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BEAM-COLUMNS, BUCI G, AND NONLINEARITY
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lateral deflection is added

—_—

~ 4@

= 4 - |

3
2
1

o w

—

!
\
U__ 4+

A B c B c

anﬂ

. (a) (b) . (c) (d)
FIGURE 12.4.1. (a) Buckling of a pin-ended column under centroidal axial load.
(b) Compressive stress—strain diagram, showing loading and unloading paths from
point D, which corresponds to inelastic buckling. (c) Distribution of axial strain across
the column at increasing load levels, according to double-modulus theory. (d) Possible

distribution of axial strain across the column in tangent modulus theory.

cross section. Therefore, the column must bend before reaching the double-
modulus load. But this is in contradiction to a basic assumption in double-
modulus theory. The contradiction is resolved by noting that lateral deflection
may-occur simultaneously with application of the last increment of load. There

" need be no unloading on the convex side, and modulus E, may prevail all across

the section (Fig. 12.4.1d). Under near-perfect test conditions the collapse load
slightly exceeds the theoretical tangent-modulus load, but it does not reach th
double-modulus load. A
In summary, inelastic buckling of a straight, axially loaded column does not
occur at a unique value of axial load P. Instead, buckling begins at the tangent-
modulus load and is complete (meaning that collapse takes place) before the
theoretical double-modulus load is reached. Tests of real columns, which have
larger imperfections than laboratory specimens, are in excellent agreement with
tangent modulus theory. .
~ Euler did not realize that bending stiffness EI could be calculated rather than
obtained by experiment. However, he anticipated Engesser by remarking in 1757
that EJ represents a resistance to bending that need not pertain only to elastic
bodies [12.4].

Example 12.4.1. A column has a solid rectangular cross section, 40 mm
by 30 mm. It is 200 mm long, free at the top, and fixed at the base. Material
properties are shown in Fig. 12.4.2. What centroidal axial compressive load
at the top will make the column buckle?

e er e 1 4(2,)
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| ) \

PSS L

12.4 INEL. .STIC BUCKLING OF COLUMNS . '
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FIGURE 12.4.2. Tangent modulus E, versus 0
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compressive stress ¢ for a particular steel, ob-
tained from a stress—strain plot.

P, = 1077 kN, or 0., = P_/A = 898 MPa. This stress is consi
higher than the proportional limit stress, which appears to be about 32
in Fig. 12.4.2. Therefore, buckling is inelastic, the effective modu
pends on load, and an iterative method of calculation is needed to fi
as follows. ) -
Assume that o, will be, say, 600 MPa. At this stress, Fig. 12.4.:
E, = 160 GPa. Hence
mE,] P,
—= = 740 MPa ]
2 412 A (
As P, /A exceeds the assumed o, of 600 MPa, another trial is neede
Assume that o, = 660 MPa; then
) _ 7E] P

E, = 142GPa P, = = T88KkN —%=657MPa (I

Now the-assumed value of o, agrees well enough with the calculated
and P = 788 kN is accepted as the tangent modulus buckling load.

Creep Buckling. As the name implies, creep buckling theory deals

material that creeps, that is, a material whose strain changes with time at cc
stress. A creeping column may display a small but gradually increasing
deflection, then fail suddenly by buckling. The phenomenon is explail
examination of,creep curves (Fig. 12.4.3). One may enter the creep cuw
a certain aBo,._.mmw t, and read the strain for each of several stress

Stress—strain data thus obtained is then plotted as a stress—strain curve, S

~The-appropriate-equationis P ="m?El /4L%  where "~

NIﬁréasw
120 1

= 90,000 mm* (12.4.2).

—

S

the curve labeled ¢, in Fig. 12.4.3. Repetition of this procedure at severa
produces a set of isochronous stress—strain curves (stress versus strain at ¢

time). These curves show that at a given stress level, the tangent m
Adecreacec with time Thic imnliec that hawever licht the 1nad a creening ¢
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. —e - . .. X
shown in Fig. P1-2 and use it to determine the critical load of the column. P
At its lower end the column is completely fixed. At the upper end the column -
is prevented from rotating, but free to translate laterally.  (ans: Po=n’EI/L?) l T
/
/
Find an wepression for the maimum stress whw o ball weighing W Newtms Lo/
15 dro“ma\ onto & fixed - fixed beam. l !
o - » AU S
\_ L/Z .._—.! h ANNN y
i P
e
o L e - Fig, PI-2

. A linearly elastic beam- column having a flexural rigidity El, is subjected to a thrust P and a momcntiMo
as shown in Fig. A below. :

(a) Determine the lateral displacement v(x).
_(b) From part (a), write the solution for the systein subjected to a force P acting as shown in Fig. B.

{¢) Dclermine A, the horizontal displacement of point C, assuming small rotations. (Assume also that

the
horizontal displacement of point B is negligible).

m(d) Determine the bending moment M(x).

(&) Explain why, although the beam is made of a linearly clasue m'ucrml the rcsulls of part (c) arc non-

lincar. | A l«-g{c, -
' - H}g'xc{.—/(]—m-;
’ R (e |

o, | "
Answers - A | n L
Answers ¢ Fig. A Fig. &
Mof sinkx X ] P
: t) o e PR 2 e
@y0=5 | G- TN TE

ac
(€) A, =

P, e ace ’
- LV TP/EI cot (LVP/ED ] = (1- KL cotkL )

(d) M(x)=M, sin kl/sin kL

£12.00 AT section carries an axial tensile force of 120 kN, applicd through the centroid
ol the cross section. The allowable stress in tension or compression is 130 MPa.
Lol £ - 200 GPa, What (ransverse foree 7 can be applicd at midspan il the
beam is _
(a) Stem down Gy shown)?
by Stemup?

~| 100 mm l»» 1

120 kN =1 : b 120 kN 72 s
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Re= 29.86kN §
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trically loaded block; (b) location of P to
B; (c) elastic stress distribution between two
nable to transmit tensile forces.

the centroidal axis of the shaded contact area, and bx?[6 is its section
modulus. Solving for x, one finds that x = 3a; the pressure distribution
will be “triangular” as in Fig. 8-14(c) (why ?). Asadecreases, the intensity
of pressure on the line A-A increases; when a is zero, the block becomes
unstable. Such problems are important in the design of foundations.

85. SUPERPOSITION OF SHEARING
STRESSES

In the preceding part of the chapter superposition of the norm

stresses o, was the principal concern. In problems where both the elastic
torsional and direct shearing stresses can be determined, the compou

shearing stress also may be found by supe
superposi
be directed to instances where the shearing stresses
only act on the same element of area but also have the same line of action,

Only elastic stresses fall within the scope of this treatment.

rposition. This corresponds

tion of the off-diagonal stresses in Eq. 8-1. Here attention will
being superposed not

* Noncolinear shearing stresses acting on the same element of area can
added vectorially.

EXAMPLE 87

Find the maximum i ‘
shearing st;
A-B . g stress due to th : .
of the 14 in.-diameter, high-strength mrwwwmwﬁmﬂ,mﬁwmﬁ% fhe plane
- 8-15(a).

SOLUTION..

