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FIGURE 1.10° Vlbratory fmrshmg process (Reprmted courtesy of the Socrety of Manufacturmg

Engineers, © 1964 The Tool and Manufactunno ‘Engineer.)
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Elementary Parts( '

of Vibrating .
: Systems

o extemal source. if a state of steady vibration is.to be maintained. -

havé mcreased consrderably in recent years (1.21]. For example vibration is put to -

: ‘_work in vibratory conveyors, hoppers sieves, compactors, washing machines, electric
o toothbrushes, ‘dentist’ S drills, clocks and electric massaging units. Vibration-is also ,
" used in pile driving, -vibratory testing of materials, vibratory finishing processes,

“and electronic circuits to filter out the unwanted frequencies (see Fig. 1.10). Vibration

" has been found to- improve the efficiency of certain machining, casting, forging,
and weldrng processes. It is employed to simulate earthquakes for geological research

and also to .conduct studles in the desrgn of’ nuclear Teactors. .

.

,.Concepts of Vrbratron

Any. motlon that repeats 1tself after an 1nterva1 of time is called vzbranorz or osczlla-,

" . tion. The swinging of a pendulum and. the motion of a plucked string. are typrcal

examples of vibration. ‘The theory of vibration-deals with the study of osc1llatoryb N

';motrons of bodies and the forces assocrated wrth them.

A vrbratory system in general‘ rncludes a means for stonng potent1a1 energy (sprlng,..
or elasticity), a means for storing kinetic. energy (mass or 1nert1a) and a means: by o

" which energy is: gradually lost (damper). -
The vrbratlon ‘of a system involves’ the transfer of its potenttal energy to kmetlc .
-energy. and kinetic ener: gy to potential energy,’ alternately If the system is damped “
SOme. energy 1s d1551pated in each cycle of Wbratron and must be replaced by an:

Ag’ an -example, consider the vibration: of the simple pendulurn shown in Fr L
1. ll Let the bob of mass m be 1e1eased after grvmg it an angular drsplacementv 0
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FIGURE 1.11 A simple pendulum.

At position 1 the velocity of the bob and hence its kinetic energy is zero. But it

has’ a potential energy of magnitude mgl(1 — cos §) with respect to the datum
position 2. Since the gravitational force mg induces a torque gl sin 6 about the
point O, the bob starts swinging to the left from position 1. This gives the bob -
certain angular acceleration in the clockwise direction, and by the time it reaches
position 2, all of its potential energy will be converted into kinetic energy. Hence
the bob will not stop in position 2, but will continue to swing to position 3. However,
as it passes the mean position 2, a counterclockwise torque starts acting on the bob .
due to gravity and causes the bob to decelerate.-The velocity of the bob reduces to
zero at the left extreme position. By this time, all the kinetic energy of the bob will ‘
be converted to potential energy. Again due to the gravity torque, the bob continues
to attain a counterclockwise velocity. Hence the bob starts swinging back w1th
progressively increasing velocity and passes the mean position again. This process
keeps repeating, and the pendulum will have oscillatory motion. However, in practice,
the magnitude of oscillation () gradually decreases and the pendulum ultimately
stops due to the resistance (damping) offered by the surrounding medium (air). This
means that some energy is dissipated in each cycle of vibration due to dampmg by
the air. -

- The minimum number of independent coordinates required to determine completely

the positions of all parts of a system at any instant of time defines the degree of
freedom of the system. The simple pendulum shown in Fig. 1.11, as well as each

. of the systems shown in Fig. 1.12, represents a single degree of freedom system.

For example, the motion of the simple pendulum (Fig. 1.11) can be stated either in
terms of the angle 8 orin terms of the Cartesian coordinates x and y. If the coordinates
x and y are used to describe the motion, it must be recognized that these coordmates :
are not independent. They are related to each other through the relation x2 -+ y?
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(a) Slider -crank- (b) Spring- mass system (c) Torsional system
spring mechanism

FIGURE 1.12  Single degree of freedom systems.

I%, where [ is the constant length of the pendulum. Thus any one coordinate can
describe the motion of the pendulum. In this example, we find that the choice of
¢ as the independent coordinate will be more convenient than the choice of x or .
For the slider shown in Fig. 1.12(a), either the angular coordinate or the coordinate
x can be used to describe the motion. In Fig. 1.12(b), the linear coordinate x can
be used to specify the motion. For the torsional system (long bar with a heavy disk
at the end) shown in Fig. 1.12(c), the angular coordinate 4 can be used to describe
the motion. - o

Some examples of two and three degree of freedom systems are shown in Figs.
1.13 and 1.14, respectively. Figure 1.13(a) shows a two mass—two spring system
that is described by the two linear coordinates xy and x,. Figure 1.13(b) denotes a
two rotor system whose motion can be specified in terms of 6, and 6,. The motion
of the system shown in Fig. 1.13(c) can be described completely either by X and
6 or by x, y and X. In the latter case, x and y are constrained as x* + ¥ = [?
where [ is a constant.

ANN

[ [
SN\

(a)

F IGURE 1.13 Two degree of freedom systems.
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FIGURE 1.14 Three degree of freedom systems.

For the systems shown in Figs. 1.14(a) and 1.14(c), the coordinates x; (i=1,.

2,3)and 6 (i = 1,2, 3) can be used, respectively, to describe the motion. In the

case of the system shown in Fig. 1.14(b), 6; (i = 1, 2, 3) specifies the positions
of the masses m; (i = 1,2,3). An alternate method of describing this system 18 in
terms of x; and y; (i = 1, 2, 3); but in this case the constraints: x? + yf =
12 (i = 1,2, 3) have to be considered.

The coordinates necessary to describe the motion of a system constitute a set
of generalized coordinates. The generalized coordinates are usually denoted as g1,
ga, - - . and may represent Cartesian and/or non-Cartesian coordinates. '

A large number of practical systems can be described using a finite number of
degrees of freedom, such as the simple systems.shown in Figs. 1.11 to 1.14. Some
systems, especially those involving continuous elastic members, have an infinite
number of degrees of freedom. As 2 simple example, consider the cantilever beam
shown in Fig. 1.15. Since the beam has an infinite number of mass points, we need
an infinite number of coordinates to specify its deflected configuration. The infinite -
number of coordinates defines its elastic deflection curve. Thus the cantilever beam
has an infinite number of degrees of freedom. Most structural and machine systems
have deformable (elastic) members and therefore have an infinite number of degrees
of freedom. : '
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FIGURE 1.15 A cantilever beam (an
infinite number of degrees of freedom
system).

Systems with a finite number of degrees of freedom are called discrete or lumped
parameter systems, and those with an infinite number of degrees of freedom are
called continuous or distributed systems.

Most of the time, continuous systems are approximated as discrete systems,
and solutions are obtained in a simpler manner. Although treatment of a system as
continuous gives exact results, the analysis methods available for dealing with
continuous systems are limited to a narrow selection of problems, such as uniform
beams, slender rods, and thin plates. Hence most of the practical systems are studied
by treating them as finite lumped masses, springs, and dampers. In general, more
accurate results are obtained by increasing the number of masses, springs, and
dampers—that is, by increasing the number of degrees of freedom.

1.5 Classification of Vibration

1.5.1
Free and Forced
Vibration

15.2
Undamped and
Damped Vibration

Vibration can be classified in several ways. Some of the important classifications
are as follows.

Free Vibration. If a system, after an initial disturbance, is left to vibrate on its
own, the ensuing vibration is known as free vibration. No external force acts on
the system. The oscillation of a simple pendulum is an example of free vibration.

Forced Vibration. If a system is subjected to an external force (often, a repeating
type of force), the resulting vibration is known as forced vibration. The oscillation
that arises in machines such as diesel engines is an example of forced vibration.
If the frequency of the external force coincides with one of the natural frequencies
of the system, a condition known as resonance occurs, and the system undergoes
dangerously large oscillations. Failures of such structures as buildings, bridges,
turbines, and airplane wings have been associated with the occurrence of resonance.

If no energy is lost or dissipated in friction or other resistance during oscillation,
the vibration is known as undamped vibration. If any energy is lost in this way, on
the other hand, it is called damped vibration. In many physical systems, the amount
of damping is so small that it can be disregarded for most engineering purposes.
However, consideration of damping becomes extremely important in analyzing
vibratory systems near resonance. '




nped
a are

ems,
qm as

with
form
adied
more
, and

itions

Force 1

1.6 VIBRATION ANALYSIS PROCEDURE 17

Force

FIGURE 1.16

1.5.3
Linear and
Nonlinear
Vibration

1.5.4
Deterministic and
-Random Vibration
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(a) A deterministic (periodic) excitation (b) A random excitation

If all the basic components of a vibratory system—the spring, the mass, and the
damper—behave linearly, the resulting vibration is known as linear vibration. On
the other hand, if any of the basic components behave nonlinearly, the vibration is
called nonlinear vibration. The differential equations that govern the behavior of
linear and nonlinear vibratory systems are linear and nonlinear, respectively. If
the vibration is linear, the principle of superposition holds, and the mathematical
techniques of analysis are well developed. For nonlinear vibration, the superposition
principle is not valid, and techniques of analysis are less well known. Since all
vibratory systems tend to behave nonlinearly with increasing amplitude of oscillation,
a knowledge of nonlinear vibration is desirable in dealing with practical vibratory
systems.

If the value or magnitude of the excitation (force or motion) acting on a vibratory
system is known at any given time, the excitation is called deterministic. The
resulting vibration is known as deterministic vibration.

In some cases, the excitation is nondeterministic ot random; the value of the
excitation at a given time cannot be predicted. In these cases, a large collection of
records of the excitation may exhibit some statistical regularity. It is possible to
estimate averages such as the mean and mean square values of the excitation.
Examples of random excitations are wind velocity, road roughness, and ground
motion during earthquakes. If the excitation is random, the resulting vibration is
called random vibration. In the case of random vibration, the vibratory response of
the system is also random; it can be described only in terms of statistical quantities.
Figure 1.16 shows examples of deterministic and random excitations.

1.6 Vibration Analysis Procedure

A vibratory system is a dynamic system for which the variables such as the excitations
(inputs) and responses (outputs) are time-dependent. The response of a vibrating
system generally depends on the initial conditions as well as the external excitations.
Most practical vibrating systems are very complex, and it is impossible to consider
all the details for a mathematical analysis. Only the most important features are
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considered in the analysis to predict the behavior of the system under specified
input conditions. Often, the overall behavior of the system can be determined by
considering even a simple model of the complex physical system. Thus the analysis
of a vibrating system usually involves mathematical modeling, derivation of the.
governing equations, solution of the equations, and interpretation of the resuits.

Step 1: Mathematical Modeling. The purpose of mathematical modeling is to
represent all the important features of the system for the purpose of deriving the
mathematical (or analytical) equations governing the behavior of the system. The
mathematical model should include enough details to be able to describe the system
in terms of equations without making it too complex. The mathematical model may
be linear or nonlinear, depending on the behavior of the components of the system.
Linear models permit quick solutions and are simple to handle; however, nonlinear
models sometimes reveal certain characteristics of the system that cannot be predicted
using linear models. Thus a great deal of engineering judgrhent is needed to come
up with a suitable mathematical model of a vibrating system.

‘Sometimes the mathematical model is gradually improved to obtain more accurate
results. In this approach, first a very crude or elementary model is used to get a quick
insight into the overall behavior of the system, Subsequently, the model is refined by
including more components and/or details so that the behavior of the system can be
observed more closely. To illustrate the procedure of refinement used in mathematical
modeling, consider the forging hammer shown in Fig. 1.17(a). The forging hammer
consists of a frame, a falling weight known as the tup, an anvil, and a foundation block.
The anvil is a massive steel block on which material is forged into desired shape by
the repeated blows of the tup. The anvil is usually mounted on an elastic pad to reduce

_the transmission of vibration to the foundation block and the frame [1.22]. For a first
approximation, the frame, anvil, elastic pad, foundation block, and soil are modeled
as a single degree of freedom system as shown inFig. 1.17(b). For arefined approxima-
tion, the weights of the frame and anvil and the foundation block are represented sepa-
rately with a two degree of freedom model as shown in Fig. 1.17(c). Further refinement
of the model can be made by considering eccentric impacts of the tup, which cause
each of the masses shown in Fig. 1.17(c) to have both vertical and rocking (rotation)
motions in the plane of the paper.- :

Step 2: Derivation of Governing Equations. Once the mathematical model is
available, we use the principles of dynamics and derive the equations that describe
the vibration of the system. The equations of motion can be derived conveniently
by drawing the free-body diagrams of all the masses involved. The free-body diagram:
of a mass can be obtained by isolating the mass and indicating all externally applied
forces, the reactive forces, and the inertia forces. The equations of motion of a
vibrating system are usually in the form of a set of ordinary differential equations
for a discrete system and partial differential equations for a continuous system. The.
equations may be linear or nonlinear depending on the behavior of the components
of the system. Several approaches are commonly used to derive the governing
equations. Among them are Newton’s second law of motion, d’ Alembert’s principle,
and the principle of conservation of energy. ' "
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Step 3: Solution of the Governing Equations. The equations of motion must be
solved to find the response of the vibrating system. Depending on the nature of the
problem, we can use one of the following techniques for findinig the solution:
standard methods of solving differential equations, Laplace transformation methods,
matrix methods,! and numerical methods. If the governing equations are nonlinear,
they can seldom be solved in closed form. Furthermore, the solution of partial
differential equations is far more involved than that of ordinary differential equations.
Numerical methods involving computers can be used to solve the equations. How-

ever, it will be difficult to draw general conclusions about the behavior of the System
using computer results.

Step 4: Interpretation of the Results. The solution of the governing equations
gives the displacements, velocities, and accelerations of the various masses of the

system. These results must be interpreted with a clear view of the purpose of the
analysis and the possible design implications of the results.

Mathematical Model of a Motorcycle

Figure 1.18(a) shows a motorcycle with a rider. Develop a sequence of three mathematical
models of the system for investigating vibration in the. vertical direction. Consider the
elasticity of the tires, elasticity and damping of the struts (in the vertical direction), masses
of the wheels, and elasticity, damping, and mass of the rider. ‘

Given: Spring constants, damping constants, and masses of the various parts of the motorcycle
and the rider.

Find: A sequence of three mathematical models.
Approach: Start with the simplest model and refine it gradually.

Solution: By using the equivalent values of the mass, stiffness, and damping of the system, a
single degree of freedom model of the motorcyele with the rider can be obtained as indicated
in'Fig. 1.18(b). In this model, the equivalent stiffness (k.q) includes the stiffnesses of the tires,
struts, and rider. The equivalent damping constant (Ceq) includes the damping of the struts and
‘the rider. The equivalent mass includes the masses of the wheels, vehicle body, and the rider.
This model can be refined by representing the masses of wheels, elasticity of the tires, and
elasticity and damping of the struts separately, as shown in Fig. 1.18(c). In this model, the mass
of the vehicle body (m,) and the mass of the rider (m,) are shown as a single mass, m, + m,.
When the elasticity (as spring constant, k,) and damping (as damping constant, ¢,) of the rider
are considered, the refined model shown in Fig. 1.18(d) can be obtained.

Note that the models shown in Figs. 1.18(b) to (d) are not unique. For example, by
combining the spring constants of both tires, the masses of both wheels, and the spring and

damping constants of both struts as single quantities, the model shown in Fig. 1.18(e) can
be obtained instead of Fig. 1.18(c).

"The basic definitions and oper.

ations of matrix theory are given in Appendix A.
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FIGURE 1.18 Motorcycle with a rider—a physical system and
mathematical model. ]
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1.7 Spring Elements

A linear spring is a type of mechanical link that is generally assumed to have
negligible mass and damping. A force is developed in the spring whenever there
is relative motion between the two ends of the spring. The spring force is proportional
to the amount of deformation and is given by

F = kx (1.1)

! where F is the spring force, x is the deformation (displacement of one end with
’ respect to the other), and k is the spring stiffness or spring constant. If we plot a
graph between F and x, the result is a straight line according to Eq. (1.1). The work
done (U) in deforming a spring is stored as strain or potential energy in the spring,
and it is given by

U= —;—kx2 (1.2)

Actual springs are nonlinear and follow Eq. (1.1) only up to a certain deformation.
Beyond a certain value of deformation (after point A in Fig. 1.19), the stress exceeds
the yield point of the material and the force-deformation relation becomes nonlinear
[1.23, 1.24]. In many practical applications we assume that the deflections are small
and make use of the linear relation in Eq. (1.1). Even if the force-deflection relation
of a spring is nonlinear, as shown in Fig. 1.20, we often approximate it as a linear
one by using a linearization process [1.24, 1.25]. To illustrate the linearization
process, let the static equilibrium load F acting on the spring cause a deflection of
x*. If an incremental force AF is added to F, the spring deflects by an additional
quantity Ax. The new spring force F + AF can be expressed using Taylor’s series
expansion about the static equilibrium position x* as

F + AF = F(x* + Ax)
ar 1 d?F '
= F(x*) + — Ax) + = = Ax)2 + ... (13
R~ IRCORES =1 RS (1.3)
X X
' X3 X
Stress 4 Force (F) 4 — —
O—AMAMA—0
/ //
X=X — X
. / /
Yield Yield 2
pomt, ' point, A
—
Strai; Deformation (;)
FIGURE 1.19 Nonlinearity beyond proportionality limit.
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Force (F)

t F = F(x)

F+ AF = F(x* + Ax) | ———— "

F=F(x*) pmmmmmm—

I + Deformation (x)

FIGURE 1.20 Linearization process.

For small values of Ax, the higher order derivative terms can be neglected to obtain

F + AF = F(x*) + %{— (Ax) (1.4)
Since F = F(x*), we can express AF as
AF = kAx (1.5)
where k is the linearized spring constant at x* given by
_ dF
dx | .

‘We may use Eq. (1.5) for simplicity, but sometimes the error involved in the

approximation may be very large.
Elastic elements like beams also behave as springs. For example, consider a
cantilever beam with an end mass m, as shown in Fig. 1.21. We assume, for simplicity,

Ll
.\
3

" ‘P(_z) ‘l’x(f)

(a) Actual system (b) Single degree of
freedom model

FIGURE 1.21 Cantilever with end mass.
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that the mass of the beam is negligible in comparison with the mass m. From strength

of materials [1.26], we know that the static deflection of the beam at the free end
is given by

w3

5st='3737

(1.6)
where W = myg is the weight of the mass m, E is Young’s modulus, and I is the
moment of inertia of the cross section of the beam. Hence the spring constant is

W 3EI

ENNEN

(1.7

Similar results can be obtained for beams with different end conditions.

The formulas given in Appendix B can be used to find the spring constants of
beams and plates. '

In many practical applications, several linear springs are used in combination. These
springs can be combined into a single equivalent spring as indicated below.

Case 1: Springs in Parallel. To derive an expression for the equivalent spring
constant of springs connected in parallel, consider the two springs shown in Fig.
1.22(a). When a load W is applied, the system undergoes a static deflection &, as
shown in Fig. 1.22(b). Then the free body diagram, shown in Fig. 1.22(c), gives
the equilibrium equation

W =k 8, + ky 8, (1.8)

If k.q denotes the equivalent spring constant of the combination of the two springs,
then for the same static deflection &,,, we have

W = koS (1.9)
kiBy  kiby Lete
k] hes % l‘%
ky k, Ist

(a)
FIGURE 1.22 Springs in parallel.
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Equations (1.8) and (1.9) give

keq = ky + Ky (1.10)

In general, if we have n springs with spring constants ki, ky, . . . , k, in parallel,
then the equivalent spring constant k.q can be obtained:

keq = ky + hp + -t Ky (1.11)

Case 2: Springs in Series. Next we derive an expression for the equivalent spring
constant of springs connected in series by considering the two springs shown in
Fig. 1.23(a). Under the action of a load W, springs 1 and 2 undergo elongations §; and
8,, respectively, as shown in Fig. 1.23(b). The total elongation (or static deflection) of
the system, &, is given by

551 = 51 + 62 (112)

Since both springs are subjected to the same force W, we have the equilibrium
shown in Fig. 1.23(c):

w
W

ky 6,
ky 5, & (1.13)

i

If k.q denotes the equivalent spring constant, then for the same static deflection,
W = kegda (1.14)
Equations (1.13) and (1.14) give
ki8y = ko6 = keq5st

W= k181

ky
kl kl
Iﬁl w

W= k33,

k,

k2

x
T BT AW

(a) (v) (c)
FIGURE 1.23 Springs in series:
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or
keod Ko O
eqYst eqYst
= d § = ——= 1.15
8, k, an 2 k (1.15)
Substituting these values of 8, and &, into Eq. (1.12), we obtain
kechS[ KeqOst 5
ky - k2 o
that is,
1 1 1
— = e - (1.16)
keq kl k2
Equation (1.16) can be generalized to the case of n springs in series:
1 1 1 1
— = = 4 = 4 + — 1.17
k ki ks, k, ( )

In certain applications, springs are connected to rigid components such as
pulleys, levers, and gears. In such cases, an equivalent spring constant can be found
using energy equivalence, as illustrated in Example 1.5. :

Equivalent k of a Suspension System

Figure 1.24 shows the suspension system of a freight truck with a parallel-spring arrangement.
Find the equivalent spring constant of the suspension if each of the three helical springs is

FIGURE 1.24 Parallel arrangernent of springs in a freight truck. (Courtesy of Buckeye
Steel Castings Company).
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made of steel with a shear modulus G = 80 X 10° N/m?, and has five effective turns, mean
coil diameter D = 20 cm, and wire diameter d = 2 cm.

(1.15
(1 ) Given: Suspension system with helical springs.
Find: Equivalent spring constant, Keq-
Approach: Use the formula corresponding to springs in parallel.
‘ Solution: The stiffness of each helical spring is given by
d* G (0.02)% (80 x 109)
k = = = 40,000.0 N/
8D n 8 (0.2)7 (5) 000.0 N/m
(See inside front cover for the formula.) Since the springs are identical, the equivalent spring
(1.16) constant of the suspension system is given by »
keq = 3k = 3 (40,000.0) = 120,000.0 N/m ]
L
EXAMPLE 1.3 Torsional Spring Constant of a Propeller Shaft
Determine the torsional spring constant of the steel propeller shaft shown in Fig. 1.25.
Given: Geometry and material of a stepped shaft.
Find: Torsional spring constant,'keq.
Approach: Consider the segments 12 and 23 of the shaft as springs in combination.
Solution: From Fig. 1.25, the torque induced at any' cross-section of the shaft (such as AA
or BB) can be seen to be equal to the torque applied at the propeller, 7. Hence the elasticities
L T
1 !
—— —
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g T P2 Y e 3]
/7 S N SO R X
7=t |
7
. 2 : 1
4 2 A 2 m B 3m
4

FIGURE 1.25
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(springs) corresponding to the two segments 12 and 23 are to be considered as series springs.
The spring constants of segments 12 and 23 of the shaft (k,, and k,,,) are given by

k. = G2 _ G7DY; ~ dfy) (80 x 10%)7(0.3% - 0.29
fz 114 32 1,5 32 (2)

25.5255 X 10% N-m/rad

i

!

k. = Gl _ Gm(D}; ~ dfy) _ (80 X 10%)7(0.25% — 0.15%
123 lys 32 Iy, 32 (3)
8.9012 x 10% N-m/rad

Since the springs are in series, Eq. (1.16) gives

i

kg koy (255255 109) (8.9012 x 106)

= = 6. X 10% N-m/rad
kia + kg (255255 X 106 + 8.9012 x 108 ~ 03997 X 10° N-m/rad

k

teq T

Equivalent £ of Hoisting Drum

A hoisting drum, carrying a steel wire rope, is mounted at the end of a cantilever beam as
shown in Fig. 1.26(a). Determine the equivalent spring constant of the system when the
suspended length of the wire rope is /. Assume that the net cross-sectional diameter of the
wire rope is d and the Young’s modulus of the beam and the wire rope is E.

Given: Dimensions of the cantilever beam: length = b, width = g, and thickness =

=t
Young’s modulus of the beam = E. Wire rope: length = [, diameter = d, and Young’s
modulus = E. '

Find: Equivalent spring constant of the system.

Approach: Series springs.

Solution: The spring constant of the cantilever beam is given by

3EI 3E<1 3> Ear®
kb= = =

BB\ T 3 (1)
The stiffness of the wire rope subjected to axial loading is 4
AE  7d’E
= e—— = e— E-2
kr l 4] (E2)

Since both the wire rope and the cantilever beam experience the same load W, as shown in

Fig. 1.26(b), they can be modeled as springs in series, as shown in Fig. 1.26(c). The equivalent
spring constant keq is given by

L_4 4
k., Eatf? 7d?E

+

1 _1
keg  ky

or

E matdd?
Feq = 4(7rd2b3 + lat3> v (E-3)
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FIGURE 1.26 Hoisting drum. »
Lo ]
e EXAMPLE 1.5 Equivalent k of a Crane

The boom AB of the crane shown in Fig. 1.27(a) is a uniform steel bar of length 10 m and"
area of cross section 2500 mm?. A weight W is suspended while the crane is stationary. The
cable CDEBF is made of steel and has a cross-sectional area of 100 mm?. Neglecting the
effect of the cable CDEB, find the equivalent spring constant of the system in the vertical
direction.’

