106)<%9—8919>

= 0.0989949

The undamped and damped natural frequencies of the anvil are given by

o= [
" M
wy = w, V1 — % = 98.994949 V1 - 0.0989949% = 98.024799 rad/s

The displacement response of the anvil is given by Eq. (2.72):

Xg + {wyxg .
g~ {wnt {cos wat + ot fon%o wdt}

x(t) = oy

= ¢-97999951 {05 98.024799 1 + 0.01490335 sin 98.024799 ¢t} m L

Shock Absorber for a Motorcycle

An underdamped shock absorber is to be designed for a motorcycle of mass 200 kg (Fig.
2.31a). When the shock absorber is subjected to an initial vertical velocity due to a road
bump, the resulting displacement-time curve is to be as indicated in Fig. 2.31(b). Find the
necessary stiffness and damping constants of the shock absorber if the damped period of
vibration is to be 2 sec and the amplitude x; is to be reduced to one-fourth in one half cycle
(ie., x; 5 = x;/4). Also find the minimum initial velocity that leads to a maximum displacement
of 250 mm.

Given: Mass = 200 kg; displacement-time curve of the system (Fig. 2.31b); damped period
of vibration = 2 sec, x5 = x;/4; and maximum displacement = 250 mim.




(E.5)

(a)

FIGURE 2.31
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x(t)
4

(b)

Find: Stiffness (k), damping constant (c¢), and initial velocity (%), which results in a maximum
displacement of 250 mm.

Approach: Equation for the logarithmic decrement in terms of the damping ratio, equation
for the damped period of vibration, time corresponding to maximum displacement for an
underdamped system, and envelope passing through the maximum points of an underdamped
system. :

Solution: Since x| 5 = x,/4,x, = x1 5/4 = x,/16. Hence the logarithmic decrement becomes

2mw(

= LW . = - £
6 = 1In <x2> In(16) = 2.7726 m (E.1)

from which the value of ¢ can be found as { = 0.4037. The damped period of vibration is
given to be 2 sec. Hence ’

2 2 27
= Ty = e = e
v V1 -2
w, = 2 = 3.4338 rad/sec

2Vl ~ (0.4037)?
The critical damping constant can be obtained:

ce = 2mw, = 2(200)(3.4338) = 1373.54 N-s/m
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‘ Thus the damping constant is given by
¢ = {c. = (0.4037)(1373.54) = 554.4981 N-s/m
and the stiffness by
k = mw? = (200)(3.4338)% = 2358.2652 N/m
The displacement of the mass will attain its maximum value at time t,, given by
sin wgt, = V1 = £
(See Problem 2.77.) This gives
sin wgt, = sin 71, = V1 - (0.4037)> = 0.9149
or

in -1
o= 2 (2'9149) = 0.3678 sec

The envelope passing through the maximum points (see Problem 2.77) is given by
x = V1= % Xetort (E.2)
Since x = 250 mm, Eq. (E.2) gives at 1

0.25 = \/1_—_—‘(_0765'7_)'2' Y -(0.4037)(3.4338)(0.3678)

X = 0.4550 m.
The velocity of the mass can be obtained by differentiating the displacement

x(f) = Xe~ ¢ sin wyt

) = Xe~to! (= {w, sin wgt + wg COS w4l) (E.3)
When t = 0, Eq. (E.3) gives
Mt = 0) = 5 = Xag = Xw, V1 — {2 = (0.4550)(3.4338)(V1 ~ (0.4037)%)

1.4294 m/s "

Analysis of Cannon

The schematic diagram of a large cannon is shown in Fig. 2.32 [2.8]. When the gun is fired,
high-pressure gases accelerate the projectile inside the barrel to a very high velocity. The
reaction force pushes the gun barrel in the opposite direction of the projectile. Since it is
desirable to bring the gun barrel to rest in the shortest time without oscillation, it is made
to translate backward against a critically damped spring-damper system called the recoil
mechanism. In a particular case, the gun barrel and the recoil mechanism have a mass of
500 kg with a recoil spring of stiffness 10,000 N/m. The gun recoils 0.4 m upon firing. Find
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Projectile

Gun barrel

Recoil mechanism
(spring and damper)

N

FIGURE 2.32

(1) the critical damping coefficient of the damper, (2) the initial recoil velocity of the gun,
and (3) the time taken by the gun to return to a position 0.1 m from its initial position.