The fre
system me.www omoM ﬂw ﬂMmmBoE of the shaft is shown in Fig. 8.15 b
consists of a torqy, © cut necessary to keep this se nsw - 8-15(b). The
orque T = 200 in-1b, a shear V= mwu_w “% m:N&::B
: had 2 bending

Because of the to
linearly f . Tque 7, the shearing stre i ary
mmoﬁm.w nqoB the muma of the shaft and reach muo EWMWMMHW.“M: b
: > Tm; = i i
sense with Epw Tesi M\.\. These maximum shearing mﬁammu sgraeing
F 1sting torque 7, are show: i > 2gTeeing in
ig. 8-15(c). T at points 4, B, D, and Ein
The “direct” shearing m?ommom‘nm:m&

may be obtained by using £q. 7-6, 7. ¥gj(rr) by the shearing force J

. For the elements 4 and

200 in-Ib

© - @
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Cioprs B, Fig, 815, © = 0, hence 7 0. The shesting SE00 V' @ procsding example. The discussion will be imited*
wind stresses BwEBcM_n_ ue in Fig. 8-15(d) multiplied by the distance from its to springs manufactured from rods or wires of
the shade ﬂwaomoﬁﬁ.& Wam The latter quantity is 7 = 4¢/(3), where ¢ circular cross section. Moreover, any one coil of

mnwwnoamwm ﬁm.ﬂrm ouomm-wowmou& area. Hence @ = (xc*/Q)c/(3m)] = such a spring will be assumed to lie in a plane which

_Nmau\ua H”Aoaoﬁn. since ¢ =2¢, and I =J[2 = =ci/4, the maximum is nearly perpendicular to the axis of the spring.

This requires that the adjoining coils be close
together. With this limitation, a section taken

ﬁo%ob&n&ﬁ to the axis of the spring’s rod
becomes  nearly " vertical.f Hence to maintain
. 5 i ilibrium | of a segment of the spring, only a

i i . al of the rod. In Fig. 8-15(d) this equill W g pring, only
where 4 is the entire cross monnowsumﬂmwm on the o_anEwmw areas at E, shearing force ¥ = F and a torque T = FF are

i is shown acting d X . .
M‘uownu_wmbmﬁ.mwwm_mawo&ou mmnmwnm with the direction of the shear V. required at] all sections through the rod, Fig.

direct shearing stress is
vQ v 4 4V 4V

Tmax = NN NG u wc w|ﬂ.h|NHu.M|..A

To find the maximum compound shearing stress in the plane ; 8-16(b).1 imﬂn that 7 is the .&mSnon from the axis
A-B, the stresses shown in Figs. 8-15(c)and (d) aresuperposed. Inspection of the spring to the centroid of the rod’s cross-
shows that the maximum shearing stress is at £ .mEno in the two diagrams sectional area.
the shearing stresses at E have the same direction and sense. ,;na.o Emm The maximum shearing stress at an arbitrary
no direct shearing stresses at A and B, and at C there is mo Snmgwbb " section thr od,w gh the rod could be obtained as in the
shearing stress. The two shearing stresscs have an opposite sense at - preceding example by superposing the torsional

and the &H.,oa shearing stresses. This maximum Fig. 8-16. Closely coiled helical spring.
shearing stress occurs at the inside of the coil at )
point E, Fig. 8-16(b). However, in the analysis of springs it has become

customary to assume that the shearing stress caused by the direct shearing

The five points A, B,C,D,and E thus considered for the noBm.ocb.m
shearing stress are all that may be w..uomumnmq treated by the n__o?o "
developed in this text. However, this procedure selects the elemen
where the maximum shearing stresses occur.

4 05 J e force is uniformly distributed over the cross-sectional area of the rod.
7= 7= —o000614in* and I=3= 0.00307 in- ¢ Hence, the Toamnm_ direct shearing stress for any point on the cross
32 32 : section is 7 = FJA. Superposition of this stress and the torsional shearing
A = nd?/4 = 0.196 in.* stress at E |gives the maximum compound shearing stress. Thus since
Te 200025 . T=Fr,d = 2¢, and J = wd*{32
(rmadtorion =7 = gg0614 ~ 00 FY o b _F . Te_Te(FI  \ 16FF(d ot
nws 477 gfﬂa v a%A&. v @1

v 4V 4E)
(Pmax)direct = r =34 3(0.196)

= 408 psi | -
P * For 2 complete discussion on springs see A. M. Wahl, Mechanical Springs
(Cleveland, Ohio: Penton Publishing Co., 1944).
T .H.Emwo:imnwﬁm the necessity of considering an axial force and a bending
moment at the section taken through the spring.
i ¢ the shearing stress at E with the IIn Enio:m work it has been reiterated that if a shear is present at a section, a
A planar representation ot the % R change in the bending moment must take place along the member. Here a
matchin, Mnammnm om the longitudinal planes is shown in Fig. m-G@. shear acts at every section of the rod, yet no
m& acts on this element as it is located on the neutral axis. bending moment nor a change in it occurs.
No normal stress ac This is so only because the rod is curved.
An element of the rod viewed from the top
8-6. STRESSES IN CLOSELY COILED is shown in the figure. At both ends the

HELICAL SPRINGS ;

g = 8,150 -+ 408 = 8,560 psi

torques are equal to FF¥ and act in the
directions shown. The component of these
vectors toward the axis of the spring O,

- e often : : :
16(a), ar resolved at the point of intersection of the

Helical springs, such as the one shown in Fig. 8

i i in limitations, these springs may vectors, 2FFdg|2 = FFd$, opposes the F (down)
used as elements of machines. With certain limif S s, ;. opp
. to the one used in the couplel developed by the vertical shears
be analyzed for elastic stresses by a method similar . . a3 F, Wik boe 7 “w,w apart,

r
272 —W 273
|







Chapter 9
sformation of
ss and strain;
{ and fracture

criteria

stituting the values of the sine and cosine functions corresponding to the
double angle given by Eq. 9-3 into Eq. 9-1. After this is done and the
results are simplified, the expression for the maximum normal stress
(denoted by ;) and the minimum normal stress (denoted by o) becomes

o, — 2
As sv + 5 ©-9)

| O |_| Oy
Ao.soﬂmx = Ciorg = +
min 2

2

where the positive sign in front of the radical must be used to obtain gy,
and the negative sign to obtain o, The planes on which these stresses
act can be determined by using Eq. 9-3. A particular root of Eq. 9-3
substituted into Eq. 9-1 will check the result found from Eq. 9-4 and at the
same time will locate the plane on which this principal stress acts.

9-5. MAXIMUM SHEARING STRESSES

If 6,, 0,, and 7,, are known for an element, the shearing stress on
any plane defined by an angle 6 is given by Eq. 9-2, and a study similar
to the one made above for the normal stresses may be made for the shearing
stress. Thus, similarly, to locate the planes on which the maximum or the
minimum shearing stresses act, Eq. 9-2 must be differentiated with respect
to 6 and the derivative set equal to zero. When this is carried out and the
results are simplified, the operations yield

tan 20, = — (o2 — %)I2 (9-5)

Tay

where the subscript 2 is attached to 6 to designate the plane on which the
shearing stress is a2 maximum or a minimum. Like Eq. 9-3, Eq. 9-5 has
two roots, which again may be distinguished by attaching to 6, a prime or
a double prime notation. The two planes defined by this equation are
mutually perpendicular. Moreover, the value of tan 26, given by Eq. 9-5
is a negative reciprocal of the value of tan 26, in Eq. 9-3. Hence the roots
for the double angles of Eq. 9-5 are 90° away from the corresponding roots
of Eq. 9-3. This means that the angles which locate the planes of maximum
or minimum shearing stress form angles of 45° with the planes of the
principal stresses. A substitution into Eq. 9-2 of the sine and cosine
functions corresponding to the double angle given by Eq. 9-5 and deter-
mined in a manner analogous to that in Fig. 9-5 gives the maximum and the
minimum values of the shearing stresses. These, after simplifications, are