Given: Steel boom: length = 10 m, cross-sectional area = 2500 mm?, and material = steel.
Cable FB: material = steel and cross-sectional area = 100 mm?. Base: FA = 3 m.
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A vertical displacement x of point B will cause the spring k, (boom) to deform by an
amount x, = x cos 45° and the spring k, (cable) to deform by an amount x; = xcos (90°
= 0). The length of the cable FB, [, is given by Fig. 1.27(b):

I} =32 + 102 ~ 2(3)(10)cos 135° = 151.426, Iy = 123055 m
The angle 4 satisfies the relation

I§ + 3% — 2(1;)(3)cos 6 = 102, cos 4 = -0.8184, 6 = 35.0736°

“The total potential energy (U} stored in the springs k; and k, can be expressed, using Eq.

(1.2), as
U = 3k (x cos 45°)2 + Lk,[x cos(90° — 6)]2 (E.1)
where '
- AE _ (100 X 10-6)(207 X 10%) p
ky = = 133055 = 1.6822 X 10® N/m
and

-6 9
k, = A;Ez _ (2500 x 10 13(207 X 10%) _ 5.1750 X 107 N/m
. 2

Since the equivalent spring in the vertical direction undergoes a deformation x, the potential
energy of the equivalent spring (Ueg) is given by

Ueq = —likeqxz (Ez)
By setting U = U,,, We obtain the equivalent spring constant of the system as v
k;q = 26.4304 X 108 N/m % i Ca

[

1.8 Mass or Inertia Elements

The mass or inertia element is assumed to be a rigid body; it can gain or lose kinetic
energy whenever the velocity of the body changes. From Newton’s second law of .

“motion, the product of the mass and its acceleration is equal to the force applied to the

mass. Work is equal to the force multipfied by the displacement in the direction of the
force and the work done on a mass is stored in the form of kinetic enetgy of the mass.:
In most cases, we must use a mathematical model to represent the actual vibrating
system, and there are often several possible models. The purpose of the analysis
often determines which mathematical model is appropriate. Once the modeél is
chosen, the mass or inertia elements of the system can be easily. identified. For
example, consider again the cantilever beam with an end mass shown in Fi g. 1.21(a).
For a quick and reasonably accurate analysis, the mass and damping of the beam
can be disregarded; the system can be modeled as a spring-mass system, as shown
in Fig. 1.21(b). The tip mass m represents the mass element, and the elasticity of
the beam denotes the stiffness of the spring. Next, consider a multistory building
subjected to an earthquake. Assuming that the mass of the frame is negligible -
compared to the masses of the floors, the building can be modeled as a multidegree
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of freedom system, as shown in Fig. 1.28. The masses at the various floor levels
represent the mass elements, and the elasticities of the vertical members denote the
spring elements.

1.8.1 In many practical applicatidns, several masses appear in combination. For a simple
Combination of analysis, we can replace these masses by a single equivalent mass, as indicated
Masses below [1.27].

Case 1: Translational Masses Connected by a Rigid Bar. Let the masses be
attached to a rigid bar that is pivoted at one end, as shown in Fig. 1.29(a). The
equivalent mass can be assumed to be located at any point along the bar. To be
specific, we assume the location of the equivalent mass to be that of mass m,. The
velocities of masses m, (x,) and m3 (X3) can be expressed in terms of the velocity
of mass m; (%), by assuming small angular displacements for the bar, as

XZ = —-—Xl, X.3 = —)&1 (118)

and

J.Ce:q = xl (119)

s
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FIGURE 1.28 Idealization of a multistory building
as a multidegree of freedom system.
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FIGURE 1.29 Translational masses connected by a rigid bar.

By equating the kinetic energy of the three mass system to that of the equivalent
mass system, we obtain

1 . 1 , 1 , 1 .
gmlx% + Emzx% + ‘-,Z-Im3x§ = Emaqxgq (1.20)

This equation gives, in view of Egs. (1.18) and (1.19).

2 2
Meq = my + (—ll—z> mo + <l£:i> ms (1.21)
. 1 1

Case 2: Translational and Rotational Masses Coupled Together. Let 2 massm
having a translational velocity X be coupled to another mass (of mass moment of
inertia Jo) having a rotational velocity 6, as in the rack and pinion arrangement
shown in Fig. 1.30. These two masses can be combined to obtain either (1) a single
equivalent translational mass meq o1 (2) a single equivalent rotational mass Jeq, as-
shown below. .

Pinion, mass moment of inertia Jo

Rack, mass m

FIGURE 1.30 Translational and rotational masses
in a rack and pinion arrangement.
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1. Equivalent translational mass. The kinetic energy of the two masses is given
by

1, 1

T = omi? + EJoéz (1.22)
and the kinetic energy of the equivalent mass can be expressed as
| .
Tq = Emeqxgq (1.23)
Since i, = * and § = X/R, the equivalence of T and T, gives
1 1 ’
ol 2 - 2 4 = 5_
2meqx 2mx 210 <R>
that is,
T Meq = m ]J!?% (1.24)

2. Equivalent rotational mass. Here feq = 6 and £ = 6R, and the equivalence of
T and T, leads to
1

EJeqéz = %m(é?R)z + %Joéz

or

Jeg = Jo + mR? (1.25)

Equivalent Mass of a Sysfem

Find the equivalent mass of the system shown in Fig. 1.31, where the rigid link 1 is attached
to the pulley and rotates with it.

Given: System composed of a mass, pulley, rigid links, and a cylinder, Fig. 1.31.
Find: Equivalent mass, g,
Approach: Equivalence of kinetic energy (assuming small displacements).

Solution: When the mass m is displaced by a distance x, the pulley and the rigid link 1

rotate by anangle 6, = 6, = g— This causes the rigid link 2 and the cylinder to be displaced
» .
by a distance x5 = 8, [, = ﬁl Since the cylinder rolls without slippage, it rotates by an

"y
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given - § )

P p

Pulley, mass moment of «
inertia J,
1.22 J m
(1.22) N r ky
N
Jy + O ¥
N
: N
(1.23) : Rigid link 1 (mass m,), N \ |
' rotates with pulley -
© aboutO \- 1
Cylinder, mass m, !
L] |) —!L
H\ Rigid link 2 (mass m,)
'(1.24) ' |
ance of
ee ot % FIGURE 1.31
angle 6. = ? = ril—‘— The kinetic energy of the system (T) can be expressed (for small
< p Tec
displacements) as:
I SR R VR 2, 1 2 o 1y 4
T—~2—mx +§Jp 9p+§]1 01 +5m2x2+-2—.fc 9C : (El)
. where J,,, J;, and J, denote the mass moments of inertia of the pulley, link 1 (about Q), and
c¢ylinder, respectively, 8,, 6, and 4. indicate the angular velocities of the pulley, link 1 (about
0), and cylinder, respectively, and x and %, represent the linear velocities of the mass m and
. . m rZ l2 .
link 2, respectively, Noting that J, = ——= and J, = idiay Eq. (E.1) can be rewritten as
ched 2 . 3 '
2 2 2
1, 1 % 1/ m B\ [ % 1 %l
== + =i, =] + == - + = _—
T=gm* + 3l (r,,> 2( 3 v 272\ 7,
+l<mcr§ il z E2)
2 2 rp Te R
By equating Eq. (E.2) to the kinetic energy of the equivalent system, '
1 : o
_ T = 5Meq x2 (E.3)
1
d we obtain the equivalent mass of the system as
14
ten J 1m 3 myl? 1m, I3
5 — 1%r + = 1“1 2t 1 Me t1 )
1 5 Mg T r% 3 r2 * r2 + 2 r,z, (B.4)
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[
EXAMPLE 1.7 Cam-Follower Mechanism

A cam-follower mechanism (Fig. 1.32) is used to convert the rotary motion of a shaft into
the oscillating or reciprocating motion of a valve. The follower system consists of a pushrod
of mass m,, a rocker arm of mass m,, and mass moment of inertia J, about its C.G., a valve
of mass m,, and a valve spring of negligible mass [1.28-1.30]. Find the equivalent mass
(meq) of this cam-follower system by assuming the location of me, as (i) point A and (ii)
point C.

Given: Mass of pushrod = m,, mass of rocker arm = m,, mass moment of inertia of rocker
arm = J,, and mass of valve = m,. Linear displacement of pushrod = x,,.

Find: Equivalent mass of the cam-follower system (i) at point A, (ii) at point C.
Approach: Equivalence of kinetic energy.

Solution: Due to a vertical displacement x of the pushrod, the rocker arm rotates by an
angle 8, = x/l, about the pivot point, the valve moves downward by x, = 8,1, = xl,/l;,

e

Rocker arm
1 8, (mass moment of inertia, J,)

x=1x,

Pushrod
(mass m,)

\ : spring

Valve
(mass m,,)

Roller
follower

Shaft

FIGURE 1.32 Cam-follower system.
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and the C.G. of the rocker arm moves downward by x, = 6,13 = xi5/l,. The kinetic energy
of the system (T) can be expressed as?
T 1 ) 1 2, L, r .,
= Empxl, + i—m\,xv + z],@, + Em,x, (E:1)
where %, %,, and #, are the linear velocities of the pushrod, C.G. of the rocker arm and the
valve, respectively, and 6, is the angular velocity of the rocker arm.
(i) If meq denotes the equivalent mass placed at point A, with Xeq = X, the kinetic
energy of the equivalent mass system T, is given by

1

T = Emeqxgq (E.2)
By equating T and Tq, and noting that
xl . xl %
X, = X, X, = 712, X, = —l:l, and 0, = E
we obtain
12 12
meq=mp+§5’+mvl—%+m,l—;- (E.3)
1 1 1
(ii) Similarly, if the equivalent mass is located at point C, %, = X, and
-1 2 1 )
Tyq = Emeqxeq = Emeqxv ) (E.49)
Equating (E.4) and (E.1) gives
J (1\* A%
Meq = m, + 5 + my, (—1) + m, <—3> (E.5)
S 13 L b

Elements

In many practical systems, the vibrational energy is gradually converted to heat or
sound. Due to the reduction in the energy, the response, such as the displacement
of the system, gradually decreases. The mechanism by which the vibrational energy
is gradually converted into heat or sound is known as damping. Although the amount
of energy converted into heat or sound is relatively small, the consideration. of

.damping becomes important for an accurate prediction of the vibration responsé of

a system. A damper is assumed to have neither mass nor elasticity, and damping
force exists only if there is relative velocity between the two ends of the damper.
Itis difficult to determine the causes of damping in practical systems. Hence damping
is modeled as one or more of the following types.

2If the valve spring has a mass m,, then its equivalent mass will be %mJ (see Example 2.7). Thus the
kinetic energy of the valve spring will be %(%ms)ﬁ.
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Viscous Damping. Viscous damping is the most commonly used damping mecha-
nism in vibration analysis. When mechanical systems vibrate in a fluid medium
such as air, gas, water, and oil, the resistance offered by the fluid to the moving
body causes energy to be dissipated. In this case, the amount of dissipated energy
depends on many factors, such as the size and shape of the -vibrating body, the
viscosity of the fluid, the frequency of vibration, and the velocity of the vibrating
body. In viscous damping, the damping force is proportional to the velocity of the
vibrating body. Typical examples of viscous damping include (1) fluid film between
sliding surfaces, (2) fluid flow around a piston in a cylinder, (3) fluid flow through
an orifice, and (4) fluid film around a journal in a bearing,

Coulomb or Dry Friction Damping. Here the damping force is constant in
magnitude but opposite in direction to that of the motion of the vibrating body. It
is caused by friction between rubbing surfaces that are either dry or have insufficient
lubrication.

Material or Solid or Hysteretic Damping. When materials are deformed, energy
is absorbed and dissipated by the material {1.31]. The effect is due to friction
between the internal planes, which slip or slide as the deformations take place.
When a body having material damping is subjected to vibration, the stress-strain
diagram shows a hysteresis loop as indicated in Fig. 1.33(a). The area of this loop
denotes the energy lost per unit volume of the body per cycle due to damping.3

A viscous damper can be constructed using two parallel plates separated by a
distance h, with a fluid of viscosity u between the plates (see Fig. 1.34). Let one
plate be fixed and let the other plate be moved with a velocity v in its own plane.
The fluid layers in contact with the moving plate move with a velocity v, while
those in contact with the fixed plate do not move. The velocities of intermediate.
fluid layers are assumed to vary linearly between O and v, as shown in Fig. 1.34.
According to Newton's law of viscous flow, the shear stress (7) developed in the
fluid layer at a distance y from the fixed plate is given by

r o= u% (1.26)

3When the load applied to an elastic body is increased, the stress (o) and the strain () in the body also
increase. The area under the ¢ — & curve, given by

u=fode

denotes the energy expended (work done) per unit volume of the body. When the load on the body is -
decreased, energy will be recovered. When the unloading path is different from the loading path, the
area ABC in Fig. 1.33(b)—the area of the hysteresis loop in Fig. 1.33(a)—denotes the energy lost per

unit volume of the body. ' :
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FIGURE 1.33 Hysteresis loop for elastic materials.

where du/dy = v/h is the velocity gradient. The shear or resisting force (F') developed
at the bottom surface of the moving plate is :

F=74 = i}’%‘i = cv (1.27)

where A is the surface area of the moving plate and

. MA '
c == : 1.28
- (1.28)
is called the damping constant.
Surface area of plate = A4
> dx
“"_‘ : VEar
B 2 4
Vi : 4—— F (damping force)
h X .
fluid
L Ly

T 2

FIGURE 1.34 Parallel plates with a viscous fluid in between.
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If a damper is nonlinear, a linearization procedure is generally used about the
operating velocity (v*), as in the case of a nonlinear spring. The linearization process
glves the equivalent damping constant as

_ dr

. (1.29)

When dampers appear in combination, they can be replaced by an equivalent damper

by adopting a procedure similar to the one described in Sections 1.7 and 1.8 (see
Problem 1.32).

Clearance in a Bearing

A bearing, which can be approximated as two flat plates separated by a thin film of lubricant
(Fig. 1.35), is found to offer a resistance of 400 N when SAE30 oil is used as the lubricant
and the relative velocity between the plates is 10 m/s. If the area of the plates (A) is 0.1 m?,
determine the clearance between the plates. Assume the absolute viscosity of SAE30 oil as
50 w reyn or 0.3445 Pa-s.

Given: Characteristics of a bearing and the lubricant.
Find: Distance between the plates of the bearing.
Approach: Use the definition of damping constant.

Solution: Since the resisting force (F) can be expressed as F = ¢ v, where c is the damping
constant and v is the velocity, we have

c=£=ﬂ9=4ON—s/m (E.1)
v 10
Area(A)

AN

FIGURE 1.35
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Let the total forces acting on all the springs and all the dampers be Fy and F, respectively
(see Fig. 1.37(d)). The force equilibrium equations can thus be expressed as

Fy=Fg + Fy + Fi3 + Fyy
Foa = Fg1 + Fgp + Fy3 + Fyy (E.2)
where Fg + Fy = W, with W denoting the fotal vertical force (including the inertia force)
acting on the milling machine. From Fig. 1.37(d), we have
Fs = keqx
Fg = Coq % (E.3)
Equations (E.2) along with Egs. (E.1) and (E.3), yield
keg = ki + ky + kg + kg = 4k
Ceq = C1 + Ca + ¢35 + ¢4 = d¢ (E.4)

whenk,-=kandc,»=cfori=1,2,3,4. .

Note: If the center of mass, G, is not located symmetrically with respect to the four springs
and dampers, the i spring experiences a displacement of x; and the i™ damper experiences
a velocity of %; where x; and %; can be related to the displacement x and velocity x of the
center of mass of the milling machine, G. In such a case, Egs. (E.1) and (E.4) need to be
modified suitably. . B

1.10 Harmonic Motion

Oscillatory motion may repeat itself regularly, as in the case of a simple pendulum,
or it may display considerable irregularity, as in the case of ground motion during
an earthquake. If the motion is repeated after equal intervals of time, it is called
periodic motion. The simplest type of periodic motion is harmonic motion. The
motion imparted to the mass m due to the Scotch yoke mechanism shown in Fig.
1.38 is an example of simple harmonic motion [1.24, 1.34, 1.35]. In this system, a
crank of radius A rotates about the point O. The other end of the crank P slides in
a slotted rod, which reciprocates in the vertical guide R. When the crank rotates at
an angular velocity w, the end point $ of the slotted link and hence the mass m of
the spring-mass system are displaced from their middle positions by an amount x
(in time £) given by

x = Asin § = A sin ot (1.30)

This motion is shown by the sinusoidal curve in Fig. 1.38. The velocity of the mass
m at time ¢ is given by

- = wA cos wit ' (13D

and the acceleration by

— = —w?A sin wt = — w2x ' (1.32)
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FIGURE 1.38 Scotch yoke mechanism.

It can be seen that the acceleration is directly proportional to the displacement. Such
a vibration, with the acceleration proportional to the displacement and directed -
toward the mean position, is known as simple harmonic motion. The motion given

by x = A cos wt is another example of a simple harmonic motion. Figure 1.38
clearly shows the similarity between cyclic (harmonic) motion and sinusoidal motion.

- 1.10.1 Harmonic motion can be represented conveniently by means of a vector OP of
Vectorial magnitude A rotating at a constant angular velocity w. In Fig. 1.39, the projection
Representation of  of the tip of the vector X = OP on the vertical axis is given by
Harmonic Motion y = A sin wt (1.33)
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of motion

Angular
displacement

One cycle of motion

FIGURE 1.39 Harmonic motion as the projection of the end of a rotating vector.

and its projection on the horizontal axis by

x = A cos wt - (134

1.10.2 As seen above, the vectorial method of representing harmonic motion requires the
Complex Number  description of both the horizontal and vertical components. It is more convenient
Representation of  to represent harmonic motion using a complex number representation. Any vector
Harmonic Motion X in the xy plane can be represented as a complex number:

X=a+ib | (1.35)

:
i
|
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The problem assignments are organized as follows:

Problems Section Covered - Topic Covered

1.1-1.6 1.6 Vibration analysis procedure
1.7-1.26 1.7 Spring elements

1.13, 1.26-1.31 1.8 Mass elements

1.32-1.38 1.9 Damping elements
1.39-1.59 1.10 Harmonic motion

1.60-1.70 1.11 Harmonic analysis
1.71-1.74 1.13 Computer program
1.75~-1.80 —

Design projects

1.1* A study of the response of a human body subjected to vibration/sHock is important
in many applications. In a standing posture, the masses of head, upper torso, hips,
and legs, and the elasticity/damping of neck, spinal columnn, abdomen, and legs
influence the response characteristics. Develop a sequence of three improved approxi-

mations for modeling the human body.

1.2*  Figure 1.54 shows a human body and a restraint system at the time of an automobile
collision {1.47]. Suggest a simple mathematical model by considering the elasticity,

Restraint

Seat belts

\Floor

Windshield

Instrument
panel

—Slant
footboard

Impact
force

FIGURE 1.54 A human body and a restraint system.

*The asterisk denotes a design type problem or a problem with no unique answer:
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mass, and damping of the seat, human body,

and the restraints for a vibration analysis
of the system.

A reciprocating engine is mounted on a foundation as shown in Fig. 1.55. The
unbalanced forces and moments developed in the engine are transmitted to the frame

and the foundation. An elastic pad is placed between the engine and the foundation
block to reduce the transmission of vibration. Develop two mathematical models of

the system using a gradual refinement of the modeling process.

I b———— Frame . N

Reciprocating o it
engine

Bolts
Elastic pad

Foundation

block

AUEA NN NN RN

PR o)
SN

Soil

FIGURE 1.55 A reciprocating engine on a foundation.

1.4*

An automobile moving over a rough road (Fig. 1.56) can be modeled considering (a)
weight of the car body, passengers, seats, front wheels, and rear wheels; (b) elasticity
of tires (suspension), main springs, and seats; and (c) damping of the seats, shock

absorbers, and tires. Develop three mathematical models of the system using a gradual
refinement in the modeling process.

1.5%

FIGURE 1.56 An automobile moving on a rough road,

The consequences of a head-on collision of two automobiles can be studied by
considering the impact of the automobile on-a barrier, as shown in Fig. 1.57. Construct
a -mathematical model by considering the masses of the automobile body, engine,

transmission, and suspension, the elasticity of the bumpers, radiator, sheet metal body,
driveline, and engine mounts. ' '
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FIGURE 1.57 An automobile colliding on a barrier.

1.6* Develop a mathematical model for the tractor and plow shown in Fig. 1.58 by

considering the mass, elasticity, and damping of the tires, shock absorbers, and the
plows (blades). :

1.7 Determine the equivalent spring constant of the system shown in Fig. 1.59.

I IIII7IF774774777777]

Shock absorber

(? + \

+ = /’)

SO T 77777777 77 7777777077777 77777777777

FIGURE 1.58 A tractor and plow. FIGURE 1.59

N 1.8 In Fig. 1.60, find the equivalent spring constant of the system in the direction of &,

1.9 Find the equivalent torsional spring constant of the system shown in Fig. 1.61. Assume
that k,, k;, ks, and k, are torsional and ks and kg are linear spring constants.

R SR S o s b
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1.10 A machine of mass m
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FIGURE 1.61

500 kg is mounted on a simply supported steel beam of
length I = 2 m having a rectangular cross section (depth = 0.1, m, width = 1.2 m)
and Young's modulus E = 2.06 X 10! N/m?. To reduce the vertical deflection of
the beam, a spring of stiffness k is attached at the mid-span, as shown in Fig. 1.62.
Determine the value of k£ needed to reduce the deflection of the beam to one-third of
its original value. Assume that the mass of the beam is negligible.

%

m
r ]
T
] %
;b
3
3 E
b .
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FIGURE 1.62

1.11  Four identical rigid bars—each of length a—are connected to a spring of stiffnsss’k -
to form a structure for carrying a vertical load P, as shown in Figs. 1.63(a) and (b). . .
Find the equivalent spring constant of the system kg, for each case, disregarding the

masses of the bars and the friction in the joints.
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(a) | O
FIGURE 1.63

' 1.12 The tripod shown in Fig. 1.64 is used for mounting an electronic instrument that
finds the distance between two points in space. The legs of the tripod are located
‘symmetrically about the mid-vertical axis, each leg making an angle & with the
vertical. If each leg has a length of [ and axial stiffness of k, find the equivalent spring
stiffness of the tripod in the vertical direction.

FIGURE 1.64

L 1.13 Find the equivalent spring constant and equivalent mass of the system shown in Fig.*
-1.65 with reference to 8. Assume that the, bars AOB and CD are rigid with negligible
mass. .
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h

Liquid of ——=
density p

FIGURE 1.65

1.14 Find the length of the equivalent uniform hollow shaft of inner diameter d and thickness
t that has the same axial spring constant as that of the solid conical shaft shown in

Fig. 1.66.
%
D d
IS
IL ! -+
FIGURE 1.66

1.15 The force-deflection characteristic of a spring is described by F = 500x + 2x* where
the force (F) is in Newtons and the deflection (x) is in millimeters. Find (a) the
linearized spring constant at x = 10 mm, and (b) the spring forces at x = 9 mm and
x = 11 mm using the linearized spring constant. Also find the error in the spring
forces found in (b).

1.16 Figure 1.67 shows an air spring. This type of spring is generally used for obtaining
very low natural frequencies while maintaining zero deflection under static loads.
"Find the spring constant of this air spring by assuming that the pressure p and volume
v change adiabatically when the mass m moves.

Hint: pv” = constant for an adiabatic process, where v is the ratio of specific heats.

"For air, v = 1.4.
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i AN
Pressure = p &
Volume = v

g R

Cross-sectional area = A4

FIGURE 1.67

1.17 Find the equivalent spring constant of the system shown in Fig. 1.68 in the direction
of the load P,

FIGURE 1.68

1.18* Design an air spring using a cylindrical container and a piston to achieve a spring
constant of 75 Ib/in. Assume that the maximum air pressure available is 200 psi.

1.19 The force (F)-deflection (x) relationship of a nonlinear spring is given by
F = ax + bx?

where a and b are constants. Find the equivalent linear spring constaht when the
deflection is 0.01 m with a = 20,000 N/m and b = 40 X 106 N/m3.

1.20 Two nonlinear springs, §; and S,, are connected in two different ways as indicated
in Fig. 1.69. The force, F;, in spring S; is related to its deflection (x;) as

Fi=a;x;+ b;x}i=1,2
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FIGURE 1.69

where a; and b; are constants. If an equivalent linear spring constant, k.q, is defined
by W = k.q x where x is the total deflection of the system, find an expression for k,q
in each case.

1.21* Design a steel helical compression spring to satisfy the following requirements:

Spring stiffness (k) = 8000 N/mm
Fundamental natural‘frc,quency of vibration (f;) = 0.4 Hz
Spring index (D/d) = 6 '

Number of active turns (N) = 10.

The stiffness and fundamental natural frequency of the spring are given by [1.43]:

Gd4 1 kg
k= - d == (25
epy M hi T o\ w
where G = shear modulus, d = wire diameter, D = coil diameter, W = weight of
the spring, and g = acceleration due’to gravity. oo

1.22 Find the spring constant of the bimetallic bar shown in Fig. 1.70 in axial motion.

Stecl
2 )
“ / E = 207 x 10° Pa
0.5cm |
. [ Aluminum,
| J E=83x10°Pa
¢ 0.5m "
!—j-—— X
!
M
y

FIGURE 1.70




80 CHAPTER 1 FUNDAMENTALS OF VIBRATION

1.23 A tapered solid steel propeller shaft is shown in Fig. 1.71. Determine the torsional
spring constant of the shaft.

Steel, G = 80 x 10° Pa

FIGURE 1.71

1.24 A composite propeller shaft, made of steel and aluminum, is shown in Fig. 1.72.
Determine the torsional spring constant of the shaft.

