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FIGURE 1.10 Vibratory fimishing process. (Reprinted courtesy of the Society of Manufacturing

Engineers, © 1964 The Tool and Manufacturing Engineer.)

have increased considerably in recent years {1.21]. For example, vibration is put to
work in vibratory conveyors, hoppers, sieves, compactors, washing machines, electric
toothbrushes, ‘dentist’s drills, clocks, and electric massaging units. Vibration is also
used in pile driving, vibratory testing of materials, vibratory finishing processes,
and electronic circuits to filter out the unwanted frequencies (see Fig. 1.10). Vibration
has been found to improve the efficiency of certain machining, casting, forging,
and welding processes. It is employed to simulate earthquakes for geological research
and also to .conduct studies in the design of nuclear reactors.

1.4 Basic Concepts of Vibration

1.4.1

. Vibration

1.4.2 - v
Elementary Parts
of Vibrating

Systems

Any motion that repeats itself after an interval of time is called vibration or oscilla-
tion. The swinging of a pendulum and the motion of a plucked string are typical
examples of vibration. The theory of vibration deals with the study of oscillatory
motions of bodies and the forces associated with them. - -

A vibratory system, in general, includes a means for storing potential energy (spring
or elasticity), a means for stb.rihg kinetic energy (mass or inertia), and a means by
which energy is gradually lost (damper). '

The vibration of a system involves the transfer of its potential energy to kinetic
energy and kinetic energy to potential energy, alternately. If the system is damped,
some energy is dissipated in each cycle of vibration and must be replaced by an
external source if a state of steady vibration is to be maintained.

As an example, consider the vibration of the simple pendulum shown in- Fig.
1.11. Let the bob of mass m be released after giving it an angular displacement 6. - -
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FIGURE 1.11 A simple pendulum.

At position 1 the velocity of the bob and hence its kinetic energy is zero. But it
has  a potential energy of magnitude mgl(1 — cos 6) with respect to the datum
position 2. Since the gravitational force mg induces a torque mgl sin @ about the
point O, the bob starts swinging to the left from position 1. This gives the bob
certain angular acceleration in the clockwise djrection, and by the time it reaches
position 2, all of its potential energy will be converted into kinetic energy. Hence
the bob will not stop in position 2, but will continue to swing to position 3. However,
as it passes the mean position 2, a counterclockwise torque starts acting on the bob
due to gravity and causes the bob to decelerate. - The velocity of the bob reduces to
sero at the left extreme position. By this time, all the kinetic energy of the bob will
be converted to potential energy. Again due to the gravity torque, the bob continues
to attain a counterclockwise velocity. Hence the bob starts swinging back with
progressively increasing velocity and passes the mean position again. This process
keeps repeating, and the pendulum will have oscillatory motion. However, in practice,
the magnitude of oscillation () gradually decreases and the pendulum ultimately
stops due to the resistance (damping) offered by the surrounding medium (air). This
means that some energy is dissipated in each cycle of vibration due to damping by
the air.

The minimum number of independent coordinates required to determine completely
the positions of all parts of a system at any instant of time defines the degree of
freedom of the system. The simple pendulum shown in Fig. 1.11, as well as each
of the systems shown in Fig. 1.12, represents a single degree of freedom system.
For example, the motion of the simple pendulum (Fig. 1.11) can be stated either in
terms of the angle @ or in terms of the Cartesian coordinates x and y. If the coordinates
x and y are used to describe the motion, it must be recognized that these coordinates
aré not independent. They are related to each other through the relation x> + y* =




TR

14

CHAPTER 1

FUNDAMENTALS OF VIBRATION

NANNNANNAY

VT4 I 7444744777044 207900Y

L d
ANNANNNN NN\

(a) Slider-crank- (b) Spring- mass system (c) Torsional system
spring mechanism

FIGURE 1.12 Single degree of freedom systems.

12, where [ is the constant length of the pendulum. Thus any one coordinate can
describe the motion of the pendulum. In this example, we find that the choice of
¢ as the independent coordinate will be more convenient than the choice of x or y.
For the slider shown in Fig. 1.12(a), either the angular coordinate 6 or the coordinate
x can be used to describe the motion. In Fig. 1.12(b), the linear coordinate x can
be used to specify the motion. For the torsional system (long bar with a heavy disk
at the end) shown in Fig. 1.12(c), the angular coordinate ¢ can be used to describe
the motion. -

Some examples of two and three degree of freedom systems are shown in Figs.
1.13 and 1.14, respectively. Figure 1.13(a) shows a two mass—-two spring system
that is described by the two linear coordinates x; and x,. Figure 1.13(b) denotes a
two rotor system whose motion can be specified in terms of 6, and &,. The motion
of the system shown in Fig. 1.13(c) can be described completely either by X and
g or by x, y, and X. In the latter case, x and y are constrained as x? + y2 = )2
where [ is a constant.




2 can
ce of
SOr Y.
linate
x can
y disk
scribe

1 Figs.
ystem
otes a
notion
X and

1.4.4
Discrete and
Continuous
Systems

L4 BASIC CONCEPTS OF VIBRATION 15

(b)

FIGURE 1.14 Three degree of freedom systems.

For the systems shown in Figs. 1.14(a) and 1.14(c), the coordinates x; (1 =1,
2,3)and 6 (i = 1,2, 3) can be used, respectively, to describe the motion. In the
case of the system shown in Fig. 1.14(b), 6; 1 = 1, 2, 3) specifies the positions
of the masses m, (i = 1,2,3). An alternate method of describing this system 18 in
terms of x; and y; (i = 1, 2, 3); but in this case the constraints xf + y? =
12 (i = 1,2,3) haveto be considered.

The coordinates necessary to describe the motion of a system constitute a set
of generalized coordinates. The generalized coordinates are usually denoted as g,

g, . . . and may represent Cartesian and/or non-Cartesian coordinates.

A large number of practical systems can be described using a finite number of
degrees of freedom, such as the simple systems.shown in Figs. 1.11 to 1.14. Some
systems, especially those involving continuous elastic members, have an infinite
number of degrees of freedom. As a simple example, consider the cantilever beam
shown in Fig. 1.15. Since the beam has an infinite number of mass points, we need
an infinite number of coordinates to specify its deflected configuration. The infinite
number of coordinates defines its elastic deflection curve. Thus the cantilever beam
has an infinite number of degrees of freedom. Most structural and machine systems

have deformable (elastic) members and therefore have an infinite number of degrees

of freedom.
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FICURE 1.15 A cantilever beam (an
infinite number of degrees of freedom
system).

Systems with a finite number of degrees of freedom are called discrete or lumped
parameter systems, and those with an infinite number of degrees of freedom are
called continuous or distributed systems.

Most of the time, continuous systems are approximated as discrete systems,
and solutions are obtained in a simpler manner. Although treatment of a system as
continuous gives exact results, the analysis methods available for dealing with
continuous systems are limited to a narrow selection of problems, such as uniform
beams, slender rods, and thin plates. Hence most of the practical systems are studied
by treating them as finite lumped masses, springs, and dampers. In general, more
accurate results are obtained by increasing the number of masses, springs, and
dampers—that is, by increasing the number of degrees of freedom.