Given: Critically damped recoil mechanism with m = 500 kg, k = 10,000 N/m, and recoil
distance = 0.4 m.

Find: Critical damping coefficient, recoil velocity, and time taken by the gun to return to
a position 0.1 m from its initial position.

Approach: Use the response equation of a critically damped system.

Solution

1. The undamped natural frequency of the system 1s

w, = \/%: /105’880 = 4.4721 rad/sec

and the critical damping coefficient (Eq. 2.65) of the damper is

Ce = 2mw, = 2(500)(4.4721) = 4472.1 N-s/m
2. The response of a critically damped system is gi.ven by Eq. (2.78):
x(t) = (C, + Cyt) e (E.1)

where C, = xp and C; = X + w,xo. The time t, at which x(f) reaches a maximum
value can be obtained by setting x(r) = 0. The differentiation of Eq. (E.1) gives

i) = Cre" — w, (C; + Cot)e -t

Hence x(1) = 0 yields
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In this case, x, = C, = 0; hence Eq. (E.2) leads to ¢, = 1/w,. Since the maximum
value of x(1) or the recoil distance is given to be Xmax = 0.4 m, we have

Xmax = x(t = £;) = Cotie-nft = “Lp-t = 20

or

X0 = Xmaxwpe = (0.4)(4.4721)(2.7183) = 4.8626 m/s

3. If 1, denotes the time taken by the gun to return to a position 0.1 m from its initial
position, we have

0.1 = Cytpe—*" = 4.86261,e-%47210 (E.3)
The solution of Eq. (E.3) gives 1, = 0.8258 sec. n

2.7 Free Vibration with Coulomb Damping

2.7.1
Equation of
Motion

FIGURE 2.33 Spring-mass system with Coulomb damping.

In many mechanical systems, Coulomb or dry-friction dampers are used because
of their mechanical simplicity and convenience [2.9]. Also in vibrating structures,
whenever the components slide relative to each other, dry-friction damping appears
internally. As stated in Section 1.9, Coulomb damping arises when bodies slide on
dry surfaces. Coulomb’s law of dry friction states that when two bodies are in
contact, the force required to produce sliding is proportional to the normal force
acting in the plane of contact. Thus the friction force F is given by

F = uN = uW = umg (2.106)

where N is the normal force and w is the coefficient of friction. The friction
force acts in a direction opposite to the direction of velocity. Coulomb damping is
sometimes called constant damping, since the damping force is independent of the

displacement and velocity; .it depends only on the normal force N between the
sliding surfaces.

Consider a single degree of -freedom system with dry friction as shown in Fig.
2.33(a). Since the friction force varies with the direction of velocity, we need to
consider two cases, as indicated in Figs. 2.33(b) and (c).

I

N N
(a) (b) (¢)
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Is the frequency of a damped free vibration smaller or greater than the natural frequency
of the system?

What is the use of logarithmic decrement?

Is hysteresis damping a function of the maximum stress?
What is critical damping and what is its importance?
What happens to the energy dissipated by damping?

What is equivalent viscous damping? Is the equivalent viscous damping factor a
constant?

What is the reason for studying the vibration of a single degree of freedom system?
How can you find the natural frequency of a system by measuring its static deflection?
Give two practical applications of a torsional pendulum.

Define these terms: damping ratio, logarithmic decrement, loss coefficient, and specific
damping capacity.

In what ways is the response of a system with Coulomb damping different from that
of systems with other types of damping? '

What is complex stiffness?
Define the hysteresis damping constant.

Give three practical applications of the concept of center of percussion.

The problem assignments are organized as follows:

Problems Section Covered Topic Covered

2.1-2.50 22 Undamped translational systems
2.51-2.64 23 Undamped torsional systems
2.65-2.74 2.5 Energy method

2.75-2.97, 2.111 2.6 Systems with viscous damping
2.98-2.107 2.7 Systems with Coulomb damping
2.108-2.110 238 Systems with hysteretic damping
2.112-2.115 2.9 Computer program

2.116-2.120 - Projects

2.1 An industrial press is mounted on a rubber pad to isvlate it from its foundation. If

the rubber pad is compressed 5 mm by the self-weight of the press, find the natural

frequency of the system.

