EGM 5615 Synthesis of Engineering Mechanics (3)

Professor: Cesar Levy
Office EAS 3443
Office hours: TBD :
Tel: (305) 348-3643 (v01ce mail)

e-mail: levyez@fiu.edu

Textbook: Cook and Young, Advanced Mechanics of Materials, 20 Editien, Macmillan
Publishing Co., 1999.

References: There are plenty of books at the FIU lerary on the subject. Here
is a list of a few books on the subject avallable at the library.

Engineering mechamcs of solids. Egor P. Popov. Englewood Cliffs, N.J. :
Prentice Hall, ¢1990. ' .

Mechanics of materials. James M. Gere, StephenP Timoshenko. 3rd: ed.
Boston : PWS-KENT Pub. Co c1990

Engineering consrderatlons of stress, strain, and strength, Robert C.
Juvinall, New York, McGraw-Hlll [19671.

Theory of Elasticity Tlmoshenko and Goodier. '3‘f‘ Ed., McGraw-Hill

Course Objectives 1. obtain viable approximations to the solutions of design problems, without
"full-field" (e.g., FEA) modeling and computer solution.
2. make the student understand the natire of the approximations of such
"strength of materials" solutions and their likely impact on the reliability
-and robustness of the resulting design.
3. understand common mechanisms of failures, to analyze potential designs
for criticality, and produce designs that can be expected to be reasonably
safe from such failures.

Topics
1. Stress-strain-temperature relatlons, stress at a point (2 classes)
Review of elementary mechanics of materials, Introduction to theory of elast1c1ty

Principal stresses Octahedral and max shear stress; temperature relations -
2. Theories of failure and fracture (2 classes) '
Failure criteria; Fracture mechanlcs Fatigue -
Plane elasticity (2 classes)
Stress field solution; polynomial solution; Plane stress problems; crrcular hole;
4. Unsymmetrical bénding of straight beams (2 classes)
Beam deflections in unsymmetric bending; Transverse shear
5. Shear center for thin-walled beam cross-sections (2 classes)
6. Bending of curved beams and rings (2 classes)
: circumferential stress; Radial stress and shear stress; thin ﬂanges Thin walled
section; deflections of sharply curved beams
7.  Energy methods for deflections and static indeterminacy (3 classes)
’ Strain energy density; Reciprocal theorems; strain energy; Unit load method;
Statically indeterminate problems

w






8. Beams on elastic foundations (3 classes)
9. Thick-walled cylinders (3 classes)
Pressurized cylinders; Shrink Fits

10.  Torsion of non-circular cross-sections and Torsion with restraint of warping (2 classes)
Torsion of non-circular cross sections; Warping function; Prandtl stress function;
Membrane analogy; Thin walled open Sections; Pure twist of single celled
hollow cross sections

11.  Stress concentration and contact stress (1.5 classes)
Stress concentration; contact stress;

12.  Review and problem sessions (1.5 classes)

13.  Tests (2 classes)

Homeworks are due a week after being assigned. These problems should be neatly
worked out, preferably on engineering paper. Use the “Given, Required, Solution” format
and completely draw appropriate diagrams and coordinate systems. All numerical
answers should have the appropriate units. Note in each exam there will be one problem
quite similar to the assigned problems. Problems submitted after the class hour the due
day or the next day will be penalized with 15% of the total grade for that assignment. No
homework will be accepted after two days without a medical or any other documented
excuse. You must keep up with the homework in order to do well in class

Grading

Homework 15%
Exams (2 25% each) 50%
Final Exam 35%
Total 100%

Grades will be assigned based on your performance on the activities above. Final letter grades will be
assigned as follows: :

100 - 95 A 77-79.99 B- 60-64.99 D
90-94.99 A- 73-76.99 C+ Below 60 F
85-89.99 B+ 70-72.99 C
80-84.99 B 65-69.99 C-

We meet on Wednesdays 10-1050am, and F 10-1150am in room EC3327.
FINAL EXAM (Cumulative): To be announced.