1.5 Classification of Vibration

1.5.1
Free and Forced
Vibration

1.5.2
Undamped and
Damped Vibration

Vibration can be classified in several ways. Some of the important classifications
are as follows.

Free Vibration. If a system, after an initial disturbance, is left to vibrate on its
own, the ensuing vibration is known as free vibration. No external force acts on
the system. The oscillation of a simple pendulum is an example of free vibration.

Forced Vibration. If a system is subjected to an external force (often, a repeating
type of force), the resulting vibration is known as forced vibration. The oscillation
that arises in machines such as diesel engines is an example of forced vibration.
If the frequency of the external force coincides with one of the natural frequencies
of the system, a condition known as resonance occurs, and the system undergoes
dangerously large oscillations. Failures of such structures as buildings, bridges,
turbines, and airplane wings have been associated with the occurrence of resonance.

If no energy is lost or dissipated in friction or other resistance during oscillation,
the vibration is known as undamped vibration. If any energy is lost in this way, on
the other hand, it is called damped vibration. In many physical systems, the amount
of damping is so small that it can be disregarded for most engineering purposes.
However, consideration of damping becomes extremely important in analyzing
vibratory systems near resonance. '
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(a) A deterministic (periodic) excitation (b) A random excitation

FIGURE 1.16

1.5.3 If all the basic components of a vibratory system—the spring, the mass, and the

Linear and damper—behave linearly, the resulting vibration is known as linear vibration. On

Nonlinear the other hand, if any of the basic components behave nonlinearly, the vibration is

Vibration called nonlinear vibration. The differential equations that govern the behavior of
linear and nonlinear vibratory systems are linear and nonlinear, respectively. If
the vibration is linear, the principle of superposition holds, and the mathematical
techniques of analysis are well developed. For nonlinear vibration, the superposition
principle is not valid, and techniques of analysis are less well known. Since all
vibratory systems tend to behave nonlinearly with increasing amplitude of oscillation,
a knowledge of nonlinear vibration is desirable in dealing with practical vibratory
systems.

1.54 If the value or magnitude of the excitation (force or motion) acting on a vibratory

Deterministic and
Random Vibration

system is known at any given time, the excitation is called deterministic. The
resulting vibration is known as deterministic vibration.

In some cases, the excitation 1s nondeterministic Or rando%n; the value of the
excitation at a given time cannot be predicted. In these cases, a large collection of
records of the excitation may exhibit some statistical regularity. It is possible to
estimate averages such as the mean and mean square values of the excitation.
Examples of random excitations are wind velocity, road roughness, and ground
motion during earthquakes. If the excitation is random, the resulting vibration is
called random vibration. In the case of random vibration, the vibratory response of
the system is also random; it can be described only in terms of statistical quantities.
Figure 1.16 shows examples of deterministic and random excitations.

1.6 Vibration Analysis Procedure

A vibratory system is a dynamic system for which the variables such as the excitations
(inputs) and responses (outputs) are time-dependent. The response of a vibrating
system generally depends on the initial conditions as well as the external excitations.
Most practical vibrating systems are very complex, and it is impossible to consider
all the details for a mathematical analysis. Only the most important features are
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considered in the analysis to predict the behavior of the system under specified
input conditions. Often, the overall behavior of the system can be determined by
considering even a simple model of the complex physical system. Thus the analysis
of a vibrating system usually involves mathematical modeling, derivation of the
governing equations, solution of the equations, and interpretation of the results.

Step 1: Mathematical Modeling. The purpose of mathematical modeling is to
represent all the important features of the system for the purpose of deriving the
mathematical (or analytical) equations governing the behavior of the system. The
mathematical model should include enough details to be able to describe the systern
in terms of equations without making it too complex. The mathematical model may
be linear or nonlinear, depending on the behavior of the components of the system.
Linear models permit quick solutions and are simple to handle; however, nonlinear
models sometimes reveal certain characteristics of the system that cannot be predicted
using linear models. Thus a great deal of engineering judgrﬁent is needed to come
up with a suitable mathematical model of a vibrating system.

Sometimes the mathematical model is gradually improved to obtain more accurate
results. In this approach, first a very crude or elementary model is used to get a quick
insight into the overall behavior of the system. Subsequently, the model is refined by
including more components and/or details so that the behavior of the system can be
observed more closely. To illustrate the procedure of refinement used in mathematical
modeling, consider the forging hammer shown in Fig. 1.17(a). The forging hammer
consists of a frame, a falling weight known as the tup, an anvil, and a foundation block.
The anvil is a massive steel block on which material is forged into desired shape by
the repeated blows of the tup. The anvil is usually mounted on an elastic pad to reduce
the transmission of vibration to the foundation block and the frame [1.22]. For a first
approximation, the frame, anvil, elastic pad, foundation block, and soil are modeled
as asingle degree of freedom system as showninFig. 1.17(b). For arefined approxima-
tion, the weights of the frame and anvil and the foundation block are represented sepa-
rately witha two degree of freedom model as shown inFig. 1.17(c). Further refinement
of the model can be made by considering eccentric impacts of the tup, which cause
each of the masses shown in Fig. 1.17(c) to have both vertical and rocking (rotation)
motions in the plane of the paper.

Step 2: Derivation of Governing Equations. Once the mathematical model is
available, we use the principles of dynamics and derive the equations that describe
the vibration of the system. The equations of motion can be derived conveniently
by drawing the free-body diagrams of all the masses involved. The free-body diagram
of a mass can be obtained by isolating the mass and indicating all externally applied
forces, the reactive forces, and the inertia forces. The equations of motion of a
vibrating system are usually in the form of a set of ordinary differential equations
for a discrete system and partial differential equations for a continuous system. The
equations may be linear or nonlinear depending on the behavior of the components
of the system. Several approaches are commonly used to derive the governing
equations. Among them are Newton’s second law of motion, d’ Alembert’s principle,
and the principle of conservation of energy. :
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Step 3: Solution of the Governing Equations. The equations of motion must be
solved to find the response of the vibrating system. Depending on the nature of the
problem, we can use one of the following techniques for finding the solution:
standard methods of solving differential equations, Laplace transformation methods,
matrix methods,' and numerical methods. If the governing equations are nonlinear,
they can seldom be solved in closed form. Furthermore, the solution of partial
differential equations is far more involved than that of ordinary differential equations.
Numerical methods involving computers can be used to solve the equations. How-
ever, it will be difficult to draw general conclusions about the behavior of the system
using computer results.

Step 4: Interpretation of the Results. The solution of the governing equations
gives the displacements, velocities, and accelerations of the various masses of the
system. These results must be interpreted with a clear view of the purpose of the
analysis and the possible design implications of the results.

Mathematical Model of a Motorcycle

Figure 1.18(a) shows a motorcycle with a rider. Develop a sequence of three mathematical
models of the system for investigating vibration in the vertical direction. Consider the
elasticity of the tires, elasticity and damping of the struts (in the vertical direction), masses
of the wheels, and elasticity, damping, and mass of the rider.

Given: Spring constants, damping constants, and masses of the various parts of the motorcycle
and the rider.

Find: A sequence of three mathematical models.
Approach: Start with the simplest model and refine ijt gradually.