Tmax =
min

qlqu
Atv n_l 4.We G.ﬁv
2

Thus, the maximum shearing stress differs from the minimum shearing
stress only in sign. Moreover, since the two roots given by Eq. 9-5 locate
planes 90° apart, this result also means that the numerical values of

290

the shearing mﬁno.mmom on the mutuall i
. y perpendicular planes are the same.
Mu_wa concept was repeatedly used after being established in Art. 3-3. In
: s derivation 9.0 difference in sign of the two shearing stresses arises
m.o.B the convention for locating the planes on which these stresses act.
rom ﬁﬁwﬂwma& point of view these signs have no meaning and for this
reason the largest shearing stress regardless of si i
maximum shearing stress. ® wign Wil be called the
o di The mom.Eﬁ sense of the shearing stress may always be determined
y direct ngn.ﬁﬁmon of the particular root of 6, into Eq. 9-2. A positive
wrnwz.um stress indicates that it acts in the direction assumed in Fig. 9-4(b)
and vice versa. The determination of the maximum shearing stress is om
utmost Importance for materials which are weak in shearing strength. This
will be discussed later in the chapter. g
Unlike the principal stresses, for whi i
nlik X ch no shearing stresses oceu
on the principal planes, the maximum shearing stresses act Mb planes éEoM
are usually not free of normal stresses. Substitution of 6, from Eq. 9-5 into

Eq. 9-1 shows that the normal s i
: tresses which act o
maximum shearing stressés are " fhe plages of the

2 ©-n

Therefore a normal stress acts sim i axim
ultaneously with th i i
stress unless ¢, -+ o, vanishes. ’ o o shearing
If 6, and o, in Eq. 9-6 are the princi
) .96 rincipal s i
Bq. 9-6 sincatifes 1 . e princip tresses, 7,, is zero and
0 — 0y ‘

2 ©8)

Tmax =
EXAMPLE 92

For the state of stress in Exam i
: ple 9-1, reproduced in Fig. 9-6
rework the previous problemfor 6 = —2214°, usingthe mmuam& BMMW%MW
MMH.So memmo.nEm:ou of stress; (b) find the principal stresses and show
mrMﬁ .moumw on a properly oriented element; and (c) find the maximum
aring stresses with the associated normal stresses and
on a properly oriented element, show thexesuls

SOLUTION

Case (a). By directly applyin .
/ g Egs. 9-1 and 9-2 for § = —2214° wi
% = +3 ksi, 0, = +1ksi, and 7, = +2 ksi, one has H widh
34+1 3-1

O == ——— |

2 2

cos (—45°) + 2 sin (—45°)

=2 + 1(0.707) — 2(0.707) = +1.29 ksi

3-1 ,
Tay = = —5—sin (—45°) + 2 cos (—45%)

+1(0.707) + 2(0.707) = +2.12 ksi
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22°30

1.29 ksi

2.12 ksi %

) ©

2 ksi

3ksi

4.24 ksi

121°43

)

2.24 ksi

T

Fig. 9-6

292

Thke positive sign of 6z indicates tension; whereas the positive sign of  Section 9-5
7oy indicates that the shearing stress acts in the -+ Y’ direction, as shown ~ Maximum shearing
in Fig. 9-4(b). These results are sbown in Fig. 9-6(b) as well as in Fig,  stresses
9-6(c).
Case (b). The principal stresses are obtained by means of Eq. 9-4,
The planes on which the principal stresses act are found by using Eq. 9-3,

3+1 3 -1y
qunmﬂq Aqv +22=2422

I

0y = +4.24 ksi (tension), o, = —0.24 ksi (compression)

Toy 2
Ao.n - eV\N Am - C\N
26, = 63°26"  or 63°26’ + 180° = 24326

tan 26, =

=2

Hence 6p=3143 " and 0’ = 121943

This locates the two principal planes AB and CD, Figs. 9-6(d) and (o),
on which o, and o, act. On which one of these planes the principal
stresses act is unknown. So, Eq. 9-1 is solved: by using, for example,
01 = 31°43. The stress found by this calculation is the stress which acts
on the plane 4B. Then, since 26] = 6326/,

Oy = — 5 €08 63°26° + 2 sin 63°267 — +4.24 ksi = o,

This result, besides giving a check on the previous calculations, shows
that the maximum principal stress acts on the plane 48, The complete
state of stress at the given point in terms of the principal stresses is
shown in Fig. 9-6(f).

Case (c). The maximum shearing stress is found by using Eq.
9-6. The planes on which these stresses act are defined by Eq. 9-5. The
sense of the shearing stresses is determined by substituting one of the
roots of Eq. 9-5 into Eq. 9-2. Norimat stresses associated with the maxi-
mum shearing stress are determined by using Eq. 9-7.

Tmax = VIB —D2F + 2% = /5 — 224 ks
tan 26, = — aw!c\w = —0.500

20, = 153°26" or 153°26" + 180° = 333°2¢°

Hence 6, =763  ang 6 = 166°437
These planes are shown in Figs. 9-6(g) and (n). Then, using 26; = 153°26"
in Eq. 9-2,

. 3—-1 .

Ty = — 5 SIn153°26" + 2 cos 153°267 = —2.24 ksi
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which means that the shear along the plane EF has an opposite sense to

Chapter 9
that in Fig. 9-4(b). From Eq. 9-7

1sformation of
258 and strain;
d and fracture

o

3+1 :
criteria = 2 =

2 ksi

’

The complete results are shown in Fig. 9-6(i).

The description of the state of stress now can be exhibited in
three alternative forms: as the originally given data, and in terms of the
stresses found in parts (b) and (c) of this problem. In matrix representa-
tion of the stress tensors this yields

3 2 4.24 0 2 —2.24

or or
2 1 0 —0.24 —224 2

ksi

All these descriptions of the state of stress at the given point are equiv-
alent. Note that in one of the stated forms the matrix is diagonal.

9-6. AN IMPORTANT
TRANSFORMATION OF STRESS

A significant transformation of one description of a state of stress
at a point to another occurs when pure shearing stress is converted into
principal stresses. For this purpose consider. an element subjected only
to shearing stresses 7,, as in Fig. 9-7(a). Then from Eq. 9-4 the principal
Stresses Oy op 3 = —=Tays 1.€., Dumerically oy, op, and 7, are all equal,
although o, is a tensile stress and o, is a compressive stress. In this case,

from Eq. 9-3 the principal planes are given by tan 20; = oo, i.e., 26, = 90°

or 270°. Hence §; = 45° and 6] = 135°; the planes corresponding to these
angles are in Fig. 9-7(b). To determine on which plane the tensile stress ¢
acts, a substitution into Eq. 9-1 is made with 26; = 90°. This computation

45°

D = _Nw&_ _dQ_

®) ©

> shearing stress is equivalent to tension-compression
» on inclined planes at 45° to the shearing planes.