NOTE: This is a preliminary syllabus and it might be changed during the
semester. Any change will be announced in class.
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EMA 506 Advanced Mechanics of Materials

Fall Semester, 2001

Modlified 11/21/01

Date # | Study Assignment Topic HW Problems
Cook & Young, 2nd
ed.
[Gere & Timoshenko,
4th ed.]
| Wed-9/5 1 Review of elementary mechanics o
IR 8hy materials o
' Fri 9/7 2 1.1,1.2,1.3 (skim 1.4-1.10) Review of elementary mechanics of 1.4-3, 1.5-2
: materials v
[ 'Mon 9/10 3 | 71,7273 Introduction to theory of elasticity v 1.7-3
} Wed-9/12 |4 | 2.1,2.2,2.3 Principal stresses 1 2.3-2(c,9)
J\ ) | lFiona |5 | 2425 Oct and max shear stress; | 253
R temperature relations v
Mon 9/17 6 2.6 Strain energy density v 2.6-2 (for 2.3-2¢
Lo 1 and g only)
P [G&T:2.7] ‘
R HW#1 Duefor
lectures 1-5
-
‘Wed9/19 |7 | 27,28 Stress concentration; contact stress 2.7-7
[G&T: 2.10] .
Fri 9/21 8 |3.1,323334 Failure criteria | 3.2-5,3.3-3
“|Mongra |9 |35 Fracture mechanics v 3.56
Wed 9/26 - | 10 | 3.6 Fracture mechanics v 3.5-7
[G&T:2.9]
Fri 9/28 11 ] 3.6 Fatigue v’ 3.6-3,3.6-6
‘ Mon 10/1 12 | 74,75 Stress field solution; polynomial - 7.3-2(a), 7.4-2,
S solution 7.5-5
J’;\) HW #2 Due for
v : lectures 6-11
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Wed 10/3 || 13 | 7.7,7.8

i

file:///C)isylexam/syllabi/EGM5615syllabus_fall_01_mod.htm

v v
| Plane stress problems; circular hole

| 778,777,785 |

Fri 10/5 14 | 8.1 Pressurized cylinders
-
[G&T: 8.3]
Mon 10/8 15 § 8.2 Pressurized cylinders v 8.2-7
Wed 10/10 | 16 | 8.3 Shrink Fits 8.3-2,8.3-10
Fri 10/12 17 { 414243 Reciprocal theorems; strain energy « | 4.1-6, 4.2-1, 4.3-2
[G&T: 9.8,9.9]
Mon 10/15 | 18 | 4.4,45,4.6 Unit load method 4.4-1,4.5-4,4.6-5
HW #3 Due for
lectures 12-17
Wed 10/17 || 19 | 4.7 Statically indeterminate problems v § 4.7-3
Fri 10/19 20 | 4.7 Statically indeterminate problems  + | 4.7-4
Mon 10/22 { 21 | In Class Review Covers lectures 1-17
EVENING EXAM #1
Wed 10/24 | 22 | 7.11,9.1 Torsion of non-circular cross sections; | 7.11-1(a)
Warping function
[G&T: 3.1-3.4]
Fri 10/26 23 | 712 Prandtl stress function v 1 7.12-4
Mon 10/29 | 24 | 9.2,9.3,9.4 Membrane analogy; Thin walled open 9.2-1, 9.3-3, 9.3-4,
sections 9.4-3
[G&T: 3.10] v
HW #4 Due for
lectures 18-23
Wed 10/31 | 25 || 9.5 (skim 9.6,9.7) Pure twist of single celled hollow cross | 9.5-7
sections e
Fri 11/2 26 | 10.1 Unsymmetric bending - 10.1-1
[G&T: 6.5]
Mon 11/56 27 } Evening Guest Lecture Aircraft Design Considerations
Jeremy Monnett, General
Manager, Sonex, Ltd. (time and
location to be announced)
1-Wed 11/7---1-28-1-10.2 Unsymmetric bending examples v~ 1 10.2-5
Fri 11/9 29 | 10.3 Beam deflections in unsymmetric _ 10.3-4
bending ’