Solution: By using the equivalent values of the mass, stiffness, and damping of the system, a
single degree of freedom model of the motorcyele with the rider can be obtained as indicated
m'Fig. 1.18(b). In this model, the equivalent stiffness (keq) includes the stiffnesses of the tires,
struts, and rider. The equivalent damping constant (Ceq) includes the damping of the struts and
the rider. The equivalent mass includes the masses of the wheels, vehicle body, and the rider.
This model can be refined by representing the masses of wheels, elasticity of the tires, and
elasticity and damping of the struts separately, as shown in Fig. 1.18(c). In this model, the mass
of the vehicle body (m,) and the mass of the rider (m,) are shown as a single mass, m, + m,.
When the elasticity (as spring constant, k,) and damping (as damping constant, c,) of the rider
are considered, the refined model shown in Fig. 1.18(d) can be obtained.

Note that the models shown in Figs. 1.18(b) to (d) are not unique. For example, by
combining the spring constants of both tires, the masses of both wheels, and the spring and
damping constants of both struts as single quantities, the model shown in Fig. 1.18(e) can
be obtained instead of Fig. 1.18(c).

'The basic definitions and operations of matrix theory are given in Appendix A.
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Spring Elements

A linear spring is a type of mechanical link that is generally assumed to have
negligible mass and damping. A force is developed in the spring whenever there
is relative motion between the two ends of the spring. The spring force is proportional
to the amount of deformation and is given by

F = kx (1.1)

where F is the spring force, x is the deformation (displacement of one end with
respect to the other), and k is the spring stiffness or spring constant. If we plot a
graph between F and x, the result is a straight line according to Eq. (1.1). The work
done (U) in deforming a spring is stored as strain or potential energy in the spring,
and it is given by

U = %kxz (1.2)

Actual springs are nonlinear and follow Eq. (1.1) only up to a certain deformation.
Beyond a certain value of deformation (after point A in Fig. 1.19), the stress exceeds
the yield point of the material and the force-deformation relation becomes nonlinear
[1.23, 1.24]. In many practical applications we assume that the deflections are small
and make use of the linear relation in Eq. (1.1). Even if the force-deflection relation
of a spring is nonlinear, as shown in Fig. 1.20, we often approximate it as a linear
one by using a linearization process {1.24, 1.25]. To illustrate the linearization
process, let the static equilibrium load F acting on the spring cause a deflection of
x*. If an incremental force AF is added to F, the spring deflects by an additional
quantity Ax. The new spring force F' + AF can be expressed using Taylor’s series
expansion about the static equilibrium position x* as

F + AF = F(x* + Ax)
dar 1 d?F
F(x*) + I . (Ax) + 21 dx2 . (Ax)> + . . . (1.3)
‘ X, X
Stress 4 Force (F) 4 —
/ /,
X=X =Xy
Yield J viels 4
point, A point, A
—
Strai; Deformation (x')

FIGURE 1.19 Nonlinearity beyond proportionality limit.
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Force (F)
4

F+ OF = F(x* 4 Ax) == —

F=F@x*) | ———

+ Deformation (x)

FIGURE 1.20 Linearization process.

For small values of Ax, the higher order derivative terms can be neglected to obtain

F
F + AF = F(x*) + ar (Ax) (1.4)
dx "
Since F = F(x*), we can express AF as
AF = kAx (1.5)
where k is the linearized spring constant at x* given by
dF
k = —
dx | .

We may use Eq. (1.5) for simplicity, but sometimes the error involved in the

approximation may be very large.
Elastic elements like beams also behave as springs. For example, consider a
cantilever beam with an end mass m, as shown in Fig. 1.21. We assume, for simplicity,

Ll
I\
3
3

Ix(:) Tx(f)

(a) Actual system (b) Single degree of
freedom model

FIGURE 1.21 Cantilever with end mass.
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that the mass of the beam is negligible in comparison with the mass m. From strength
of materials [1.26], we know that the static deflection of the beam at the free end
is given by
wi3
O = —— 1.6
= S (1.6)
where W = myg is the weight of the mass m, E is Young’s modulus, and 7 is the
moment of inertia of the cross section of the beam. Hence the spring constant is
W 3E]

5, I3

(L.7)

Similar results can be obtained for beams with different end conditions.
The formulas given in Appendix B can be used to find the spring constants of
beams and plates.

In many practical applications, several linear springs are used in combination. These
springs can be combined into a single equivalent spring as indicated below.

Case 1: Springs in Parallel. To derive an expression for the equivalent spring
constant of springs connected in parallel, consider the two springs shown in Fig.
1.22(a). When a load W is applied, the system undergoes a static deflection &, as
shown in Fig. 1.22(b). Then the free body diagram, shown in Fig. 1.22(c), gives
the equilibrium equation

W = kl 55( + k2 55[ (18)

If k.q denotes the equivalent spring constant of the combination of the two springs,
then for the same static deflection &, we have

W = key 8 (1.9)
k8, kb, Lely
K, ks 5= %l“‘l
kl k2 kl k2 5‘?__ T
- W
By
— l G | C l ]
w w

(a) (b) (©)

FIGURE 1.22 Springs in parallel.
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Equations (1.8) and (1.9) give
keq = ki + ko (1.10)

In general, if we have » springs with spring constants ki, ky, . . . , k, in parallel,
then the equivalent spring constant keq can be obtained:

keq=k1+k2+-‘~+kn (1.11)
Case 2: Springs in Series. Next we derive an expression for the equivalent spring
constant of springs connected in series by considering the two springs shown in
Fig. 1.23(a). Under the action of a load W, springs 1 and 2 undergo elongations 8, and

8,, respectively, as shown in Fig. 1.23(b). The total elongation (or static deflection) of
the system, &, is given by

S.= 0, + & (1.12)

Since both springs are subjected to the same force W, we have the equilibrium
shown in Fig. 1.23(c):

W =k, 6,
W = ky 0y . (1.13)
If ke, denotes the equivalent spring constant, then for the same static deflection,
W = keqs (1.14)
Equations (1.13) and (1.14) give
ki8p = kyby = keqOy

W= k5,
k; ,
Ky Ky
S W
k, W= k5,
ky
— k
5, 2
3 T
t 82 w
w ‘ w
(a) (b) (0

FIGURE 1.23 Springs in series.
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or
and §, = —32 (1.15)

Substituting these values of 8, and &, into Eq. (1.12), we obtain

keq651 + keq5st = §
k, k, st

that is,

1 1
== (1.16)
eq kl k2

Equation (1.16) can be generalized to the case of n springs in series:

1 1 1 1
— = — 4 = 4 - = (L.17)
keq kl k2 kn
In certain applications, springs are connected to rigid components such as
pulleys, levers, and gears. In such cases, an equivalent spring constant can be found
using energy equivalence, as illustrated in Example 1.5.

Equivalent & of a Suspension System

Figure 1.24 shows the suspension system of a freight truck with a parallel-spring arrangement.
Find the equivalent spring constant of the suspension if each of the three helical springs is

FIGURE 1.24 Parallel arrangement of springs in a freight truck. (Courtesy of Buckeye
Steel Castings Company).
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made of steel with a shear modulus G = 80 X 10° N/m?, and has five effective turns, mean
coil diameter D = 20 c¢m, and wire diameter d = 2 cm.

