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8/1 INTRODUCTION

An important and special class of problems in dynamics deals
with the linear and angular motions of bodies which oscillate or
respond to applied disturbances in the presence of restoring forces.
A few examples of this class of dynamics problems are the response
of an engineering structure to earthquakes, the vibration of an un-
balanced rotating machine, the time response of the plucked string
of a musical instrument, the wind-induced vibration of power lines,

- and the flutter of aircraft wings. In many cases, excessive vibration

levels must be reduced to accommodate mateual llrrutatlons or hu-
man factors.

In theanalysis of every engmeerlng problem the system under-

scrutiny must be represented by a physical model. It is often per-
missible to represent a continuous or distributed-parameter system
(one in which the mass and spring elements are continuously spread
over space) by a discrete or lumped-parameter model (one in which
{he mass and spring elements are separate and concentrated). Such
a modeling scheme is especially desirable when some portions of a
continuous system are relatively massive in comparison with other

portions. For example, the physical mode! of a ship propeller shaft '

is often assumed to be a massless but twistable rod with a disk
rigidly attached to each end—one disk representing the turbine and
the other representing the propeller. As a second example, we ob-
serve that the mass of springs may often be neglected in comparison

with that of attached bodies. It should be noted that not every sys-

tem is reducible to a discrete model. For example, the transverse
vibration of a diving board after the departure of the diver is a some-
what difficult problem of distributed-parameter vibration. In this
‘chapter, we shall begin the study of discrete systems, limiting our
discussion to those whose configurations may be described with one
displacement variable. Such systems are said to possess one dégree
of freedom. For a more detailed study which includes the treatment
of two or more degrees of freedom and continuous systems, the stu-
dent should consult one of the many textbooks devoted solely to the

- subject of vibrations.
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Sample Problem 8/1

A body weighing 25 b is suspended from a spring of constant 2 =
160 1b/ft. At time ¢ = 0, it has a downward velocity of 2 ft/sec as it passes
through the position of static equilibrium. Determine

(@) the static spring deflection 4

(b) the natural frequency of the system in both rad/sec (w,) and
cycles/sec (f,)

(c) the system period 7,

(d) the displacement x as a function of time, where x is measured
from the position of static equilibrium -

(e) the maximum velocity v,,,, attained by the mass

(f) the maximum acceleration a,,, attained by the mass.

Solution. (a) From the spring relationship Fy = kx, we see that
at equilibrium,

mg =kl By = Tkﬁ = % = 0.1562 ft or 1.875 in. Ans.

k /160 :
w, = \/% = —2—57?—):2—5 = 14.36 rgd/sec Ans.

fn = (14.36)(%) = 2.28 cycles/sec Ans.

1
(c) "= oon = 0.438 sec Ans.

(d) From Eq. 8/6:

X .
X = Xg €08 w,l + =0 sin Wyt
wn

(0) cos 14.36¢ + —— " 36 sin 14 36t

0.1393 sin 14.36¢ Ans.

As an exercise, let us determine x from the alternative Eq. (8/7):

2 2 \? . . [oa436)
0~ + <———14.36> sin {14.36t + tan B a—

0.1393 sin 14.36¢

(e) The velocity is x = 14.36(0.1393) cos 14.36¢ = 2 cos 14.36¢.
Since the cosine function cannot be greater than 1 or less than —1, the
maximum velocity v,,., is 2 ft/sec, which, in this case, is the initial
velocity. Ans.

(f) The acceleration is

¥ = —14.36(2) sin 14.36t = —28.7 sin 14.36¢

The maximum acceleration Oy 15 28.7 ft/sec?.

k(lst +X) by

—_— s =
5st:
Equilibriumy _ A ;
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mg \
mg

(@) The student should always exercise ex-
treme caution in the matter of units. In
the subject of vibrations, it is quite easy
to commit errors due to mixing of feet
and inches, cycles and radians, and other
pairs that frequently enter the calcula-
tions.

@ Recall that when we refer the motion to

the position of static equilibrium, the
equation of motion, and therefore its so-
lution, for the present system is identical

x = Jag + (ig/w,)? sin [wnt + tan-! <’%_‘(‘)’_@>] s m (W, i-.;-J) to that for the horlzontally vibrating

system.

4 m*'(xown)
Vm’-‘A"’n

‘A2
am =Vldn =A:wn




614 VIBRATION AND TIME RESPONSE

8/16 An energy-absorbing car bumper with its springs
initially undeformed has an equivalent spring
constant of 3000 lb/in. If the 2500-1b car ap-
proaches a massive wall with a speed of 5 mi/hr,
determine (a) the velocity v of the car as a func-
tion of time during contact with the wall, where
¢t = 0 is the beginning of the impact, and (b) the
maximum deflection x,,,, of the bumper.

Problem 8/16

8/17 A 120-Ib woman stands in the center of an end-
supported board and causes a midspan deflection
of 0.9 in. If she flexes her knees slightly in order
to cause a vertical vibration, what is the fre-
quency f,, of the motion? Assume elastic response
of the board and neglect its relatively small mass.

Ans. f, = G2 Hz

Problem 8/17
by 09in= 3/4‘(‘ w,=
PR
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8/18 Prove that the natural frequency f,, of oscillation
for the mass m is independent of 6.

Problem 8/18

8/19 If both springs are unstretched when the mass is
in the central position shown, determine the
static deflection &, of the mass. What is the pe-
riod of oscillatory motion about the position of
static equilibrium? :

mg sin 0 m

et =2n [

Ans. At = 3k T Py

Problem 8/19

8/20 A small particle of mass m is attached to tw

highly tensioned wires as shown. Determine the
system natural frequency w,, for small vertical os
cillations if the tension T’ in both wires is as
sumed to be constant. Is the calculation of th
small static deflection of the particle necessary?

Problem 8/20
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64 PERIODIC MOTION

Replacing sin 6 with 6, which is valid for small oscillations, the equa-
tion of motion is

5 38,
0+210—0

: . . 3 .
This is again similar to equation 2.2, with ¢ replacing x and = replacing

21
kim.
The natural circular frequency is

w,=+28

21

and the natural frequency, measured in cycles per second, is
‘ 1 3g
=22 \21

Iy=mk} =—§—ml2

The radius of gyration is |

l
“ Vs

and the distance to the center of percussion is

k3 2

2= 3!

WM%/M/W PROBLEM 2.30 A device designed to deter-

mine the moment of inertia of a wheel-tire
assembly consists of 2-mm steel suspension wire,
2 m long, and a mounting plate, to which is
attached the wheel-tire assembly. The suspension
wire is fixed at its upper end and hung vertically.
When the system oscillates as a torsional pen-
dulum, the period of oscillation without the
wheel-tire assembly is 4 s. With the wheel-tire

AY

77777\ ___w:___/@ 7222177724 . .
it 111 A NS g 1[I mounted to the mounting plate, the period of
NN RN SOAANNSNANNS

(Ui [Uendi  ggeillation is 25 s. Determine the moment of
inertia of wheel-tire assembly.

Answer: % kg-m?