T
§| & _
& =
Section AA
FIGURE 1.72

1.25 Consider two helical springs with the following characteristics:

Spring 1: maten’al—stecl; number of turns—10; mean coil diameter—12 in; wire
diameter—2 in; free length—15 in; shear modulus-12 X 10¢ psi.

Spring 2: material-aluminum; number of turns—10; mean coil diameter-10 in;
wire diameter—1 in; free length~15 in; shear modulus—4 X 10° psi.

Determine the equivalent spring constant when (a) spring 2 is placed inside spring
1, and (b) spring 2 is placed on top of spring 1.
1.26 Two sector gears, located at the ends of links 1 and 2, are engaged together and rotate ‘
about O, and O, as shown in Fig. 1.73. If links 1 and 2 are connected to springs k, to :
k4 and k,; and k,, as shown, find the equivalent torsional spring stiffness and equivalent
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-orsional mass moment of inertia of the system with reference to 8. Assume (a) the mass moment
of inertia of link 1 (including the sector gear) about O, as J| and that of link 2 (including
{ the sector gear) about O, as J,, and (b) the angles ) and 6, to be small.

Sector gear 1

Sector gear 2

PI“I
A— 6, ki

FIGURE 1.73

bt 1.27 In Fig. 1.74 find the equivalent mass of the rocker arm assembly, referred to the x
coordinate. ' .
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1.28 Find the equivalent mass moment of inertia of the gear train shown in Fig. 1.75 with
reference to the driving shaft. In Fig. 1.75, J; and n; denote the mass moment of
inertia and the number of teeth, respectively, of gear i, i = 1,2, . . ., 2N.

Driving

Motor,

Jmolor

Shaft 1

I

FIGURE 1.75

1.29 Two masses, having mass moments of inertia J, and J,, are placed on rotating rigid
shafts that are connected by gears, as shown in Fig. 1.76. If the number of teeth on
gears 1 and 2 are n, and n,, respectively, find the equivalent mass moment of inertia

2777 Iy, 1y

corresponding to 6.

Gear 1, n,

—

Ji, ny
Shaft 2

[

Ja ng

Jy

Ja, 13

Shaft 3
i

£

{

{

Gear 2N | |
Jaw, Nawn

FIGURE 1.76 Rotational masses on geared shafts.

1.30 A simplified model of a petroleum pump is shown in Fig. 1.77, where the rotary
motion of the crank is converted to the reciprocating motion of the piston. Find the
equivalent. mass, 7., of the system at location A.

Shaft N

-—VGear 2N -1
Jow 1y M -

Shaft N + 1

Load,
jload
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Piston

FIGURE 1.77

131 Finﬁ the equivalent mass of the system shown in Fig. 1.78.

A Sphere, mass m,
1 - k rs
4 - 2 Y .
VWA -5 3
! )
No slip ‘

' | &

Bell crank lever,—— | , '

mass moment of M~

inertia J, r 0

: o ——

FIGURE 1.78
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1.32 Find a single equivalent damping constant for the following cases:

a. When three dampers are parallel.
b. When three dampers are in series.

¢. When three dampers are connected to a rigid bar (Fig. 1.79) and the equivalent
* damper is at site ¢,.

%

i

Pivot

Iy

FIGURE 1.79 Dampers connected to a rigid bar.

d. When three torsional dampers are located on geared shafts (Fig. 1.80) and the
equivalent damper is at location ¢,;.

-
D

FIGURE 1.80 Dampers located on geared shafts.

Hint: The energy dissipated by a viscous damper in a cycle during harmonic motion
is given by mcwX?, where ¢ is the damping constant, w is the frequency, and X is the
amplitude of oscillation.

1.33* Design a piston-cylinder type viscous damper to achieve a damping constant of 1 Ibf-
sec/in using a fluid of viscosity 4 ureyn (1 reyn = 1 Ibf-sec/in?).

1.34* Design a shock absorber (piston-cylinder type dashpot) to obtain a damping constant
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of 10° Ib-sec/in using SAE 30 oil at 70° E. The diameter of the piston has to be less
than 2.5 inches.

1.35 Develop an expression for the damping constant of the rotational damper shown in
Fig. 1.81 in terms of D, d, ], h, w, and u, where w denotes the constant angular
velocity of the inner cylinder, and d and h represent the radial and axial clearances
between the inner and outer cylinders.

S S RSP

'1uivalent

A
\ \
Fluid of — (N —
viscosity BN N
i N
N\
N
N 1
AN
. N i
B \ 3
ANNN N
FIGURE 1.81

1.36 The force (F)-velocity (%) relationship of a nonlinear damper is given by
F=ax+ bi#*

where a and b are constants. Find the equivalent linear damping constant when the
relative velocity is 5 m/s with a = 5N-s/m and b = 0.2N-s%m?.

1.37 The damping constant (¢) due to skin friction drag of a rectangular plate moving in
a fluid of viscosity u is given by (see Fig. 1.82): -
¢ =100 n%d
Design a plate-type damper (shown in Fig. 1.35) that provides an identical damping
constant for the same fluid.

//

y | V

AN / {
[

FIGURE 1.82
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was an English natural philosopher,
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with the laws and conditions of mo-
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CHAPTER 2

Free Vibration of
‘Single Degree of
Freedom Systems

2.1 Introduction

A system is said to under
disturbance with no external forces act
tions of the pendulum of a grandfather
a bicyclist after hitting a road bump,

e

namics. Quite fittingly, the unit of
force named “Newton” in SI units
happens to be the approximate

weight of an average apple, which
inspired him to study the laws of

‘gravity. (Photo courtesy of David

Eugene Smith, History of Mathe-

‘matics, Volume I—General Survey

of the History of Elementary Math-
ematics, Dover Publications, Inc.,
New York, 1958.) :

go free vibration when it oscillates only under an initial
ing after the initial disturbance, The oscilla-
clock, the vertical oscillatory motion felt by
and the motion of a child on a swing under

an initial push represent a few examples of free vibration.

Figure 2.1(a) shows a Spring-mas
vibratory system. It is called a single
(x) is sufficient to specify the positio
force applied to the mass: hence th
will be a free vibration. Since there
during the motion of the mass, the a
it is an undamped system. In actual

* free vibration diminishes gradually
surrounding medium (such as air). S

§ system that represents the simplest possible
degree of freedom system since one coordinate - -
n of the mass at-any time. There is no external
e motion resulting from an initial disturbance
is no element that causes dissipation of energy.
mplitude of motion remains constant with time;
practice, except in a vacuum, the amplitude of
over time, due to the resistance offered by the
uch vibrations are said to be damped. The study
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(a) b) ©

FIGURE 2.1 A spring-mass system in horizontal position.

of the free vibration of undamped and damped single degree of freedom systems
is fundamental to the understanding of more advanced topics in vibrations.

‘Severa]l mechanical and structural systems can be idealized as single degree of
freedom systems. In many practical systems, the mass is distributed, but for a simple
analysis, it can be approximated by a single point mass. Similarly, the elasticity of
the system, which may be distributed throughout the system, can also be idealized
by a single spring. For the cam-follower system shown in Fig. 1.32, for example,
the various masses were replaced by an equivalent mass (m.q) in Example 1.7. The
elements of the follower system (pushrod, rocker arm, valve, and valve spring) are
all elastic but can be reduced to a single equivalent spring of stiffness k.q. For a
simple analysis, the cam-follower system can thus be idealized as a single degree
of freedom spring-mass system, as shown in Fig. 2.2.

Similarly, the structure shown in Fig. 2.3 can be considered a cantilever beam
that is fixed at the ground. For the study of transverse vibration, the top mass can
be considered a point mass and the supporting structure (beam) can be approximated
as a spring to obtain the single degree of freedom model shown in Fig. 2.4. The
building frame shown in Fig. 2.5(a) can also be idealized as a spring-mass system,
as shown in Fig. 2.5(b). In this case, since the spring constant & is merely the ratio
of force to deflection, it can be determined from the geometric and material properties
of the columns. The mass of the idealized system is the same as that of the floor
if we assume the mass of the columns to be negligible.

2.2 Free Vibration of an Undamped Translational System

Using Newton’s second law of motion, we will considet the derivation of the
equation of motion in this section. The procedure we will use can be summarized

~as follows:

1. Select a suitable coordinate to describe the position of the mass or rigid body
in the system. Use a linear coordinate to describe the linear motion of a point
mass or the centroid of a rigid body, and an angular coordinate to describe the

angular motion of a rigid body.
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Rigid floor

}-_x-(i) in)ass =m) l—X(L)
AT

o

}_“2
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2L /%/ /o
3

T I (b) Equivalent spring —
(a) Building frame mass system

FIGURE 2.5 Idealization of a building frame.

2. Determine the static equilibrium configuration of the system and measure the
displacement of the mass or rigid body from its static equilibrium position.

3. Draw the free-body diagram of the mass or rigid body when a positive displace-
ment and velocity are given to it. Indicate all the active and reactive forces
acting on the mass or rigid body.

4. Apply Newton’s second law of motion to the mass or rigid body shown by the
free-body diagram. Newton'’s second law of motion can be stated as follows:

The rate of change of momentum of a mass is equal to the forcé acting on it.

Thus, if mass m is displaced a distance x(t) when acted upon by a resultant force
F(t) in the same direction, Newton’s second law of motion gives

ﬁ'(l‘) = i(m _____d);(f))

If mass m is constant, this equation reduces to

Fo) = m d—z@ =m3 (2.1)

where

_ azz()
de?

is the acceleration of the mass. Equation (2.1) can be stated in words as

Resultant force on the mass = mass X acceleration
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For a rigid body undergoing rotational motion, Newton’s law gives
M =76 (2.2)
. L 3.5 dPH
where M is the resultant moment acting on the body and fand § = g e the

resulting angular displacement and angular acceleration, respectively. Equation (2.1)
or (2.2) represents the equation of motion of the vibrating system.

The procedure is now applied to the undamped single degree of freedom system
shown in Fig. 2.1(a). Here the mass is supported on frictionless rollers and can have
translatory motion in the horizontal direction. When the mass is displaced a distance
+x from its static equilibrium position, the force in the spring is kx and the free- .
body diagram of the mass can be represented as shown in Fig. 2.1(c). The application
of Eq. (2.1) to mass m yields the equation of motion :

F(f) = —kx = m#
or

mE+ kx =0 (2.3)

As stated in Section 1.6, the equations of motion of a vibrating system can be
derived using several methods. The applications of D'Alembert’s principle, the
principle of virtual displacements, and the principle of conservation of énergy are
considered in this section. )

D’Alembert’s Principle The équations of motion, Egs. (2.1) and (2.2), can be
rewritten as

P - m3

I
<

(2.42)

il

M@ ~ 78 =0 - ©(2.4b)

These equations can be considered equilibrium equations provided that —m% and -
— J are treated as a force and a moment. This fictitious force (or moment) is known
as the inertia force (or inertia moment) and the artificial state of equilibrinm implied
by Eq. (2.4a) or (2.4b) is known as dynamic equilibrium. This principle, implied
in Eq. (2.42) or (2.4b), is called the D’ Alembert’s principle. The application of

D’Alembert’s principle to the system shown in Fig. 2.1(c) yields the equation .
of motion: '

~kx —mx=20 or mi+ kx =20 (2.3)

Principle of Virtual Displacements The principle of virtual displacements states

- that “if a system that is in equilibrium under the action of a set of forces is subjected

to a virtual displacement, then the total virtual work done by the forces will be
zero.” Here the virtual displacement is defined as an imaginary infinitesimal dis-
placement given instantaneously. It must be a physically possible displacement that
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FIGURE 2.6

is compatible with the constraints of the system. The virtual work is defined as the
work done by all the forces, including the inertia forces for a dynamic problem,
due to a virtual displacement. '

Consider a spring-mass system in a displaced position as shown in Fig. 2.6(a),
where x denotes the displacement of the mass. Figure 2.6(b) shows the free-body
diagram of the mass with the reactive and inertia forces indicated. When the mass
is given a virtual displacement &, as shown in Fig. 2.6(b), the virtual work done
by each force can be computed as follows:

—(k x) 8x

Virtual work done by the inertia force = § W, = —(m ¥) &x

Virtual work done by the spring force = & W,

When the total virtual work done by all the forces is set equal to zero, we obtain
~mXdx —kxdx =0 (2.5)

Since the virtual displacement can have an arbitrary value, 8x # 0, Eq. (2.5) gives
“the equation of motion of the spring-mass system as

mi+kx=0 Y, (2.3)

Principle of Conservation of Energy A system is said to be conservative if no
energy is lost due to friction or energy-dissipating nonelastic members. If no work
is done on a conservative system by external forces (other than gravity or other
potential forces), then the total energy of the system remains constant. Since the
energy of a vibrating system is partly potential and partly kinetic, the sum of these
two energies remains constant. The kinetic energy T is stored in the mass by virtue
of its velocity, and the potential energy U is stored in the spring by virtue of its
elastic deformation. Thus the principle of conservation of energy can be expressed
as:

T 4+ U = constant
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or
i(T +U)=0 (2.6)
dt
The kinetic and potential energies are given by
T = 3mx? 2.7
and :
U = 3kx? - (2.8)
Substitution of Egs. (2.7) and (2.8) into Eq. (2.6) yields the desired equation
mx. + kx = Q (2.3)

Consider the configuration of the spring-mass system shown in Fig. 2.7(a). The
mass hangs at the lower end of a spring, which in turn is attached to a rigid support
atits upper end. At rest, thé mass will hang in a position called the szatic equilibrium
position, in which the upward spring force exactly balances the downward gravita-

Static equilibrium
- position

~ Final position
+x p

. N
y __Potential

w

™~ Static equilibrium
position

() (d)

FIGURE 2.7 A spring-mass systen; in vertical position.
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tional force on the mass. In this position the length of the spring is Iy + &, where
S5, is the static deflection—the elongation due to the weight W of the mass m. From
Fig. 2.7(a), we find that, for static equilibrivm,

W = mg = ké, (2.9)
where g is the acceleration due to gravity. Let the mass be deflected a distance +x

from its static equilibrium position; then the spring force is —k(x + &), as shown
in Fig. 2.7(c). The application of Newton's second law of motion to mass m gives

mi = ~k(x + &) + W

and since k&, = W, we obtain
mi + kx = 0 (2.10)

Notice that Eqs. (2.3) and (2.10) are identical. This indicates that when a mass
moves in a vertical direction, we can ignore its weight, provided we measure x from
its static equilibrium position.

Note: Equation (2.10), the equation of motion of the system shown in Fig.
2.7, can also be derived using D’Alembert’s principle, the principle of virtual dis-
placements, or the principle of conservation of energy. For example, if the principle
of conservation of energy is to be used, we note that the expression for the kinetic
energy, T, remains the same as Eq. (2.7). However, the expression for the potential
energy, U, is to be derived by considering the weight of the mass. For this we note
that the spring force at static equilibrium position (x = 0) is mg. When the spring
deflects by an amount x, its potential energy is given by (see Fig. 2.7d):

mg x + —;—kx2

Funheﬁnore the potential energy of the system due to the change in elevation of
the mass (note that +x is downward) is —mgx. Thus the net potential energy of
the system about the static equilibrium position is given by

U = potential energy of the spring

+ change in potential energy due to change in elevation of the mass m

= mgx + -;—kx2 - mgx = %k‘x2

Since the expressions of 7' and U remain unchanged, the application of the principle
of conservation of energy gives the same equation of motion, Eq. (2.3).
The solution of Eq. (2,3) can be found by assuming

x(t) = Ce (2.11)

where C and s are constants to be determined. Substitution of Eq. (2.11) into Eq.
(2.3) gives

C(ms?

Since C cannot be zero, we have

+ k) =0

ms? + k=0
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and hence .
172
k .
s = i<-~> = tiw, - (2.13)
m
where [ = (—1)12 54
/
[k 172 .
n m (2.14)
Equation (2.12) is called the auxiliary or the characteristic €quation corresponding
to the differential Eq. (2.3). The two values of s g .

x(1) = Cpeiont 4 Che~i®@nt

(2.15)
where C; and C are constants, By using the identities
e*'™ = cos at + i sip at
Eq. (2.15) can be rewritten as
xX(8) = Ajcos wr + Agsin w, s (2.16)
where A; and 4

x( z,

I

0) = AI = Xp '
. ) (2.17)
Ht = 0) = w4, = g,

2 = %p/w,. Thus the solut
7) is given by

Hence 4, = Xxp and A ion of Eq. (2.3) subject to the initjal
conditions of Eq. (2.1 .

x(1) = xqcos w,t + ﬁSin w,t (2.18)
T w, .

2.2.5

Harmonic Motion
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Equation (2.16) can be expressed in a different form by introducing the notation
Ay = Acos ¢

! , (2.19)
A2 = A sin qb

where A and ¢ are the new constants which can be expressed in terms of A; and
A, as

SN2 1/2
A = (A} + ADH? = [x% + <§> ] = amplitude
" (2.20)
A X
= -1 -—2 = -1 0 = h
¢ = tan <A1> tan <x0(‘)n> phase angle
Introducing Eq. (2.19) into Eq. (2.16), the solution can be written as
x(t) = A cos(w,t — @) (2.21)
By using the relations
A| = Apsin ¢
A, = Agcos ¢g (2.22)
Eq. (2.16) can also be expressed as
x(1) = Agsin(wnt + ¢p) (2.23)
where
N2l
Ap = A = [xg + <-if)9> } (2.24)
and
do = tan—1<59,i’ﬂ> (2.25)
. %o .

The nature of harmonic oscillation can be represented graphically as in Fig.
2.8(a). If A denotes a vector of magnitude 4, which makes an angle w,t — ¢ with
respect to the vertical (x) axis, then the solution, Eq. (2.21), can be seen to be the
projection of the vector A on the x-axis. The constants A, and A, of Eq. (2.16),
given by Eq. (2.19), are merely the rectangular components of A along two orthogonal
axes making angles ¢ and — (7 — ¢) with respect to the vector A. Since the angle
w,t — ¢ is a linear function of time, it increases linearly with time; the entire
diagram: thus rotates anticlockwise at an angular velocity w,. As the diagram (Fig.
2.8a) rotates, the projection of A onto the x- axis varies harmonically so that the
motion repeats itself every time the vector A sweeps an angle of 27. The projection
of A, namely x(7), is shown plotted in Fig. 2.8(b) as a function of time. The phase
angle ¢ can also be interpreted as the angle between the origin and the first peak.
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Thus, when the mass vibrates in a vertical direction, we can compute the natural
frequency and the period of vibration by simply measuring the static deflection
8. It is not necessary that we know the spring stiffness k and the mass m.

2. From Eq. (2.21), the velocity x(f) and the acceleration ¥(z) of the mass m at
time ¢ can be obtained as

x(1) = di—:—(t) = —w,A sin(w,t — @) = w,A cos( w,t — ¢ + -72—T>
dz (2.31)
i) = d—t;‘(r) = —w2A cos(w,t — ¢) = wPA cos(w,t — ¢ + )

Equation (2.31) shows that the velocity leads the displacement by 7/2 and the
acceleration leads the displacement by .
3. If the initial displacement (xo) is zero, Eq. (2.21) becomes

X T Xy .
x(1) = —icos( Wt — -2—> = w—osm w,t (2.32)

On the other hand, if the initial velocity () is zero, the solution becomes
x(t) = xpC08 w,t (2.33)

4. The response of a single .dégree of freedom system can be represented in the
displacement (x)-velocity () plane, known as the state space or phase plane.
For this we consider the displacement given by Eq. (2.21) and the corresponding

velocity:
x(t) = Acos (w, t — ¢)
or
cos (w, t — @) = i— (2.34)
%) = —A w, sin (w0, t — @)
. or
. _ - X - _Y
sin (w, ¢t o) v A (2.35)

where y = %/w,. By squaring and adding Eqgs. (2.34) and (2.35), we obtain

cos? (w, t — @) + sin? (w,t — ¢) =1
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|
21 |

VYA

\(/) = Acos (n,—¢)

() (b)

FIGURE 2.8 Graphical representation of the motion of a harmonic oscillator.

Note the following aspects of the spring-mass system:

1. If the spring-mass system is in a vertical position, as shown in Fig. 2.7(a), the
circular natural frequency can be expressed as

©\ M2 ‘
W, = <;l‘> (226)
The spring constant k can be expfessed in terms of the mass m from Eq. (2.9)
‘as
W mg
k= — = —2 2.27
bu G @20

Substitution of Eq. (2.27) into Eq. (2.14) yields

172
g
w, = | == . 2.28
(5) (2.28)

Hence the natural frequency in cycles per second and the natural period are
given by

1 1/2

(2.30)
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The graph of Eq. (2.36) in the (x, y)-plane is a circle, as shown in Fig. 2.9(a),
and it constitutes the phase plane or state space representation of the undamped
system. The radius of the circle, A, is determined by the initial conditions of
motion. Note that the graph of Eq. (2.36) in the (x, %) plane will be an ellipse,
as shown in Fig. 2.9(b).

Natural Frequency of a Water Tank A

The column of the water tank shown in Fig. 2.10 is 300 ft high and is made of reinforced
concrete with a tubular cross section of inner diameter 8 ft and outer diameter 10 ft. The
tank weighs 6 X 10° 1b with water. Find the natural frequency of transverse v1brat10n of

the water tank by neglecting the mass of the, column.

Given: Water tank of Fig, 2.10.

Find: Natural frequency of vibration of the tank in transverse direction.-

freedom system.

Assumptions:

1. Water tank is a point mass.

2. Column has a uniform cross section.
3. Mass of the column is negligible.

'Approach: Find the stiffness of the column and consider the tank as a single degree of
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FIGURE 2.10 Elevated tank. (Photo
courtesy of West Lafayette Water
Company.)

Solution: The water tank can be considered as a cantilever beam with a concentrated load
(weight) at the free end. The transverse deflection of the beam, &, due to a load P is given

3 .
by % where [ is the length, E is the Young’s modulus and [ is the area moment of inertia
of the cross section of the beam. The stiffness of the beam (column of the tank) is given by

In the present case, | = 3600 in, E = 4 X 108 psi,

=-lT— 4 _ 4=l 4 _ 4y 4 .4
1= Zds - df) = 2120 - 96%) = 600.9554 x 10%in

and hence

5L . 6 4
g = 24 % 10 )228859554 X 107) _ 1545.6672 Ib/in
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The natural frequency of the water tank in transverse direction is given by

k _ [1545.6672 x 386.4 ,
W, = \/’; = \/ 6 % 10° - = 0.9977 rad/sec -

Natural Frequency of Cockpit of a Firetruck

The cockpit of a firetruck is located at the end of a telescoping boom, as shown
2.11(a). The cockpit, along with the fireman, weighs 2000 N. Find the natural frequ
vibration of the cockpit in the vertical direction,

Data: Young’s modulus of the material: £ = 2,1 x 10U N/m?, Lengths: [ = {, = Iy =
3 m, cross-sectional areas: Ap =20cm? 4, = 10 cm? Ay = 5cm?.

in Fig.~
ency of

FIGURE 2.11
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up by a distance 2 W/k,, and the center of pulley 2 (point B) moves down by 2 W/k,. Thus
the total movement of the mass m (point O) is

2w 2w
2( ky * k2>

as the rope on either side of the pulley is free to move the mass downward. If k.4 denotes
the equivalent spring constant of the system, :

Weight of the mass
Equivalent spring constant

= Net displacement of the mass

W 11\ AWk + k)
key 4W<kl ¥ kz) g
_ kiky
keq = 4(ky + ky) (E.1)

By displacing mass m from the static equilibrium position by x, the equation of motion of
the mass can be written as

mX + kegx = 0 (E.2)

and hence the natural frequency is given by

X 172 ko k 172
- feq. — 172 /
o < m ) [4m<k1 + k2>} radfsee

(E.3)
or
) Kk 172
= —(i)—'i = e—— —1 2
fn S 477|:m(k1 T+ kz)] cycles/sec (E.4)
a

2.3 Free Vibration of an Undamped Torsional System

If a rigid body oscillates about a specific reference axis, the resulting motion is
called rorsional vibration. In this case, the displacement of the body is measured
in terms of an angular coordinate. In a torsional vibration problem, the restoring
moment may be due to the torsion of an elastic member or to the unbalanced moment
of a force or couple. : :

Figure 2.13 shows a disc, which has a polar mass moment of inertia J,, mounted
at one end of a solid circular shaft, the other end of which is fixed. Let the angular -
rotation of the disc about the axis of the shaft be 8; § also represents the angle of
twist of the shaft. From the theory of torsion of circular shafts [2.1], we have the .
relation

(2.37)



fky. Thus

denotes

(E.1)
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(E.2)

(E.3)
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tion is

2.3.1
Equation of
Motion
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(a) . (b)
FIGURE 2.13 Torsional vibration of a disc.

where M, is the torque that produces the twist 6, G is the sheqr modulus, [ is the

length of the shaft, /, is the polar moment of inertia of the cross section of the shaft

given by

md?