22 A spring-mass system has a natural period of 0.21 sec. What will be the new period -
if the spring constant is (a) increased by 50% and (b) decreased by 50%?
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‘equency i 2.3 A spring-mass system has a natural frequency of 10 Hz. When the spring constant
E is reduced by 800 N/m, the frequency is altered by 45 percent. Find the mass and
N Spring constant of the original system.
24.

A helical spring, when fixed at one end and loaded at the other, requires a force of
100 N to produce an elongation of 10 mm. The ends of the spring are now rigidly

fixed, one end vertically above the other, and a mass of 10 kg is attached at the
middle point of its length. Determine the time tak

en to complete one vibration cycle

Factor a when the mass is set vibrating in the vertical direction.

2.5 An air-conditioning chiiler unit weighing 2000 1b is to be supported by four air
stem? springs (Fig. 2.39). Design the air springs such that the natural frequency of vibration
/ ’ of the unit lies between 5 rad/s and 10 radss.
ection?
specific
m that

FIGURE 2.39 {Courtesy of Sound and Vibration)

2.6 The maximum velocity attained by the mass of a simple harmonic oscillator is 10
: cm/sec, and the period of oscillation is 2 sec. If the mass is released with an initjal
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FIGURE 2.42
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FIGURE 2.40

2.7

2.8

29

2.10

FIGURE 2.41

displacement of 2 cm, ﬁnd»(a) the amplitude, (b) the initial velocity, (c) the maximum
acceleration, and (d) the phase angle.

Three springs and a mass are attached to a rigid, weightless, bar PQ as shown in
Fig. 2.40. Find the natural frequency of vibration of the system.

An automobile having a mass of 2000 kg deflects its suspension springs 0.02 m
under static conditions. Determine the natural frequency of the automobile in the
vertical direction by assuming damping to be negligible.

Find the natural frequency of vibration of a spring-mass system arranged on an
inclined plane, as shown in Fig. 2.41. .

A loaded mine cart, weighing 5,000 1b, is being lifted by a frictionless pulley and
a wire rope, as shown in Fig. 2.42. Find the natural frequency of vibration of the
cart in the given position.

Steel wire rope,
(.05" diameter

Loaded
mine cart

FIGURE 2.43 An electronic chassis mounted 6n vibra-
tion isolators. (Courtesy of Titan SESCO.)
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FIGURE 2.44 FIGURE 2.45

2.11  An electronic chassis, weighing 500 N, is isolated by supporting it on four helical
springs, as shown in Fig. 2.43. Design the springs so that the unit can be used in
an environment in which the vibratory frequency ranges from O to 5 Hz.

2.12  Find the natural frequency of the system shown in Fig. 2.44 with and without the
springs k, and k, in the middle of the elastic beam.

2.13  Find the natural frequency of the pulley system shown in Fig. 2.45 by neglecting
the friction and the masses of the pulleys.

2.14 A weight W is supported by three frictionless and massless pulleys and a spring of
stiffness &, as shown in Fig. 2,46. Find the natural frequency of vibration of weight
W for small oscillations.

LELLLLLLLLLLLLLLLLL

N
M
[
. = M
o k
i;
k N k N
w
N \

FIGURE 2.46 FIGURE 2.47
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1 /Hammer
>
——Anvil
B ekl Gk
Gl %‘:k k S+—Spring
k k
FIGURE 2.48 FIGURE 2.49

2.15 A rigid block of mass M is mounted on four elastic supports, as shown in Fig. 2.47.
A mass m drops from a height / and adheres to the rigid block without rebounding.
If the spring constant of each elastic support is k, find the natural frequency of
vibration of the system (a) without the mass m, and (b) with the mass m. Also find
the resulting motion of thé system in case (b).

2.16 A sledgehammer strikes an anvil with a velocity of 50 ft/sec (Fig. 2.48). The hammer
== and the anvil weigh 12 1b and 100 1b, respectively. The anvil is supported on four
springs, each of stiffness k = 100 Ib/in. Find the resulting motion of the anvil (a)

if the hammer remains in contact with the anvil, and (b) if the hammer does not i

remain in contact with the anvil after the initial impact. :

217) Derive the expression for the natural frequency of the system shown in Fig. 2.49.
Note that the load W is applied at the tip of beam 1 and midpoint of beam 2.

