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seek a function u(x, #), which is defined in the interior of a rectangle ABCD.

This region is already determined by the statement of the problem, since’

the course of the heat propagation in the rod 0<x </ during the time in-
terval ¢ £ ¢ =T, in which the heat behavior
of the boundary is known, was already in-
vestigated. Let £, = 0; we assume that u(x, £)
1T - satisfies the heat-conduction equation only
for 0<x</,0<t=<T7T, ie., not for t=0
(the side AB) or for x =0, x =/ (the sides
AD and BC). For t=0, as well as x =0

40 X:f- x and x =/, the value of this function is given
. . directly by the initial and boundary condi-
FIG. 37. : tions. To require that the heat-conduction

equation, for example, be satisfied also for
t =0 would imply that the derivative ¢'" =1,(x,0) in this equation exists.
Therefore, the generality of the physical phenomena to be investigated is
limited, and thus the basic functions which do not satisfy this requirement
are eliminated . from consideration. The condition (3-1.3) loses its meaning
when it is not required that u(x, f) in theregion0<x=[,0<¢= T (Le, in
the closed rectangle ABCD) be continuous or this requirement must be replaced
by another appropriate assumption.*® To understand the significance of this

requirement we consider the function v(x, t) defined by the following condi-.

tions: : :
ox H=C, O<x<l, O<t=T
vz, 0) = olx), 0=sx<x<!
(0, £)= p(2), (i, £} = po(t), 0st=sT

where C is an arbitrary constant. The function v obviously satisfies both
‘condition (3-1.2) and the boundary conditions. However, this function in no
case describes the course of the heat distribution in the rod with an initial
temperature ¢(x) = C and boundary temperatures () # C and p,(f) # C, since
it is discontinuous for ¢ =0, x =0, x = /.

‘The continuity of #(x, ¢) for 0 < x < 1,0 < ¢t.< T directly follows in that
u{x, f) satisfies the differential equation. Therefore, the requirement that
u(x, {) be continuous in 0= x </, 0<f =< T, is based essentially only on those
"points at which the boundary and the initial values are prescribed. In the
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For problems with several independent geometric variables the above
statements remain valid. In these problems, an initial temperature and
boundary conditions determined on the surface of the body are prescribed
for ¢ =0. We can also investigate problems for infinite domains.

With regard to all the problems discussed, the following problems exist*":
1. Are the solutions of the problems discussed uniquely determined?

2. Does a solution exist?
3. Do the solutions depend continuously on the auxiliary conditions?

If a problem admits of many solutions, then we naturally cannot speak
of “the solution of the problem,”” and we must first prove the uniqueness.
In practice, the second question above is the most important, since generally
n proving the existence of a solution, we simultaneously find methods for
its calculation. .

As noted earlier (see Section 2-2 §3) we speak of a physically determined
process when a small change in the initial or boundary conditions causes a
small change in the solution. In the following, it will be shown that heat
propagation is determined physically by the initial and boundary conditions,
i.e., a smali change in the initial or boundary conditions implies a small change
in the solution.

5. The principle of the maximum 7

o

In the following we shall investigate differential equations with constant
coefficients,

V= @0+ Br:+ v . (3-1.34)
As already shown, these equations, by the substitution of
— X+ AL . _ — i ﬁ:
v=2¢"""y  with p e 2

can be brought to the form
e = Qs (3-1.35)

The solutions of this equation have the following properties which will
be denoted as_the principle of the maximum.

“Afunction #(%, #) defined and continuous-in the closed Fégion 0 < £ < -

0 x </ and satisfying the heat-conduction equation P

following, by a solution of the equation which satisfies the boundary condi- P 2 P (3-1.35)
tions, we shall always mean a function which satisfies the requirements (3-1.1), , s S
(3-1.2), and (3-1.3) and hence not repeat these each time, unless there are i the Tegion 0 <7 < 7,0 <x < [ assumes its maximum or minimum at the /

special conditions. ‘ _ initial moment.¢.=0.or-at-the-boundary: points.x.=.0.0r g =. .-
~ Correspondingly; this is the case for other boundary-value problems, in "7 Before we prove this, note that the function u(x, #) = const. obviously
particular for problems of an infinite rod and problems without initial condi- . satisfies the heat-conduction equation and assumes a maximum (minimum) at
tions. ' . N each point. However, this does not contradict our assertion, because it means