08/29/2002 3:49 PM
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, \ Mon 11/12 | 30 | 10.4 Transverse shear 10.4-3
- : /
j HW #5 Due for
’ lectures 24-29
Wed 11/14 § 31 Transverse Shear Examples
Fri 11/16 32 | 10.5,10.6 Shear center 10.5-1(a),
[G&T: 6.6-6.8] 10.6-1(b,e,k)
Mon 11/19 i| 33 | In Class Review Covers lecture 18-29
EVENING EXAM #2
Wed 11/21 | 34 | 6.1,6.2 Curved beams; circumferential stress | 6.1-1, 6.2-6
Fri 11/23 Thanksgiving Holiday XXXXXXKRXXKEXXXKXKXRX KKK KKK KXXXKXXXXKXX
Mon 11/26 | 35 | 6.3 Curved beams examples 6.3-5
Wed 11/28 | 36 | 6.4,6.5 Radial stress and shear stress; thin 6.4-10, 6.5-4
flanges ,
2 I HW #6 Due for
/ lectures 30-35
Fri 11/30 37 | 6.6,6.7 Thin walled section; deflections of 6.6-1,6.7-4
- > : sharply curved beams '
o Mon 12/3 38 Design Meetings
/ Wed 12/5 39 Design Meetings
l\ Fri 12/7 40 Design Meetings
\ Mon 12/10 | 41 Case Study
Wed 12/12 || 42 Case Study Written Project
f Reports Due
Fri 12/14 43 | In Class Review HW #7 Due for
lectures 36-37
Mon 12/17 Final Exam
at 7:45am

43 tlesses Rw‘c’é T4
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EGM 5615 Synthesis of Engineering Mechanics

Review of elementary formulae

Here we critically re-examine some basic formulae in connection with underlying assumptions.

1. Simple tension of a bar of cross section area A, length L under load P. E is Young's '

modulus. _

: | .

Stress, o= K- v o Deﬂection, A= KE

2. Tw1st1ng of a bar by torque T. r = radial coordmate J = polar moment of inertia, L =
_length, G = Tl" shear modulus

Stress T= —J— - © o twist angle 0 =TG :

3. Beam bendmg Moment M is applied to beam of area moment . y is distance,

perpendrcular to the long axis of the beam, from neutral axis. x is coordmate along beam. v =
drsplacement . S

Stress o = My . curvature fli‘i = _Aff_
| ‘T? " | *a’  El

Geometrrcal assumptrons :
Axial load in tension must be centered otherwise there is superposed bending.
- In torsion, cross section must be circular. There can be a hole, but it must be on center.

B Plane sections. perpendrcular to the rod axis were assumed to rotate but remain plane. For non-

crrcular sections, there is warp of cross sections.

“#In bendrng, moment vector must be along a principal axis of inertia: For the deflection
equatlon 10 ‘be valid, deflections must be small ‘enough that the second derivative is a  good
approximation to the curvature.

In bending, dépth of cross section should exceed width. Otherwise the beam tends to act
as a plate, and structural stiffness is perhaps 10% greater for many structural materials. Why?
The Poisson effect. is restralned in cylindrical plate bending, while it is free to oceur in beam
bendmg '

Material assumptions

Demonstratron stretch or bend viscoelastic putty. Observe time dependent behavior.
-~ We have assumed elasti¢. material behavior, specifically linearly elastic:

«Demonstratron bend copper wire. It stays bent. Deflection depends not only onvapplled SRS

moment, but also exhibits a threshold effect and hysteresis.
We have assumed elastic material behavior, specifically linearly elastic.
Demonstration Bend off-axis honeycomb, observe twist.
. We have assumed isotropic -elastic behavior.
Demonstration: Bend stack of paper, observe slip between sheets. Stack is much easier to
bend than to stretch in comparison with a block of wood of similar thickness.
We have assumed homogeneity.

All materials are in fact heterogeneous, if only due to their atomic structure. Real materials such
as steel or aluminum, have larger scale heterogeneities such as dislocations, grain boundaries,
and inclusions. Often, we can get away with an assumption of homogeneity if the heterogeneltres

are much smaller than any size scale of interest in the deformation field.
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EGM 5615 Synthesis of Engineering Mechanics

Review of elementary formulae

Here we critically re-examine some basic formulae in connection with underlying assumptions.