2.18: A heavy machine weighing 9810 N is being lowered vertically down by a winch at
: a uniform velocity of 2 m/sec. The steel cable supporting the machine has a diameter
of 0.01 m. The winch is suddenly stopped when the steel cable’s length is 20 m.

Find the period and amplitude of the ensuing vibration of the machine.

2.19  The natural frequency of a spring-mass system is found to be 2 Hz. When an
additional mass of 1 kg is added to the original mass m, the natural frequency is
reduced to 1 Hz. Find the spring constant k and the mass m.

2.20  An electrical switchgear is supported by a crane through a steel cable of length
4 m and diameter 0.01 m (Fig. 2.50). If the natural time period of axial vibration
of the switchgear is found to be 0.1 s, find the mass of the switchgear.

2.21  Four weightless rigid links and a spring are arranged to support a weight Win two
different ways, as shown in Fig. 2.51. Determine the natural frequencies of vibration
of the two arrangements.

222 A scissors jack is used to lift a load W. The links of the jack are rigid and the
collars can slide freely on the shaft against the springs of stiffnesses k; and k;
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FIGURE 2.55

2.25

2.26

2.27

2.28

2.29

2.30

A mass m is supported by two sets of springs oriented at 30° and 120° with respect
to the X axis, as shown in Fig. 2.55. A third pair of springs, with a stiffness of k3
each, is to be designed so as to make the system have 2 constant natural frequency
while vibrating in any direction x. Determine the necessary spring stiffness ks and
the orientation of the springs with respect to the X axis.

A tnass m is attached to a cord that is under a tension T, as shown in Fig. 2.56.
Assuming that T remains unchanged when the mass is displaced normal to the cord,
(a) write the differential equation of motion for small transverse vibrations, and (b)
find the natural frequency of vibration.

A bungee jumper weighing 160 1b ties one end of an elastic rope of length 200 ft
and stiffness 10 1b/in to a bridge and the other end to himself and jumps from the
bridge (Fig. 2.57). Assuming the bridge to be rigid, determine the vibratory motion
of the jumper about his static equilibrium position.

An acrobat weighing 120 1b walks on a tightrope, as shown in Fig. 2.58. If the
natural frequency of vibration in the given position, in vertical direction, is 10 rad/
s, find the tension in the rope.

The schematic diagram of a centrifugal governor is shown in Fig. 2.59. The length
of each rod is [, the mass of each ball is m and the free length of the spring is h. If
the shaft speed is o, determine the equilibrium position and the frequency for small
oscillations about this position. -

In the Hartnell governor shown in Fig. 2.60, the stiffness of the spring is 10* N/m
and the weight of each ball is 25 N. The length of the ball arm is 20 cm and that
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Unstretched length, 200 ft

-
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FIGURE 2.56 ) . FIGURE 2.57
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FIGURE 2.58

of the sleeve arm 1s 12 cm. The distance between the axis of rotation and the pivot
of the bell crank lever is 16 cm. The spring is compressed by 1 cm when the ball
arm is vertical. Find (a) the speed of the governor at which the ball arm remains -
vertical, and (b) the natural frequency of vibration for small displacements about -
the vertical position of the ball arms.
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FIGURE 2.59 FIGURE 2.60 Hartnell governor.

D 231 A square platform PQORS and a car that it is supporting have a combined mass of
D M. The platform is suspended by four elastic wires from a fixed point O, as indicated
. in Fig. 2.61. The vertical distance between the point of suspension O and the
l:] horizontal equilibrium position of the platform is A. If the side of the platform is a and
o the stiffness of each wire is k, determine the period of vertical vibration of the platform.
D 2.32  The inclined manometer, shown in Fig. 2.62, is used to measure pressure. If the
- total length of mercury in the tube is L, find an expression for the natural frequency

D of oscillation of the mercury.

:2.33  The crate, of mass 250 kg, hanging from a helicopter (shown in Fig. 2.63a) can be

o modeled as shown in Fig. 2.63b. The rotor blades of the helicopter rotate at 300
rpm. Find the diameter of the steel cabies so that the natural frequency of vibration
of the crate is at least twice the frequency of the rotor blades.