L= 35

(2.38)
and d is the diameter of the shaft. If the disc is displaced by 6 from its equilibrium

position, the shaft provides a restoring torque of magnitude M,. Thus the shaft acts
as a torsional spring with a torsional spring constant

_ M, GI, 7Gad*
k, = 0 T T 33 (2.39)
The equation of the angular motion of the disc about its axis can be derived by
using Newton’s 'second law or any of the methods discussed in Section 2.2.2. By
considering the free-body diagram of the disc (Fig. 2.13b), we can derive the equation
of motion by applying Newton’s second law of motion:

Job + k6 =0 (2.40)




116  CHAPTER 2
2.3.2
Solution

FREE VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS

which can be seen to be identical to Eq. (2.3) if the polar mass moment of inertia
Jo» the angular displacement 6, and the torsional spring constant k, are replaced by
the mass m, the displacement x, and the linear spring constant k, respectively. Thus
the natural circular frequency of the torsional system is

~ <£>1/2
wy, JO

(2.41)
and the period and frequency of vibration in cycles per second are
J 172
T, = 27 <-9> (2.42)
k,
Lk 1/2
= —| = 2.43
e (B .

Note the following aspects of this system:

1. If the cross section of the shaft supporting the disc is not circular, an appropriate
torsional spring constant is to be used [2.4, 2.5].
2. The polar mass moment of inertia of a disc is given by

" phwD*  WD?
32 8g

Jo

where p is the mass density, 4 is the thickness, D is the diameter, and W is the
weight of the disc.

3. The torsional spring-inertia system shown in Fig. 2.13.is referred to as a torsional
pendulum. One of the most important applications of a torsional pendulum is
in a mechanical clock, where a ratchet and pawl convert the regular oscillation
of a small torsional pendulum into the movements of the hands.

The general solution of Eq. (2.40) can be obtained, as in the case of Eq. (2.3):
6(t) = A;cos w,t + A,Sin w,t (2.44)

where w, is given by Bq. (2.41), and A, and A, can be determined from the initial
conditions. If

6(t = 0) =6, and g(t = 0) = %?(z =0)= 6§, (2.45)

the constants A, and A, can be found:

A1=00

Ay = folw, (2.46)

Equation (2.44) can also be seen to represent a simple harmonic motion.



(2.48)
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(2.49)

(2.50)
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Equation (2.54) shows that 6(t) increases exp
is unstable. The physical reason for this is that the re
spring (2kI26), which tries to bring the system to equilibrium position, is less thap
the nonrestoring moment due to gravity [ — W(1/2) 61, which tries to move the mass
away from the equilibrium position, Although the stability conditions are illustratedq
with reference to Fig. 2.17 in this section, similar conditions need to be examineg
in the vibration analysis of many engineering systems.

2.5 Rayleigh’s Energy Method

RS
EXAMPLE 2.¢
—_—

» We shall use the energy methog
to find the natural frequencies of single degree of freedom systems. The principle
of conservation of energy, in the context of an undam

ped vibrating System, can be
restated as '
(2.55)

ifferent instants of time, Specifically, we
e mass is passing through its static

of the mass, we have T, = 0. Thus Eq. (2.
Tl + 0 = 0 +- U2

If the system is undergoing harmonic motion, then Ty and U,
values of T and U, respectively, and Eq. (2.56) becomes

(2.56)

denote the maximum

Tmax = Upax (2.57)
The application of Eq. (2.57), which is also known_ as

gives the natural frequency of the System directly,
examples.

Rayleigh’s energy method,”
as illustrated in the following

Manometer for Diesel Engine

The exhaust from a single-cylinder four-stroke diese] engine is to be connected to a silencer,
and the pressure therein s to be measured with a simple U

Number of cylinders x Speéd of the engine
2
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FIGURE 2.18

Given: U-tube manometer, engine speed = 600 rpm, and natural frequency of oscilla-
tion = 3.5 times slower than the frequency of pressure fluctuations.

Find: Minimum length of the manometer tube.

Approach: Use energy method to find the natural frequency.

Solution:

1. Natural frequency of oscillation of the liquid column: Let the datum in Fig. 2.18 be
taken as the equilibrium position of the liquid. If the displacement of the liquid column
from the equilibrium position is denoted by x , the change in potential energy is given
by :

U = potential energy of raised liquid column + potential energy of depressed
liquid column

= (weight of mercury raised X displacement of the C.G. of the segment) +
(weight of mercury depressed X displacement of the C.G. of the segment)

= (Axy)-’z£ + (Ax'y)% = Ayx? (E.1)

where A is the cross-sectional area of the mercury column and y is the specific weight
of mercury. The change in kinetic energy is given by

T

i

-;—(m ass of mercury)(velocity)?

LAly
2 g

i

)2 E2)
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where [ is the length of the mercury column. By assuming harmonic motion, we can
write

x(t) = X cos w,t (E.3)

where X is the maximum displacement and , is the natural frequency. By substituting
Eq. (E.3) into Eqgs. (E.1) and (E.2), we obtain

U = Upaxcos?o,t (E.4)
T = Tpaxsinw,t (E.5)
where
Unax = AyX? : (E.6)
and
1Ayla? '
Trax = ETX (E.7)
By equating U,,,, to T,,,,, we obtain the natural frequency: :
2o\ 2
w, = ( —ﬁ) (E.8)
2. Length of the mercury column: The frequency of pressure fluctuations in the silencer
_ 1% 600
2 .

300 rev/min

= 9@%21 = 107 rad/sec - (E.9)

i

Thus the frequency of oscillations of the liquid column in the manometer is
107/3.5 = 9.0 rad/sec. By using Eq. (E.8), we obtain

S 172
(%) =00 (5.10)
or
2.0 x 9,81
= —————— = (}.24 . ’
l 9.0y 0.243 m (E.11)
| ]

EXAMPLE 2.7 Effect of Mass on w, of a Spring

Determine the effect of the mass of the spring on the natural frequency of the spring-mass
system shown in Fig. 2.19. N




128  CHAPTER 2 FREE VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS
The maximum kinetic energy of the beam itself (Tray) I8 given by

1 2
j ?{y(x)} dx (E.2)
4]

where m is the total mass and (m/!) is the mass per unit length of the beam. Equation (E.1)
can be used to express the velocity variation, y(x), as

Thax =

D=

y(x) = yzml;*(?, x2 1 — x%) (E3)

and hence Eq. (E.2) becomes

|3

Tmax -

8]

] 2 1
l<ym;;> [ 31—y ax
o}

m 33 133 Y .
7416<§l7> (35 )y‘zn“ (E-4)

If m,q denotes the equivalent mass of the cantilever (water tank) at the free end, its maximum
kinetic energy can be expressed as

-1
2

1
Trnax = —2_ Meq yrznax ’ . (E.5)

By equating Eqs. (E.4) and (‘E'.S),'wc obtain

33
Meq = M (E.6)
Thus the total effective mass acting at the end of the cantilever beam is given by
Mesg = M + meq E.T)

where M is the mass of the water tank. The natural frequency of transverse vibration of the
water tank is given by

n = = E.8

“ Mg (E-8)
.

2.6 Free Vibration with Viscous Damping

2.6.1 © As stated in Section 1.9, the viscous damping force F is proportional to the velocity

Equation of " % orv and can be expressed as

Motion F = —ci (2.58)

where ¢ is the damping constant or coefficient of viscous damping and the negative ‘
sign indicates that the damping force is opposite to the direction of velocity. A




(E.2)

on (E.1)

(E.3)

(E.4)

aximum

(E.5)

2.6.2
Solution
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single degree of freedom system with a viscous damper is shown in Fig. 2.21. If x
is' measured from the equilibrium position of the mass m, the application of Newton's
law yields the equation of motion:

mi = —c¢cx — kx
or

mi + cx + kx =0 (2.59)

To solve Eq. (2.59), we assume a solution in the form

x(t) = Ce* : (2.60)

where C and s are undetermined constants. Inserting this function into Eq. (2.59)
leads to the characteristic equation '

ms? + ¢cs + k=0 (2.6

the roots of which are

P __—civc2_4mk__i+ iz__li (2.62)
12 2m 2m 2m m '
These roots give two solutions to Eq. (2.59):
x1(t) = Cre’Vf and Xo(1) = Cle®? (2.63)

l

+x

System Free-body diagram
(2) (b)

FIGURE 2.21 Single degree of fréédom system with viscous damper.
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Thus the general solution of Eq. (2.59) is given by a combination of the two solutions
x1(®) and x5(1):

.x(t) = Cle.ylt + Czeszt
N o o PR NP e s
C]é “am t 2m “m) + Che “2m 2m “m

where C, and C, are arbitrary constants to be determined from the initial conditions
of the system.

(2.64)

Critical Damping Constant and the Damping Ratio. The critical damping c,
is defined as the value of the damping constant ¢ for which the radical in Eq. (2.62)

becomes zero:
e\ ko 0
2m m

c. = 2m i— = 2Vkm = 2nmuw,

or
(2.65)

For any damped system, the damping ratio { is defined as the ratio of the damping
constant to the critical damping constant:

{ = cle, (2.66)
Using Egs. (2.66) and (2.65), we can write
Ecn—1 - .CC_C 2‘3;1 = (o, (2.67)
and hence
Si2 = (=% V2 - 1) w, (2.68)
Thus the solution, Eq. (2.64), can be written as
x(f) = Crel-4+Va-Dot ¢ C)e(-L-VI-Dayt (2.69)

The nature of the roots s, and s, and hence the behavior of the solution, Eq. (2.69),
depends upon the magnitude of damping. It can be seen that the case { = 0 leads
to the undamped vibrations discussed in Section 2.2. Hence we assume that { # 0 |
and consider the following three cases.

Case 1. Underdamped system ({ < 1 or ¢ < ¢, or ¢/2m < Vk/m). For this con- :
dition, ({2 - 1) is negative and the roots s, and s, can be expressed as

Sl=(—'{+i"1—§2)wn
52=(—{—iV1~£2)wn
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" and the solution, Eq. (2.69), can be written in different forms:

x(t) = Cyel-$+VI-ox 4 ¢, o(={-IVI- Doyt

= e‘!wnt{ Cleiv 1wyt + Cze‘iV 1"{2‘.‘%’}

= e*f“’"’{(Cl + Cy)cosV1 = Puw,t + i(C; ~ Cy)sinV1 — {’ant}
= e‘{"’n’{ CicosV1 - w,t + ChsinV1 ~ {Zw"t}
= Xe‘f“’"'sin< V1 - Pt + ¢>

= Xoe‘f"’n’cos< V1 - Pw,t — ¢0> (2.70)

where (C}, C5), (X, ¢), and (X,, ¢y) are arbitrary constants to be determined from k
the initial conditions.

. For the initial conditions x(¢ = 0) = xp and %(t = 0) = X,, Cj and C; can be
found:

‘= x, and Ch = ﬂ’\/.l.i__.—i—{—“’;’;i | (2.71)

and hence the solution becomes

x(t) = e"f“’"'{ xgcosV1 — 2wt

+ 591—\/+__§——%ﬂ VI = P t} (2.72)
vThe constants (X, ¢) and (X,, ¢g) can be expressed as )
X =X, = V(CHE + (Cp)? (2.73)
¢ = tan~1(C}/C}%) ‘ (2.74)
¢o = tan~! (—C4/C}) (2.75)

The motion described by Eq. (2.72) is a damped harmonic motion of -angular
frequency V1 — (% w,, but because of the factor e~¢“»‘, the amplitude decreases
exponentially with time, as shown in Fig. 2.22. The quantity

= V1 - {? w, (2.76)

is called the frequency of damped. vibration. It can be seen that the frequency of
damped vibration w, is always less than the undamped natural frequency w,. The
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x(1)
Y

Xo = s

= » 10,
N~ - !

FIGURE 2.22 Underdamped solution.

decrease in the frequency of damped vibration with increasing amount of damping,
given by Eq. (2.76), is shown graphically in Fig. 2.23. The underdamped case is
very important in the study of mechanical vibrations, as it is the only case which
leads to an oscillatory motion [2.10].

Case 2. Critically damped system ({ = 1 or ¢ = ¢, or ¢/2m = Vk/m).In this
case the two roots s; and s, in Eq. (2.68) are equal:

5, = 5, = —ZC—; = —w, (2.77)

Ty
@,

0 1

FIGURE 2.23 Variation of w, with damping.
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Undam ed (L =10
Overdamped (¢ > 1) ped (& )

Critically Und(erda.mped”(t_, <n
N damped (§ = 1) W, is smaller
o O~ P than w,)
~

27 Wy
,

FIGURE 2.24 Comparison of motions with different types of damping.

Because of the repeated roots, the solution of Eq. (2.59) is given by [2.6]!
x(t) = (C, + Cyt)e-@t - (2.78)

The application of the initial conditions x(t = 0) = xp and x(tr = 0) = %, for this
case gives ’

Cy = xq
C, = Xo + @uxg (2.79)
and the solution becomes |
x(t) = [xo + (% + W, Xxq)t]e—wnt (2.80)

It can be seen that the motion répresented by Bq. (2.80) is aperiodic (i.e., nonperi-

odic). Since e~“»* — 0 as t — 00, the motion will eventually diminish to zero, as
indicated in Fig. 2.24.

Case 3. Overdamped system (¢ > 1 or ¢ > c.orc/2m> Vk/m). As V¢2 ~ 1

>0, Eq. (2.68) shows that the roots $1 and s, are real and distinct and are given by

s1=(~¢+ \/{2_- N, <0
(¢~ V{7 - 1o, <0

1

8§y

'Equation (2.78) can also be obtained by making { approach unity in the limit in Eq. (2.72). As
£ =1, wg — 0; hence cos wyr — 1 and sin wgt - wyt. Thus Eq. (2.72) yields

x(t) = e~ (C{ + Chuyt) = (Cy + Cyt)e=ont

where Cy = C} and C, = Cjw, are new constants.
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with s, << s;. In this case, the solution, Eq. (2.69), can be expressed as
X(0) = Clel-# VIt 4 Coel-6-VE Do 2.81)

For the initial conditions x(¢t = 0) = x; and %(t =0) = x;, the constants C; and

C, can be obtained:

wan(;‘I_ ‘\/{Z - 1) +](.0

20,V -1

X, ({ — VP = 1) = X
20, V2 -1 |

Equation (2.81) shows that the motion is aperiodic regardless of the initial conditions

imposed on the system. Since roots s, and s, are both negative, the motion diminishes

exponentially with time, as shown in Fig. 2.24.

Note the following aspects of these systerns:

C]z

1. The nature of the roots s, and s, with varying values of damping ¢ or { can be
shown in a complex plane. In Fig. 2.25, the horizontal and vertical axes are
chosen as the real and imaginary axes. The semicircle represents the locus of
the roots s; and s, for different values of ¢ in the range 0 < { < 1. This figure
permits us to see instantaneously the effect of the parameter { on the behavior
of the system. We find that for { = 0, we obtain the imaginary roots s; = iw,
and 5, = —iw,, leading to the solution given in Eq. (2.15). For 0 < {'< 1, the
roots s, and s, are complex conjugate and are located symmetrically about the

Imaginary axis

t

=0
0<t<l 4 ™

]

j
bo\Cs
| I

1—§2Ewn
$)=5,= — W, :
< ;.'2 ;" > 'l\_tw 5 Real axis

forg>1 \forg>1 "

FIGURE 2.25

Locus of s; and s,.

=0
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FIGURE 2.26

real axis. As the value of { approaches 1, both roots approach the point — w,
on the real axis. If /> 1, both roots lie on the real axis, one increasing and the
other decreasing. In the limit when /- o, §; — 0 and 5, = — . The value
{ = 1 can be seen to represent a transition stage, below which both roots are
complex and above which both roots are real.

2. Acritically damped system will have the smallest damping required for aperiodic
motion; hence the mass returns to the position of rest in the shortest possible
time without overshooting. The property of critical damping is used in many
practical applications. For example, large guns have dashpots with critical damp-
ing value, so that they return to their original position after recoil in the minimum -
time without vibrating. If the damping provided were more than the critical
value, some delay would be caused before the next firing.

3. The free damped response of a single degree of freedom system can be repre-
sented in phase plane or state space as indicated in Fig. 2.26.

The logarithmic decrement represents the rate at which the amplitude of a free
damped vibration decreases. It is defined as the natural logarithm of the ratio of
any two successive amplitudes. Let ¢, and 7, denote the times corresponding to two
consecutive amplitudes (displacements), measured one cycle apart for an under-
damped system, as in Fig. 2.22. Using Eq. (2.70), we can form the ratio

x; _ Xoe 't cos(wgty ~ )
x;  Xoe ¢n'2 cos(waty — )

(2.83)

But 1, = t; + 7, where 7, = 27/w, is the period of damped vibration. Hence ]
cos(wgty — o) = cosRm + wyty — ¢p) = cos(wyt; — o), and Eq. (2.83) can
be written as .

Xy e‘{"—’n‘l»

— = ————e e = {wan
Xy e—{"-’n(tl'*"rd) €

(2.84)
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The logarithmic decrement & can be obtained from Eq. (2.84):

x 27 A4 27 ¢
§ ==L = fw,r; = {w, = = =—.—(2.85
x,  tenTa = ¢ V1i- o, VI-g2 g 2m )
For small damping, Eq. (2.85) can be approximated:
8 =2m if <<l (2.86)

Figure 2.27 shows the variation of the logarithmic decrement § with { as given by
Eqgs. (2.85) and (2.86). It can be noticed that for values up to ¢ = 0.3, the two
curves are difficult to distinguish.

The logarithmic decrement is dimensionless and is actually another form of
the dimensionless damping ratio {. Once § is known, ¢ can be found by solving
Eq. (2.85):

8 -
= e 2.87
d V(2m)? + & ( )
If we use Eq. (2.86) instead of Eq. (2.85), we have '

)

{z__.

oy (2.88)

If the damping in the given system is not known, we can determine it experimentally
by measuring any two consecutive displacements x, and x,. By taking the natural -
logarithm of the ratio of x, and x,, we obtain 8. By using Eq. (2:87), we can compute

FIGURE 2.27 Variation of logarithmic decrement with damping.
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plete cycles. If *; and x,,,,
denote the amplitudes corresponding to times hrand t,, = ¢, 4 m7,; where m is
an integer, we obtain

X X| X5 X x
! —L 2273 n (2.89)
Xm+l X3 X3 X4 Xm+i

X Sw, Ty
= olon (2.90)
xj+l
Eq. (2.89) becomes
X1 = (e{wn‘rd)m = e"";“)n'rd ‘ (291)
Xm+1

Equations (2.91) and (2.85) yield

5=t < X1 > ’ (2.92)
m Xm+1

q. (2.87) or Eq. (2.88) to obtain the viscous damping

which can be substituted into E
ratio ¢,

Ina viscously damp

ed system, the rate of change of cenergy with time (dWydy ) is
given by
dw : dr’
> force x velocity = Fy = -2 = —-c (a,%c) (2.93)

using Eq. (2.58). The negative sign in Eq. (2.93) denotqs that energy dissipates with
time. Assume a simple harmonic motion as x(t) =

X sin wy,t, where X is the amplitude
of motion and the energy dissipated in a complete cycle is given by?

(27l awy) de\ 2 27
f cl ==} dr = f cX?wycos2ayt - d(wyt)
t=0 dt 0

e wyX?

AW

i

i

(2.94)

2In the case of a damped system, simple ha
steady-state response is considered tinder a
of energy due to the damper is supplied by

Imonic motion X(t) =
harmonic force of freq
the excitation under g

X cos wyt is possible only when the
uency wy (see Section 3.4). The loss
teady-state forced vibration [2.7].
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as the maximum kinetic energy (5mV3ax = L mX2w?), the two being approximately

equal for small values of damping. Thus

AW _ rew X?
W Ime} X?

= 2<.2_71> (ﬁ-) = 28 = 47{ = constant (2.99)
2m

Wy

using Egs. (2.85) and (2.88). The quantity AW/W is called the specific damping
capacity and is useful in comparing the damping capacity of engineering materials.
Another quantity known as the loss coefficient is also used for comparing the
damping capacity of engineering materials. The loss coefficient is defined as the

ratio of the energy dissipated per radian and the total strain energy:

(AWI2m) _ AW

W iy (2.100)

loss coefficient =

The methods presented in Sections 2.6.1 through 2.6.4 for linear vibrations with
viscous damping can be extended directly to viscously damped torsional (angular)
vibrations. For this, consider a single degree of freedom torsional system with a
viscous damper, as shown in Fig. 2.29(a). The viscous damping torque is given by
(Fig. 2.29b): ' :

T=~cb (2.101)
where ¢, is the torsional viscous damping constant, @ = d@/dr is the angular velocity
of the disc, and the negative sign denotes that the damping torque is opposite the
direction of angular velocity. The equation of motion can be derived as

Job + c0 + k=0 (2.102)

where J, = mass moment of inertia of the disc, k, = spring constant of the system
(restoring torque per unit angular displacement), and § = angular displacement of
the disc. The solution of Eq. (2.102) can be found exactly as in the case of linear
vibrations. For example, in the underdamped case, the frequency of damped vibration
is given by o

wy=V1 = o, (2.103)
where ‘
k,
= —= 2.104
a)l‘l JO ( )
and
Ce C Ce
= b = 2.105
4 Cre 2Jown 2VkJ, ( )

where ¢, is the critical torsional damping constant.
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ie.,
o ie.,
Vao = Vip + 2.504396 (E.S)
The solution of Eqs.I (E.3) and (E.S5) gives '
Vez = 1.460898 m/s ; v, = —1.043498 m/s

Thus the initial conditions of the anvil are given by

xo = 0; % = 1.460898 m/s

The damping coefficient is equal to
1000

[ = =
2VkM
2\/(5 X 10%(%%9)

= 0.0989949

The undamped and damped natural frequencies of the anvil are given by

5 x 109

(M) = 98.994949 rad/s
981

wy = w, V1 — (% = 98.994949 V1 — 0.09899492 = 98.024799 rad/s

The displacement response of the anvil is given by Eq. (2.72):

Xg + Llw,xg .
g~ {wnt {cos Wyt + %ot fanx sin wdt}

i

x(t)

Wq

it

e=9-799995¢ ( co5 98.024799 ¢ + 0.01490335 sin 98.024799 ¢} m L]

EXAMPLE 2.10 Shock Absorber for a Motorcycle

An underdamped shock absorber is to be designed for a motorcycle of mass 200 kg (Fig. -
2.31a). When the shock absorber is subjected to an initial vertical velocity due to a road
bump, the resulting displacement-time curve is to be as indicated in Fig. 2.31(b). Find the ' _
necessary stiffness and damping constants of the shock absorber if the damped period of
vibration is to be 2 sec and the amplitude x; is to be reduced to one-fourth in one half cycle :
(i.e., x; 5 = x;/4). Alsofind the minimum initial velocity thatleads to a maximum displacement .
of 250 mm. :

Given: Mass = 200 kg; displacement-time curve of the system (Fig. 2.31b); damped period' v
of vibration = 2 sec, x; 5 = x;/4; and maximum displacement = 250 mm. o
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(E.5)

(a) (b)
FIGURE 2.31

/s Find: Stiffness (k), damping constant (¢), and initial velocity (Xp), which results in a maximum

displacement of 250 mm.

Approach: Equation for the logarithmic decrement in terms of the damping ratio, equation :
for the damped period of vibration, time corresponding to maximum displacement for an “

underdamped system, and envelope passing through the maximum points of an underdamped
system., :

Solution: Since x; s = x,/4,x, = x15/4 = x)/16. Hence the logarithmic decrement becomes

- X - - 27
d=1n (x2> In(16) 2.71726 \/1—:_{5 (E.1)

from which the value of { can be found as { = 0.4037. The damped period of vibration is
given to be 2 sec. Hence '

R T SR
4w, w,V1 — (2
W, = L = 3.4338 rad/sec

2V1 — (0.4037)2

The critical damping constant can be obtained:

¢c = 2maw, = 2(200)(3.4338) = 1373.54 N-s/m
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Thus the damping constant is given by
¢ = {e, = (0.4037)(1373.54) = 554.4981 N-s/m

and the stiffness by
k = mw? = (200)(3.4338)% = 2358.2652 N/m
The displacement of the mass will attain its maximum value at time #), given by
sin wyty = \/T:?
(See Problem 2.77.) This gives

sin wyty, = sin 7 = V1 — (0.4037)% = 0.9149

S,
M = 0.3678 sec

t, =
! T

The envelope péssing through the maximum points (see Problem 2.77) is given by
x = V1 — 2 Xe-tont (E.2)
Since x = 250 mm, Eq. (E.2) gives at t; :

0.25 = ‘\/1 _ (04037)2 Xe_(0.4037)(3.4338)(0.3678)

or
X = 0.4550 m.