# Later, boundary-value problems with discontinuous boundary and initial conditions .oa].y that when a maximum (minimum) xiassumed mihe mterli)rlof the region
will be considered. For these, the problems will be properly defined so that the boundary It is also (but pot only) assumed for ¢ =0 or for x =0 or x = /.
conditions are fulfilied. . . ; 41 Cf. Section 2-2,
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~The-physical significance of thiS statement i§ immediately ~clear:-if-the—
_temperature on the boundary and at ‘the initial ~moment does not exceed a
. value M, then igihﬂe,in}@Ei,oE;of:th,e:quy:no:;tempeEatur&;higher:t—han;Mtggg-{
_be attained-—We shall limit ourselves to the proof of the statement of the

maximum and give an indirect proof. We shall designate by M the maxi-
mum value. of #(x, #) for t=0(@0=xSHorforx=00rx=/0=t= T) and
assume that the function u(x, {) assumes its maximum at an interior point
(%o, £0), (0 < X < L0<tHh = T)Z‘s

w(e, t) =M+ e.

We now compare the signs in Eq. (3-1.35) at the point (%o, f)- Since the
function at (x,, fo) assumes its maximum,” then necessarily .

i =0 and %z, t)=0. (3-1.36)
8x x

Also, since u(x,, #) for ¢ = #, has a maximum,” then

2 o, 1) 20 @-1.37)

By comparison of the signs on the left and right sides of (3-1.35) it follows
that both sides can be different. These considerations, however, still do not
prove the correctness of our theorem; since the right and the left sides can
simultaneously equal zero, it would signify no contradiction. We bring forth
this consideration simply to emphasize the fundamental concepts of our proof.
For the completion of the proof we shall seek more than one point {x., f;)
at which d'#/6z* =0 and du/dt > 0. Therefore, we consider the -auxiliary

function
vz, ) =ulx, )+ k(L — 1), (3-1.38)

where k'is a constant. Obviously then

VX, to) = wlxo, L) =M + ¢

and
k(to—t) < kT .

48 If the continuity of u(x, £) were assumed in the bounded region0=x=<1,0=¢=T,
then the function u(x, ) could not exceed its maximum, and further considerations would
be contradictory. On the basis of the theorem that every continuous function in a bounded
region attains its maximum, then (a) the function u(x, t) attains a maximum within or
on the boundaries which will be denoted by M; (b) if u(x, ¢) also were to exceed M only
at a point, then a point (xq, t;) would exist at which the function wu(x, t) assumes a maxi-
mum which is larger than M: wu(xo, to) = M + ¢ (¢ > 0), where 0 < 2 <1, 0< (=T,

© As is known from analysis, for the existence of a relative minimum of a function
f(x) at an interior point x, of an interval (0, 1), the conditions

A o

Oxlemzy  0x2

are sufficient. If, therefore, at the point xo the function f(x) has a maximum value, then
(@) f'ixe) =0, and (b) f'’(xo) > O cannot hold; therefore Frx) € 0. .

50 Obviously, gu/ot = 0, in case to < T, whereas for ¢ = T, then du/ot = 0 must hold.

>0

x=xq

. as*we1’1~as~t~he—same\initial;.;nd—b?)’{f;ﬁéry conditions
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We now select £ > 0 so that &7 < ¢/2, i.e., let B < ¢/2T; then the maximum
of vx, t) for £=0 or for x=0,x =1 does not exceed the value M+ ¢/2,
ie.,

v(x,t)§M+—ZE~ for t=0o0rx=0,x=1, (3-1.39)

- since for this argument the first summand of (3-1.38) is not larger than A/,

and the second is not larger than ¢/2.
Now, v(x, £) is a continuous function. Thus a point (x,, #) exists at which
it assumes its maximum. Then we have

vxy, £ Z olxy, fo) =M +e.

Therefore, ¢; >0 and 0 < x, </, since for { = Oor x =0, x =] the inequality
(3-1.39) is valid. It follows that

Vel X15 1) = s, 8} £ 0

and
vxs, B) =z, ) — k20 or  wdnm,t)Zk>0.

By comparison of the signs on the right and the left sides in (3-1.35) at the
point (x,, £,) we conclude that Eq. (3-1.35) at the point (,, #;) cannot be satis-
fied, since the quantities on the right and left sides have different signs.
Therefore, the first part of our proposition is proved. The statement for the
minimum can be proved analogously, and it is sufficient to apply the first
part to #, = — u.