2.34 A pressure vessel head is supported by a set of steel cables of length 2 m as shown
in Fig. 2.64. The time period of axial vibration (in vertical direction) is found to
vary from 5 s to 4.0825 s when an additional mass of 5,000 kg is added to the
pressure vessel head. Determine the equivalent cross- -sectional area of the cables and
the mass of the pressure vessel head.

2.35 A flywheel is mounted on a vertical shaft, as shown in Fig. 2.65. The shaft has a
diameter d and length { and is fixed at both ends. The flywheel has a weight of W
and a radius of gyration of » Find the natural frequency of the longitudinal, the
transverse, and the torsional vibration of the system.
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Flywheel

e

FICURE 2.65 » FIGURE 2.66

s

A building frame is modeled by four identical steel columns, of weight w each, and
arigid floor of weight W, as shown.in Fig. 2.68. The columns are fixed at the ground
and have a bending rigidity of EI each. Determine the natural frequency of horizontal
vibration of the building frame by assuming the connection between the floor and
the columns to be (a) pivoted as shown in Fig. 2.68(a), and (b) fixed against rotation
as shown in Fig. 2.68(b). Include the effect of self weights of the columns.

2.39 A pick and place robot arm, shown in Fig. 2.69, carries an object weighing 10 Ib.
Find the natural frequency of the robot arm in the axial direction for the following
data: I, = 12in, L, = 10in, /3 = 8in, E, = E, = Ey = 107 psi, Dy = 2 in,,
D, = 1.5in,Dy = lin,d) = 175in,d; = 12510, dy = 0.75 in.

2.40 A helical spring of stiffness k is cut into two halves and a mass m is connected (o
the two halves as shown in Fig. 2.70(a). The natural time period of this system is
found to be 0.5 sec. If an identical spring is cut so that one part is 1/4 and the other-
part 3/4 of the original length, and the mass m 1s connected to the two parts as

shown in Fig. 2.70(b), what would be the natural period of the system?
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(a)
FIGURE 2.67

(b)
FIGURE 2.68

2.41*%  Figore2.71 shows a metal block su
in opposite directions at the same
block is initially displaced by a dist

pported on two identical cylindrical rollers rotating
angular speed. When the center of gravity of the
ance x, the block will be set into simple harmonic

*The asterisk denotes a design problem or a problem with no unique answer.
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FIGURE 2.72

243

An electromagnet weighing 3000 1b is at rest while holding an automobile of weight
2000 1b in a junkyard. The electric current is turned off and the automobile is
dropped. Assuming that the crane and the supporting cable have an equivalent spring
constant of 10,000 1b/in, find the following: (a) the natural frequency of vibration
of the electromagnet; (b) the resulting motion of the electromagnet; and (c) the
maximum tension developed in the cable during the motion.

2.44  Derive the equation of motion of the system shown in Fig. 2.73 using the following
methods: (a) Newton's second law of motion, (b) D’ Alembert’s principle, (¢) principle
of virtual work, and (d) principle of conservation of energy.

4 ky ke

7 s /

77777 TTTITI P 77D 77777777777

FIGURE 2.73

2.45-

2.46  Draw the free-body diagram and derive the equation of motion using Newton’s
second law of motion for each of the systems shown in Figs. 2.74 and 2.75.

2.475

"~ 2.48  Derive the equation of motion using the principle of conservation of energy for each
of the systems shown in Figs. 2.74 and 2.75.

2.49 A steel beam of length 1 m carries a mass of 50 kg at its free end, as shown in Fig.
2.76. Find the natural frequency of transverse vibration of the mass by modeling it
as a single degree of freedom system.

2.50 A steel beam of length 1 m carries a mass of 50 kg at its free end, as shown in Fig.

"~ 2.77. Find the natural frequency of transverse vibration of the system by modeling
it as a single degree of freedom system.

2.51 A pulley 250 mm in diameter drives a second pulley 1000 mm in diameter by means

of a belt (see Fig. 2.78). The moment of inertia of the driven pulley is 0.2 kg-m?.
The belt connecting these pulleys is represented by two springs, each of stiffness k.
For what value of & will the natural frequency be 6 Hz?
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FIGURE 2.77

2.52.

Derive an expression for the natural frequency of the simple pendulum shown in -

Fig. 1.11. Determine the period of oscillation of a simple pendulum having a mass
m = 5 kg and a length [ = 0.5 m.