L. Simple tension of a bar of cross section area A, length L under load P. E is Young's
modulus. _
. PL

Stress, o = % . Deﬂectan, A=xE
2. Twisting of a bar by torque T. r = radial coordinate, J = polar moment of inertia, I =
length, G = shear modulus.

Tr . TL
Stress T = T twist angle, 0 = 1G -
3. Beam bending. Moment M is applied to beam of area moment . y is distance,

perpendicular to the long axis of the beam, from neutral axis. x is coordinate along beam. v =
displacement. - : ' ‘

My dv M
Stress o = I curvature, —= —

dx* EI
Geometrical assumptions :

Axial load in tension must be centered, otherwise there is superposed bending.

In torsion, cross section must be circular. There can be a hole, but it must be on center.
Plane sections perpendicular to the rod axis were assumed to rotate but remain plane. For non-
circular sections, there is warp of cross sections.

In bending, moment vector must be along a principal axis of inertia. For the deflection -
equation to be valid, deflections must be small enough that the second derivative is a- good
approximation to the curvature.

In bending, depth of cross section should exceed width. Otherwise the beam tends to act
as a plate, and structural stiffness is perhaps 10% greater for many structural materials. Why?

- The Poisson effect is restrained in cylindrical plate bending, while it is free to occur in beam
bending.

Material assumptions _ .
Demonstration: stretch or bend viscoelastic putty. Observe time dependent behavior.
We have assumed elastic material behavior, specifically linearly elastic.
. Demonstration: bend copper wire. It stays bent. Deflection depends not only on applied
moment, but also exhibits a threshold effect and hysteresis. ‘
We have assumed elastic material behavior, specifically linearly elastic. .-
Demonstration; Bend off-axis honeycomb, observe twist.
We have assumed isotropic elastic behavior. _ v
Demonstration: Bend stack of paper, observe slip between sheets. Stack is much easier to
bend than to stretch in comparison with a block of wood of similar thickness.
We have assumed homogeneity.

All materials are in fact heterogeneous, if only due to their atomic structure. Real materials such— -
as steel or aluminum, have larger scale heterogeneities such as dislocations, grain boundaries,
and inclusions. Often, we can get away with an assumption of homogeneity if the heterogeneities
are much smaller than any size scale of interest in the deformation field. S
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EGM 5615 - Synthesis of Engineering Mechanics

= (13)A[01 -0 T (0, 0P T (- 0rP = L [G-5 )+ 0 7) s (53R + L (Guy v Ty G

Strain energy

Consider a spring. F = kx. The work done in compressing the spring is

W= TF dx == kx2. Since the spring is elastic, this is the strain energy U.
0 . ,
Now consider the strain energy in compressing a cubic block of side L and Young's modulus
E' L. ) ) . .
F=kx

0 cA=ocl2=kx=kxL/L=kelL,so

c = -Eg- .SoE=KL. SoU=7kx2= 5(EL)(e L)2= % Ee2 3= 2-15 o, 2L3.
Soxy Es2 represents strain energy per unit volume.

Three-dimensional forms for the strain enérgy’ dén81ty are obtained by superposition. Poisson
related strains enter in the energy expression because stresses in an orthogonal direction do
work as the material deforms due to Poisson effects.

1 o N L
Up= 75 {02+ Gy? + 6,2 -2_y,(gx0y4ccycz+c5xcz)} + 95 {Ty2 iy 242
Strain energy of dlstortlon

In the study of yield criteria it is expedient to separate the effects. of normal and shear stress.

1
Mean normal stress: 6, =73 [cx+cy+cz] =7 [o)+o,+03] , since the trace is invariant.
This is also the normal stress on an octahedral plane. '

Deviatoric stress: The trace of this is zero by construction. This produces change of shape only, .
no change of volume. By contrast, a hydrostatic stress produces change of volume only, no
change of shape in an isotropic material. A general state of stress can be written as a sum of
hydrostatic and dev1ator1c stresses

Ox"0a - Oxy ‘ Oxz
§ = Oyx _ yOa Oyz
O Oz 070,

. 3 1
Distortional energy, Upg = 3G Toc> = 5G Oeff

1 ,
Oeff = E {(Gx' Gy)2 + (Gy" 02)2 + (Gz' Gx)z + 6{Txy2+ry22+1:zx2}} 12,
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Maximum shear stress

Suppose the principal stresses are 6, > 6, > G;.