294

ooBEmMMMHM %M wwwm.mﬁorwu .wombﬂ of view, the transformation of stress found
¢s with intuition. The material “doe. ”?
manner in whick its state of stress is described. e impatant
; ; escribed, and a little imaginati
‘ . on
should convince one that the tangential shearing stresses combine mo cause

ull along th iti . . .
M umon&.m e positive shear diagonal and compression along the other

97. MOHR’S CIRCLE OF STRESS

i wowﬁﬁﬂw %ﬂw&aﬂ the g%o %mm 9-1and 9-2 for the stress transformation
~eXamined in order to interpret them graphi
doing this, two ow_monﬁm will be pursued. First, by %%EW»MW: H.M.ﬂnﬂ

Wﬂﬂwmgwhoﬂw S;M ?w. achieved. This is the main purpose of this article
» Wi ¢ aid-of graphical construction, a quj ki i ‘
transformation problems ca ained. This i moFEwn ooy
o Tollowing ﬁ.mao. _ 1 often be obtained. This will be discussed in

A careful study of Eqgs. 9-1and 92 shows that they represent a circle

written in par ametric mOHE. .H,.F,NH Eﬁaw do HO@H esent a circle 1s made ] earer
1
Oz Oy ) Oy

O —
2 2

cos 26 IT Toy sin 26 AW'WV

Gy — G, .
3 ¥ sin 20 + 7, cos 26 9-10)

Tayr = —

..H,.wg. by squaring both these equations, adding, and simplifying

Q..JT.O.» 2
G, — 2Ty 2 _ [{O0z— 0,
A H 2 v +§€IA ) - ev + 72, ©-11)

0.every gi
Ty given problem ¢,, g,, and Ty @re the three known constants
£

and o, and 7,,,. are the variables, Hence Eq. 9-11 may be written in more

ompact form as
,— g)? L2
(o, a)® + 7o, = b? ©-12)

ere N. N (o, + N.U.Q\V\m.mua b* = [(0, — ,)2P + 72, are constants,
S equation is the familiar expression of analytical geometry
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, The stress distribution on the rectangular cross-section shown in

Fig. 1 is given by o, =1000y-5002+800 kPa, 0, =200z kPa, o,

=0.

What is the net internal force system on this cross-section 7

Answer : F= 1920 N, V, =V, =0

"M, =-1600 N-cm., M,=-7200 N-cm.,T=-640 N-cm,

2, Suppose the stress distribution on a cross-section of the circular

cylinder of Fig. 2 is given by o, =0 =0, o,,=kVr, where k is T/

unkﬁown. What is the value of k in this case? ,

Answer: k. = .7To/4xR7/2

‘

6.4 TFor the given state of stress, determine the normal and

shearing stresses exerted on the oblique face of the shaded triangular element

shown. Use a method of analysis based on the equilibrium equations of that

- element, as was done in the derivations presented in Sec, 6.2.

6.6 ° For the given state of stress, determine (a) the principal
planes, (b) the principal stresses. ' "

, 6.12  Fou the given state of stress, determine (a) the orientation
of the planes of maximum in-plane shearing stress, (b) the maximum in-plane

-shearing stress, (¢) the corresponding normal stress. S .
6.14  For the given state of stress, determine the normal and

shearing stresses after the element shown has been rotated through («) 40° coun-
terelockwise, () 15° clockwise, o o

6.56 For the state of pline stress shown, determine the range of values of
v which the normal stress o is equal to or less than +65 MPa.
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f, The stress distribution on the rectangular cross-section shown in

Fig. 1 is given by o, =1000y-5002+800 kPa, 0, =200z kPa, o,

=0.

What is the net internal force system on this cross-section 7

Answer:  Fa 1920 N, V,=V,=0

"M, =-1600 N-cm., M, =-7200 N-cm.,T=_5'40 N-cm.

2. Suppose the stress distribution_on a cross-section of the circular

cylinder of Fig. 2 is given by o, =0, =0, o,=kVr, where k is T

unkhown. What is the value of k in this case?
Answer: k = I7To/47rR7/2 -

6.4 For the given state of stress, determine the normal and

" shearing stresses exerted on the oblique face of the shaded triangular element

shown.. Use a method of analysis based on the equilibrium eguations of that

. element, as wus done in the derivations presented in Sec. 6.2,

6.6 ° For the given state of stress, determine (a) the principal
planes, (b} the principal stresses. ' :

, 6.12  For the given state of stress, determine (a) the orientation
of the planes of maximum in-plane sheariug stress, (b) the maximum in-plane
-shearing stress, (c) the corresponding normal stress. o '

6.14  TFor the given state of stress, determine the normal and

sheuring stresses after the element shown has been rotated through (4) 40° coun-
terclockwise, (b) 13% clockwise. : C

6.56  Tor the state of plane stress shown, determine the range of values of 0
v which the normal stress o is equal to or less than +65 M,
. \
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Florida International University
Department of Mechanical Engineering

EMA 3702 EXAMINATION NO. 3C April 9, 2002
Print your name and sign the following statement:
I will not give nor take any unpermitted aid during this examination.

T understand that violation of this statement will lead to automatic
failure of the examination.

PRINT NAME SIGN NAME

For the following loading system, which may occur because of build-up
of snow on a horizontal flagpole, find:

1) the elastic curve y(x)

2) the displacement at x=L

3) and using the elastic curve equation, find the moment at the
location x=0

4) using the elastic curve equation, find the shear at x=L/2
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QUIZ 4B EMA 3702 April 18, 2002

Name:

Student No.

Given the following stress state, find
e the principal stresses, 1 and 62
e principal stress directions

e maximum shear stress and direct stress, o, perpendicular to the plane of the shear
stress

- o maximum shear stress directions
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QUIZ 4A EMA 3702 April 18, 2002

Name:

Student No.

Given the following stress state, find
e the principal stresses, ol and 62
e principal stress directions

o maximum shear stress and direct stress, o, perpendicular to the plane of the shear
stress

e maximum shear stress directions
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QUIZ 4A EMA 3702 April 18, 2002

Name:

“Student No.

Given the following stress state, find
o the principal stresses, o1 and 62
e principal stress directions

e maximum shear stress and direct stress, o, perpendicular to the plane of the shear
stress

¢ maximum shear stress directions
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QUIZ 4C EMA 3702 April 18, 2002

Name:

Student No.

Given the following stress state, find
e the principal stresses, ol and 62

® nrinecinal-efrace directiona
- IJL uu.ul.uu. DULVOS ULV UUIVLLD

maximum shear stress and direct stress, o, perpendicular to the plane of the shear
stress

e maximum shear stress directions

)
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QUIZ 4B EMA 3702 April 18,2002

Name:

Student No.

Given the following stress state, find
o the principal stresses, 61 and 62

s—principal stress-directions
e maximum shear stress and direct stress, o, perpendicular to the plane of the shear
stress

- o maximum shear stress directions
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QUIZ 4A EMA 3702 April 18,2002

Name:

Student No.

Given the following stress state, find
o the principal stresses, o1 and ¢2
- principal stress.directions--

e maximum shear stress and dlrect stress, o, perpendlcular to the plane of the shear
stress

e maximum shear stress directions
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QUIZ 2D EMA 3702 March 14, 2002

Name:

Student No.

A cast iron block is loaded as shown in the figure. Neglecting the weight of the block; .

determine the stresses acting normal to a section taken 18 inches below the top and locate
the line of zero stress.






Problem 1.

Member AB consists of a single C130 x 10.4 steel channel of length 2.5 m. Knowing
that the pins at A and B pass through the centroid of the cross section of the channel,

a) determine the factor of safety for the load shown with respect to buckling in the plane
of the figure when 6 = 30°. Let E=200 GPa.

b) Suppose the member CB is a rod also made of the same steel. If we want the structure
to buckle and yield simultaneously, what must be the minimum diameter of the rod.

Calculate the safety factor according to the following conditions.
Rod and beam are pin connected at both ends for buckling in their long direction and are
considered fixed at both ends for buckling in the direction out of the page.







EMA3702 FALL 2002 DR. C.LEVY
FINAL EXAMINATION-Version B
December 10, 2002

General Instructions -- This examination is 2 hours and 30 minutes long. You are allowed your help aids
from previous quizzes and any help aids attached to the examination. SHOW ALL WORK!!!