15
(1 ) Given: Suspension system with helical springs.

Find: Equivalent spring constant, keg-
Approach. Use the formula corresponding to springs in parallel.

Solution: The stiffness of each helical spring is given by
i = a* G _ (0.02)* (80 x 10%)
8D3n 8 (0.2)% (5)
(See inside front cover for the formula.) Since the springs are identical, the equivalent spring
(1.16) constant of the suspension system is given by
keq = 3k = 3 (40,000.0) = 120,000.0 N/m ]

= 40,000.0 N/m

I
EXAMPLE 1.3 Torsional Spring Constant of a Propeller Shaft

uch as Determine the torsional spring constant of the steel propeller shaft shown in Fig. 1.25.
Given: Geometry and material of a stepped shaft.
Find: Torsional spring constant,.keq.
Approach: Consider the segments 12 and 23 of the shaft as springs in combination.

Solution: From Fig. 1.25, the torque induced at any cross section of the shaft (such as AA
or BB) can be seen to be equal to the torque applied at the propeller, 7’ Hence the elasticities

Im————

FIGURE 1.25
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(springs) corresponding to the two segments 12 and 23 are to be considered as serie

S Springs.
The spring constants of segments 12 and 23 of the shaft (k

¢, and k,,,) are given by
b = Gl _ Gm(DY, - dby) _ (80 X 10%7(0.3* — 0.2%

ti2 -

I 321, 32 (2)
25.5255 X 106 N-m/rad

il

k,, = 923 _ OmD% = d5y) (80 X 109)7(0.25* — 0.15%
: Iy 32 Iys 32 (3)

8.9012 x 10% N-m/rad

Since the springs are in series, Eq. (1.16) gives

_ kiakey (255255 106) (8.9012 x 106)

a + = 6.5997 x 10° N- d
Uk, + ok, (25.5255 X 105 + 8.9012 x 10%) 99 10° N-m/ra .
12 23

il

Equivalent 4 of Hoisting Drum

A hoisting drum, carrying a steel wire rope, is mounted at the end of a cantilever beamn as
shown in Fig. 1.26(a). Determine the equivalent spring constant of the system when the
suspended length of the wire rope is /. Assume that the net cross-sectional diameter of the
wire rope is d and the Young’s modulus of the beam and the wire rope is E.

Given: Dimensions of the cantilever beam: length = b, width = q, and thickness =

= f
Young’s modulus of the beam = E. Wire rope: length = [, diameter = d, and Young’s
modulus = E.

Find: Equivalent spring constant of the system,
Approach: Series springs.
Solution: The spring constant of the cantilever beam is given by

3ET 3E<1 3> Ear®
kb: = =

—b_3 = F Eat 253 (E. 1)
The stiffness of the wire rope subjected to axial loading is
AE  7d?E
k, = — = E.2
" { 41 (B-2)

Since both the wire rope and the cantilever beam experience the same load W, as shown in

Fig. 1.26(b), they can be modeled as springs in series, as shown in Fig. 1.26(c). The equivalent
Spring constant keq is given by

1_4° a4
k, Eaf®  wd’E

+

1 _1
keq kb

or

K marid?
keq = Z<7rd2b3 ¥ lat3> (E.3)
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FIGURE 1.26 Hoisting drum. - L

Equivalent & of a Crane

The boom AB of the crane shown in Fig. 1.27(a) 1s a uniform steel bar of length 10 m and
area of cross section 2500 mm?. A weight W is suspended while the crane is stationary. The
cable CDEBF is made of steel and has a cross-sectional area of 100 mm?. Neglecting the
effect of the cable CDEB, find the equivalent spring constant of the system in the vertical
direction.

Given: Steel boom: length = 10 m, cross-sectional area = 2500 mm?, and material = steel.
Cable FB: material = steel and cross-sectional area = 100 mm?2. Base: FA = 3 m.
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A vertical displacement x of point B will cause the spring k, (boom) to deform by an
amount x; = x cos 45° and the spring k, (cable) to deform Dy an amount x, = x cos (90°
= 8). The length of the cable FB, [;, is given by Fig. 1.27(b):

§ =324 10% - 2(3)(10)cos 135° = 151.426, I, = 123055 m
The angie 4 satisfies the relation
I} + 3% — 2(1,)(3)cos 6 = 102, cos § = 0.8184, @ = 350736°

The total potential energy (U) stored in the springs k; and k; can be expressed, using Eq.

(1.2), as
U = 3ki(x cos 45°)? + Sky[x cos(90° ~ 6)]2 (E.1)
where
AE; (100 x 10-6)(207 X 10%) s
= = = . X
ky L 5305 1.6822 X 105 N/m
and
-6 9

< Ky = ArE; _ (2500 X 10-6)(207 X 10%) _ 51750 X 107 N/m

1, 10

Since the equivalent spring in the vertical direction undergoes a deformation x, the potential
energy of the equivalent spring (Ueq) 1s given by

9 ‘ Ueg = 3kegx? (B.2)

By setting U = U,y, we obtain the equivalent spring constant of the system as

keq = 26.4304 x 108 N/m * : R

1.8 Mass or Inertia Elements

The mass or inertia element is assumed to be a rigid body; it can gain or lose kinetic
energy whenever the velocity of the body changes. From Newton’s second law of
motion, the product of the mass and its acceleration is equal to the force applied to the
mass. Work is equal to the force multipfied by the displacement in the direction of the
force and the work done on a mass is stored in the form of kinetic energy of the mass.

In most cases, we must use a mathematical model to represent the actual vibrating
system, and there are often several possible models. The purpose of the analysis
often determines which mathematical model is appropriate. Once the model is
chosen, the mass or inertia elements of the system can be easily. identified. For
example, consider again the cantilever beam with an end mass shown in Fig. 1.21(a).
For a quick and reasonably accurate analysis, the mass and damping of the beam
can be disregarded; the system can be modeled as a spring-mass system, as shown
in Fig. 1.21(b). The tip mass m represents the mass element, and the elasticity of
_ the beam denotes the stiffness of the spring. Next, consider a multistory building
; subjected to an earthquake. Assuming that the mass of the frame is negligible
' compared to the masses of the floors, the building can be modeled as a multidegree




e s s

oy sy

32 CHAPTER 1

1.8.1
Combination of
Masses

FUNDAMENTALS OF VIBRATION

of freedom system, as shown in Fig. 1.28. The masses at the various floor levels
represent the mass elements, and the elasticities of the vertical members denote the

spring elements.

In many practical applications, several masses appear in combination. For a simple
analysis, we can replace these masses by a single equivalent mass, as indicated

below [1.27].