6. The uniqueness theorem

We turn now to a series of consequences of the principle of the maxi-
mum. First, we prove the uniqueness theorem for the first boundary-value
problem. If-the-functions-u:(x;-¢)-and %,(%; t), which are defined and COntinu=;
ous in _a region 0= x5/ 0=¢= T, and.which-satisfy. _the-heat-conduction’

7 equation

U= G v S 1) for | 0<x<LES0T: (3-1.35")

(%, 0) = malx, 0) = ()|
(0, 1) = 1,(0, 2) = plt).
)=l t) = p),

e et

‘then necessarily®

Tulm =m0

For the proof of this theorem we consider the function

st Previously this theorem was refined and the continuity requirement at ¢ = 0 was
dropped.
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v(x, t) = us{x, 1) — wilx, 2) .

Since u,{x, ¢) and wu.(x, ) for
O0<x=!, 0=Z21=T

are continuous, their difference v(x, f) in the same region is continuous. Further,
v(x, t) as the difference of two solutions of the. heat-conduction equation for
0 < x <1, t>0 is similarly a solution of the heat-conduction equation in that
region. Consequently, the principle of the maximum can also be applied to
this  function, and the maximum and the minimum of v(x, ) for =0 or x =0
or x =/ is assumed. According to the hypothesis we obtain

wx,0)=0, v0, ) =0, ol,)=0.
Therefore, also

vix, 1) =0

wy(x, 1) = wuolx, 1),

from which the uniqueness of the solution of the first boundary-value problem
follows.

‘We shall now prove a series of direct conclusions from the principle of
the maximum. In the following discussion we shall refer to “‘the solution
of the heat-conduction equation,” instead of enumerating the properties of
the function in detail which also satisfy the initial and boundary conditions.

1T Iftwosolutions~u;i(x; t)~—and~u,(x t)-ofthe heat- conductxon équation ,7
~satisfy the conditions

(e 0) Sl 0 u‘o H <u2<0 b, ux(l HEwl b,

- CwlE D S i, 5

forallOsx<lOStST {
~=The-difference=p(x;tF-="uslx, 1) — u,(*, t) satxsﬁes the conditions on which
the principal of the maximum is based; also

v(x, 0) =0 20,8 =0 o, H)=0.
Therefore
vx, 8) =0 for O<x<,0<t&T,
since »(x, #) in the region
O<x<l, O<t=T

wouid otherwise ha\«e a negative value.

G T Ty a1

: then this inequality is fulfilled for all x in0<x</andall tin0Z¢t=<T.
e "Phxs~-assemon~represents aiiapplication—of “conclusion (1) to the fumc:-

-"tion, the mequalxty

_is satisfied._
This assertion results from conclusion (2), when we apply the heat-con-
duction equation to the solutions
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ulx, 1Y £ u(x, DESE N for t=0, zxz=0, ‘F—“I

tions

u(x, t), and u(x, 1), u(x, 1).

737 If, for two solutions (%, 1) and uy(%, t) ‘of the heat conductlon“ﬁéaﬁa- ;

T bl D—wmlx, £, — 2=, =l
s vahd then e
T )~ D Se
for all xj; in | _'j;:_:,w —

0<x<l 0<t<T

ux, )= —e
w(x, £) = u,(x, £) — u(x, £)
ix, ) =¢.

The question regarding the continuous dependence of the solution of the
first boundary-value problem on the initial and boundary conditions is an-
swered completely by conclusion (3). To understand this, we consider a solu-
tion #(x, £} which satisfies other initial and boundary conditions, instead of
the -solution of the heat-conduction equation which corresponds to the initial
and boundary conditions

wx, 0y =olx), w0, 8 =m@), ul,)=pwml).

Let these be given by functions ¢*(x), g1 (f) and #3(¢) which differ by less than
¢ from the functions ¢(x), m(8), and g,(f):

lolx) — o @ ge, [m@—p@lse, jmd-—@gd)se.

However, the function #(x, £} according to conclusion (3) differs by less than
e from the function u{x, {):

bule, ) —uidx, ) | S e

Here the principle of the physical determination of a problem arises directly.
We have investigated in detail the question of the uniqueness and the
physical determination of a problem in the case of the first boundary-value
problem for a bounded interval. The uniqueness theorem for the first boundary-
value problem for a two-or three-dimensional bounded region can be proven
by a verbatim repetition of these deliberations.
Similar guestions arise in the investigation of other problems, an entire