Then the maximum shear stress is

1
Tmax =~ 2 (Gl - 03)

and it acts on planes 45 degrees from the principal stresses. Proof: Sokolnikoff, Mathematical Theory of
FElasticity, page 50-53.

Octahedral shear stress

An octahedral plane makes equal angles with the principal stress directions. It is given
that name because there are eight such planes forming an octahedron about the origin. Octahedral
shear stress is of interest in the context of failure criteria.

. : _ 73
Consider force dR on an arbitrary plane of area dA, /g\\
. . / N
dR=0,l dAi+o,mdAj +o;ndAk. /
- ) _;’/ A —-NN-A._",;\__;‘
The traction vector T has dimensions of stress: / T 7
dR | 5

T=a&

The stress normal to this plane is
g2 Lol
c,=dRwdA. =G 1 4g w 4G4

The shear stress is, by the Pythagorean theorem,

t,=dR/dA = (1/dA) [dRZ-dR 7 ,

butn=1 i+mj +nk,withl, m, nas direction cosines.

For the octahedral plane, | =m =n = 1/A[3, since it makes equal angles with the axes and since
the sum of the squares of the direction cosines equals 1.
. ﬂ-"'z'el. /__'Z- 2 ‘LA'L i S S S o
dR¥dA%=(dR - dRY/dA2= Tt + Gm + Oon = (0, + 0 +7; )
. 2 .
The octahedral normal stress is, by 6, = :’f}.ﬁ 2 T m 4 T30 *

c =(1/3) (5, + 0, + 53)

oct, n
The octahedral shear stress is, by T, dR, and n,

— 2 212
Toct = {Gn “Goct,n P
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c. X 2 z K4
To = (301 - 0 + (0, 03+ (0501 = L [Ge-7) (93-5) 4 (53 B ) + L (Gay Ty, -

Strain energy

Consider a spring. F = kx. The work done in compressing the spring is

W= TF dx =~ kx2. Since the spring is elastic, this is the strain energy U.
0

Now consider the strain energy in compressing a cubic block of side L and Young's modulus
E.
F=kx

& cA=ol?2=kx=kxL/L=kelL,so

c =1% .So E=K/L. SoU=% kx2 = %(EL)(SL)Z-’: % Ee2L3= 2'1E o2 L3.

1 . .
So 5 Ee? represents strain energy per unit volume.

Three-dimensional forms for the strain energy density are obtained by superposition. Poisson
related strains enter in the energy expression because stresses in an orthogonal direction do
work as the material deforms due to Poisson effects.

1 1
Up= 75 {0+ 0,2+ 0,2-2v(040,+0,0,+0,0,)} + 7G5 {Tay 1y 2142}
Strain energy of distortion

In the study of yield criteria it is expedient to separate the effects of normal and shear stress.

1 . .
Mean normal stress: ¢, =3 [0,t0,+0,] =7 [0)+0,+03], since the trace is invariant.
This is also the normal stress on an octahedral plane.

Deviatoric stress: The trace of this is zero by construction. This produces change of shape only,
no change of volume. By contrast, a hydrostatic stress produces change of volume only, no
change of shape in an isotropic material. A general state of stress can be written as a sum of
hydrostatic and deviatoric stresses.

Ox"Ca ny Oxz
s=| Oyx OyCa Oy,
(o3

zX Gz Oz 0,

3 1
Distortional energy, Uyg = 7G  Toct? = §G et

1
Oeff = ﬁ {(Gx' 0'y)z + (Gy' 02)2 + (Gz' Gx)2 + 6{Txy2+‘cyzz+sz2} } 12,
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Failure criteria

Failure criteria deal with failure of a material, in contrast with failure of a structure.