The velocity of the mass can be obtained by differentiating the displacement

x(t) = Xe~%" sin wyt

(E.3)

#t) = Xe~¥ont (~lw, sin wyt + wg COS w4T)

When ¢t = 0, Eq. (E.3) gives

it =0) = i = Xwg = KXo, VI = & = (0.4550)(3.4338)(VT — (0.4037)%)

1.4294 m/s [ ]

EXAMPLE 2.11 Analysis of Cannon

The schematic diagram of a large cannon is shown in Fig. 2.32 [2.8]. When the gun is fired,
high-pressure gases accelerate the projectile inside the barrel to a very high velocity. The
reaction force pushes the gun barrel in the opposite direction of the projectile. Since it is
desirable to bring the gun barrel to rest in the shortest time without oscillation, it is made
to translate backward against a critically damped spring-damper system called the recoil
mechanism. In a particular case, the gun barrel and the recoil mechanism have a mass of
500 kg with a recoil spring of stiffness 10,000 N/m. The gun recoils 0.4 m upon firing. Find

i)
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Projectile

Gun barrel

Recoil mechanism
(spring and damper)

AN\
FIGURE 2.32

(1) the critical damping coefficient of the damper, (2) the initial recoil velocity of the gun,
and (3) the time taken by the gun to return to a position 0.1 m from its initial position.

by
(E.2)

Given: Critically damped recoil mechanistm with m = 500 kg, k = 10,000 N/m, and recoil
distance = 0.4 m. .

Find: Critical damping coefficient, recoil velocity, and time taken by the gun to return to
a position 0.1 m from its initial position.

Approach: Use the response equation of a critically damped system.

Solution

1. The undamped natural frequency of the system is

k 10,000
= R [N - 4472 /
W, f / 500 4721 rad/sec

and the critical damping coefficient (Eq. 2.65) of the damper is
ce = 2mw, = 2(500)(4.4721) = 4472.1 N-s/m

2. The response of a critically damped system is gi'ven by Eq. (2.78):
x(t) = (Cy + Cyt) e~ (E.1)

where C; = xp and C; = %o + waXo The time t, at which x(¢) reaches a maximum
value can be obtained by setting x(f) = 0. The differentiation of Eq. (E.1) gives

i) = Cae~@' — 0, (C, + Cat)e=

Hence x(1) = O yields



146  CHAPTER 2 FREE VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS

In this case, x; = C, = 0; hence Eq. (E.2) leads to ¢, = 1/w,. Since the maximum
value of x(t} or the recoil distance is given to be x,, = 0.4 m, we have

X X
Xmax = X(t = tl) = C2tle.w"tl = _08 B

Wy ew,

or

%0 = Xmax@ne = (0.4)(4.4721)(2.7183) = 4.8626 m/s

3. If 1, denotes the time taken by the gun to return to a position 0.1 m from its initial
position, we have

0.1 = Catye=-2" = 4.86261,¢-%4721n2 (E.3)
The solution of Eq. (E.3) gives t, = 0.8258 sec. L

2.7 Free Vibration with Coulomb Damping

. In many mechanical systems, Coulomb or dry-friction dampers are used because
of their mechanical simplicity and convenience [2.9]. Also in vibrating structures,
whenever the components slide relative to each other, dry-friction damping appears
internally. As stated in Section 1.9, Coulomb damping arises when bodies slide on
dry surfaces. Coulomb’s law of dry friction states that when two bodies are in
contact, the force required to produce sliding is proportional to the normal force -
acting in the plane of contact. ‘Thus the friction force F is given by

F = uN = uW = umg (2.106)

where N is the normal force and u is the coefficient of friction. The friction
force acts in a direction opposite to the direction of velocity. Coulomb damping is
sometimes called constant damping, since the damping force is independent of the

displacement and velocity; it depends only on the normal force N between the
sliding surfaces.

2.4.1 7 Consider a single degree of freedom system with dry friction as shown in Fig.
Equation of © 2.33(a). Since the friction force varies with the direction of velocity, we need to
Motion consider two cases, as indicated in Flgs 2. 33(b) and (c).

e l

k ’
§ AN m , ky +—
N TTITITIII77 7777 uN < I . I
N N

(a) (b)

FIGURE 2.33 Spring-mass system with Coulomb damping.
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Problems

2.11 Is the frequency of a damped free vibration smaller or greater than the natural frequency
of the system?

2.12 What is the use of logarithmic decrement?

2.13 Is hysteresis damping a function of the maximum stress?
2.14 What is critical damping and what is its importance?
2.15 What happens to the energy dissipated by damping?

2.16 What is equivalent viscous damping? Is the equivalent viscous damping factor a
constant?

2.17 What is the reason for studying the vibration of a single degree of freedom system?
2.18 How can you find the natural frequency of a system by measuring its static deflection?
2.19 Give two practical applications of a torsional pendulum.

2.20 Define these terms: damping ratio, logarithmic decrement, loss coefficient, and specific
damping capacity.

2.21 In what ways is the response of a system with Coulomb damping different from that
of systems with other types of damping? )

2.22 What is complex stiffness?
2.23 Define the hysteresis damping constant.

2.24 Give three practical applications of the concept of center of percussion.

The problem assignments are organized as follows:

Problems Section Covered Topic Covered

2.1-2.50 22 Undamped translational systems
2.51-2.64 2.3 Undamped torsional systems
2.65-2.74 25 Energy method

2.75-2.97, 2.111 2.6 Systems with viscous damping
2.98-2.107 2.7 Systems with Coulomb damping
2.108-2.110 2.8 Systems with hysteretic damping
2.112-2.115 2.9 Computer program

2.116-2.120 —

Projects

A spring-mass system has a natural period of 0.21 sec. What will be the new period
if the spring constant is (a) increased by 50% and (b) decreased by 50%?

An industrial press is mounted on a-rubber pad to isolate it from its foundation. If -

the rubber pad is compressed 5 mm by the self-weight of the press, find the natural
frequency of the system.
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Tequency A spring-mass system has a natural frequency of 10 Hz. When the spring constant
is reduced by 800 N/m, the frequency is altered by 45 percent. Find the mass and
spring constant of the original system.

L A helical spring, when fixed at one end and loaded at the other, requires a force of
' 100 N to produce an elongation of 10 mm. The ends of the spring are now rigidly
fixed, one end vertically above the other, and a mass of 10 kg is attached at the
middle point of its length. Determine the time taken to complete one vibration cycle

factor a . " when the mass is set vibrating in the vertical direction.

’ 2.5 An air-conditioning chiller unit weighing 2000 1b is to be supported by four air
system? . ’ springs (Fig. 2.39). Design the air springs such that the natural frequency of vibration
¥ ' of the unit lies between 5 rad/s and 10 rad/s. '
flection?
specific
om that

‘F.IGU‘RE 2.39 (Courtesy of Sound ahd Vibration)

The maximum velocity attaj

ned by the mass of a simple harmonic oscillator is 10
cm/sec, and the period of os

cillation is 2 sec. If the mass is released with an initial
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FIGURE 2.41

FIGURE 2.40

displacement of 2 cm, find‘(a) the amplitude, (b) the initial velocity, (c) the maximum

acceleration, and (d) the phase angle. '

Three springs and a mass are attached to a rigid, weightless, bar PQ as shown in

Fig. 2.40. Find the natural frequency of vibration of the system.

An automobile having a mass of 2000 kg deflects its suspension springs 0.02 m

under static conditions. Determine the natural frequency of the automobile in the

vertical direction by assuming damping to be negligible.

2.9 Find the natural frequency of vibration of a spring-mass system arranged on an
inclined plane, as shown in Fig. 2.41. .

210 A loaded mine cart, weighing 5,000.1b, is being lifted by a frictionless pulley and
a wire rope, as shown in Fig.'2:42. Find the natural frequency of vibration of the
cart in the given position.

Steel wire rope,
0.05" diameter

mine cart

FIGURE 2.43 An electronic chassis mounted on vibra-
tion isolators. (Courtesy of Titan SESCO.) : .
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FIGURE 2.44 FIGURE 2.45

211  An electronic chassis, weighing 500 N, is isolated by supporting it on four helical
springs, as shown in Fig. 2.43. Design the springs so that the unit can be used in
an environment in which the vibratory frequency ranges from 0 to 5 Hz.

maximum ) |

2.12  Find the natural frequency of the system shown in Fig. 2.44 with and without the
shown in springs k; and k, in the middle of the élastic beam.

2.13  Find the natural frequency of the pulley system shown in Fig. 2.45 by neglecting
55 0.02 m the friction and the masses of the pulleys.
;ilc in the 2.14 A weight W is supported by three frictionless and massless pulleys and a spring of

stiffness k, as shown in Fig. 2,46. Find the natural frequency of vibration of weight

zed on an W for small oscillations.

LLLLLLLLLLLLLLLLLL

§Lllleyg nd.
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FIGURE 2.46 ~ FIGURE 2.47
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FIGURE 2.48 FIGURE 2.49

2.15 A rigid block of mass M is mounted on four elastic supports, as shown in Fig. 2.47.
A mass m drops from a height { and adheres to the rigid block without rebounding.
If the spring constant of each elastic support is k, find the natural frequency of
vibration of the system (a) without the mass m, and (b) with the mass m. Also find
the resulting motion of the system in case (b).

: 216 ° A sledgehammer strikes an anvil with a velocity of 50 ft/sec (Fig. 2.48). The hammer
contn =" and the anvil weigh 12 Ib and 100 1b, respectively. The anvil is supported on four
S springs, each of stiffness k = 100 Ib/in. Find the resulting motion of the anvil (a)
if the hammer remains in contact with the anvil, and (b) if the hammer does not
remain in contact with the anvil after the initial impact.

Derive. the expression for the natural frequency of the system shown in Fig. 2.49.
Note that the load W is applied at the tip of beam 1 and midpoint of beam 2.

A heavy machine weighing 9810 N is being lowered vertically down by a winch at
a uniform velocity of 2 m/sec. The steel cable supporting the machine has a diameter
of 0.01 m. The winch is suddenly stopped when the steel cable’s length is 20 m.
Find the period and amplitude of the ensuing vibration of the machine.

The natural frequency of a spring-mass system is found to be 2 Hz. When an
additional mass of 1 kg is added to the original mass m, the natural frequency is
reduced to 1 Hz. Find the spring constant k and the mass m.

220  An electrical switchgear is supported by a crane through a steel cable of length
4 m and diameter 0.01 m (Fig. 2.50). If the natural time period of axial vibration
of the switchgear is found to be 0.1 s, find the mass of the switchgear.

"2.21 Four weightless rigid links and a spring are arranged to support a weight W in two
different ways, as shown in Fig. 2.51. Determine the natural frequencies of vibration
of the two arrangements. :

222 A scissors jack is used to lift a load W. The links of the jack are rigid and the
collars can slide freely on the shaft against the springs of stiffnesses k, and ko -
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2.25

2.26

2.27

2.29

2.30

A mass m is supported by two sets of springs oriented at 30° and 120° with respect

“to the X axis, as shown in Fig. 2.55. A third pair of springs, with a stiffness of k;

each, is to be designed so as to make the system have a constant natural frequency.
while vibrating in any direction x. Determine the necessary spring stiffness k4 and
the orientation of the springs with respect to the X axis.

A mass m is attached to a cord that is under a tension T, as shown in Fig. 2.56.
Assuming that T remains unchanged when the mass is displaced normal to the cord,
(a) write the differential equation of motion for small transverse vibrations, and (b)
find the natural frequency of vibration.

A bungee jumper weighing 160 1b ties one end of an elastic rope of length 200 ft

" and stiffness 10 1b/in to a bridge and the other end to himself and jumps from the

bridge (Fig. 2.57). Assuming the bridge to be rigid, determine the vibratory motion
of the jumper about his static equilibrium position.

An acrobat weighing 120 1b walks on a tightrope, as shown in Fig. 2.58. If the
natural frequency of vibration in the given position, in vertical direction, is 10 rad/
s, find the tension in the rope. -

The schematic diagram of a centrifugal governor is shown in Fig. 2. 59. The length
of each rod is /, the mass of each ball is m and the free length of the spring is k. If
the shaft speed is w, determine the equilibrium position and the frequency for small
oscillations about this position. -

In the Hartnell governor shown in Fig. 2.60, the stiffness of the spring is 10* N/m

and the weight of each ball is 25 N. The length of the ball arm is 20 cm and that
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FIGURE 2.56 FIGURE 2.57
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FIGURE 2.58

of the sleeve arm is 12 cm. The distance between the axis of rotation and the pivot
of the bell crank lever is 16 cm. The spring is compressed by 1 cm when the ball
arm is vertical. Find (a) the speed of the governor at which the ball arm remains
vertical, and (b) the natural frequency of vibration for small displacements about:
the vertical position of the ball arms,



FIGURE 2.59

2.31

2.32

2.34

2.35

Fry

PROBLEMS 169

N

TS
Q

gk—lZ cm—-;

b[:—A—16 cm

FIGURE 2.60 Hartnell governor.

A square platform PORS and a car that it is supporting have a combined mass of
M. The platform is suspended by four elastic wires from a fixed point O, as indicated
in Fig. 2.61. The vertical distance between the point of suspension O and the
horizontal equilibrium position of the platform is 4. If the side of the platform is a and
the stiffness of each wire is &, determine the period of vertical vibration of the platform.

The inclined manometer, shown in Fxg 2.62, is used to measure pressure. If the
total length of mercury in the tube is L, find an expression for the natural frequency
of oscillation of the mercury.: :

The crate, of mass 250 kg, hanging from a helicopter (shown in Fig. 2.63a) can be
modeled as shown in Fig. 2.63b. The rotor blades of the helicopter rotate at 300
rpm. Find the diameter of the steel cables so that the natural frequency of vibration
of the crate is at least twice the frequency of the rotor blades.

A pressure vessel head is supported by a set of steel cables of length 2 m as shown
in Fig. 2.64. The time period of axial vibration (in vertical direction) is found to
vary from 5 s to 4.0825 s when an additional mass of 5,000 kg is added to the
pressure vessel head. Determine the equivalent cross-sectional area of the cables and
the mass of the pressure vessel head. '

A flywheel is mounted on a vertical shaft, as shown in Fig. 2.65. The shaft has a
diameter d and length [ and is fixed at both ends. The flywheel has a weight of W
and a radius of gyration of r. Find the natural frequency of the longitudinal, the
transverse, and the torsional vibration of the system.
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A building frame is modeled by four identical steel columns, of weight w each, and
a rigid floor of weight W, as shown in Fig. 2.68. The columns are fixed at the ground
and have a bending rigidity of EI each. Determine the natural frequency of horizontal
vibration of the building frame by assuming the connection between the floor and
the columns to be (a) pivoted as shown in Fig. 2.68(a), and (b) fixed against rotation
as shown in Fig. 2.68(b). Include the effect of self weights of the columns.

2.39 A pick and place robot arm, shown in Fig. 2.69, carries an object weighing 10 1b.
Find the natural frequency of the robot arm in the axial direction for the following
data: ll = 12 in., 12 =10 in., l3 =8 in., EI = E2 = E3 = 107 pSi, DI = 2 in.,
D, = 1.5in,D; = lin, d; = 1.75in, d; = 1.25in,d3 = 0.75 in.

2.40 A helical spring of stiffness k is cut into two halves and a mass m is connected to

the two halves as shown in Fig. 2.70(a). The natural time period of this system is
found to be 0.5 sec. If an identical spring is cut so that one part is 1/4 and the other-
. part 3/4 of the original length, and the mass m is connected to the two parts as
shown in Fig. 2.70(b), what would be the natural period of the system?
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*The asterisk denotes a design problem or a problem with no unique answer.
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An electromagnet weighing 3000 1b is at rest while holding an automobile of weight
2000 1b in a junkyard. The electric current is turned off and the automobile is
dropped. Assuming that the crane and the supporting cable have an equivalent spring
constant of 10,000 1b/in, find the following: (a) the natural frequency of vibration
of the electromagnet; (b) the resulting motion of the electromagnet; and (c) the
maximum tension developed in the cable during the motion.

2.44  Derive the equation of motion of the system shown in Fig. 2.73 using the following
methods: (a) Newton's second law of motion, (b) D’ Alembert’s principle, (c) principle
of virtual work, and (d) principle of conservation of energy.

1 A b

¢ 2

v
7777777777777 7777, 77 7777
FIGURE 2.73

2.50

2.51

Draw the free-body diagrarx"l: and derive the equation of motion using Newton's
second law of motion for each of the systems shown in Figs. 2.74 and 2.75.

Derive the equation of motion using the principle of conservation of energy for each
of the systems shown in Figs. 2.74 and 2.75.

A steel beam of length 1 m carries a mass of 50 kg at its free end, as shown in Fig.
2.76. Find the natural frequency of transverse vibration of the mass by modeling it
as a single degree of freedom system.

A steel beam of length 1 m camries a mass of 50 kg at its free end, as shown in Fig.
2.77. Find the natural frequency of transverse vibration of the system by modeling
it as a single degree of freedom system.

A pulley 250 mm in diameter drives a second pulley 1000 mm in diameter by means
of a belt (see Fig. 2.78). The moment of inertia of the driven pulley is 0.2 kg-m?.
The belt connecting these pulleys is represented by two springs, each of stiffness k.
For what value of k will the natural frequency be 6 Hz?
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Derive an expression for the natural frequency of the simple pendulum shown in -
Fig. 1.11. Determine the period of oscillation of a simple pendulum having a mass
m = 5 kg and a length [ = 0.5 m.

A mass m is attached at the end of a bar of negligible mass and is made to vibrate
in three different configurations, as indicated in Fig. 2.79. Find the configuration °
corresponding to the highest natural frequency. '
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frequency of the system if kX = 2000 N/m, k, = 1000 N-m/rad, m = 10 kg, and

Il = 5m.

A cylinder of mass m and mass moment of inertia J, is free to roll without slipping
but is restrained by two springs of stiffnesses &, and k,, as shown in Fig. 2.85. Find

its natural frequency of vibration. Also find the value of a that maximizes the natural

frequency of vibration.

shown in Fig. 2.86. Also-find its natural frequency.

A uniform circular disc is pivotéd at point O, as shown in Fig. 2.87. Find the natural

If the pendulum of Problem 2.52 is placed in a rocket moving vertically with an
acceleration of 5 m/s?, what will be its period of oscillation?

Find the equation of motion of the uniform rigid bar OA of length ! and mass m




-8

- . S »,A:7\T/ /v 7.,~-- 7-,», \,7,,..»«7“4. " ;—7,4 /, ,7 / e 2 Ay gt N Bt Bt e a i ra i ia m .




N 3 :
. v o L. R T
. .
! .
. s k3 °
! .




g SRS






Xo - 14.2888 x, = 00700 %o
Ky

2 o
.4 overshoot = 7/,

NN

@ (i) (a) Viscous damping, (b) Coulomb damping.
< (i) (a) Tq = 0.2 see, f = 5 Hz, wy = 31.416 rad/sec.
(b) 7, = 0.2 sec, f, = 5 Hz, w, = 31.416 rad/sec.

() (2) —— =& """

Xjt+1

In]—| =In2 =0.6931 = ———==.8p
| [xi“] | Vi-¢ | 4?8

or 39.9590 ¢ =0.4804 or ¢ =0.1096

Since wy = wy \/v 1 — ¢, we find

o -
Wy == d — 31416 _ 31 6065 rad fsec
V1 - V0.98798
k = [ 500 ] (31. 6065)2 = 5.0916 (10*) N/m
- c B 2m w,

Hencec =2m w, ¢ =2 ( ) (31.6065) (0.1096) = 353.1164 N—s/m

(b) From Eq. (2.116):
500

k=mw = —— (31 416)? =5.0304 (10*) N/m
me X, - X
Using N = W = 500 N, e L
4
_ 0002k _ (0.002) (5.0304 (10%)) _ o 0o
4W 4 (500)

81 (a,) C.= 2 Jkm =2 JSOOOxEO = 1000 N.,/S/m

() c= C/2= s00 N -5/m

o, = o I35 = \,—v J—"(c _ J’?ooo ﬁ_(é)z'