A mass m is attached at the end of a bar of negligible mass and is made to vibrate

in three different configurations, as indicated in Fig. 2.79. Find the configuration
corresponding to the highest natural frequency.

s
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FIGURE 2.82
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1260

2.61

262

2.63

frequency of the system if k = 2000 N/m, k, = 1000 N-m/rad, m = 10 kg, and
I=5m.

A cylinder of mass m and mass moment of inertia J, is free to roll without slipping
but is restrained by two springs of stiffnesses &, and k,, as shown in Fig. 2.85. Find
its natural frequency of vibration. Also find the value of a that maximizes the natural
frequency of vibration.

If the pendulum of Problem 2.52 is placed in a rocket moving vertically with an
acceleration of 5 m/s%, what will be its period of oscillation?

Find the equation of motion of the uniform rigid bar OA of length [ and mass m
shown in Fig. 2.86. Also find its natural frequency.

A uniform circular disc is pivoted at point O, as shown in Fig. 2.87. Find the natural
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2.79 A shock absorber is to be designed to limit its overshoot to 15 percent of its initial
displacement when released. Find the damping ratio {, required. What will be the
overshoot if ¢ is made equal to (a) %{0, and (b) §{0?

2.80  The free vibration response of an electric motor of weight 500 N mounted on different
types of foundations are shown in Figs. 2.91(a) and (b). Identify the following in
each case: (i) the nature of damping provided by the foundation; (1) the spring
constant and damping coefficient of the foundation; and (ii1) the undamped and
damped natural frequencies of the electric motor.

x(f),mm

4
8
Tl 4
e 2 .
0 1 ! ) ! _1"71\; »(, sec
0.1 /02 \03/ 04 NN ____S
AR
(a)
x(t), mm
t
BN 6
1 I I 1 ‘1\‘/'_-‘;,
o170 \03/ 00 < » se¢
________ 0.5
(b)
FIGURE 2.91
2.81  For aspring-mass-damper systefn, m = 50kgand k = 5000 N/m. Find the following:
(a) critical damping constant c_; (b) damped natural frequency when ¢ = c/2; and .
(c) logarithmic decrement.
@) A locomotive car of mass 2000 kg traveling at a velocity v = 10 m/sec is stopped
T at the end of tracks by a spring-damper system, as shown in Fig. 2.92. If the stiffness
of the spring is k = 40 N/mm and the damping constant is ¢ = 20 N-s/mm, determine
(a) the maximum displacement of the car after engaging the springs and damper and
(b) the time taken to reach the maximum displacement.
2.83

A torsional pendulum has a natural frequency of 200 cycles/min when vibrating in
vacuum. The mass moment of inertia of the disc is 0.2 kg-m?. It is then immersed
in o1] and its natural frequency is found to be 180 cycles/min. Determine the damping
constant. If the disc, when placed in oil, is given an initial displacement of 2°, find
its displacement at the end of the first cycle.
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2.84 A boy riding a bicycle can be modeled as a spring-mass-damper system with an
equivalent weight, stiffness and damping constant of 800 N, 50000 N/m, and 1000
N-s/m, respectively. The differential setting of the concrete blocks on the road caused
the level surface to decrease suddenly as indicated in Fig. 2.93. If the speed of the ;
bicycle is 5 m/s (18 kmv/hr), determine the displacement of the boy in the vertical
direction. Assume that the bicycle is free of vertical vibration before encountering
the step change in the vertical displacement.
owing:
2; and
topped "B FIGURE 2.93 : :
iffness : §
armine ¢ . S B
ser and : 2.85 A wooden rectangular prism of weight 20 b, height 3 ft. and cross section 1 ft. X :
9 ft. floats and remains vertical in a tub of oil. The frictional resistance of the oil i
l}ing n ~ can be assumed to be equivalent to a viscous damping coefficient £ When the prism
Mersed is depressed by a distance of 6 in. from its equilibrium and released, it is found to
}{Pping reach a depth of 5.5 in. at the end of its first cycle of oscillation. Determine the

:find value of the damping coefficient of the oil.
2.86 A body vibrating with viscous damping makes five complete oscillations per second,
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2.87*

2.88

2.89

2.90-
2.92

2.93-
2.95

2.98

2.99

and in 50 cycles its amplitude diminishes to 10 percent. Determine the logarithmic
decrement and the damping ratio. In what proportion will the period of vibration be
decreased if damping is removed?