Please sign the following:

I certify that I will neither receive nor give unpermitted aid on this examination. Violation of this will
result in failure of the course and possibly other academic disciplinary actions.

Print your name Sign your name

This examination consists of 3 problems with several parts to each of the problems. You are to answer all the
problems!

GOOD LUCK!
Problem # Breakdown by ' Score
Problem
1 35%
2 30%
3 35%

TOTAL






Problem 3

Two beams made of steel are joined by means of a rod, also of steel, and the rod's length
is 3.75 m. At the beginning no load or moment is acting on the structure. If the rod is
now heated by 50 degrees C, find the change in location of point C.

Given: E=206 GPa
coefficient of expansion a= 12 x 107 mm/mm-degree C.
Both beams have moments of inertia Iz 850 cm®.
The rod has a cross-sectional area of 1.6 cm?.
Other helpful information can be found at the back of the examination.
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Problem 2.

Given a bar made of wood that is loaded as seen in the figure and the cross-section as
given in the figure. The Young’s modulus is E=12 GPa

a) Find the equation of the elastic curve and the slope at C and the displacement at B.
b) Draw the moment and shear diagrams for the bar
¢) Find the location and value of the maximum stress, v

: ‘ié'*’x "%“

o

TN
C
C130X10.4
3 LS - L5

units: meers






Problem 3.

The T shaped beam is made of 2 wood planks 200 mm x 30 mm which are joined by
nails. If the allowable bending stress is 12 MPa, and the allowable shearing stress is 0.8
MPa, find:

a) if the beam is able to support safely the loads shown in the picture

b) the maximum spacing between the nails if each nail is able to support safely 1500 N
of shear force.
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Problem 2.

A composite bar AB is made of steel (section AC) and brass (section BC). The cross-
sectional area of AC is 200 cm? and that of BC is 100 cm®. The bar is found between two
walls with a space as shown in the diagram. On the bar is placed a load at D and both
sections of the bar are heated by 20 degrees C. Young’s modulus of the steel is 206 x 10°
Pa and that of brass is 103 x 10° Pa. The coefficient of thermal expansion of the steel is
12.5 x 10 cm/cm-degree C and that of the brass is 16.5 x 10 cm/cm-degree C.

Find the axial stresses in each section AD, DC, CB

Note that P=147 kN

A C B
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15-mm diameter

Problem 1.
Knowing that a factor of safety of 2.6 is required,

a) determine the largest load P that can be applied to the structure shown. Use E=200
GPa.

b) If we want the structure to buckle and yield simultaneously, what must be the

minimum diameter of the rod that yields first, all else being unchanged. Assume
Oyp=360 MPa.

Calculate the safety factor according to the following conditions.
The rods are pin connected at both ends for buckling in their long direction and are
considered fixed at both ends for buckling in the direction out of the page.

P
20-mm diameter

B

- . ',,







Problem 1.

The pin connected aluminum alloy frame shown carries a concentrated load F.

a) Determine the value of F that will cause buckling. Take E = 10 x 10° psi for the
alloy. Both members have 2 inch by 2 inch cross-sections.

b) If we want the structure to buckle and yield simultaneously, what must be the
minimum dimension of the square member of the rod that yields first, all else being
unchanged. Assume oy,=35 ksi in tension and compression.

Calculate the load F according to the following conditions.
The rods are pin connected at both ends for buckling in their long direction and are
considered fixed at both ends for buckling in the direction out of the page.

4.8’







Problem 3.

Consider a hollow cylindrical tube of outer radius Ro=140mm and inner radius Ri=125
mm. The tube is fixed at one end and subjected to a torque of 35 kN-m together with an
axial compressive force of 68 kN as shown in the diagram.

a) Determine the principal stresses and where they occur
b) Determine the maximum shear stress and the direction in which they occur






EMA3702 Summer 2003 DR. C.LEVY
FINAL EXAMINATION-Version A
June 24, 2003

General Instructions -- This examination is 2 hours long. You are allowed your help aids from previous
quizzes and any help aids attached to the examination. SHOW ALL WORK!!!
Please sign the following:

I certify that I will neither receive nor give unpermitted aid on this examination. Violation of this will
result in failure of the course and possibly other academic disciplinary actions.

Print your name Sign your name /

This examination consists of 3 problems with several parts to each of the problems. You are to answer all the
problems!

GOOD LUCK!
Problem # Breakdown by Score
Problem
1 | 35%
2 35%
3 ’ 30%

TOTAL






Problem 1la.
Knowing that a factor of safety of 2.6 is required,

a) Determine the largest load P that can be applied to the structure shown.
Use E=200 GPA.

Calculate the load under the following conditions:
The rods are pin connected at both ends for buckling in their long direction and are
considered fixed at both ends for buckling in the out of page direction.

b) For the load found in (a), find the cross-sectional area in the other two members
so that their allowable stresses meet the safety factor. Assume that oy, = 360 MPa
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Problem 2a.

Given a bar made of wood that is loaded as seen in the figure and the cross-section as
given in the figure. The Young’s modulus is E=12 GPa

a) Find the equation of the elastic curve
b) Find the location and value of the maximum shear stress, T

fj Z i&li/m
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Problem 3c.

Consider a hollow cylindrical tube of outer radius Rg = 140 mm and inner radius R; = 125
mm. The tube is fixed at one end and subjected to a torque of 35 kN-m together with an
axial compressive force of 68 kN as shown in the diagram. If the tube is also pressurized
to a pressure of 2.1 MPa

Determine the principal stresses and where they occur






EMA 3702 Summer 2003 DR. C. LEVY
| FINAL EXAMINATION-Version C
June 24, 2003

T

General Instructions -- This examination is 2 hours long. You are allowed your help aids from previous
quizzes and any help aids attached to the examination. SHOW ALL WORK!!!

Please sign the following:

I certify that I will neither receive nor give unpermitted aid on this examination. Violation of this will
result in failure of the course and possibly other academic disciplinary actions.

Print your name Sign your name

This examination consists of 3 problems with several parts to each of the problems. You are to answer all the
problems! ‘ '

GOOD LUCK!
Problem # Breakdown by Score
Problem
1 35%
2 35%
3 30%

TOTAL






Problem lec.

A bar truss, made of steel, is loaded by F as shown in the diagram. If each bar has a
rectangular cross section of 2 inches x 2 inches.

a. Find the load F that will cause buckling and in which bar it will happen
Calculate the load F according to the following conditions.
All the bars are pin connected at both ends for buckling in the long direction of the bar

and are considered fixed at both ends for buckling in the direction out of the page.

b. For the load, F, found in (a), what is the direct stress in the bar that does not buckle.
Has the bar failed in yield.

Take E =10 x 10® psi and 0y,=35000 psi in tension and compression. The dimensions of
the bars are given in the diagram.







Problem 2c.

The T shaped beam is made of 2 wood planks 200 mm x 30 mm  which are joined by
nails. If the allowable bending stress is 12 MPa, and the allowable shearing stress is 0.8
MPa, find:

a) ifthe beam is able to support safely the loads shown in the picture

b) the maximum spacing between the nails if each nail is able to support safely 1500 N
of shear force.
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Problem 3c.

A composite bar AB is made of steel (section AC) and brass (section BC). The cross-
sectional area of AC is 200 cm? and that of CB is 100 cm®. The bar is found between two
walls with a space as shown in the diagram. On the bar is placed a load at D and both
sections of the bar are heated by 20 degrees C. Young’s modulus of the steel is 206 x 10°
GPa and that of brass is 103 x 10° GPa. The coefficient of thermal expansion of the steel
is 12.5 x 10 cm/cm-deg C and that of the brass is 16.5 x 10® cm/cm-deg C.