Brittle materials

Maximum normal stress criterion

~ Failure if 5y > oMlt, thatis, ifthe largest tensile principal stress exceeds the ultimate strength.
The other principal stresses are ignored. Similarly in compression, the applied stress is compared
with the ultimate strength in compression. This criterion is simplistic since if all the principal

stresses are compressive, most materials are much stronger than would be expected based on
uniaxial tests. AR SR

Mohr criterion

This takes into account ultimate tensile, compressive and shear stresses. Represent each state
by a Mohr circle. Draw an 'envelope' tangent to the circles. Mohir Suggested that, provided an
arbitrary state of stress was represented by Mohr circle within that envelope, failure would
not occur. Sometimes a simplified form istaken in which'the shéar test is ignored. Then the
envelope is a straight line and failure is predicted if 5;/cult - g5/G4t-> 1. This also is not ery
realistic for hydrostatic compression. BT o

Ductile materials: yield criteria B A.
Maximum shear stress criterion (Tresca criterion)
Yield when 1, > Ty |
In principal stress space this looks like a hexagon’:

Tension test to yield.

Recall that the maximum shear stress is 1, =5 (5, - 65) , but the minimum principal stress is
zero so for tension, Ty = 0.5 oy. ' '

Von Mises |

Yield when Ceff = Ty-

Recall o= ?/% {(o-0y)? +‘ (o~ czjz + (0, 0 )%+ 6{'fx$,2+ryz2+ffzx2} 3172,
Distortional energy, Uyq = 43:(} Toct2 = B'IG O

In principal stress space, the Von Mises criterion looks like an ellipse.
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Fatigue

A material loaded through multiple cycles will break at a stress considerably less than the
ultimate strength for a single application of load. Fatigue is quantified by the S-N curve, in which
the number N of cycles is plotted logarithmically.

The effect of cyclic stresses is to initiate microcracks at centers of stress concentration
within the material or on the surface resulting in the growth and propagation of cracks leading to
failure.

As for fatigue testing, the rate of crack growth can be plotted in a log-log scale versus
time. Testing the fatigue properties to generate an S-N curve entails monitoring the number of
cycles to failure at various stress levels. This test requires a large number of specimens compared
with the crack propagatlon test L
The endurance limit is the stress below which the material will not fail in fatigue no matter how
many cycles are applied. Not all mate1 1als exhibit an endurance hmlt (a practical limit is often
chosen as 107 cycles). :

The presence of a salme ehv1ronment exacerbates fatigue.

Surface roughnes¥’ exécerbates fatigue. A polished surface is better.

Rubbing or 'frettlﬁg ‘éxacerbates fatigue. Re-design the part or use lubricants.
Heat treatment to, 1nt1‘0duée re31dual surface compression can be helpful.
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Fracture mechanics

As elliptic hole becomes progressively narrower, the ellipse approaches a crack shape and
SCF = K —o. Actual observed stress concentration factors for cracks are not infinite.

Therefore a material with one perfectly sharp crack will have zero strength, since the stress
concentration factor becomes infinite. Experimentally, even for brittle materials, strength is
reduced by cracks but not infinitely.

A criterion based on energy balance rather than on stress has therefore been adopted. The

approach is due to Griffith. The energy relations are visualized as follows. The energy required to

extend a crack is linear in crack length because the energy is expended in creating new free
surfaces. By contrast the strain energy available comes from a roughly semicircular region
around the crack and is therefore quadratic in crack length. As the crack propagates, the material
in that region is unloaded and its energy is made available to drive the crack. When the crack is
long enough that an increment in crack length gives rise to an energy release equal to energy
expended, catastrophic crack growth impends. . _ '

Griffith proposed an energy approach to fracture. The elastic energy stored in a test

specimen of unit thickness, in a circular region around a crack of length a, is:
1 ) . ’ L% GIR
2nalyp o2 = 2 S‘[um&»\w%- akna{k)o_‘rm"! - (FD) '
1 1 ' . . @