The maximum permissible recoil distance of a gun is specified as 0.5 m. If the initial
recoil velocity is to be between 8 m/sec and 10 m/sec, find the mass of the gun and
the spring stiffness of the recoil mechanism. Assume that a critically damped dashpot
1s used in the recoil mechanism and the mass of the gun has to be at least 500 kg.

A viscously damped system has a stiffness of 5000 N/m, critical damping constant
of 0.2 N-s/mm, and a logarithmic decrement of 2.0. If the system is given an initial
velocity of 1 m/sec, determine the maximum displacement of the system.

Explain why an overdamped system never passes through the static equilibrium posi-
tion when it is given (a) an initial displacement only and (b) an initial velocity only.

Derive the equation of motion and find the natural frequency of vibration of each
of the systems shown in Figs. 2.94 to 2.96.

Using the principle of virtual work, derive the equation of motion for each of the
systems shown in Figs. 2.94 to 2.96.

A wooden rectangular prism of cross section 40 cm X 60 cm, height 120 cm, and
mass 40 kg floats in a fluid, as shown in Fig. 2.90. When disturbed, it is observed
to vibrate freely with a natural period of 0.5 s. Determine the density of the fluid.

The system shown in Fig. 2.97 has a natural frequency of 5 Hz for the following
data: m = 10 kg, Jo = Skg — m? r; = 10 cm, r, = 25 cm. When the system is
disturbed by giving it an initial displacement, the amplitude of free vibration is
reduced by 80 percent in 10 cycles. Determine the values of k and ¢.

A single degree of freedom system consists of a mass of 20 kg and a spring of
stiffness 4000 N/m. The amplitudes of successive cycles are found to be 50, 45, 40,
35, . . . mm. Determine the nature and magnitude of the damping force and the
frequency of the damped vibration. '

A mass of 20 kg slides back and forth on a dry surface due to the action of a spring
having a stiffness of 10 N/mm. After four complete cycles, the amplitude has been

x(¢)

+—Cylinder, mass m
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) Uniform
rigid bar,
3k : ¢ I mass m
0 \ Pulley,
— —37 D) mass moment of inertia J
- O
L1 [ |
4 4 2 |
FIGURE 2.96 FIGURE 2.97
found to be 100 mm. What is the average coefficient of friction between the two
surfaces if the original amplitude was 150 mm? How much time has elapsed during
the four cycles?
2.100 A 10-kg mass is connected to a spring of stiffness 3000 N/m and is released after

. 2.103

giving an initial displacement of 100 mm. Assuming that the mass moves on a
horizontal surface, as shown in Fig. 2.33(a), determine the position at which the
mass comes to rest. Assume the coefficient of friction between the mass and the
surface to be 0.12.

2.101 A weight of 25 N is suspended from a spring that has a stiffness of 1000 N/m. The

weight vibrates in the vertical direction under a constant damping force. When the
weight is initially pulled downward a distance of 10 cm from its static equilibrium
position and released, it comes to rest after exactly two complete cycles. Find the
magnitude of the damping force.

2.102 A mass of 20 kg is suspended from a spring of stiffness 10,000 N/m. The
vertical motion of the mass.is subject to Coulomb friction of magnitude 50 N.
If the spring is initially  displaced downward by 5 cm from its static equilibrium
position, determine (a) the number of half cycles elapsed before the mass comes
to -rest, (b) the time elapsed before the mass comes to rest, and (c) the final
extension of the Spring:

The Charpy impact test is a dynamic test in which a specimen is struck and broken
by a pendulum: (or hammer) and the energy absorbed ‘in breaking the specimen is
measured. The energy values serve as a useful guide for comparing the impact
strengths of different materials. As shown in Fig. 2.98, the'pendulum is suspended -
from a shaft, is released from a particular position, and is-allowed to fall and break
the specimen. If the pendulum is made to oscillate freely (with no specimen), find
(a) an expression for the decrease in the angle of swing for each cycle caused by
friction, (b) the solution for #(z) if the pendulum is released from an angle 6, and
(c) the number of cycles after which the motion ceases. Assume the mass of the -
pendulum as m and the coefficient of friction. between the shaft and the bearing of
the pendulum as . ' -