Find the axial stresses in each section AD, DC, CB

Note that P=9800 N
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Fig. P10.118

15-mm diameter

4

B

20-mm diameter

/

i
0.5m
c |

REVIEW PROBLEMS

10.117 A column of 3.5-m effective length is made by welding together
two 89 X 64 X 6.4-mm angles as shown. Using E = 200 GPa, determine the
allowable centric load if a factor of safety of 2.8 is required.

SN R

4 mm
Fig. P10.117

ST
6:

10.718 Member AB consists of a single C130 X 10.4 steel channel of
length 2.5 m. Knowing that the pins at A and B pass through the centroid of
the cross section of the channel, determine the factor of safety for the load
shown with respect to buckling in the plane of the figure when m 30°. Use
Euler’s formula with E = Noo GPa.

Fig. P10.119

10.119 Supports A and B of the pin-ended column shown are at a fixed
distance L from each other. Knowing that at a temperature T the force in the
column is zero and that buckling occurs when the temperature is T; = T, + AT,
express AT in terms of b, L, and the coefficient of thermal expansion a.

«

10.121 The steel rod BC is attached to the rigid
support at C. Knowing that G = 11.2 X 10° psi, detern
BC for which the critical load P of the system is 80 -

Fig. P10.121

10.122 An axial load P of magnitude 560 kN
the x axis at a distance ¢ = 8 mm from the geometric a
rolled-steel column BC. Using E = 200 GPa, determir
flection of end C, (b) the maximum stress in the colur

W200 X 46.1

Fig. P10.122

10.123 A column with the cross section shows
length. Knowing that oy = 36 ksi and E.= 29 X 10°}
able stress design formulas to determine the largest cer
plied to the column.

10.124 > ooEEb of 4.5-m oﬂuooE\o HmumE mus

P ~aw - Ann -~
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URE [CHAP 17 CHAP.17] MEMBERS SUBJECT TO COMBINED LOADINGS; THEORIES OF FAILURE
D LOADINGS; THEORIES OF FAIL , ,
MEMBERS SUBJECT TO COMBINE _

If the approximate expression of Problem 5.6 is used, we find 0.0002191 m*. Thus, the shearing stre
_Aléas ||v_ the outer fibers of the shell are given by Bet

=

re Tp _ (35,000 N -m) (0.140 m)
J 0.0002199°
) and these are shown in Fig. 17-7.

From Problem 16.13 the principal stresses are found to be

_544-0
2

=223 MPa

o=

|m.t+o
+
L

Onax = 19.75 MPa
Omin = —25.19 MPa
and the peak shearing stress is 22.47 MPa. ) s

VN +(223)

17.3.  Consider a hollow circular shaft whose outside diameter is 3 in and whose inside diameter is
equal to one-half the outside diameter. The shaft is subject to a twisting moment of 20,0001b-in
as well as a bending moment of 30,000 1b -in. Determine the principal stresses in the body. Also,
determine the maximum shearing stress. . ‘ .

The twisting moment gives rise to shearing stresses that attain their peak values in the outer fibers of

the shaft. From Problem 5.2 these shearing stresses are given by 7,, = Tp/J. From Problem 5.1 it is seen
that for the hollow circular area

- = H 4 _ - H 4 4T Py
Fig. 17-5 =32 D;-Df) = e [3* - (1.5)] = 746 in
where D, denotes the outer diameter of the section and D; represents the inner diameter. At the outer
68kN  35kN-m fibers the torsional shearing stresses are thus
Tp _ 20,000(1.5) .
Tay qu "4" 4000 Ib/in’
Fig. 17-6

Let the bending moments lie in a vertical plane. Then the upper and lower fibers of the beam are
subject to the peak bending stresses. These are found from the expression o, = My/l. The moment of
oo A ive str iven b inertia I for the hollow circular cross section may be seen from Problem 7.9 to be
The 68-kN force produces a uniformly distributed compressive Stress & y .

-

= ~68,000N = —5.44 MPa
917 TT0.140 m) — (0125 m)] . -
hown in Fig. 17-7. The torsional shearing stresses due to the 35-kN - m torque were found in Pro
sho L 17-7. resses di - .
Wm.N.S be 7= TplJ. Here, the polar moment of inertia is

. I= %Gu -DYH = %ma —(15)] =373
lem . :

Substituting,

. My _ 30,000(1.5) .
J= MN.,. [(0.140 m)* — (0.125)*] = 0.0002199 m' ] %= 373 12,000 Ib/in’
e 4000 1b/in2
12,000 12,000
1b/in2 * 1b/in?

qg.h Ib/in? mm—p

Fig. 17-8
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QUIZ 5A EMA 3702 June 17,2003

Name:

Student No.

For the following loading on the beam find the displacement at x=L. Show all work.
Give a mathematical expression for the moment as a function of x.
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QUIZ 5B EMA 3702 June 17, 2003

Name:

Student No.

For the following loading on the beam find the displacement at x=L/4. Show all work.
Give a mathematical expression for the shear as a function of x.
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For the following loading on the beam find the displacement at x=L/4. Show all work.
Give a mathematical expression for the shear as a function of x.
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For the following loading on the beam find the displacement at x=L. Show all work
Give a mathematical expression for the moment as a function of x.
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- For the following loading on the beam find the displacement at x=L/4. Show all work.
Give a mathematical expression for the shear as a function of x.
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For the following loading on the beam find the displacement at x=L. Show all work.
Give a mathematical expression for the moment as a function of x.
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Chapter 9
Transformation of
Stress and strain;
yield and fracture
criteria

Fig. 9-19, are known as strain rosettes. If three strain measurements are
taken at a rosette, the information is sufficient to determine the complete
state of plane strain at a point.

If the angles 6,, 6,, and 0, together with the corresponding strains
€¢,» E9, and ¢, are known from measurements, three simultaneous
equations patterned after Eq. 9-13 may be written. In writing these
equations it is convenient to employ the following notation: &,

= 80 )
T
&y = &g and £, = g4,
&g, = &, C0s* 0, + &, sin® Oy + v, sin 6, cos 6,
&g, = &, c0s? 0, + &, sin? 0, + y,, sin 6, cos 0, (9-22)

&g, = &, C08% b3 + ¢, sin® O3 + y,, sin 6, cos 0,
This set of equations may be solved for ¢,, ¢,, and y,, and the problem
reverts back to the cases already considered.

To minimize computational work, the gages in a rosette are usuall
arranged in an orderly manner. For example, in Fig. 9-19(b), 6, = 0°,
B, = 45°, and 0, = 90°. This arrangement of gage lines is known as the -
rectangular or the 45° strain rosette. By direct substitution into Eq: 9-22,
it is found that for this rosette

8(6 61/ ymu
€y = &9% &y = &y¢° 845° = ‘2‘ + ‘2‘ + 7

or Vaoy = 2845 — (8¢° + £9¢°)

Thus ¢,, ¢,, and y,, become known. . ‘

Another arrangement of gage lines is shown in Fig. 9-19(c). This is
known as the equiangular, or the delta, or the 60° rosette. Again, by
substituting into Eq. 9-22 and simplifying, &, = €g., &, = (2500 -} 281900 —
e02)/3, and vz, = (2/V/3)(Egq0 — €1200).