Recall that 7 Ee2 = 5 o? represents a strain energy per unit volume.
The elastic energy for a brittle material is twice the area under the stress strain curve. The elastic
energy is used to create two new surfaces as the crack propagates. The surface energy, 4 ya (7 is
the surface energy; it is an energy per unit area.) should be smaller than the elastic energy for the

crack to grow. Thus, the incremental changes of both energies for the crack to grow can be
written, \

Z%‘v«v&mto A zmwm = ZK' 20

_g_(ngao-f)=_§_(4ya) ' V24 1 |
da E da (F2) Sueics drav
2
'ZIT_‘ZLE = 4%
Hence, E TQ“

2vE S
o=cr=q[ == -
a (F3) ) - | 24-

Since for a given material E and y are constants, ' & 7
o K
P Vra (F4)

In this case K has the units of psi /in or MPa/m and is proportional to the energy required for
fracture.

K is a measure of fracture toughness, called the stress intensity factor. Cracks and stress
concentrations also occur in ductile materials, but their effect is usually not as serious as in brittle
ones since local yielding which occurs in the region of peak stress will effectively blunt the
crack and alleviate the stress concentration.
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Example (adapted from example on page 62-63)

Consider a 1 cm crack in a large plate of steel. Assume the plate is large enough that f(a/c) =1.

What stress gives rise to fracture for a weaker or 'mild' steel (o, =500 MPa, K, = 175 MPaym)
and a high strength steel (o, = 1410 MPa, K, =50 MPavm).

Solution: Use K, = o f(a/c) V7 , so with fla/c)= 1, o= K,/ V7.

Weaker steel A, 6 = 987 MPa, which exceeds the yield strength, so it undergoes yield at 500
MPa rather than fracture from the crack.

Stronger steel, o = 282 MPa, which is less than the yield strength 1410 MPa, so it fractures
catastrophically.

Consequently, in the presence of 1 cm cracks, the stronger steel actually is weaker than the 'mild'
weaker steel. Moreover, the consequence of an overload is more severe for the stronger steel
since it catastrophically fractures rather than yields in bulk.

Example (adapted from Gordon, Structures)

Suppose we have a large structure such as a ship or a bridge and wish to tolerate a 1 meter long
crack without catastrophic failure. Consider 'mild’ steel (o, = 500 MPa, K, = 175 MPavm) .
Solution- ' v '

With fa/c) = 1, o= K,/ 7 =90 MPa or 14,000 psi.

In foam, Gibson and Ashby [Cellular solids] predict toughness Kic proportional to [V(cell
size)](density)3/2. :

Stress concentrations: appendix

Experimental stress concentrations in composite materials are consistently less than the
theoretical ones. The non-classical fracture behavior has been dealt with using point stress
and average stress criteria, however that approach cannot account for non-classical strain
distributions in objects under small load. Such differences may be accounted for via a
generalized continuum approach. Reduced stress concentration factors for small holes are
known experimentally in fibrous composite materials. The fracture strength of graphite epoxy
plates with holes depends on the size of the hole [1]. Moreover the strain around small holes
and notches in fibrous composites well below the yield point is smaller than expected
classically [2,3], while for large holes, the strain field follows classical predictions [4].

1. R.F. Karlak, "Hole effects in a related series of symmetrical laminates", in Proceedings of
Jailure modes in composites, 1V, The metallurgical society of AIME, Chicago, 106-117,
(1977) '

2. JM. Whitney, and R.J. Nuismer, "Stress fracture criteria for laminated composites
containing stress concentrations”, J. Composite Materials, 8, (1974) 253-275.

3. M. Daniel, "Strain and failure analysis of graphite-epoxy plates with cracks", Experimental
Mechanics, 18 (1978) 246-252, .

4. R.E.Rowlands, I. M. Daniel, and J. B. Whiteside "Stress and failure analysis of a glass-

~ epoxy plate with a circular hole", Experimental Mechanics, 13, (1973) 31-37
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FIGURE 3.5-2 (a) Plate with an edge crack of length a. (b) Energy
relations for crack extension.

TABLE 3.5-1 Stress intensity data for flat plates, of isotropic material and uni-
form thickness, with in-plane loading [3.6].