Case 1: Translational Masses Connected by a Rigid Bar. Let the masses be
attached to a rigid bar that is pivoted at one end, as shown in Fig. 1.29(a). The
equivalent mass can be assumed to be located at any point along the bar. To be
specific, we assume the location of the equivalent mass to be that of mass m,. The
velocities of masses m, (x,) and ms (x3) can be expressed in terms of the velocity
of mass m; (X,), by assuming small angular displacements for the bar, as

(1.18)

and
(1.19)

g
AAANRRANNARNN ——— X
ks
. my
OSSO = Xy
ks
ms
ANARNRNNARNNNN — Xy
ky
My
RS > 13
ka
my
OISR ey X
ky
7 77

(a) (b)

FIGURE 1.28 Idealization of a multistory building
as a multidegree of freedom system.
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To be (a) ‘ (b)
). The
locity FIGURE 1.29 Translational masses connected by a rigid bar.
1.18) . By equating the kinetic energy of the three mass system to that of the equivalent
mass system, we obtain
1. 1 ; 1 , 1 .
Emlx% + Emzx% + §m3x§ = EmeqxgCl (1.20)
1.19)

This equation gives, in view of Egs. (1.18) and (1.19).

2 2
Meq = my + <%> m, + <;lé> mMs (1.21)
1 1

Case 2: Translational and Rotational Masses Coupled Together. Let a mass m

having a translational velocity x be coupled to another mass (of mass moment of

inertia Jy) having a rotational velocity 6, as in the rack and pinion arrangement

shown in Fig. 1.30. These two masses can be combined to obtain either (1) a single

equivalent translational mass m.q or (2) a single equivalent rotational mass Jeq, as
: : shown below.

Pinion, mass moment of inertia Jg

Rack, mass m

FIGURE 1.30 Traunslational and rotational masses
in a rack and pinion arrangement.
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1. Equivalent translational mass. The kinetic energy of the two masses 1s gtven
by

1

T = me'z + %Joé’z (1.22)

and the kinetic energy of the equivalent mass can be expressed as

1
= )
Teq = 7 Meg¥eq

w = 5 (1.23)

% and 6 = %/R, the equivalence of T and T, gives
1 R 2
X
+ =Jol =
27" <R>

J
S Meq = m —R% (1.24)

Since Xoq =
1 ; 1 5

- A
MegX™ = Smx

that is,

2. Equivalent rotational mass. Here f,q = 6and ¥ = 6R, and the equivalence of
T and T4 leads to

1

. 1 . 1. .
Ejquz - zm( (9R)2 + Ejoﬁz

or

Jeg = Jo + mR? (1.25)

Equivalent Mass of a System

Find the equivalent mass of the system shown in Fig. 1.31, where the rigid link 1 is attached
to the pulley and rotates with it.

Given: System composed of a mass, pulley, rigid links, and a cylinder, Fig. 1.31.

Find: Equivalent mass, mq.
Approach: Equivalence of kinetic energy (assuming small displacements).

Solution: When the mass m is displaced by a distance x, the pulley and the rigid link 1
rotate by an angle 8, = 6, = L This causes the rigid link 2 and the cylinder to be displaced
¥
p
by a distance x, = 8,1, = fh Since the cylinder rolls without slippage, it rotates by an
Ty
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§-—0 x(1)

Pulley, mass moment of N
inertia J,,
\\ m
N rp kl
R i O ;‘l + 777 ;; z , ; 77,:;;5;1:;;
N \
Rigid link 1 (mass m,), _
rotates with pulley
about O I /
Cylinder, mass m, !
rC
\ 1 & -t
' A
No slip
P Rigid link 2 (mass my)
X(1t) et
v
FIGURE 1.31
l L
angle ¢, = %2 = 2N The kinetic energy of the system (7)) can be expressed (for small
e Ty Te
displacements) as:
N S 1 52 ! )2 1 22 IJ )2
T——me +§Jp€p+§]101+5m2x2+5506 (E.1)

where J,, J;, and J. denote the mass moments of inertia of the pulley, link 1 (about O), and
cylinder, respectively, 6p, 8,, and 6, indicate the angular velocities of the pulley, link 1 (about

0), and cylinder, respectively, and x and X, represent the linear velocities of the mass m and
2 l’Z
mere my .
and J; = , Eq. (E.1) can be rewritten as

link 2, respectively. Noting that J, = 3

1 1 N i/ mo () 1 1\
B P 10 X X1
== +=, =) += e —
T=gmxt+ 57 <r,,> 2( 3 ) <r,,> 2”’2< v )
1{ m.r2 ¢ [ z
+ o Zele LL) i
: 2< 2 )(rprc (E-2)

By equating Eq. (E.2) to the kinetic energy of the equivalent system,

T = %meq %2 (E.3)

we obtain the equivalent mass of the system as

o Imili ml} 1m §
mcq=m+r—‘;+§ e (E.4)
r

p P P
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I
EXAMPLE 1.7 Cam-Follower Mechanism

A cam-follower mechanism (Fig. 1.32) is used to convert the rotary motion of a shaft into
the oscillating or reciprocating motion of a valve. The follower system consists of a pushrod
of mass m,, a rocker arm of mass m,, and mass moment of inertia J, about its C.G., a valve

i . .
a2 of mass m,, and a valve spring of negligible mass [1.28-1.30]. Find the equivalent mass
} : (m.eq) of this cam-follower system by assuming the location of meq as (i) point A and (ii)
3 point C.

:

i . . .

i Given: Mass of pushrod = m,, mass of rocker arm = m,, mass moment of inertia of rocker
E arm = J,, and mass of valve = m,. Linear displacement of pushrod = x,.

£S5 IR

Find: Equivalent mass of the cam-follower system (i) at point A, (i) at point C.
Approach.: Equivalence of kinetic energy.

Solution: Due to a vertical displacement x of the pushrod, the rocker arm rotates by an
angle §, = x/I, about the pivot point, the valve moves downward by x, = 8,1, = xl,/{,,

| -

v Rocker arm
T 8, (mass moment of inertia, J,)

§ Pushrod
(mass m,,)

Roller
follower

Shaft

1 FIGURE 1.32 Cam-follower system.




ft into
ishrod
Valve
mass
W (i)

-ocker

by an
K12/11 »

1.9 Damping

1.9  DAMPING ELEMENTS 37

and the C.G. of the rocker arm moves downward by x, = 6,
of the system (T) can be expressed as?

= xl3/l,. The kinetic energy

%mrx'%

! 1 .
2 4 —m‘,)c2

Sy (E.1)

1.
+ 5],02, +
where x,, %,, and x, are the linear velocities of the pushrod, C.G. of the rocker arm and the
valve, respectively, and 4, is the angular velocity of the rocker arm.
(i) If m.q denotes the equivalent mass placed at point A, with Xeq = X, the kinetic
energy of the equivalent mass system Teq 1s given by

{
— 2
Teq = S MegXeq

5 (E.2)
By equating T and T.q, and noting that
. . Xl ; Xl : x
X[7 = X, v = TI—, X, = -11*‘, and 9, = .l—l
we obtain
J, 3 3
meq = mp + 'Z—%' + v E + m, 17 (E3)
(1) Similarly, if the equivalent mass is located at point C, x.q = %, and
o1 2 1 22
Teq = 2 Meq¥eq T 5 MMegXy (E.4)
Equating (E.4) and (E.1) gives
L\ L\’
Meq = m, + = + mp, L +m, |2 (E.5)
l 5 ly
|

Elements

In many practical systems, the vibrational energy is gradually converted to heat or
sound. Due to the reduction in the energy, the response, such as the displacement
of the system, gradually decreases. The mechanism by which the vibrational energy
is gradually converted into heat or sound is known as damping. Although the amount
of energy converted into heat or sound is relatively small, the consideration of

damping becomes important for an accurate prediction of the vibration response of

a system. A damper is assumed to have neither mass nor elasticity, and damping
force exists only if there is relative velocity between the two ends of the damper.
It is difficult to determine the causes of damping in practical systems. Hence damping
is modeled as one or more of the following types.