Other types of rosettes are occasionally used in experiments. The
data from all rosettes may be analyzed by applying Eq. 9-22, solving for
& €, and y,,, and then applying Mohr’s circle of strain.*

Sometimes rosettes with more than three lines are used. An addi-
tional gage line measurement provides a check on the experimental work.
For these rosettes, the invariance of the strains in the mutually per-
pendicular directions may be used to check the data.

The application of the experimental rosette technique in compli-
cated problems of stress analysis is almost indispensable.

* Convenient graphical solutions for principal strains from measured strains
have been developed. See G. Murphy, “A Graphical Method for the Evalua-
tion of Principal Strains from Normal Strains,” Journal of Applied Mechanics,
12 (1945), A-209. v :







PROB. 9-26

figure. For such a wedge the elasticity solution
shows that only radial stress distribution
exists and is given* by

- = Pcos 6
T e — 14 sin 2«]
Determine the normal and the shearing
stresses on a vertical section at distance x
from the applied force P and compare with
the elementary solutions, If « = 30° find the
percentage of discrepancy among the maxi-
mum stresses in the alternative solutions.

9-27. Using the stress transformation equa-
tions for a three-dimensional state of stress,T
one may diagonalize any stress matrix. Sup-
pose this were done and it yields

12,000 0 0
0 —6,000 0 |psi
0 0 8,000

For this state of stress what is the maximum
shearing stress? Illustrate the plane or planes
on which it acts in a sketch.

9-28. An investigation of stresses in the plate
of a thin-walled pressure vessel indicates that
the stress matrix is

* Timoshenko and Goodier, Theory of
Elasticity, p. 97.

t See any book on elasticity or plasticity.
For a brief discussion of this point see
Art, 9-9.

330

20 0 0
0 10 O ]ksi
0 00

where it is to be noted that o5 ~ 0. (This state
of stress is analogous to that shown in Prob,
4-6.) Are there any shearing stresses in the
material? Illustrate with a sketch.

9-29. Let /, m, and n define the direction
cosines of a linear element. Using this
notation, Eq. 9-18 can be rewritten as

e = &% + e,m? + yulm
Show that for the three-dimensional case
g9 = &,0% + 5,m? + £,n*
+ Vaylm + yymnt o0l

9-30, If the unit strains are &, = —120 x
1078,¢, = +1,120 x 1075 andy,, = —200 x
107, what are the principal strains and in
which direction do they occur? Use Egs.
9-20 and 9-21 or Mohr’s circle of strain, as
directed. Ans. 1,130 x 10~%, —130 x 10-8,

9-31. If the unit strains are &, = —800 X
1078, e, = —200 x 107%, and v,, = +800 x
1078, what are the principal strains and in
which directions do they occur? Use Egs.
9-20 and 9-21 or Mohr’s circle, as directed.
Ans. 0, 1,000 x 1078,

9-32. If the strain measurements given in the
above problem were made on a steel member
(E =29.5 x 10%psi and v = 0.3), what are
the principal stresses and in which direction
do they act?

9-33. The data for a rectangular rosette
attached to a stressed steel member are
g = —220 X 1075, £,50 = +120 x 1078,
g9 = +220 x 1075, What are the principal
stresses and in which directions do they act?
E =30 x 10%psi and » =0.3. Ans. £5.76
ksi, 14°18".

9-34. The data for an equiangular rosette,
attached to a stressed, aluminum-alloy mem-
ber, are gy = +400 x 1078, g4 = +400 X
1075, and ;590 = —600 x 1078 What are the
principal stresses and in which directions do
theyact? E = 107 psiandv = 14. Ans. +6.22
ksi, —4.44 ksi, 30°,






8.1 An overhanging W250 x 58 rolled-steel beam supports two loads as shown.
PROBLEM 8.1 Knowing that P = 400 kN, a = 0.25 m, and o = 250 MPa, determine (a) the
maximum value of the normal stress g,, in the beam, (b) the maximum value of the
principal stress a,,, at the junction of aflange and the web, (c) whether the specified

P P " shape is acceptable as far as these two stresses are concerned..
IV e = H00 kW = Y400 »(0* N
Ml = (HoO »10*)(0.25) = 100%(0% N-m
kM)
VI ree l— For W250% 58 rolled steel section
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PROBLEM 7.152 7.152 A single strain gage is cemented to a solid 96-mm-diameter aluminum shaft
) at an angle #=20° with a line parallel to the axis of the shaft. Knowing that G = 27
GPa, determine the torque T corresponding to a gage reading of 400 A.

SOLUTION
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PROBLEM 7.120

= ro_ (@02s) _ ’ ‘,‘
S % = <Sg=2 = H4].67 MPa IwoP
_PY L (@2(125) .
G, : %{ ; W‘;— : 20. 83 MPa. anial
Yoo P+ T = 135+¢ = i3] v As TR r)s 4,925 %100 wet = 4, 825715 me
I ST T L  p .
& = A 438503 9. 326 710" Pa - 9.232C MPea
n+ﬁ) 5""95‘585 _: l0“3‘~_‘;0“nq} S": 20_83— 7_32'6 - II.Saq MPG

C{rcum‘re\rem*a‘w? 6} = 41,67 MPa

T ) (H?ﬁ)

7.120 A pressure vessel of 250-mm inside diameter and 6-mm wall thickness is
fabricated from a 1.2-m section of spirally welded pipe 4B and is with two rigid
end plates. The gage pressure inside the vessel is 2 MPa and 45-kN centric axial
forces P and P’ are applied to the end plates.. Determine (a) the normal stress
perpendicular to the weld, (b) the shearing stress parallel to the weld.

SOLUTION

V‘=%o"-‘ 125 wmm 1 = G mm

buve = £(6,46,) = 26.585 MPa

R = Cuby . 5081

2

(@) Gy = Oae + Rcos7¢®

g (24-v°)

26€.535 ~ 15.08| cos70°
2.4 MPa . |

() Zey = R sin70° = 15081 sin70"

= 14.17 MPa —
N
" i
R S E a )
lr

’ Py . is shua L bo
Oy = (@%93) * (J‘Ki—‘@) a2 +}3/5m2o1 S

——)
Fasdue of weber e e = J(EL—’)L*?{: %0y when Tuy=O
2
0 Gy'= (@%@)-ﬁ (T%fy)a{q&) = 21.4Mfa,

Ty = Txyc"’zd - (6;‘_:19-7)51%20( = = (&E@)S&m(‘?f) =7‘#'7
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PROBLEM 7.87 7.87 The 1.5-in-diameter shaft AB is made of a grade of steel for which the yield
: strength is oy = 42 ksi.. Using the maximum-shearing-stress criterion, determine the
magnitude of the torque T for which yield occurs when P = 60 kips.

SOLUTION
P = ¢o kips A=Tars 208V 17eT1in>
6y = -% s - S0 = - 33.953 ks
€= 0 Cuve = 2(6,+6,)= 16
R =J&58) v 2) = JFeS 7
Al = 2R = | T+ 4T = 6,
4t e G -GS Ty 7 67 - 6 = 7y 42 - s3ass’
= 12.36) ksi
Frow toveion ’K,J B T_\;_S T = —:t:'t
c=4d = 0.75in J= Zc' = 0.49701 in¥
. (0.4:72?7:;(12.3'617 . 5.1 k".P_".n -
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QUIZ 6A EMA 3702 June 16,2003
Name:
Student No. .
This is due on Monday at 540pm in class and no later.

I certify that T will neither receive nor give unpermitted aid on this quiz. Violation of
this will result in failure of the quiz.