= 8.6603 vad/sec |
€) From Ez.(g.gs), § = _2_13'_(_2.)= 2w (_5°°

Gy \ 2w 8.¢603 \ 1x 50
=3.627¢
@ m = 2000 1<9 » Vo= 920 = {0 m/sec_ > %= 40,000 N/m
C = 20,000 N-se¢/'m
79
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2.79 A shock absorber is to be designed to limit its overshoot to 15 percent of its initial
displacement when released. Find the damping ratio {; required. What will be the
overshoot if ¢ is made equal to (a) %{0, and (b) %{0? '
The free vibration response of an electric motor of weight 500 N mounted on different
types of foundations are shown in Figs. 2.91(a) and (b). Identify the following in
each case: (i) the nature of damping provided by the foundation; (ii) the spring
constant and damping coefficient of the foundation; and (iii) the undamped and
damped natural frequencies of the electric motor.
x(f),mm
A
8N
Tl 4
G U 2 ,
0 1 1 ] --?t\‘ ‘;t sec
1702 \03/ 04 N\t __ - >
0 Y UL
(a)
x(1), mm
4
B\--eee 6
~~~~~~~~~ 4
1 ] I I \F“/——— S
T \o17 02 \03/ 03 ~Z T fhsec
________ 0.5
(b)
FIGURE 2,91
281 Fora spring-mass-damper systefn, m = 50kg and k£ = 5000 N/m. Find the following:

(a) critical damping constant ¢,; (b) damped natural frequency when ¢ = c/2; and "’
(c) logarithmic decrement. _
A locomotive car of mass 2000 kg traveling at a velocity v = 10 m/sec is stopped .
at the end of tracks by a spring-damper system, as shown in Fig. 2.92. If the stiffness
of the spring is k = 40 N/mm and the damping constant is ¢ = 20 N-s/mm, determine -
(a) the maximum displacement of the car after engaging the springs and damper and
(b) the time taken to reach the maximum displacement.

A torsional pendulum has a natural frequency of 200 cycles/min when vibrating in :

. vacuum. The mass moment of inertia of the disc is 0.2 kg-m2. It is then immersed-

in oil and its natural frequency is found to be 180 cycles/min. Determine the damping .
constant. If the disc, when placed in oil, is given an initial displacement of 2°, find
its displacement at the end of the first cycle. '
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FIGURE 2.92

2.84 A boy riding a bicycle can be modeled as a spring-mass-damper system with an
equivalent weight, stiffness and damping constant of 800 N, 50000 N/m, and 1000
N-s/m, respectively. The differential setting of the concrete blocks on the road caused
the level surface to decrease suddenly as indicated in Fig. 2.93. If the speed of the
bicycle is 5 m/s (18 kmv/hr), determine the displacement of the boy in the vertical
direction. Assume that the bicycle is free of vertical vibration before encountering
the step change in the vertical displacement.

FIGURE 2.93

2.85 A wooden rectangular prism of weight 20 1b, height 3 ft. and cross section 1 ft. X
.2 ft. floats and remains vertical in a tub of oil. The frictional resistance of the oil
_ can be assumed to be equivalent to 2 viscous damping coefficient £ When the prism -
is depressed by a distance of 6 in. from its equilibrium and released, it is found to
reach a depth of 5.5 in. at the end of its first cycle of oscillation. Determine the
value of the damping coefficient of the oil.

A body vibrating with viscous damping makes five complete oscillations per second,
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Cylinder, mass m
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2.87*

2.88

2.89

2.90-
2.92

2.93-
2.95

2.96

2.98

2.99

x(t)

and in 50 cycles its amplitude diminishes to 10 percent. Determine the logarithmic
decrement and the damping ratio. In what proportion will the period of vibration be
decreased if damping is removed?

‘The maximum permissible recoil distance of a gun is specified as 0.5 m. If the initial
recoil velocity is to be between 8 m/sec and 10 m/sec, find the mass of the gun and
the spring stiffness of the recoil mechanism. Assume that a critically damped dashpot
is used in the recoil mechanism and the mass of the gun has to be at least 500 kg.

A viscously damped system has a stiffness of 5000 N/m, critical damping constant
of 0.2 N-s/mm, and a logarithmic decrement of 2.0. If the system is given an initial
velocity of 1 m/sec, determine the maximum displacement of the system.

Explain why an overdamped system never passes through the static equilibrium posi-
tion when it is given (a) an mmal displacement only and (b) an initial velocity only.

Derive the equation of motion and find the natural frequency of vibration of each
of the systems shown in Figs. 2.94 to 2.96.

Using the principle of virtual work, derive the equation of motion for each of the
systems shown in Figs. 2.94 to 2.96.

A wooden rectangular prism of cross section 40 cm X 60 cm, height 120 ¢m, and
mass 40 kg floats in a fluid, as shown in Fig. 2.90. When disturbed, it is observed
to vibrate freely with a natural period of 0.5 s. Determine the density of the fluid.

The system -shown in Flg 2.97 has a natural frequency of 5 Hz for the following
data: m = 10 kg, Jo = 5kg — m? r, = 10 cm, r, = 25 cm. When the system 1is
disturbed by giving it an initial dxsplacement, the amplitude of free vibration is
reduced by 80 percent in 10 cycles. Determine the values of k and ¢.

A single degree of freedom system consists of a mass of 20 kg and a spring of
stiffness 4000 N/m. The amplitudes of successive cycles are found to be 50, 45, 40,
35, . . . mm. Determine the nature and magnitude of the damping force and the
frequency of the damped vibration.

A mass of 20 kg slides back and forth on a dry surface due to the action of a spring
having a stiffness of 10 N/mm. After four complete cycles, the amplitude has been

x(t)

FIGURE 2.94
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ch of the

found to be 100 mm. What is the average coefficient of friction between the two

) cm. and . 4 C . surfaces if the original amplitude was 150 mm? How much time has elapsed during
’ o the four cycles? :

observed v : '
e fluid. S : 2.100 - A 10-kg mass is connected to a spring of stiffness 3000 N/m and is released after
. : giving an initial dlsplacement of 100 mm. Assummg that the mass moves on a

followmg ) : . horizontal surface, as shown in Fig. 2.33(a), determine the position at which the :
syst.em 18 . . .Inass ‘comes to rest. Assume the coefficient of friction between the mass and the
>ration 18 : 0 surface to be 0.12. :

. 2.101 A weight of 25 N is suspended from a spring that has a stiffness of 1000 N/m. The
spring of i : .  weight vibrates in the vertical direction under a constant damping force. When the
0, 45, 40, : : weight is initially pulled downward a distance of 10 cm from its static equilibrium
> and the : ' position and released, it comes to rest after exactly two complete cycles Find the ¥

magnitude of the damping force.
rhasspgézi 2.102 A mass of 20 kg is suspended from a spring of stiffness 10,000 N/m. The
a

vertical motion of the mass.is subject to Coulomb friction of magnitude 50 N.
If the spring is initially' displaced dowhward by 5 cm from its static equilibrium -,
position, determine (a) the number of half cycles elapsed before the mass comes
to -rest, (b) the time elapsed before the mass comes to rest and (c) the final

_ extension of the -spring:

i 2.103 - The Charpy 1mpact test is a dynamic test in. which a speélmen is struck and broken
T by a pendulum: (or hammer) and the energy absorbed in breaking the specimen is
measured. The energy values serve as a useful guide for comparing the impact
strengths of different materials. As shown in Fig. 2.98, the pendulum is suspended -
from a shaft, is released from a particular position, and is-allowed to fall and break . .
the spec1rnen If the pendulum is made . to oscillate freely (with no specimen), find e
(a) an expression for the decrease in the angle of swing for each cycle caused by o
friction, (b).the solution for §(¢) if the pendulum is released from an angle 6;, and '
(c) the number of cycles after which the motion ceases. Assume the mass of the -
pendulum as 7 and the coefficient of fl‘lCthn between the shaft and the bearing of L
the pendulum as ,u : R S J
!




Charles Augustin de Coulomb sure. In 1784, he obtained the cor-

ms only (1736-1806) was a French military rect solution to the problem of the
engineer-and physicist. His early " small oscillations of a body sub-
work on statics and mechanics was - jected to torsion. He is well known
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CHAPTER 3

Harmonically
Excited Vibration

3.1 Introductxon

A mechamcal or structural system is said to undergo forced vibration whenever
exterhal energy is supplied to the system during vibration. External energy. can be -
+ supplied to the system through either an applied force or an imposed displacement
. excitation. The applied force or displacement excitation may be harmonic, nonhar-
o . _ inonic but periodic, mnonperiodic, or random in nature. The response of a system to
a harmonic excitation is called harmonic response. The nonpenodlc excitation may -
have a long or short duration: The response of a dynamic system to suddenly applied
nonperiodic excitations is called transient résponse.
“Tii this chapter, we shall consider the dynamic response of a single degree of
ffreedorn system under harmonic exCitations of the form F(f) = Foe(“!+%) or F(1) .
f = F, cos(wt + @) or F(t) = Fysin(wt. + ¢), where Fy is the amplitude, w is
_the frequency, and ¢ is the phase angle of the harmonic excitation. The value of ¢
.depends on the value of F(¢) at £ =0 and is usually taken to be zeto. Under a harmonic
. ' _ _excitation, the response of 'the system will also be harmonic. If the frequency of
' excitation coincides with the natural frequency of the system, the response of the
" system will be very large. This condition, known as resonance, is to be avoided to
prevent failure of the system The vibration produced by an unbalanced rotating
machine, the oscillations of a tall chimney due to vortex shedding in a steady wind,

- 191
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3.2 Equation

HARMONICALLY EXCITED VIBRATION

" sum of the homogeneous solution, x,(#), and the particular solution, x,(r). The

and the vertical motion of an automobile on a sinusoidal road surface are examples
of harmonically excited vibration.

of Motion

. ! ’ o
If a force F(t) acts on a viscously damped spring-mass system as shown in Fig.
3.1, the equation of motion canbe obtained using Newton’s second law:

mE + ci + kx = F(1) (3.1)

Since this equation is nonhomogeneous, its general solution x(?) is given by the

homogeneous solution, which is the solution of the homogeneous equation
0

represents the free vibration of the system and was discussed in Chapter 2. As seen
in Section 2.6.2, this free vibration dies out with time under each of the three
possible conditions of damping (underdamping, critical damping, and overdamping)
and under all possible initial conditions. Thus the general solution of Eq. (3.1)
eventually reduces to the particular solution x,(D), which represents the steady-state
vibration. The steady-state motion is present as long as the forcing function is
present. The variations of homogeneous, particular, and general solutions with time
for a typical case are shown in Fig. 3.2. It can be seen that x,(f) dies out and x(f)
becomes_ x,(1) after some' time (7 in Fig. 3.2). The part of the motion that dies out
due to damping (the free vibration part) is called transient. The rate at which the
transient motion decays depends on the values of the system parameters k, ¢, and
m. In this chapter, except in Section 3.3, we ignore the transient motion and derive
only the particular solution of Eq. (3.1), which represents the steady-state response,
under harmonic forcing functions. '

mg + ci o+ kx = . (3.2)

F(5)

FQ)
(2)
_FIGURE 3.1 A spring-mass-damper sysiem.

-

(b) Free-body diagram
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xamples (1)
0
) ; [l(\r)
. in Fig. A
. P S O
(3.1 ,
1 by the B X(() = xh({) + Xp([)
t). Th ’
® e o
!
(3.2)
As seen FIGURE 3.2 Homogenous particular, and general solutions
he three " of Eq. (3.1) for an underdamped case.
‘amping)
iq. 3.1 ‘
dy-state 3 ) .
ction is 3.3 Response of an Undamped System under Harmonic Force
‘ith time Before studying the response of a damped system, we consider an undamped system
and x(t) subjected to a harmonic force, for the sake of simplicity. If a force F(f) = F, cos wt
dies out acts on the mass m of an undamped system, the equation of motion, Eq. (3.1),
hich the reduces to
5, C,-and o - ,
dderi\gé mi + kx = Fgcos wt ' L (3.3)
zsponse; .
S The homogeneous solution of this equation is gwen by
xh(t) = Cl Cos w,t + C; sin w,t - (3.4)

where w, = (k/m)¥? is the natural frequency of the system Because the exciting
force F(r) is harmonic, the particular solution x x,(t) is also harmonic and has the -
same frequency w. Thus we assume a solution in the form

xp(t) = X cos wt (3.5)

where X is a constant that denotes the maximum arnphtude of x,(#). By substltutmg
Eq. (3.5) into Eq. (3 3) and solving for X, we obtam

Spaciao it

s Fq
| X % — ma? " (3.6)
Thus the total solvution of Eq. (3.3) is
’ . B R o .FO .
x(t) = C, cos a{,.,t + Cysin w,t + ——-——3C0s ot (3.7)

kfmw
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Indersg |||
IndeI'St . Using the’ in'}tial conditions x(t = 0) = xp and % (¢t = 0) = Xo, W€ find that

Fo c, =2 (3.8)

CC o= xg —
! ° k- mw*’ 2w,

and hence

Fy, % o
x(f) = (xo - Snw2> COS Wyt + (f) Sin Wut
n

+ < Fo 2) cos wt _ (3.9)

k - mw

The maximum amplitude X in Eq. (3.6) can also be expressed as

X 1 - .
3 = 5 (3.10)
st w
a)n
where 8, = Fo/k denotes the deflection of the mass under ‘a force Fo and is
sometimes called ““static deflection” since Fy is a constant (static) force. The quantity
X/8,, represents the ratio of the dynamic to the static amplitude of motion and 1is
called the magnification factor, amplification factor, ot amplitude ratio. The variation

of the ampl'itude ratio, X/8,, with the frequency ratio r = w/w, (Eq. 3.10) is shown
in Fig. 3.3. From this figure, the response of the system can be identified to be of

. three types.

Case 1. When 0 < w/w, < 1, the denominator in !Eq. (3.10) is ﬁositive and the
response is given by Eq. (3.3) without change. The harmonic response of the system
xp(t) 18 said to be in phase with the external force as shown in Fig. 3.4.

Case 2. When o/w, > 1, the denominator in Eq. (3.10) is negative, and the steady-
state solution can be expressed as '
xp () = — X cos wt : . (3.11)

where the amplitude of motion X is redefined to be a positive quantity as

X = S . ©(3.12)-

(&)

The variations of F(t) and xé(t) with time are shown in Fig. 3.5. Since ip(t) and
F(i) have opposite signs, the response is said to be 180° out of phase with the
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FIGURE 3.3

external force. Further, as w/w, — ©, X — 0. Thus the response of the system to
a harmonic force of very hlgh frequency is close to zero.

Case 3. Wherr w/w, = 1, the amphtude X given by Eq 3. 10) or (3.12) becomes
infinite. This condition, for which the forcing frequency w is equal to the natural -

frequency of the system w,, is called resonance. To find the response for thls
condition, we rewrite Eq.: (3 9) as .

Xg . . cos wt — cos w,t | ’
x(t) = xo cos w,t + =Lsin w,t + 5, ~ 1 (3.13)

L)
T\,
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F(t) = Fycos wt

HARMONICALLY EXCITED VIBRATION

F/ Y = F, cos wt
3

x )y = —Xcos wt

/N

FICURE 3.4

3.3.1 ,
Total Response

, L/,
-X

FIGURE 3.5

Since the last term of this equation takes an indefinite form for @ = w,, we apply
L’Hospital’s rule [3.1] to evaluate the limit of this term:

—

d -
_ —(cos wt — oS w,t)
CO$ Wt — COS Wyt dw

- (2)

lim

= W w, d 2\
| £(-%)

lim
w- Wy,

. ! sin wt
lim | —=1| =
W W, w 2
L wn

Thus the response of the system at resonance becomes

il

St

(3.15)

x(t) = xg co0s wyt + “Osin w,t + sin wpt
w

n

It can be seen from Eq. (3.15) that at resonance, x(f) increases indefinitely. The last
term of Eq. (3.15) is shown in Fig. 3.6, from which the amplitude of the response
can be seen to increase linearly with time.

The total response of the system, Eq. (3.7) or Eq. (3.9), can also be expressed as

x(t) = Acos(w,t — ¢) + ————qs—‘——icos wt; for 2 < 1(3.16)
. ‘ 1 - (..01)_ . Wn
Wy
» ; 5st w .
x() = A cos (w,t — ¢) — ————5C0s Wi, for ;—> 1(3.17)

n

- (2)
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3.3.2
Beating
Phenomenon

3.3 RESPONSE OF AN UNDAMPED SYSTEM UNDER HARMONIC FORCE 157

x,(0) lr -7

-

-
P
_
-
- .
-
/\ R
i
A !
-
~ .

=2 \\\ .

=21 -

ml!

~ .
\\\
\\
~e
N ~
\\

~
~

P
~
It
]

© FIGURE 3.6

where A and @ can be determined as in the case of Eq. (2.21). Thus the complete
motion can be expressed as the sum of two cosine curves of different frequencies.
In Eq. (3.16), the forcing frequency o is smaller than the natural frequency, and
the total response is shown in Fig. 3.7(a). In Eq. (3.17), the forcing frequency is

greater than the natural frequency, and the total response appears as shown in
Fig. 3.7(b). ‘ -

If the forcing frequency is close to, but not exactly equal to, the natural frequency
of the system, a phenomenon known as beating may occur. In this kind of vibration,
the amplitude builds up and then diminishes in a regular pattern. The phenomenon
of beating can be explained by considering the solution given by Eq. (3.9). If the

“initial conditions are taken as Xp = % = 0, Eq. (3.9) reduces to .

_ (Fo/m) U
x(t) = o wz(cos wt ‘ cos a),,.t)
_ (Folm) '. wtw, o w—-w " -
= ——-——w’zl 3 2 sin — £ sin - 7t (3.18)

Let the forcing freqpency w be slightly less than the hatﬁral fréqu;:ncy: ‘
- w, — w = 2¢ o ' (3.19)
where ¢ is a small positive quantity. Then w, ~ w and o
| | 0+ o, =20 - A(3.2“Q)
Multiplication of Egs. (3.19) and (3.20) gives ' |
. 4 5

wp ~ 0 = dsw ‘(3.21)



(3.22)

, 1s large.
w and-of

TR
EXAMPLE 3.1
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w

FICURE 3.8

or‘ the points of maximum amplitude is called the period of beating (7,) and is gi\‘/en
by . ' '

2m 2 '
Ty = oo o~ o (3.23)
_ with the frequency of beating defined as
=72 = @, - W

Plate Supporting a Pump

FIGURE 3.9

A rfeciprocating pump, wcxghmg 150 1b, is mounted at the mlddle ofa steel plate of thickness
0.5 in., width 20 in., and length 100 in., clamped along two edges as shown in Fig. 3.9.
During operation of the pump, the plate is subjected to a harmonic force, F(1) = 50 cos
62.832 ¢ Ib. Find the amplitude of vibration of the plate.

0.5in. - ' , '\

NN
—
N

| F(), x() _
L 100 in. |
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Given: Pump weight = 150 lb;, plate dimensions: thickness (1) = 0.5 in., width {w) = 20
in., and length (/) = 100 in.; and harmonic force: F(t) = 50 cos 62.832 t lb.

Find: Amplicude of vibration of the plate,\X.

Approach: Find the stiffness of the plate by modelmn it as a clamped beam. Use the equation
for the response under harmonic excitation. :

Solution: The plate can be modeled as é fixed-fixed beam having Young’s modulus (E) =

30 X 106 psi, length ({) = 100 in, and area moment of mema ) = —L(ZO)(O 59 =
0.2083 in*. The bendma stiffness of the beam is given by

1921 _ 192(30°X_10)(0.2083)
B (100)% -

The amplitude of harmomc response is given by Eq. (3.6) with Fy = - 50 1b, m = 150/386.4
1b-sec?/in. (neglecting the weight of the steel plate), k = 1200 0 lb/in., and & = 62.832 rad/
séc. Thus Eq. (3.6) gives

Fo - : . 50 -
k — mw?*  1200.0 --(150/386.4)(62.832)*

k =

= 1200.0 1b/in. (E.1)

-0.1504 in.  (B.2)

X:

The negativé sign indicates that the responsé x(1) of the plate is out of phase with the
excitation F(r). : S a

3.4 Response of a Damped System under Harmonic Force
If the forcing function is given by F(r) = Fy.cos wt, 'thelequation of motion becomes
= miX + cx + kx = Fo cos wt . : (3.24)

The particular solution of Eq. (3. 24) is also expected to be harmomc we assume
. it'in the form!

%, (1) = X cos (wt - ¢) . (3.25_)

where X and ¢ are constants to-be determined. X and ¢ denote the amplitude and
phase angle of the response, respectively. By subsntutmg Eq. (3.25) into Eq. (3.24),
we arrive at

X[(k — mwz)cos(wt - ¢) - cw sm(wt - ng)]

" Fg cos ot (3.26)

Using the trigonometric relations

cos(wt — ¢) cos Wt cos ¢'+ sin wt sin ¢

sin(wt — ¢)

il

sin wt cos ¢ — cos wtsin ¢ -

‘Altemauvely. we can assume X,(t) to be of the form xp(t) = Ccos wt + C sin ot whxch alsoinvolves
two constants Cy and C,. But the final result will be the same in both the cases.
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w) = 20 . . e . .
in Eq. (3.26) and equating the coefficients of cos ot and sin wt on both sides of the
resulting equation, we obtain
‘ X[(k — mw?)cos ¢ + cw sin gb] = Fy
_ : : X[k - mw?)sin ¢ — cw cos g| =0 (3.27)
- equation W , ) :
Solution of Eqgs. (3.27) gives
_ R |
us (E) = X = 20 5 1172 (3.28)
- 2
(0.5 = [k mw) + cto ]
‘and.
(E.D) _ ;1 ' cw : s
| ’ ¢ = tan~ <k - mw2> | E (3.29)
50/386.4 o , ‘ . .
832 rad/ By inserting the expressions of X and ¢ from Eqgs. (3.28) and (3.29) into Eq. (3.25)
- we obtain the particular solution of Eq. (3.24). Figure 3.10 shows typical plots of
' ~ the forcing function and (steady-state) response. Dividing both the numerator and
(E.2) denominator of Eq. (3.28) by k and making the following substitutions
with the w, = k. undamped natural frequency,
.8 m .
c c C c
= — = = - ;T = 2 n
. ¢ ¢, 2mw, 2Vmk m fw
»ecomes: St = % = deflection under-the static force Fy, and
(3.24)
=2 = fre uency ratio
" assume 4 Wy d
(3.25) F(1), xp(0) 4
ude and
l- (3.24),
£ (3.26)
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we obtain

1

}1/2 \/(T__ r?.)?. + (2;,,)2

(3.30)

¢ = tan-!

Wn

As stated in Section 3.3, the quantity M = XI5, is called the magnification factor,
amplification factor, ot amplitude ratio. The variations of X/8, and ¢ with the
frequency ratio  and the damping ratio { are shown in Fig. 3.11L.

The following characteristics of the magnification factor (M ) can be noted from
Eq. (3.30) and Fig. 3.11(a): -

1. For an undamped system ({ = 0), Eq. (3.30) reduces to Eq. (3.10), and
M- oasr— L

- Phase angle: ¢

L
— ¢ =0.5
t =025
¢ =0.05
t=0.00
. A
0 0.5 / 10 15 20 25 3
. =100 o
Frequency ratio: r = m% ‘ Frequency ratio: "=Z>(£,

) | ()

o -
e O N

Amplitude ratio: M

o
a -

FIGURE 3.11 Variation of X and ¢ with frequency ratio ~
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2. Any amount of damping (£ > 0) reduces the magnification factor (M ) for alj
values of the forcing frequency.

T——————— o ' - 3. For any specified value of %, a higher value of damping reduces the value
+ (24n) - of M. :
' ! : 4. In the degenerate case of a constant force (when r = 0), the value of M = 1.
(3.30) T 5. The reduction in M in the presence of damping is very significant at or neap
resonance. ' : , '
6. The amplitude of forced vibration becomes smaller with increasin

A g values of
the forcing frequency (that is,M—>0asr— 0a), ‘

- For0< /< % the maximum value of j¢ occurs when (see Problem 3.19)

r=V1-22 o o=, V1-202 (332

“which can be seen to be lower than the undamped natural frequency w, and the
damped natural frequency wy; = w, V1 - &

8. The maximum value of X (when r = V] - 2{%) is given by

(3.31) e 7

cation factor,
i ¢ with the

e noted from

X> : 1 :
: ree e 3.33
(3.10), and '<6sc max 2{V1 ~ 2 633
and the value of X at w = w, by o
= 0.0 <6£> = 21[ - (3.34)
. st w=a, )

Teme
5

Equation (3.33) can be used for the experimental determination of the measure
of damping present in the system. In a vibration test, if the maximum amplitude
of the response (X)max 1s measured, the damping ratio of -the system can be -
found using Eq. (3.33). Conversely, if the amount of damping is known, one
can make an estimate of the maximum amplitude of vibration.

9. For ¢ = \/Li (i,if = 0 when r = 0. For (> -\-}—i the graph omeonotonically

decreases with increasing values of r

The folldwing characteristics of the phase angle can be observed from Eq. (3.31)
and Fig. 3.11(b): ‘ ‘

1. For an undamped system (¢ = 0), Eq. (3.31) shows that the phase angle is 0 - .

- forO<r<1and180°for r > 1. This implies that the excitation and response
are in phase for 0 < r < 1 and out of phase for > 1 when ¢ = 0.

2.For{>0and 0 <r<1, the phase angle is given by 0 < ¢ < 90°,-implying
that the response lags the excitation. _ :

3. For {>0and r> 1, the phase angle is given by 90° < ¢ < 180°, implying that
the response leads the excitation, _ o

4. For {>0and r = 1, the-phase angle is given by ¢ = 90°, implying that the
phase difference between: the excitation and the response is 90°.
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5. For ¢ > 0 and large values of 7 the phase angle approaches 180°, implying that
the response and the excitation are out of phase.

S

3.4.1 The complete solution is given by x(t) = x4(1) + x,(2) where x,(f) is given by Eq.
Total Response (2.64). Thus .
x(t) = Xoe‘f“’n‘ cos(wgt = ¢p) + X cos(wt — &) (3.35)
where |

wg= V1= o, o (3.36)

=2 S (3.37)

X and ¢ are given by Egs. (3.30) and (3.31), respectively, and X, and ¢ can be
determined from the initial conditions. _ :

34.2 For small values of damping (¢ < 0.05), we can take
Quality Factor and ,
Bandwidth ' < X ) ( X > 1 ' ~
2} == = == 3.38
| B I ) T (38

The value of the amplitude ratio at resonance is also called Q factor or quality

" factor of the system, in analogy with’ some electrical-engineering applications,
‘such as the tuning circuit of a radio, where the interest lies in an amplitude at
resonance that is as large as possible [3.2). The points Ry and R,, where the |
amplification factor.falls to 0/V?, are called half power points because the
power absorbed (AW) by the damper (or by the resistor in an electrical circuit),
responding harmonically at a given frequency, is proportional to the square of
the amplitude (see Eq. 2.94):

AW = mcwX? ' (3.39)

The difference between the frequencies associated with the half power points R;
and R, is called the bandwidth of the system (see Fig. 3.12). To find the values of
R, and Ry, we set X/8, = Q/V2:in Eq. (3.30) so that

1 _ 0 1

VA - PRt @i VI 2Vag

or A | |
| Tt —.r2(2.-— 4{2)'__1_ (1 - 8{2).= 0 (340)