2If the valve spring has a mass m,, then its equivalent mass will be %mx (see Example 2.7). Thus the
kinetic energy of the valve spring will be §(3m,)x2.
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Viscous Damping. Viscous damping is the most commonly used damping mecha-
nism in vibration analysis. When mechanical Systems vibrate in a fluid medium
such as air, gas, water, and oil, the resistance offered by the fluid to the moving
body causes energy to be dissipated. In this case, the amount of dissipated energy
depends on many factors, such as the size and shape of the vibrating body, the
viscosity of the fluid, the frequency of vibration, and the velocity of the vibrating
body. In viscous damping, the damping force is proportional to the velocity of the
vibrating body. Typical examples of viscous damping include (1) fluid film between
sliding surfaces, (2) fluid flow around a piston in a cylinder, (3) fluid flow through
an orifice, and (4) fluid film around a journal in a bearing.

Coulomb or Dry Friction Damping. Here the damping force is constant in
magnitude but opposite in direction to that of the motion of the vibrating body. It
is caused by friction between rubbing surfaces that are either dry or have insufficient
lubricatjon.

Material or Solid or Hysteretic Damping. When materials are deformed, energy
15 absorbed and dissipated by the material {1.31]. The effect is due to friction
between the internal planes, which slip or slide as the deformations take place.
When a body having material damping is subjected to vibration, the stress-strain
diagram shows a hysteresis loop as indicated in Fig. 1.33(a). The area of this loop
denotes the energy lost per unit volume of the body per cycle due to damping.?

A viscous damper can be constructed using two parallel plates separated by a
distance h, with a fluid of viscosity u between the plates (see Fig. 1.34). Let one
plate be fixed and let the other plate be moved with a velocity v in its own plane.
The fluid layers in contact with the moving plate move with a velocity v, while
those in contact with the fixed plate do not move. The velocities of intermediate.
fluid layers are assumed to vary linearly between 0 and v, as shown in Fig. 1.34.
According to Newton’s law of viscous flow, the shear stress (1) developed in the
fluid layer at a distance y from the fixed plate is given by

du
Fo= g 22

= ,u,dy (1.26)

*When the load applied to an elastic body is increased, the stress (o) and the strain (&) in the body also
increase. The area under the o — & curve, given by

u = [ ode

denotes the energy expended (work done) per unit volume of the body. When the load on the body is
decreased, energy will be recovered. When the unioading path is different from the loading path, the

area ABC in Fig. 1.33(b)—the area of the hysteresis loop in Fig. 1.33(a)—denotes the energy lost per
unit volume of the body.
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Stress (force) Stress (o)
t
Loading
Hysteresis
loop Energy
Unloading expended (ABD)
| Energy
recovered (BCD)
+ Strain ——— Strain (¢)
/ (displacement)
Area

(a) (b)

FIGURE 1.33 Hysteresis loop for elastic materials.

where du/dy = v/his the velocity gradient. The shear or resisting force (F) developed
at the bottom surface of the moving plate is

F=q4=482_ . (1.27)

¢ = £ : (1.28)

is called the damping constant.

Surface area of plate = A

FIGURE 1.34 Parallel plates with a viscous fluid in between.
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If a damper is nonlinear, a linearization procedure is generally used about the
operating velocity (v¥), as in the case of a nonlinear spring. The linearization process
gives the equivalent damping constant as

dr
¢ = —

dv | .

Ik

(1.29)

When dampers appear in combination, they can be replaced by an equivalent damper
by adopting a procedure similar to the one described in Sections 1.7 and 1.8 (see
Problem 1.32).

Clearance in a Bearing

A bearing, which can be approximated as two flat plates separated by a thin film of lubricant
(Fig. 1.39), is found to offer a resistance of 400 N when SAE30 oil is used as the lubricant
and the relative velocity between the plates is 10 m/s. If the area of the plates (A) is 0.1 m?,
determine the clearance between the plates. Assume the absolute viscosity of SAE30 oil as
50 u reyn or 0.3445 Pa-s.

Given: Characteristics of a bearing and the lubricant.
Find: Distance between the plates of the bearing.
Approach: Use the definition of damping constant.

Solution: Since the resisting force (F) can be expressed as F = ¢ v, where ¢ is the damping
constant and v is the velocity, we have

—]—:24—99=40N~s/m (E.1)
v 10
Area{A)

V s

B

FIGURE 1.35
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Let the total forces acting on all the springs and all the dampers be F; and F,, respectively
(see Fig. 1.37(d)). The force equilibrium equations can thus be expressed as

Fo=F, + Fy, + Fq + Fou
Fo=Fg 4+ Fgp + Fg3 + Fyq (E.2)

where Fy + Fy = W, with W denoting the total vertical force (including the inertia force)
acting on the milling machine. From Fig. 1.37(d), we have

Fg = kegx
Fd = Ceq X (E3)
Equations (E.2) along with Egs. (E.1) and (E.3), yield

keg = ky + ky + ky + ky = 4k
Ceq = C1 + ¢y + ¢35 + c4 = 4c¢ (E.4)

when &k, = kandc¢; = cfori = 1, 2,3, 4.

Note: If the center of mass, G, is not located symmetrically with respect to the four springs
and dampers, the i spring experiences a displacement of x; and the it damper experiences
a velocity of X; where x; and %, can be related to the displacement x and velocity x of the
center of mass of the milling machine, G. In such a case, Egs. (E.1) and (E.4) need to be
modified suitably. B

1.10 Harmonic Motion

Oscillatory motion may repeat itself regularly, as in the case of a simple pendulum,
or it may display considerable uregularity, as in the case of ground motion during
an earthquake. If the motion is repeated after equal intervals of time, it is called
periodic motion. The simplest type of periodic motion is harmonic motion. The
motion imparted to the mass m due to the Scotch yoke mechanism shown in Fig.
1.38 is an example of simple harmonic motion [1.24, 1.34, 1.35). In this system, a
crank of radius A rotates about the point O. The other end of the crank P slides in
a slotted rod, which reciprocates in the vertical guide R. When the crank rotates at
an angular velocity w, the end point § of the slotted link and hence the mass m of
the spring-mass system are displaced from their middle positions by an amount x
(in time f) given by

x = Asin § = A sin wt (1.30)

This motion is shown by the sinusoidal curve in Fig. 1.38. The velocity of the mass
m at time ¢ is given by

d
d—’t‘ = wA cos wt (1.31)
and the acceleration by

2
dx - w?A sin wt = — w?x (1.32)
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FIGURE 1.38 Scotch yoke mechanism.