Sign your name

Problem 1. A box beam is fabricated from two pieces of % in. plywood-and two 4 Y5 1n.
by 3 in. solid wood pieces as shown in the cross-sectional view. If this beam is to be
used to carry a concentrated force in the middle of a simple span,

(a) What may the magnitude of the maximum applied load P be?
(b) How long may the span be?
Neglect the weight of the beam and assume there is no danger of lateral buckling. The
allowable stresses are:
In plywood: 1500 psi in bending, 120 psi in shear
In the glued joint 60 psi in shear







Problem 3. Using the information you found in problem 2,
(a) Draw the Mohr’s Circle and determine the principal stresses o and o3 .,
(b) Also determine the maximum shear stress and the accompanying direct stress.
(c) Based on the information you have, find the direction of the maximum direct
stress.
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Problem 1. A box beam is fabricated from two pieces of % in. plywood and two 4 ' in.
by 3 in. solid wood pieces as shown in the cross-sectional view. If this beam is to be
used to carry a concentrated force in the middle of a simple span,

(a) What may the magnitude of the maximum applied load P be?
(b) How long may the span be?
Neglect the weight of the beam and assume there is no danger of lateral buckling. The
allowable stresses are: ' ,
In plywood: 1500 psi in bending, 120 psi in shear
In the glued joint 60 psi in shear
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Problem 3. Using the information you found in problem 2,
(a) Draw the Mohr’s Circle and determine the principal stresses 6; and o, . -
(b) Also determine the maximum shear stress and the accompanying direct stress.
(c) Based on the information you have, find the direction of the maximum direct
stress.







QUIZ 5A EMA 3702 June 17, 2003

Name:

Student No.

For thé following loading on the beam find the displacement at x=L. Show all work.
Give a mathematical expression for the moment as a function of x.
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QUIZ 5B EMA 3702 June 17,2003

Name:

Student No.

For the following loading on the beam find the displacement at x=L./4. Show all work.
Give a mathematical expression for the shear as a function of x.
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iscussed above are
s such as in Fig. 8-6
curves of this type,
n, are equivalent to

s departures will be
criteria established
he rational basis for

infinitesimal elements
find the normal and
g on the indicated
t “wedge” method of
imple 9-1. Ans. Prob.
4,970 psi.

2.
ven in Prob, 9-2 plot

Ap

[6 ksi
2

10 ksi

T

A

PROB. 9-2, 9-6,9-7

PROB. 9-3,9-8,9-10

3 ksi 20 ksi

3 ksi

4 ksi
5 kst

6 ksi
45°

PROB. 9-4,9-9, 9-11

o, and 7, as ordinates with 6 as abscissa for
0 < 6 < 2w (b) Generalize and discuss the
results, especially with regard to the maxima
and the minima of the functions,

9-7. Rework Prob. 9-2 using Eqs. 9-1 and 9-2.
9.8. Rework Prob. 9-3 using Eqs. 9-1 and 9-2,

9-9. For the data of Prob. 9-4 find the stresses
on 8 = 45° and 6 = 135°, Show the complete
results on the newly oriented element.

9-10. For the data of Prob. 9-3, (a) find the

principal stresses and show their directions and ’

senses on a-properly oriented element; (b)
determine the maximum shearing stresses and
the associated normal stresses. Show the
results on a properly oriented element.

9-11. Same as preceding problem for data of
Prob. 9-4.

9-12 through 9-15. Draw Mohr’s circle of
stress for the states of stress given in the figures.
(a) Clearly show the planes on which the
principal stresses act, and for each stress
indicate . with arrows its direction and sense.
(b) Same as (a) for the maximum shearing

stresses and the associated normal stresses,
Ans. Prob. 9-15. (a) 6 ksi, —4 ksi; (b) 5 ksi.
1 ksi.

9-16. The state of two-dimensional stress at
three different points is given in matrix
representation as

(@ (12 5) ksi b (—6 6) ksi
56 6 -8

© ( 3 "9)kg
—9 —12

For each case draw Mohr’s circle of stress, and
then, 'using trigonometry, find the principal
stresses and show their directions and senses
on properly oriented elements. Also find the
maximum shearing stresses with the associated
normal stresses, and show the results on
properly oriented elements. Ans. (a) 14.83 ksi,
3.17 ksi;. 5.83 ksi, 9 ksi; (b) —0.9 ksi, —13.1
ksi; 6.1 ksi, —7 ksi; (¢) 7.2 ksi, —16.2 Kksi;
11.7 ksi, —4.5 ksi.

917, If 6, = ¢; =0 and o, = g, = —4,000
psi, using Mohr’s circle of stress, find -the

tIO ksi
et 10 ks
- ——
10 ksi
|
'PROB. 9-12 PROB. 9-13

th ksi. ‘ﬂsi
4 ksi
—— e [
6 ksi " 2 ksi

PROB. 9-14

PROB. 9-15
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=
PROB. 9-26

figure. For such a wedge the elasticity solution
shows that only radial stress distribution
exists and is given* by

o = - Pcos
" rle — Vg sin 24]

Determine the normal and the shearing
stresses on a vertical section at distance x
from the applied force P and compare with
the elementary solutions. If « = 30° find the
percentage of discrepancy among the maxi-
mum stresses in the alternative solutions.

9-27. Using the stress transformation equa-
tions for a three-dimensional state of stress,t
one may diagonalize any stress matrix. Sup-
pose this were done and it yields

12,000 0 0
0 —6000 0 |psi
0 0 8,000

For this state of stress what is the maximum
shearing stress? Illustrate the plane or planes
on which it acts in a sketch.

9-28. An investigation of stresses in the plate
of a thin-walled pressure vessel indicates that
the stress matrix is

* Timoshenko and Goodier, Theory of
Elasticity, p. 97, - .

t See any book on elasticity or plasticity.
For a brief, discussion of this point see
Art, 99,

330

20 0 0\
0 10 0 |ksi
0 00

where it is to be noted that a; ~ 0. (This state
of 'stress is analogous to that shown in Prob,
4-6.) Are there any shearing stresses in the
material? [llustrate with a sketch,

9-29, Let /, m, and n define the direction
cosines of a linear element. Using this
notation, Eq. 9-18 can be rewritten as

g = &0 + &,m® + y,lm
Show that for the three-dimensional case
g = &xl* + e,m® + e n?
+ Yaylm + yymnt vy, onl

9-30. If the unit strains are &, = —120 x
1078, ¢, = +1,120 x 107%,andy,, = —200 x

.1078, what are the principal strains and in

which direction do they occur? Use Egs.
9-20 and 9-21 or Mohr’s circle of strain, as
directed. Ans. 1,130 x 107% —130 x 1078,

9-31, If the unit strains are &, = —800 x
107, ¢, = —200 x 1075, and y,, = +800 x
1078, what are the principal strains and in
which directions do they occur? Use Egs.
9-20 and 9-21 or Mohr’s circle, as directed.
Ans. 0, 1,000 x 1078,

9-32. If the strain measurements given in the
above problem were made on a steel member
(E =29.5 x 10%psi and » = 0.3), what are
the principal stresses and in which direction
do they act?

9-33. The data for a rectangular rosette -
attached to a stressed steel member are
ggo = —220 X 1075, g450 = +120 x 1078
£g00 = +220 x 1078 What are the principal
stresses and in which directions do they act?
E =30 x 10%psi and » =0.3. Ans. 4576
ksi, 14°18’.

9-34. The data for an equiangular rosette,
attached to a stressed, aluminum-alloy mem-
ber, are £go = +400 x 1078, g500 = +400 X
105, and &,590 = —600 x 108 What are the
principal stresses and in which directions do .
theyact? E = 107 psiand v = 14. Ans. +6.22
ksi, —4.44 ksi, 30°.