" The solution of Bq. (3.40) gives - ' : : :

Ae1-2p-VIF B A=l-20+uVIE D (34D
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Pressure 3.13 How does the force transmitted to the base change as the speed of the machine
increases?
gchanics, N oo 3.14 If a vehicle vibrates badly while moving on a uniformly bumpy road, will'a change
o _ , in the speed improve the condition? ‘
Americaa Ng ' 3.15 Is it possible to find the maximum amplitude of a damped forced vibration for any
' value of r by equating the energy dissipated by damping to the work done by the
976. _external force? ' ]
ystem to 3.16 What assumptions are made about the motion of a forced vibration with nonviscous
L. 11, no. damping in finding the amplitude? . .
friction.” 3.17 Is it possible to find the approximate value of the amplitude of a damped forced
riction, vibration without considering damping at all? If so, under what circumstances?
mping in 3.18 Is dry friction effective in limiting the reasonant amplitude?
5, Str: S5, : . o ‘ 3.19 How do you find the résponse of a viscously damped system unde; rotating unbélance’?
3,20 What is the frequency of the response of a viscously damped system when the external
~force is Fy sin w? Is this response harmonic? :
3.21 What is the difference between the peak amplitude and the resonant émplitude?
), Wiley, , - : . 3.22 Why is viscous damping used in most cases rather than other types of damping?
' ’ 3.23 .What is self-excited vibration? :
, Problems - _ I
1to those . " The broblem assignments are orginized as follows:
ady-state * : o S
Problems . Section Covered .~ Topic Covered” ‘ A
ed to the - ' . ' ' 3.1-316 : S 33 L Undamped systems Ty ey s
3.17-3.32 . . 3.4 ‘ Damped systems :
requency 3.33-3.41 . 36 . . Base excitation
d 4 3.42-3.52 o 3.7 : ’ " Rotating unbalance 7.
ampe 3.53-3.55 . 3.8 . Response under Coulomb damping
d svst 3.56-3.57 © 39 . _ Response under hysteresis damping
system 3.58-3.61 o . 310 . Response under other types of damping
ca ?' ) 3.62-3.65 R 311 ] - Sqlf excitation and stability '
d ses” 3.66-3.6% L3120 ) Computer program -
system 3.70-3.71 T — - Projects
§ . ) L A weight of SON is suspended from a spring of stiffness 4000 N/m and is subjected to
\:;uadr atic ‘ S a harmonic force of amplitude 60 N and frequency 6 Hz. Find (a) the extension of the
& . spring due to the suspended weight, (b) the static displacement of the spring due to the ‘
plo 1 for o - maximum applied force, and-(c) the amplitude of forced motion of the weight.
h th A spring-mass system is subjected to a harmonic force whose frequency is close to
ith the

the natural freqden’cy of the system. If the forcing frequency is 39.8 Hz and the natural
frequency is 40.0 Hz, determine the period of beating. :

R S PP
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33

34

.35

3.6

~that¢ =

- A spring-mass system consists of a mass weighing 100 N and a spring with a stiffness

of 2000 N/m. The mass is subjected to resonance by a harmonic force F(t)
25 cos wt N. Find the amphtude of the forced motion at the end of (3) 4 cyclc
(b) 23 cycles, and (c) 5 2 cycles. :
A mass m is suspended from a spring of stiffness 4000 N/m and is subjected to a
harmonic force having an amplitude of 100 N and a frequency of 5 Hz. The amplitude
of the forced motion of the mass is observed to be 20 mm. Find the value of m.

A spring-mass system with m = 10 kg and k = 5000 N/m is subjected to a harmonic
force of amplitude 250 N and frequency . If the maximum amphtude of the mass
is observed to be 100 mm, find the value of w.

In Fig. 3.1(a), a periodic force F(t) = Fy cos wt is applied at a point on the spring
that is located at a distance of 25 percent of its length from the fixed support. Assuming
0, find the steady-state response of the mass m.

An airéraft enginc-ﬁas a rotating unbalanced mass m at radius r. If the wing can be

_ modeled as a cantilever beam of uniform cross section a X b, as shown in Fig.
. 3.34(b), determine the maximum deflection of the wing at an engine speed of NV rpm.

Assume damping to be negligible.

FIGURE 3.34 .
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3.8 A three-bladed wind turbine (Fig. 3.35a) has a small unbalanced mass m located at
a radius ~ in the plane of the blades. The blades are located from the central vertical .
(y) axis at a distance R and rotate at an angular velocity of w. If the supporting truss
can be modeled as a hollow steel shaft of outer diameter 0.1 m and inner diameter
0.08 m, determine the maximum stresses developed at the base of the support (point
A). The mass moment of inertia of the turbine system about the vertical (y) axis is
Jo. Assume R = 0.5 m, m = 0.1 kg, r = 0.I'm, Jo = 100 kg-m2, A = 8 m, and w
= 31.416 rad/sec. :

3.9  An electromagnetic fatigue testing machine is shown in Fig. 3.36 in which an alternat-
ing force is applied to the specimen by passing an alternating current of frequency f -
through the armature. If the weight of the armature is 40 1b, the stiffness of the spring
(k;) is 10,217.0296 Ib/in and the stiffness of the steel.speci_meh is 75 X 10? lb/in,
deterrine the frequency of the a.c. current that induces a stress in the specimen that
is twice the amount-generated by the magnets. ~ :

_* 310 The spring actuator shown in Fig. 3.37 operates by using the air pressure from
a pneumatic controller (p) as input and providing an output displacement to ‘a
“valve (x) proportional to the input air pressure. The diaphragm, made of a fabric- -
base rubber, has an area A and deflects under the input air pressure against-a
spring of stiffness k. Find the response of the valve under a Harmonically fluctuating
input air pressure p(f) = po sin wt for the following data: po = 10 psi, = 8
rad/s, A = 100 in?% k = 400 Ib/in, weight of spring = 15 b, and weight of -
‘valve and valve rod = 20 lb. :

77777 777V 777777777

(vy
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Pushrod (A, E, [),
spring constant = k = 575—

FIGURE 3.38

In the cam-follower system shown in Fig. 3.38, the rotation of the cam imparts a vertical
motion to the follower. The pushrod, which acts as a spring, has been compressed by
an amount xo before assembly. Determine the following: (a) equation of motion of
the follower, including the gravitational force; (b) force exerted on the follower. by
the cam; and (c) conditions under which the follower loses contact with the cam.

De51gn a solid steel shaft supported in bearings which carries the rotor ofa turbme
at the middle. The Totor weighs SO0 1b and delivers a power of 200 hp at 3000 rpm.

“In order to keep thé stress due to the unbalance in the rotor-small, the critical speed

of the shaft is to be made one-fifth of the operating speed of the totor. The length of
the shaft is to be made equal to at least 30 times its diameter.

- A hollow steel shaft, of length 100 in., outer diameter 4'in. and inner diameter 3.5

in., carties the rotor of a turbine, weighing 500 1b, at the middle and is supported at -
the ends in bearings. The clearance between the rotor and the stator is 0.5 in. The

" rotor has an eccentricity equivalent to a weight of 0. 5 1b at a radius of 2 in. A limit’

switch is installed to stop the rotor whenever the rotor touches the stator. If the rotor
operates at resonance, how long will it take to activate the limit switch? Assume the
initial displacement and velocity of the rotor perpendicular to the shaft to be zero.

A steel cantilever beam, carrymv a weight of 0.1'1b at the free end, is used as a

i frequcncy meter.5 The beamn has a length of 10 in., width of 0.2 in., and thickness of

*The astensk denotes a demgn type problem or a problem with no unique- answer.
6The use of cantilever beams as ﬁequency meters is discussed in detail in Sect\on 10. 4
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3.

ivalent to a damping ratio of 0.01. When the fixed
¢ displacement y(f) = 0.05 cos wt, the
d to be 2.5 in. Find the forcing frequency.

0.05 in. The internal friction is equ
end of the beam is subjected to a harmoni
maximum tip displacement has been observe
motion and find the steady-state response of the system shown
tion about the hinge O for the following data: k; = k;
50 kg, m = 10 kg, Fp = 500

15 Derive the equation of
in Fig. 3.39 for rotational mo
= 5000 Nfm, ¢ = 025m, b = 05 m, [=1mM=

N, @ = 1000 rpm.

F(t)=Fy sin wt

~ Uniform rigid bar,mass m k, .
\'\._Le . .

o

|
i e :
— |
b - 1 : '
| .

FIGURE 3.39

find the steady-state solution of the system shown

3.16 Derive the equation of motion and
in Fig. 3.40 for.rotational motion about the hinge O for the following data: k = 5000

N/m, [ = 1 m, m = 10 kg, My = 100 N-m, v = 1000 rpm.
, Uniform rigid bar‘,
M cos ut _/,/ mass m .Sk
¥ CH V. {

4
Ra=== g s
s

- 0] /
77

L 3t

i 4

—

1

R

FIGURE 3.40

e is to be supported on three shock mounts, as
block assemnbly weighs 500 1b. If the unbalanced
y 200 sin 100 7 ¢ 1b, design the three shock -
damping constant c) such that the amplitude

317 A four-cylinder automobile engin
indicated in Fig. 3.41. The engine
force generated by the engine is given b
mounts (each of stiffness k and viscous
of vibration is less than 0.1 in. .

3.18 The propeller of a ship, of weight 10° N and polar mass moment of inertia 10,000

' kg-m?, is connected to the engine through a hollow stepped steel propeller shaft, as
shown in Fig. 3.42. Assuming that water provides a viscous damping ratio of 0.1,
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the fixed
8 wt, the
requency.
xm shown
- kl = kz
Fo = 500
:m shown
k = 5000
' FIGURE 3.41
determine the torsional vibratory response of the propeller when the engine induces
a harmonic angular displacement of 0.05 sin 314.16 ¢ rad at the base (point A) of the
-propeller shaft. . : C
3.19 Find the frequency ratio r = wlw, at which the amplitude of a single degree of
freedom damped system attains the maximum value. Also find the value of the
maximum amplitude. i ‘ _
3.20 Figure 3.43 shows a permanent-magnet moving coil ammeter. When current (I) flows
through the coil wound on the core, the core rotates by an angle proportional to the
. magnitude of the current that is indicated by the pointer on a scale. The core, with
1%ur11ts, a; the coil, has a mass moment of inertia Jy, the torsional spring constant of k,, and the
abalance :

torsional damper has a damping constant of ¢,. The scale of the ammeter is calibrated
such that when a d.c. current of magnitude 1 ampere is passed through the coil, the
pointer indicates a current of 1 ampere. The meter has to be recalibrated for measuring
the magnitude of a.c. current. Determine the steady-state value of the current indicated
by the pointer when an a.c. current of magnitude 5 amperes and frequency 50 Hz is
passed through the coil. Assume J; = 0.001 N-m?, k, = 62.5 N-m/rad and ¢, = 0.5
N-m-s/rad. '
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3.21 A spring-mass-damper system is subjected to a harmonic force. The amplitude is
' found to be 20 mm at resonance and 10 mm at a frequency 0.75 times the resonant
+ frequency. Find the damping ratio of the system.

3.22 For the system shown in Fig. 3.44, x and y dénote, respectively, the absolute displace-
ments of the mass m and the end Q of the dashpot ¢,. (a) Derive the equation of
motion of the mass m, (b) find the steady state displacement of the mass m, and (¢}
find the force transmitted to the support at P, when the end Q is subjected to the
harmonic motion y(f) = Y cos wt. :

7 .
2 fi[ S g x(¢) y(f) = Y cos wt
- {_r ; ' € l——’
/———-J\N\NW-'—
7
L, //////////////////////// A/
FIGURE 3.44

s

3.23 Show that, for small values of damping, the damping ratio { can be expressed as

L Wy T Wy

Wy + wy
where @, and o, are the frequencies corresponding to the half power points.

a7t 324 A torsional system consists of a disc of mass moment of inertia Jo = 10 kg-m?, a
4 - torsional damper of damping constant ¢, = 300 N-m-s/rad, and a steel shaft of diameter .
4 cm and length 1 m (fixed at one end and attached to the disc at the other end). A
steady angular oscillation of amplitude 2° is observed when a harmonic torque of
magnitude 1000 N-m is applied to the disc. (2) Find the frequency of the applxed
torque, and’ {b) fmd the maximum torque transmitted to the support.

Ciemscn F2 . 3.25 For a vibrating system, m = 10 kg, k = 2500 N/m, and ¢ = 45 N-s/m. A harmonic
' force of amplitude 180 N and frequency 3.5 Hz acts on the mass. If the initial
‘displacement and velocity of the mass are 15 mm and 5 m/s, find the complete solution

representing the motion of the mass. '

)

.. 2 326 Thepeak amplitude of a single degree of freedom system, under a harmonic excitation,
e is observed to be 0.2 in. If the undamped natural frequency of the system is 5 Hz,
and the static deflection of the mass under the maximum force is 0.1 in., (a) estimate
the damping ratio of the system, and (b) find the frequencies corresponding to the

amplitudes at half power.

© 3.27 The landing gear of an aifplane can be idealized as the spring-mass-damper system
" shown in Fig. 3.45. If the runway surface is described y(t) = yp cos w t, determine
the values of k and ¢ that limit the amplitude of vibration of the alrplane (x) to

0.1 m. Assume m = 2000 kg, yo = 0.2 m and w = 157.08 rad/s.

3.28 A precision grinding machine (Fig. 3. 46) is supported on an isolator that has a stiffness
- of 1 MN/mi and a viscous damping constant of 1 kN-s/m. The floor on which the
machine is mounted is subjeéted to a harmonic disturbance due to the operation of

an unbalanced engine in the vicinity of the grinding machine. Find the maximum
" acceptable displacement amplitude of the floor if the resulting amplitude of vibration
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Wheel —|! |

Housing with
strut and
viscous damping
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Grinding—
machine
‘ - y(t)=Y sin wt
Isolator —»% . “J‘f" : % I =Y sin 20nim
77777 77 7777 77T .

Floor

FIGURE 3.46
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- machine "\( 9 T o l _ . ;
__.)_l._. $ D i
| » .

e
:m shown 10 :
. ~ :

¢ = 5000 l I { [

rpm. g™ Ty T 2 _ ;
has been : . :

Tpressor, FIGURE 3.47 : FIGURE 3.48

300 rpm.

;‘ollowing ) _ _

xm, Jo = ) 3.33 A single story building frame is subjected to a harmonic ground acceleration as shown i
. in Fig. 3.50. Find the steady-state motion of the floor (mass m). . . *L
:_iicated in - 334 Find the horizontal displacement of the floor (mass m) of the building frame shown ;
. steady- :

in Fig. 3.50 when the ground acceleration is given by £, = 100 sin wr mm/sec, i
Assume m = 2000 kg, k = 0.1 MN/m, = 25 rad/sec, and xg(t =0 =x(= '

0) = x(t =_0) =x(t=0)=0



rotating in
shaker over
c to sarisfy
10uld be at
itiont of the
) should be

k shown in
. The stress
i, which is
:arthquake)
:ncy of the
1.15 for the

Jean Baptiste Joseph Fourier

P p
(1768~1830) was a French mathe-
matician and a professor at the

are well known. The expansion of
a periodic function in terms of har-
monic functions has been named

Ecole Polytechnique in Paris. His
works on heat flow, published in
1822, and on trigonometric series

after him as the “Fourier series.”
(Reprinted with permission from
Applied Mechanics Reviews).

| CHAPTER 4

Conditions

Vibration Under
. General Forcing

B

13 4.1 Introduction

The response of a single degree of freedom system under general, nonharmonic,
forcing functions is considered in this chapter. A general forcing function may be
periodic (nonharmonic) or nonperiodic. A nonperiodic forcing function may be
acting for a short, long, or infinite duration. If the duration of the forcing function
or excitation is small compared to the natural time period of the system, the forcing
function or excitation is called a shock. The motion imparted by a cam to the

follower, the vibration felt by an instrument when its package is dropped from a

height, the force applied to the foundation of a forging press, the motion of an
automobile when it hits a pothole, and the ground vibration o

fa building frame
during an earthquake are examples of general forcing functions

If the forcing function is periodic but not harmonic, it can be replaced by a

sum of harmonic functions using the harmonic analysis procedure discussed in

Section 1.11. Using the principle of superposition, the response of the system can
- then be determined by superposing the responses due to the individual harmonic
forcing functions. On the other hand, if the system is subjected to a suddenly

263
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the response will involve transient vibration. The transient

applied nonperiodic force,
be found by using what is known as the convolution

response of a system can
integral.

4.2 Response Under a General Periodic Force
© "~ \When the external force F(f) is periodic with period 7= 27/w, it can be expanded
in a Fourier series (see Section 1.1

HORES * gll.ajcqs jot + 121 b;sin jot (4.1
where :
2(7 ., o .
aj = .7:,[0 F(t) c0S _][l)t 4[‘, J = 01 ]_, 2’ . (42)
and : :
2(7 o .
b = ;JOF(O st@ d, j=141L2,... | (4.3)

The equation of motion of the system can be expressed as
N . a > . ad o
mi + cx .+ kx = F(t) = —29 + 2 a;jcos jwt + 2 bjsin-jwt (4.4)
- Coj=1 j=1
The right-hand side of this equation is a constant plus a sum of harmonic functions.

Using the principle of superposition, the steady-state solution of Eq. (4.4) is the
sum of the steady-state solutions of the following equations: - :

mi + cx +"_kx = a-29 ' - .(4.5) o

mi + cx + kx = a;cos jwt ’ (4.6)

: o mi + cx + kx = bjsin jot - (4.7)
Noting that the solution of Eq. (4.5) is given by

' a

%) = 54 N R

and using the results of Section 3.4, we can express the solutions of Egs. (4.6) and
(4.7), respectively, as ’

xp(t) = ‘ - (aj/k) COS(j[JJt - ¢j)
\/; - ey e )
: (bjlk)

Cox(t) = . sin(jot = &)
‘ | \ﬂl - e



s transient
nvolution

expanded

(4.1)

(4.2)

4) isthe
@5)
(4.6).

(4.7).!

(4.8

(4 6) ahd '

- It can be seen from the solution, E

.included to find the complete solution. To find the complete solution,
- evaluate the arbitrary constants by setting the Vvalue of the complete s

EXAMPLE 4.1
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where .
¢; = tan-! (%) (4.11)
and |
r=2 (4.12)
- : _

Thus the complete steady-siate solution of Eq. (4.4) is given by

TR 7 W S
| "‘\/m = 2 (2gr)?
+ i ' (bi/k) sin(jot ~ ¢,)  (4.13)

A = g (2

q. (4.13), that the amplitude and phase shift
don . If jo = w, for any J: the amplitude -of
comparatively large. This will be particularly
true for small values of j and {. Further, as j becomes larger, the amplitude becomes
smaller and the corresponding terms tend to zero. Thus the first few terms are
usually sufficient to obtain the response with reasonable accuracy.

corresponding to the jth term depen
the corresponding harmonic will be

The solution given by Eq. (4.13) denotes the steady-state response of the system.

The transient, part of the solution arising from the initial conditions can also be

we need to
olution. and
d the initial

its derivative to the specified values of initial displacement x(0) an _
plicated expression for the transient part of the

velocity. x(0). This results in a com
total solution.

Periodic Vibration of a Hydraulic Valve

+_elastic stem are modeled as a damped spring-mass s

In the study of vibrations of valves used in hydr

ystem as shown in Fig. 4.1(a). In addition
to the spring force and damping force, there is a fluid pressure force on the valve that
changes with the amount of opening or closing of the valve. Find the steady-state response
of the valve when the pressure in the chamber varies as indicated
k = 2500 N/m, ¢ = 10.N-s/m, and m = 0.25 kg.

Given: Hydraulic control valve with m = 0.25 kg, k = 2500 N/m, and ¢

: = 10 N-s/m and
pressure on the valve as given in Fig: 4.1(h). .

aulic control systems, the valve and its .

in Fig. 4.1(b). Assume ‘

i
4
A
ui
]
i
A
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The natural frequency of the valve is given by
k 2500
w, = \/;— = J025 = 100 rad/sec (E.14)
and the forcing frequency @ by
o= =27 o pradlsec (E.15)
T 2 _
Thus the frequency ratio can be obtained:
w T : '
= — = —— = 0.031416 .
r o, - 100 03141 j (E.16)

and the damping ratio:

c. ¢ 10.0 . ’
(= % Tma,  2(025)(100) 0.2 - (BA7)

The phase angles ¢, and ¢, cari be computed as follows:

¢, = tan~! (1 2—{rr2\)

2 % 0.2 X 0.031416 ‘ '
= tan~ < T 00314162 >-—- 0..0125664 rad : (E.18)

‘and

¢y = tan~! (1‘ .6_&9,2)

6 X 02X 0.031416 3
= -1 = R 4 ' .
tan < 500314167 > 0.0380483 rad (E.19)

In view of Egs. (E.2) and (E.14) to (E. 19) the solution can be written as’
x,() = 0. 019635 — 0.015930 cos(mt — 0.0125664) ‘
— 0.0017828 cos(3mt — 0.0380483) m

| 'Response Under a Periodic Force of Irregular Form

~ In some cases, the force acting on a system may be quite irregular and may be
determined only expenmentally Examples of such forces include wind-and earth-
* quake-induced forces. In such cases, the forces will be available in graphical form
and no analytical expression can be found to describe F(t). Sometimes, the value
of F(t) may be avallable only at a number of discrete points ty, 5, . . ., ty. Inall
these cases, it is possible to find the Fourier coefficients by usmg a numerxcal
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4.3
F(() F 3
. = o
(E.14) 3 /T e y \\d/\
i N / N
&t AL At F.,{ ANGRITY; / \\
\ -
(E.15) - —t +, 1 \ - ! N
0 AY T w >t
: 4 |6 1,/’ ty g L Iy / N 2t
- Fryain 7 \\
AS ' F\ . ’/ \
: N\ NN
2 ! /
(E.16) . F ‘AF/ 3 ‘ | S~
. T= NAL~ -
' FIGURE 4.2
(E.17) ‘
integration procedure, as described in Section 1.11. If F 1 Fa, .. ., Fy denote the ‘
values of F(f) at ¢}, £y, . . ., ty, respectively, where N denotes an even number of -
(E 18) equidistant points in one time period 7(7 = NA?), as shown in Fig. 4.2, the application
' of trapezoidal rule [4.1] gives ' '
. L _
ag = X,}: F; (4.14)
. i=] .
: 2 2jrt,
(E.19) a; = NE Ficos T J =172, (4.15), ,
. ; ot :
2 2wt :
by = 53 Fisin T4, = 1,2, (4.16)
. . i=1 R
(E.20) _ . " Once the Fourier coefficients ao, a;, and Bj are known, the steady-state respbnse of
' ' the system can be found using Eq. (4.13) with :

-(72)
ro= :
TW,

Steady-State Vibration of a Hydraulic Valve.

i may be — —
wnd earth- " EXAMPLE 4.2
lical form -
» Find the steady-state response of the valve in Example 4.1 if the pressure ﬂuctuatioﬁs in
pressure measured at 0.01 second

the chamber are found to be periodic. The values of
intervals in one cycle are given below. : _
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Time, r; 0 0.01 0.02 '0.03 004 0.05 0.06 007 008 009 0.10 0.11 012
(seconds) :

pi=pt) 0 20 34 42 49 53 70 60 36 22 16 7 0
(kN/m?) .

Given: Arbitrary pressure fluctuations on the valve, shown in Fig. 4.1(a).

Find: Steady-state respbnse of the valve.

Approach: Find Fourier series expansion of the pressure acting on the valve using numnerical
procedure. Add the responses due to individual harmonic force components.

Solution: . The Fourier analysis of the pressure fluctuations (see Example 1.13) gives the
. result : o
p(t) = 34083.3 ~ 26996.0 cos 52.36¢ + 8307.7 sin 52.36¢

+ 1416.7 cos 104.72t + 3608.3 sin 104.72¢
— 5833.3 cos 157.08¢ + 2333.3 sin 157.08¢ + . . . N/m? (E.1)

Other quantities needed for the computation are

w, = 100 rad/sec

;=2 = 05236

@

¢ =02
A = 0.0006257 m®

. 24r 2 X 0.2 X 0.5236
= -1 2 - -1 . = °
¢, = tan <1 — r2> tan ( 1= 05236 > 16.1

{ afr 4 %X 0.2 % 0.5236 '
-1 = -1 = - °
tan (1 — 4r2> tan < - 4 x 0.52362> 77.01 v

6{r 6 x 0.2 X 0.5236

= ~1 = -1 == — °
¢$5 = tan (1 = 9r2> tan < -9 % 0.52362> 23.18
The steady-state response of the valve can be expressed, using Eg. (4.13), as

34083.3A (26996.0A/k) Eos(S2 36t — é1)
. . - ‘

%O = =
| | \ﬁ - e

{(8309.7A/k)

+
f 2,2
(1= + @2

I

b2

sin(52.36t — 1)
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1 0.12 (1416.747k)

cos(104.72¢ — ¢,)

=

(1= 4 + 40"

(3608.3A/k)

+ sin(104.72t - ¢,)
\/(1 — a4y (4
- O8I cos(157.08¢ - 4,)
umerical \/(1 - 9r2)2 + (6ff)2
giv}es th'e 4 (23333A/k) Sin(157.08t'—- ¢)3) .
\/(1 -~ 9)‘2)2 + (6§’r)2 x
(E.1) 4.4 Response Under a Nonperiodic Force

We have seen that periodic forces of any general wave form can be represented by
- Fourier series as a superposition of harmonic components of various frequencies.
The response of a linear system is then found by superposing the harmonic response
to each of the exciting forces. When the exciting force F(z) is nonperiodic, such as
that due to the blast from an explosion, a different method of calculating the response
is required. Various methods can be used to find the response of the s
arbitrary excitation. Some of these methods are as foliows: '

ystem to an

1. Representing the excitation by a Fourier intégral
2. Using the method of convolution integral
3. Using the method of Laplace transformation

4. First approximating F(f) by ‘a suitable interpolation model and then using a
numerical procedure ‘

5. Numerically integrating the equations of motion

We shall discuss Methods 2, 3, and 4 in the following sections and Meﬁtﬁdd 5in
Chapter 11. ' ‘ ' : S :

4.'.,5 Convolution Intégral. .

A nonperiodic exciting force usually has a magnitude that varies with time; it acts
for a specified period of time and then stops. The simplest form of such a force is
the impulsive force. An impulsive force is one that has a large magnitude F and
acts for a very short period of time dt. From dynamics we know that impulse can
be measured by finding the change in momentum of the system caused by it [4.2]
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If %, and %, denote the velocities of the mass m before and after the application of
the impulse, we have : ’

¢
¥
i
&
H
%

Impulse = FAt = mip — mi, (4.17)
By designating the magnitude of the impulse FAt by F, we can write, in general,

t+at
F=j F dt (4.18)
- )

A unit impulse (f) is defined as

at-0 Y ¢

rt+at '
f=lim [ Fdr=Fdt=1 (4.19).

It can be seen that in order for F dt to have a finite value, F tends to infinity (since

dt tends to zero). Althdugh the unit impulse function has no physical meaning, it
is a convenient tool in our present analysis.