It can be seen that the acceleration is directly proportional to the displacement. Such
a vibration, with the acceleration proportional to the displacement and directed
toward the mean position, is known as simple harmonic motion. The motion given
by x = A cos wt is another example of a simple harmonic motion. Figure 1.38
clearly shows the similarity between cyclic (harmonic) motion and sinusoidal motion,

1.10.1 Harmonic motion can be represented conveniently by means of a vector OP of
Vectorial magnitude A rotating at a constant angular velocity @ In Fig. 1.39, the projection

Representation of  of the tip of the vector X = OP on the vertical axis is given by

Harmonic Motion

y = A sin w! (1.33)
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One
cycle
of motion

Angular
displacement

" One cycle of motion

FIGURE 1.39 Harmonic motion as the projection of the end of a rotating vector.

K and its projection on the horizontal axis by
x = A cos wt (1.34)
; 1.10.2 As seen above, the vectorial method of representing harmonic motion requires the
i ' Complex Number  description of both the horizontal and vertical components. It is more convenient

Representation of to represent harmonic motion using a complex number representation. Any vector
Harmonic Motion X in the xy plane can be represented as a complex number:

X =a+ib (1.35)
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The problem assignments are organized as follows:

Problems Section Covered Topic Covered

1.1-1.6 1.6 Vibration analysis procedure
1.7-1.26 1.7 Spring elements

1.13, 1.26-1.31 1.8 Mass elements

1.32-1.38 1.9 Damping elements
1.39-1.59 1.10 Harmonic motion

1.60-1.70 1.11 Harmonic analysis
1.71-1.74 1.13 Computer program
1.75-1.80 —

Design projects

L3* A study of the response of a human body subjected to vibration/shock is important
in many applications. In a standing posture, the masses of head, Lippcr torso, hips,
and legs, and the elasticity/damping of neck, spinal column, abdomen, and legs
influence the response characteristics. Develop a sequence of three improved approxi-

mations for medeling the human body.

1.2*  Figure 1.54 shows a human body and a restraint system at the time of an automobile
collision [1.47). Suggest a simple mathematical model by considering the elasticity,

Restraint
Seat

\ belts

3 i -
b -
|~
Py
/:/
3
4 [ON©) 00
\Floor

Windshield

Instrument
panel

I Slant

footboard
Impact
force

FIGURE 1.54 A human body and a restraint system.

*The asterisk denotes a design type problem or a problem with no unique answer.
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mass, and damping of the seat, human body, and the restraints for a vibration analysis
of the system.

1.3* A reciprocating engine is mounted on a foundation as shown in Fig. 1.55. The
unbalanced forces and moments developed in the engine are transmitted to the frame
and the foundation. An elastic pad is placed between the engine and the foundation
block to reduce the transmission of vibration. Develop two mathematical models of
the system using a gradual refinement of the modeling process.

le—— Frame

Reciprocating . .
engine S

~ - Bolts
Elastic pad

Foundation
block

NAANAAN \\\\\\\
Sail

FIGURE 1.55 A reciprocating engine on a foundation.

1.4*  An automobile moving over a rough road (Fig. 1.56) can be modeled considering (a)
weight of the car body, passengers, seats, front wheels, and rear wheels; (b) elasticity
of tires (suspension), main springs, and seats; and (c) damping of the seats, shock
absorbers, and tires. Develop three mathematical models of the system using a gradual
refinement in the modeling process.

FIGURE 1.56 An automobile moving on a rough road.

1.5% The consequences of a head-on collision of two automobiles can be studied by
considering the impact of the automobile on a barrier, as shown in Fig. 1.57. Construct
a -mathematical model by considering the masses of the automobile body, engine,
transmission, and suspension, the elasticity of the bumpers, radiator, sheet metal body,
driveline, and engine mounts. ’
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FIGURE 1.57 An automobile colliding on a barrier.

1.6* Develop a mathematical model for the tractor and plow shown in Fig. 1.58 by

considering the mass, elasticity, and damping of the tires, shock absorbers, and the
plows (blades).

1.7 Determine the equivalent spring constant of the system shown in Fig. 1.59.

Shock absorber
o N
l +- /1 D)
+ ) Plow
ST 77777777 7777777 0 7 77777777,
A

FIGURE 1.58 A tractor and plow. FIGURE 1.59

1.8 In Fig. 1.60, find the equivalent spring constant of the system in the direction of 6.

1.9 Find the equivalent torsional spring constant of the system shown in Fig. 1.61. Assume
that k), k,, k3, and k4 are torsional and ks and kg are linear spring constants.
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FIGURE 1.61

1.10 A machine of mass m = 500 kg is mounted on a simply supported steel beam of
length I = 2 m having a rectangular cross section (depth = 0.1, m, width = 1.2 m)
and Young's modulus £ = 2.06 X 10" N/m?. To reduce the vertical deflection of
the beam, a spring of stiffness k is attached at the mid-span, as shown in Fig. 1.62.
Determine the value of k needed to reduce the deflection of the beam to one-third of
its original value. Assume that the mass of the beam is negligible.

mn
[ ; ]
£ | 2,
' k3
-~
e
I !

FIGURE 1.62

1.11 Four identical rigid bars—each of length a—are connected to a spring of stiffness k
to form a structure for carrying a vertical load F, as shown in Figs. 1.63(a) and (b).
Find the equivalent spring constant of the system keq. for each case, disregarding the
masses of the bars and the friction in the joints.
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() | (®)
FIGURE 1.63

1.12 The tripod shown in Fig. 1.64 1s used for mounting an electronic instrument that
finds the distance between two points in space. The legs of the tripod are located
‘symmetrically about the mid-vertical axis, each leg making an angle @ with the
vertical. If each leg has a length of [ and axial stiffness of &, find the equivalent spring
stiffness of the tripod in the vertical direction.

{1

FIGURE 1.64

Lo 1.13 Find the equivalent spring constant and equivalent mass of the system shown in Fig.
-1.65 with reference to 8. Assume that the bars AOB and CD are rigid with negligible
mass.
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FIGURE 1.65
1.14 Find the length of the equivalent uniform hollow shaft of inner diameter d and thickness

¢ that has the same axial spring constant as that of the solid conical shaft shown in
Fig. 1.66.

FIGURE 1.66

1.15

1.16

The force-deflection characteristic of a spring is described by F = 500x + 2x* where
the force (F) is in Newtons and the deflection (x) is in millimeters. Find (a) the
linearized spring constant at x = 10 mm, and (b) the spring forces at x = 9 mm and
x = 11 mm using the linearized spring constant. Also find the error in the spring
forces found in (b).

Figure 1.67 shows an air spring. This type of spring is generally used for obtaining
very low natural frequencies while maintaining zero deflection under static loads.

"Find the spring constant of this air spring by assuming that the pressure p and volume

v change adiabatically when the mass m moves.
Hint: pv”¥ = constant for an adiabatic process, where v is the ratio of specific heats.

"For air, y = 1.4.
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Pressure = p

Volume = v —-1
| x(1)

Air

Cross-sectional area = A

FIGURE 1.67

1.17  Find the equivalent spring constant of the system shown in Fig. 1.68 in the direction
of the load P

FIGURE 1.68

1.18* Design an air spring using a cylindrical container and a piston to achieve a sprin
g pring g y p pring

1.19

1.20

constant of 75 Ib/in. Assume that the maximum air pressure available is 200 psi.

The force (F)-deflection (x) relationship of a nonlinear spring is given by
F = ax + bx?

where a and b are constants. Find the equivalent linear spring constant when the
deflection is 0.01 m with a = 20,000 N/m and b = 40 X 10% N/m3.

Two nonlinear springs, §; and S,, are connected in two different ways as indicated
in Fig. 1.69. The force, F,, in spring S, is related to its deflection (x;) as

Fi=a;x; + b;x3, i 1,2

il
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Sl S] 52
A l
w
irection &/
(a) {b)
FIGURE 1.69

where a; and b; are constants. If an equivalent linear spring constant, kg, is defined
by W = k.4 x where x is the total deflection of the system, find an expression for kgq
in each case.

1.21* Design a steel helical compression spring to satisfy the following requirements:

Spring stiffness (k) = 8000 N/mm
Fundamental natural frequency of vibration (f) = 0.4 Hz
Spring index (D/d) = 6

Number of active tums (N) = 10.

The stiffness and fundamental natural frequency of the spring are given by [1.43]:

Gd* 1 kg
k=gspy M =5y

where G = shear modulus, d = wire diameter, D = coil diameter, W = weight of
the spring, and g = acceleration due'to gravity. o

1.22 Find the spring constant of the bimetallic bar shown in Fig. 1.70 in axial motion.

2cm Steel,
/ E =207 x 10°Pa
0.5cm [

[ Aluminum,
[ N E=83x10°Pa
rn--—}x

ed I
v
Y

b FIGURE 1.70

i
i
{
N
1
i
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1.23 A tapered solid steel propeller shaft is shown in Fig. 1.71. Determine the torsional
spring constant of the shaft.

Steel, G = 80 x 10° Pa

FIGURE 1.71

1.24 A composite propeller shaft, made of steel and aluminum, is shown in Fig. 1.72.
Determine the torsional spring constant of the shaft.

{15 cm|

25¢cm

Section AA

FIGURE 1.72

1.25 Consider two helical springs with the following characteristics:

Spring I. material-steel; number of turns—10; mean coil diameter-12 in; wire
diameter—2 in; free Jength—15 in; shear modulus-12 X 109 psi.

Spring 2: material-aluminum; number of turns—10; mean coil diameter-10 in;
wire diameter—1 in; free length—-15 in; shear modulus—4 X 10¢ psi.

Determine the equivalent spring constant when (a) spring 2 is placed inside spring
1, and (b) spring 2 is placed on top of spring 1.

1.26 Two sector gears, located at the ends of links 1 and 2, are engaged together and rotate
about 0, and O,, as shown in Fig. 1.73. If links 1 and 2 are connected to springs k; to
k4 and k,; and k,, as shown, find the equivalent torsional spring stiffness and equivalent
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yrsional : mass moment of inertia of the system with reference to 8. Assume (a) the mass moment
' of inertia of link 1 (including the sector gear) about O as J; and that of link 2 (including
the sector gear) about O, as J,, and (b) the angles §; and 6, to be small.

Sector gear 1

Sector gear 2

. 1.72.

FIGURE 1.73

- 1.27 In Fig. 174 find the equivalent mass of the rocker arm assembly, referred to the x
coordinate. .

ky

my T
a

N\

L L Ll oo

2 Jo b

A . X

/

3 21

A | i
4""‘4/\/\/\/_' m, -

z o
DA T

FIGURE 1.74
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1.28 Find the equivalent mass moment of inertia of the gear train shown in Fig. 1.75 with
reference to the driving shaft. In Fig. 1.75, J; and n; denote the mass moment of

inertia and the number of teeth, respectively, of gear i, i = 1,2, . . . | 2N
Driving
Motor Shaft 1
]molor ‘ ————! ][,?1,
| Shaft 2 ‘
TIIIT7I7I7ITIIIZI7 Iy my 12 3| 1, ny Shaft v
- L1 Shaft3
/ v Gear 2N ~ 1
} J n
Jing |4 1 I N - TN -
|
| —
Shaft N + 1
Load,
Jload
Gear 2N —_|
Jan, nan

FIGURE 1.75

1.29 Two masses, having mass moments of inertia J; and J,, are placed on rotating rigid
shafts that are connected by gears, as shown in Fig. 1.76. If the number of teeth on
gears 1 and 2 are n, and n,, respectively, find the equivalent mass moment of inertia
corresponding to 4. ‘ '

FIGURE 1.76 Rotational masses on geared shafts.

1.30 A simplified model of a petroleumn pump is shown in Fig. 1.77, where the rotary
motion of the crank is converted to the reciprocating motion of the piston. Find the

equivalent mass, n,, of the system at location A.



75 with
nent of

a

rigid
th on
1ertia

tary
the

,s.iae.;g“

Walking beam (mass moment
B p of inertia, J,)

¥ &
Horsehead
8y (mass, my)
i o]

I l 1, |

| —

I ==

i —

0(‘
N ——
7T TIITIIITI TV 777 TTTT7777.
Crank (mass moment of -

. Piston
inertia J., and radius, r, )

FIGURE 1.77

1.31 Fiﬁd the equivalent mass of the system shown in Fig. 1.78.

Sphere, mass m,
mrx
A

—
TI77T7T7T7777. // 77777777

|

...
b
K

No slip

Bell crank lever,
mass moment of
inertia J,

ky

FIGURE 1.78
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132 Find a single equivalent damping constant for the following cases:

a. When three dampers are parallel.

b. When three dampers are in series.

¢. When three dampers are connected to a rigid bar (Fig. 1.79) and the equivalent
damper is at site c,.

4

.

]

T

FIGURE 1.79 Dampers connected to a rigid bar.

d. When three torsional dampers are located on geared shafts (Fig. 1.80) and the
equivalent damper is at location ¢,;.

FIGURE 1.80 Dampers located on geared shafts.

Hint: The energy dissipated by a viscous damper in a cycle during harmonic motion
is given by mcwX?, where ¢ is the damping constant, w is the frequency, and X is the
amplitude of oscillation.

1.33* Design a piston-cylinder type viscous damper to achieve a damping constant of 1 1bf-
sec/in using a fluid of viscosity 4 ureyn (1 reyn = 1 Ibf-sec/in?).

1.34* Design a shock absorber (piston-cylinder type dashpot) to obtain a damping constant




givalent
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of 105 Ib-sec/in using SAE 30 oil at 70° F. The diameter of the piston has to be less
than 2.5 inches.

1.35 Develop an expression for the damping constant of the rotational damper shown in
Fig. 181 in terms of D, d, [, h, @ and u, where w denotes the constant angular
velocity of the inner cylinder, and d and h represent the radial and axial clearances
between the inner and outer cylinders.

~Q
)
N N
Fluid of - AR —
viscosity p..* g

z

i AN
N
AN\, T N
FIGURE 1.81
1.36 The force (F)-velocity (%) relationship of a nonlinear damper is given by

1.37

F=ax+bi®
where a and b are constants. Find the equivalent linear damping constant when the
relative velocity is 5 m/s with @ = SN-s/m and b = 0.2N-s%/m?.

The damping constant (¢) due to skin friction drag of a rectangular plate moving in
a fluid of viscosity u is given by (see Fig. 1.82): '
c =100 p%d

Design a plate-type damper (shown in Fig. 1.35) that provides an identical damping
constant for the same fluid.
d/ v

FIGURE 1.82