4.5.1 » We first consider the response of a single degree of freedom system to an impulse
Response to an excitation; this case is important in studying the response under more general
Impulse excitations. Consider a viscously damped spring-mass system subjected to a unit

impulse at ¢t = 0, as shown in Figs. 4.3(a) and (b). For an underdamped system,
the solution of the equation of motion

mi 4 i + kx = 0 O (4.20)

is given by Eq. (2.72) as follows:

‘ ' %9 + loxg . ‘
x(f) = e-¥en {xocos wgat + —Q—;{——"—Qsm wdt} 4.2
. L d .

x(f) = (1)

7\-—‘,_.;‘ !

Ve

n
=]
F(0) L
(a) (b) (c)

FIGURE 4.3




ation of

(4.17)

eneral,

(4.18)

(4.19)

y (since -,

wming, it

impulse
general
0 a unit
system,

(4.20)

(4.21)
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where
c
= 4.22
L= S @2
| ) k c 2
wg = w,V1I = = [—~|— (4.23)
m 2m -

w, =

(4.24)

If the mass is at rest before the unit impulse is applied (x = % = 0 for ¢t < 0 or at
= 0-), we obtain, from the impulse-momentum relation,

Impulse = f =1 = mi (r =0) = mi (t = 0°) = mip (4.25)

Thus the m1t1al condmons are given by

x([:O)vzxo =O
x(: 20) == - (4.26)
o m
In view of Eq. (4.26), Eq. (4.21) reduces to
e‘!wn .
() =.g(t) = sin wyt 42T
. mawgy

Equation (4.27) gives the response of a single degree of freedom system to a unit
impulse, which is also known as the impulse response function, denoted by g{).

The function g(#), Eq. (4.27), is shown in Fig. 4.3(c).

If the magnitude of the impulse is F instead of unity, the initial veloc1ty %o is
F/m and the response of the system becomes

Fe~tont L
x(t) '—“m—TSIH wyt = fg(t) . . (4.28_)
d :

If the impulse F is applied at an arbxtrary time t. = 7, as shown in Fig. 4.4(a), it -
will change the velocity at t = 7 by an amount F/m. Assuming that x = O until
the impulse is. applied, the displacement x at any subsequent time ¢, caused by a

" change in the velocity at time 7, is given by Eq. (4.28) with ¢ replaced by the time

elapsed after the application of the impulse, that is, ¢ — = Thus we obtain
E | x(t) = Fg(t = 1) (429)
This is shown in Fig. 4.4(b). . ‘ o

Now we consider the response of the system under an arbitrary external force F(2),

shown in Fig. 4.5. This force may be assumed to be made up of a series of impulses

. of varying magnitude. Assuming that at time 7, the force F(7) acts on the system
for a short penod of time A7, the impulse acting at t = 7is given by F(7) Ar. At .
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F(t)
4
F __________
FAt=F
) t
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=
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1 1
fin .
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i i | %
! ] ? g
| o — # >
(b ) B 4 T+ At
FIGURE 4.4 . FIGURE 4.5 An arbitr.ary', (nonpériodic)

forcing function.

any time ¢, the elapsed time since the impulse ist — 7, so the response of the system
at ¢ due to this impulse alone is given by Eq. (4.29) with F' = F(7) AT:

Ax(f) = F(7) Arg (t — ) , (4.30)

The total response at time ¢ can be found by summing all the responses due to the
elementary impulses acting at all times 7:

x(1) = LF(n)g(t — ) A&7 C(4.31)
Letting A7 — 0 and replacing the surnmation by integration, we obtain
t ) N
() = j F(Hg(t — 7) dr (4.32)
0 .
By substituting Eq. (4.27) into Eq. (4.32), we obtain
. : 4 ‘
%(t) = =  P(ne=4ot=D sin wy (¢ = 1) dr (4.33)
mag’ o ' . .

which represents the response of an underdamped single degree of freedom system
to the arbitrary excitation F(¢). Note that Eq. (4.33) does not consider the effect of
initial conditions of the system. The integral in Eq. (4.32) or Eq. (4.33) is called
the convolution or Duhamel integral. In many cases the function F(z) has a form
that permits an explicit integration of Eq. (4.33). In case such integration is not
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4.3 What is the Duhame! integral? What is its use?

4.4 How are the initial conditions: determined for a single degree of freedom system -
subjected to an impulse at + = 07

4.5 Derive the equation of motion of a system subjected to base excitation.

4.6 What is a response spectrum?
4.7 What are the advantages of the Laplace transformation method?
4.8 What is the use of the pseudo spectrum?

4.9 How is the Laplace transform of a function x(¢) defined?

4,10 Define these terms: generalized impedance and admittance of a system.

4.11 State the interpolation models that can be used for approximating an arbitrary forcing
" function.

4.12 How many resonant conditions are there when the external force is not harmonic?
4.13 How do you compute the frequency of the first harmonic of a periodic force?

4.14 What is the relation between the frequencies of higher harmonics and the frequency
of the first harmonic for a periodic excitation?

Problems

The problem assignments are organized as follows:

Problems Section Covered Topic Covered

4.1-4.10 . 42 Rcsponse under general periodic force

4.11-4.13 © 43 Periodic force of irregular form

4.14-4.34 4.5 - Convolution integral

4.35-4.44 4.6 ' Response spectrum

4.45-4.47 4 Laplace transformation A

4.48-4.51 4.8 Irregular forcing conditions using numerical methods
4.52-4.57 4.9 Computer program

4.58-4.60 — Projects

4.1~ : '
4.4  Find the steady-state response of the hydraulic control valve shown in Fig. 4.1(a) to

the forcing functions obtained by replacing x(f) thh F(t) and A with Fy in Figs.
- 1.87-1.90. .

Find the steady-state response of a viscously damped system to the forcing function
obtained by replacing x(t) and A with F(¢) and Fy, respectively, in Fig. 1.46(a).

The torsional vibrations of a driven gear mounted on a shaft (see Flg 4.29) under
steady conditions are governed by the equation:

Job + k=M




PROBLEMS 313 *

f

—Driven gear, Jo

m systern

Driven shaft, &,
(. /\ o
=
//

N
2

Ty forlcing | - i 6 _ —“F— . ~%

‘monic? Broken tooth Driving gear
se? R
- FIGURE 4.29
frequency
where k, is the torsional stiffness of the driven shaft, M, is the torque transmitted, Jo
is the mass moment of inertia, and @ is the angular deflection of the driven gear. If
one of the 16 teeth on the driving gear breaks, determine the resulting torsional
vibration of the driven gear for the following data. -
Driven gear: Jo = 0.1 N-m-s?, speed = 1000 1pm, driven shaft: material - steel,
solid circular section with diameter 5 cm and length 1 m, M,q = 1000 N-m.
4.7 A slider crank mechanism is used to impart motion to the base of a spting-mass--
" damper system, as shown in Fig. 4.30. Approximating the base motion y(t) as a series
of harmonic functions, find the response of the mass for m = 1 kg, ¢ = 10 N-s/m,.
k=100 N/m, r = 10 ¢m, ! = 1 m, and @ = 100 rad/s. '
¥ o——l x(¢) 0—-{
2
1l methods \
[ =y m
k2 777777777
' FIGURE 4.30 -
1. 4.1(a) to . .
7o in Figs.
4.8 The base of a spring-mass-damper system is subjected to the periodic dlsp]acement
L shownin Fig. 4.31. Determine the response of the mass usmg the prmmple of superposx-
g furiction o o tio ,
46(a). - | | o | L
: 4.9 Thc base of a sprmg-rnass system with Coulomb damping, is connected to thc slider
-29) under %

crank mechanism shown in Fig. 4.32. Determine the response of the system for a -
2 . ' coefficient of friction u between the mass and the surface by approximating the motion
_‘ ‘ y(#) as a series of harmonic functions for m = 1 kg, k = 100 N/m, r = 10 cm, | =
o o l1m, # = 0.1, and @ = 100 rad/s. Discuss the limitations of your solution.
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4.10

x(t)

FIGURE 4.32

A roller cam is used to impart a periodic motion to the base of the spring-mass system
shown in Fig. 4.33. If the coefficient of friction between the mass and the surface is

u; find the response of the system using the principle of superposition. Discuiss the
validity of the result. '

Find the response of a damped system with m = 1 kg, k = 15 kN/m. and { = 0.1
under the action of a periodic forcing function, as shown in Fig. 1.92.

Find the response of a viscously damped system under the periodic force whose values -

are givenin Problem 1.69. Assume that M, denotes the value of the force in Newtons
at time t; seconds. Use m' = 0.5 kg, k = 8000 N/m, and { = 0.06.

Find the displacement of the water tank shown in Fig. 4.34(a) under the periodic
force shown in Fig. 4.34(b) by treating it as an undamped single degree of freedom
system. Use the numerical procedure described in Section 4.3. '

Sandblasting is a process in which an abrasive material, entrained in a jét, is directed
onto the surface of a casting to clean its surface. In a particular setup for sandblasting,
the casting of mass m is placed on a flexible support of stiffness k as shown in Fig.
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P

7777777777 ddeddd (L

FIGURE 4.33

X)) F(), kN
— 4
F(e) m=10Mg 5
400
k=5 MN/m
+ ¢ (seconds)
18§ system ’ } 0 0.06 0.15 0.21 0.30 -»0436 ]
surface is ‘ : " (a) . : . () - : &
iscuss the ‘ ’ : ' _ - ' ;
FIGURE 4.34 , ' ' S
1¢= : i
yse values- - . o ' 4.35(a). If the force exerted on the casting due to the sandblasting operation vaties
. Newtons ' ' * as shown in Fig. 4.35(b), find the response of the casting. .
o : ' ‘ N 4.15 The frame, anvil, and the base of the forging hammer, shown in Fig. 436(a), have a i
: periodic - iy pugs total mass of m. The support elastic pad has a stiffness of k. If the force applied by A
. ffreedom : the hammer is given by Fig. 4.36(b), find the response of the anvil. ‘ L
_ . ’ ' 4.16 Find the displacement of a damped single degrce of freedom system under the forcmg
s directed - : " function F(f) = Fye~® where « i$ a constant.
S:lia:t;}gv 4.17 A compressed air cylinder is connected to the spring-mass system shown in Fig.
) ig. :

4.37(a). Due to a small leak in the valve, the pressure on the piston, p(#), builds up-
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Nozzle Jet of abrasive
material
i /

i F)

i
k)
ks
¥
g
o
1
St
A

!
El

Casting, m

Flexible
“ support, k

— !

() - _ (b

FIGURE 4.35

F(1)

Fy

Elastic
pad, k

@ | | ®)

FIGURE 4.36

" a5 indicated in Fig. 4.37(b). Find the response of the piston for the following data: .

m = 10 kg, k = 1000 N/m, and d = 0.1 m. :

4.18 Find the transient response of an undamped spring-mass system for t > m/w when
the mass is subjected to-a force -

f—Q(l — cos wt) for0<t=

el3

F() =
Fq : fort>g




p]
PROBLEMS 317

,—Hose

_Compresséd

air
cylinder
k14
P
|
77 7777 Ly, 77777777, 77 77777777
(a)
p(t), kPa
4
p() =50 (1 ~¢™)
—> 7
(b)
FIGURE 4.37
LN ' F(o) ' F(1)
4 : b ‘ 4 Rt nt
: : : o(l ~cos =
Ny, : . : - 2y
0 fo e t *?
ving data: -, - ‘ : @) _ ®) _
‘ FIGURE 4.38 . o ‘ T
m/w when L .
S _ :
: . _ Assume that the displacement and velocity of the mass are zero att = Q. !
S ' 4.19~ '

4.21 Usethe Dahamel integral method to derive expressions for the response of an.undamped
o system subjected to the forcing functions shown in Figs. 4.38(a) to (c).
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4.22 Figure 4.39 shows a one degree of freedom model of a motor vehicle traveling in the
horizontal direction. Find the relative displacement of the vehicle as it travels over a
road bump of the form y(s) = Y sin /8.

N

'FIGURE 4.39

4.23 A vehicle traveling at a constant speed v in the horizontal direction encounters a
triangular road bump, as shown in Fig. 4.40. Treating the vehicle as an undamped
spring-mass system, determine the response of the vehicle in the vertical direction.

FIGURE 4.40

An automobile, having a mass of 1000 kg, runs over a road bump of the shape shown
in Fig. 4.41. The speed of the automobile is SO km/hr. If the undamped natural period
of vibration in the vertical direction is 1.0 second, find the response of the car by
assuming it as a single degree of freedom undamped system vibrating in the vertical
direction. ;




eling in the
wvels over a

ncounters a

. undamped. -

. direction.’

1ape shown
tural period
_the car by
the vertical

Height of bump (m)

4

01fp——=
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0

FIGURE 4.41

0.25

» Distance along
0.50 road (m)

425 A camcorder of mass m is packed in a container using a flexible packing material.
" The stiffness and damping constant of the packing material are given by % and ¢,
respectively, and the mass of the container is negligible. If the container is dropped

accidentally from a height of h onto a rigid floor (sec Fig. 4.42), find the motion of
the camcorder.

Camcorder
{m)
l «~—Container
kf2 = Sk
Q N\ \.\\\\ ANENUNS NN NRARARNRARNNNNY
FIGURE 4.42

qf\cn"“’ H;”

4 26 An airplane, taxung on a runway, encounters a bump. As a result, the root of the

-wing is subjected to a displacement that can be expressed as

, Y(1%13), 0o<st<t
y(t)={( 5) : o

0, t> ¢

Find the response of the mass located at the tlp of the wing if the stlffness of the
wmg is k (sec Fig. 4. 43)
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Wing, k Equivalent
! mass, m
\ Wing root .

FIGURE 4.43

427 Derive Eq. (E.1) of Example 4.6.

428 In a static firing test of a rocket, the rocket is anchored to a rigid wall by a spring-

damper system, as shown in Fig. 4.44(a). The thrust acting on the rocket reaches its '
maximum value F in a negligibly short time and remains constant until the burnout
time fo, as indicated in Fig. 4.44(b). The thrust acting on the rocket is given by F =
mqv where my is the constant rate at which fuel is burnt and v is the velocity of the
jet stream. The initial mass of the rocket is M, so that its mass at any time t is given
by m = M — mgl, 0 <t <ty If the data are k = 7.5 X 106 N/m, ¢ = 0.1 X
106 N-s/m, mo = 10 kg/s, v = 2000 m/s, M = 2000 kg, and £ = 100 5, (1) de-
rive the equation of motion of the rocket, and (2) find the maximum steady-state
displacement of the rocket by assuming an average (constant) mass of (M ~ $mote).”

F

4

> <0

|
& &

AAMA R M RANN

7///////////////7///////////////////////////////

(a)

FIGURE 4.44

429 Show that the response to a unit step function h(f) (Fo = 1 in Fig. 4.6b) is related '
to the impulse response function g(r), Eq. (4.27), as follows: - :

g() = ———d’;(rt)

430 Show that the convolution integral, Eq. (4.33), can also be expressed in terms of the -

response to a unit step function h(f) as

tdF(1)

x(1) = F(0) h(t) + ]o_d_;h(, — Pydr
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'FIGURE 4.47

-Uniform rigid bar, F(f) = Fye™
mass m ky
oy M L Uniform rigid bar,
SOT=31%8 k mass m k
M“e ~21
f BEan
=
—
Equivalent Co 0
g TIIIT
mass, m ‘ b | ) 1 l 3 l
’ ! o1 ‘ |
FIGURE 4.45 _ FIGURE 4.46
4.31 Find the response ‘of the rigid bar shown in Fxg 4.45 usin'g c’onvol_uti‘on integral for
y a spring- " the followmg data: kl = k, = 5000 N/m as O?S m, b =05 m, 1 =10m M
reaches its =50kg, m = 10kg, Fo = SOON. E )
‘he burnout 4.32- Find the tesponse of the rigid bar shown in Flg 4 46 using convolutxon integral for
en by f = the following data: k = 5000 N/m, | = 1m, m'= 10 kg, Mg = 100 N-m.
):it?l'so i\:::; 433 Find the response of the rigid bar shown in Fig., 4. 47 \Jsmg convoluuon mtegral when
B & “the end P of the spring PQ is subjected to the dlsplacement x(t) o€ e~". Data k
:= 01X i :
)s, (1) de- = 5000 N/m, [=1mm= 10 kg, xp'=1 cm ;
>teady _state 4.34 _Fmd the Tésponse Of the mass shown in Fxg 4.48 under the force FI) = Fy e-’
r— ‘moto) using ‘convolution integral.-Data: k; = 1000 N/m kz =500 N/m, 7 = S-cm,m =
10 kg, Jo = lkg IT\2 Fo = SON - :
Pulley, mass.}npnicnt of'ipcrtia Jy
—_—t
o Fye™
x(f) = xye
g: P
Led Uniform bar,
is relate )
y) is re d B mass m - X
s 5 ad
. =700 .
terms of the .
] 3 |
e ] 4

FIGURE 4.48
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" The daxﬁping ratios obtainable with different types of construction/arrangement
are indicated below: oo '

' o o Equivalent Viscous Damping
Type of Construction/Arrangement . Ratio (%)

Welded construction : . K - . 1-4

Bolted construction 2 E v 3-10

Steel frame . ' . S L - 5-6

Unconstrained viscoelastic layer on o ‘ ke 4-5
. steel-concrete girder ’ "

Constrained viscoelastic layer on s o _ . ' 5-8
steel-concrete girder

Isoiation

"Vibration isolation is a procedure by which the undesirable.effects of vibration are
reduced [9.21-9.24]. Basically, it involves the insertion of a resilient member (or
isolator) between the vibrating mass (or equipment or payload) and the source of
vibration so that a reduction in- the dynamic response of the system is achieved
under specified conditions of vibration excitation. An isolation system is said to be
active or passive depending on whether or not external power is required for the
isolator to perform its function. A passive isolator consists of a resilient member
" (stiffness) and an energy dissipator (damping). Examples of passive isolators include
metal springs, cork, felt, pneumatic springs, and elastomer (rubber) springs. Figure
9.16 shows typical spring and pneumatic mounts that can be used as passive isolators,
and Fig. 9.17 illustrates the iise of passive isolators in the mounting of a high-speed
punch press [9.25). The optimal synthesis of vibration isolators is presented in Refs.
[9.26-9 30] ‘ ] '

e ot s}

e s

An active isolator is comprised of a servomechanism with a sensor, signal
processor, and an actuator. The effectiveness of an isolator is stated in terms of its
transmissibility. The transmissibility (7}) is defined as the ratio of the amplitude of
the force transmitted to that of the exciting force. - SR '

Vibration isolation can be used in two types of situations. In the first type, the
foundation or base of a vibrating machine is protected against large unbalanced
forces (as in the case of reciprocating and rotating machines) or impulsive forces
(as in the case of forging and stamping presses). In these cases, if the system is
modeled as a single degree of freedom system as shown in Fig. 9.18(a), the force
s transmitted to the foundation through the spring and the damper. The force
transmitted to the base (F,) is given by

F (1) = kx(2) + cx(1) (9.79)

TEES

S
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FIGURE 9.16° (é) Undamped spring mount; (b) damped 'spring mount; (c) pneumatic:
rubber mount. (Courtesy of Sound and Vibration.)

If the force transmitted to the base F () varies harmonicaliy, asin the casé of unbalaric
reciprocating and rotating machines, the resulting stresses in the foundation bolts
vary harmonically, which might lead to fatigue failure. Even if the fofte transm
is not harmonic, its magnitude is to be limited to safe permissible values.

‘In the second type, the system is protected against the motion of its foundat
or base (as in the case of protection of a delicate instrument or equipment from
motion of its container). If the delicate instrument is modeled as a single degr
freedom system, as shown in Fig. 9.18(b), the force transmitted to the instru
(mass m in Fig.9.18b) is given by '

Fity = mED) = K = 501 ¥ D = 301
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FIGURE 9.17 High-speed punch press mounted
on pneumatic rubber mounts. (Courtesy of Sound
and Vibration.) )

-where (x — y) and (A';_:.y}.denete—ﬁae—rela-ti-ve‘disp}acmntmﬁlm001ty
of the spring and the damper, respectively. In many practical problems, the package
is to be designed properly to avoid transmission of large forces to the delicate
instrument to avoid damage.

Reduction of the Force Transmitted to Foundation. When a machine is bolted
directly to a rigid foundation or floor, the foundation will be subjected fo a harmonic
load due to the unbalance in the machine in addition to the static load due to the
weight of the machine. Hence an elastic or resilient member is placed between the
machine and the rigid foundation to reduce the force transmitted to the foundation,
The system can then be idealized as a single degree of freedom system, as shown
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_Vibrating

machine — Delicate

instrument
or machine

-k
Rigid base or
foundation \ Base .
(package)

1 )
TIITT7 77777 7777777777 .

(2)

FIGURE 9.18

x(t) X cos (wt - ¢>)

Fy
[(k -~ mw?)? + w?c?]V?

X".—'

F(f) = Fycos ot i F(t) = Fy cos wt
Machine () _ . Machine (m)

/
i

Resilient o -
member Resilient _f

member

TI777777777777777777.

Foundation or base : Foundation or base

FIGURE 9.19 Machine and re_sili«;nt member on rigid foundation.
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¢ = tan“-.1 <rwc—-§> (9.._84)

maw

The force transmltted to the foundation through the sprmg and the dashpot, F (),
is given by

FA) = kx(t) + oi(t) = KX cos (wf — ¢) — ok sin (0t — ¢) - (9.85) .

The magnitude of the total transmitted force (F7) is given by
Fr = [(kx)? + (c£)?]V? = XVk? + o%c?

_ Fo(k? + w?c?)V/?
[(k — mw2)2 + wz 2]1./2

(9.86)

The transmissibility or transmission ratio of the isolator (7,) is defined as the ratio
of the magnitude of the force transmitted to that of the exciting force:

K2+ wc? "
B {(k - mw?)? + a)zcz} '
_ 2
1+ (2;—:’—)
: A T 2
EEEeE)
Wy \ o,

where r = — IS the frequency ratio. The varlatlon of T, with the frequency ratio

r=2is shown in Fig. 9.20. In order to achleve 1solat10n the force transmltted
w’l

to the foundation needs to be less than the excitation force. It can be seen, from

Fig. 9.20, that the forcing frequency has to be greater than V2 times the natural

frequency of the system in order to achieve isolation of vibration.

1. The magnitude of the force transmitted to the foundation can be reduced by
decreasing the natural frequency of the system (w,).
2. The force transmitted to the foundation can also be reduced by decreasing the
- damping ratio. However, since vibration isolation requires r > \/5, the machine
should pass through resonance during start-up and stopping. Hence, some damp-
ing is essential to avoid infinitely large amplitudes at resonance.
Although dampmg reduces the amplitude of the mass (X) for all frequen01es
"it reduces the maximum force transmitted to the foundation (F,) only if r
< V2. Above that value, the addition of dampmg increases the force
transmitted.
If the speed of the machine (forcmg frequency) varies, we must compromise

in-choosing-the -amount of dnmp1ng to.minimize._the_force_transmitted e
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l\f.r ‘
§

Y

i
— Transmissibility (7,)

Amplification - Isolation
'_reglon : regi()n )

FIGURE 9.20 Variation of transmlsswn ratio (T,) with @,

amount of damping shou'ld_ be sufficient to limit .the amplitude X an
force transmitted F, while passing through the resconance, but not so m
0 increase unnecessarily the force transmiitted at the operafing' speed.

Reduction of thé Force Transmitt'e'd to' the Mass. If a sensitive instru'mé
achine of mass m is to be isolated from the unwanted harmonic motion
the governing equation is given by Eq. (3.75):

mi+ci+ k= -my

. ~ ¥ denotes the displacement of the. mass relative to the base.’
base motion is harmonic, then the motion of the mass will also be harmonic.

=7 is given by Eq. (3.68)

. : : I
={ L1+ ()2 }2 3
(=7 + @by

educt.ion—of—the;EOx:a;_illl:ans_mit»ted—to—the—Feuﬂ
balance. The excitation force caused by a rotating unba

F(f) = Fysin ot = mew? sin ot
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‘I'he natural frequencies of the system are given by the roots of the equation -

(k — myw?), -k

—k (k = myw?)| 0

The roots of Eq. (9.97) are given by

5 (m, + my) k A
w; =
mymy

solution yields -

X

X2=

—mskw? F,
T Ik = me?)(k - mzwz) - k?]
of the isolator (7,) is given by

-—mzkw
[(k - m@?)(k = myw?) - k2]

)

2) - (r"n1 + my) -l

k

"EXAMPLE 9.3 Spring Support for Exhaust Fan

An exhaust fan, rotating at 1000 rpm, is to be supported by four.springs, each havmg
stiffness of K. If only 10 percent of the unbalanced force of the fan'is to be transmitt
the base, what should be the value of K7 Assume the.mass of the exhaust fan to be 40’

Given: Exhaust Tan WLtmTﬁO Kg, Totationa lTpee‘d““‘TOOO'Tpm—md—pemnssrbl
shaking force to be transmitted to base = 10 percent.
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Find: Stiffness (K) of each of the four supporting springs.
Approach: Use transmiésibility equation.

Solution: Since the transmissibility has to be 0.1, we have, from Eq. (9.87),

. 2
1+(2gf—> v
G
w
v (@) ()

where the forcing frequency is given by

1000 X 27
60

0.1'=

= 104.72 rad/sec

and the natural frequency of the system by

S (5)" - ()" VE

“n =\ 40 3.1623
By assuming the damping ratio to be £ =. 0, we obtain from Eq. (E.1),

+1

0.1 = = 5 (E.4)
{1 _ <1o4.72 X 3.1623> }
: VK

"To avoid i imaginary values, we need to consider the negative 31gn on the right-hand side of
Eq (E.4). This leads to '

331.1561

= 3.3166
VK :

= 9969.6365 N/m

Isolation of Vibrating System

A vibrating system is to be isolated from its supporting base. Find the required .damping
ratio that must be achieved by the isolator to limit the transmissibility at resonance to T, =
4. Assume the system to have a single degree of freedom.

Given: Transmissibility at resonance = 4.
Find: Damping ratio of the isolator.

Approach: Find the equation for the transmissibility at resonance.
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Vibration

" Isolation System
with Partially
Flexible
Foundation -

VIBRATION CONTROL

Solution: By setting @ = @, EqQ. (9.87) gives

Vi + (20

T, =~

- 0.1291

1
é’:.__—————-—————: -
T -1 2VI5

Figui 9.22 shows a more realistic situation in which the base of the isolator, instes
of being completely rigid or completely flexible, is partially flexible [9.34]. We ca
define thb\mechanical impedance of the base structure, Z(w), as the force at frequenc
w required tQ produce a unit displacement of the base (as in Section 3.5):

Applied force of frequency @
Displacement

Z(w) =

The equations of motion are given by®

+ k (xq — %) = Focos ot
k(xy — x1) —x,Z(w)

Fy=F, cos wt x(9)’
Machine ()

> Isolator
Supporting (k) ()

structure () —J
RS

VATANVANVAWA

T Pantially flexible

with mechanical
impedance Z(w)

FIGURE 9.22 Machine with “isolator on a
partially flexible foundation.

61f the base is completely flexible with an unconstrained mass of m,, Z(w) = — w?’nmy, and Eqé
and (9.105) lead to Eq. (9.94). :
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