Tension, central crack of length 2a

QTI|} m'v.#m. K= Boma

8= 1-0.5(alc) +0.326 (alc)?
B V1-(ale)

Accurate to within 1% for all
alc, provided h/c is "large”

Tension, edge crack of length a

».w

B=[1.12-023 (afc) + 10.6 (alc)’
—21.7 (alc)® + 30.4 (alc)*]
Accurate to within 1% for

alc < 0.6, provided h/c > 1
and sides are free to rotate

« h K;=Boym
a
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Pure bending, edge crack of length a
K;= Bofma
* _M(c2)__6M
_ a I e
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Fatigue

A material loaded through multiple cycles will break at a stress considerably less than the
ultimate strength for a single application of load. Fatigue is quantified by the S-N curve, in which
the number N of cycles is plotted logarithmically.

_ The effect of cyclic stresses is to initiate microcracks at centers of stress concentration
within the material or on the surface resulting in the growth and propagation of cracks leading to
failure.

As for fatigue testing, the rate of crack growth can be plotted in a log-log scale versus
time. Testing the fatigue properties to generate an S-N curve entails monitoring the number of
cycles to failure at various stress levels. This test requires a large number of specimens compared
with the crack propagation test.

The endurance limit is the stress below which the material will not fail in fatigue no matter how
many cycles are applied. Not all materials exhibit an endurance limit. (a practical limit is often
chosen as 107 cycles).

The presence of a saline environment exacerbates fatigue.

Surface roughness exacerbates fatigue. A polished surface is better.

Rubbing or 'fretting' exacerbates fatigue. Re-design the part or use lubricants.
Heat treatment to introduce residual surface compression can be helpful. -
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Failure criteria
Failure criteria deal with failure of a material, in contrast with failure of a structure.

Brittle materials

Maximum normal stress criterion

- Failure if o) > o ult, thatis, ifthe largest tensile principal stress exceeds the ultimate strength.

The other principal stresses are ignored. Similarly in compression, the applied stress is compared
with the ultimate strength in compression. This criterion is simplistic since if all the principal
stresses are compressive, most materials are much stronger than would be expected based on
uniaxial tests.

Mohr criterion

. This takes into account ultimate tensile, compressive and shear stresses. Represent each state
by a Mohr circle. Draw an 'envelope' tangent to the circles. Mohr suggested that, provided an
arbitrary state of stress was represented by Mohr circle within that envelope, failure would
not occur. Sometimes a simplified form is taken in which the shear test is ignored. Then the -

envelope is a straight line and failure is predicted if o /ol - 63/c Mt > 1. This also is not ery
realistic for hydrostatic compression.

Duciile-materials: vield criteria

Maximum shear stress criterion (Treéca’criterion)
Yield when 1., >1y.. 7
In prihcipal stresé .spéce this looks like.a hekagon.
Tension test to yi_eld. , i _
Recall that the maXimum shear stressis T = % (0, - 03) , but the minimum principal stre$§ is
zero so for tension, Ty = 0.5 oy.

~ Von Mises
Yield when o > Ty.

Recall oog = —\/% {(o,- cy)2 + (o 6%+ (o, o)+ 6{txy2+ryzz+tzx2}} 172,
_ 3 { _
 Distortional energy, Upy = 75 Toc® = §G O™

In principal stress space, the Von Mises criterion looks like an ellipse.
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Fatigue

A material loaded through multiple cycles will break at a stress considerably less than the
ultimate strength for a single application of load. Fatigue is quantified by the S-N curve, in which
the number N of cycles is plotted logarithmically. . :

The effect of cyclic stresses is to initiate microcracks at centers of stress concentration
within the material or on the surface resulting in the growth and propagation of cracks leading to
failure. ' -

As for fatigue testing, the rate of crack growth can be plotted in a log-log scale versus
time. Testing the fatigue properties to generate an S-N curve entails monitoring the number of
cycles to failure at vatious stress levels. This test requires a large number of specimens compared
with the crack propagation test. _

The endurance limit is the stress below which the material will not fail in fatigue no matter how
many cycles are appliéd. Not all materials exhibit an endurance limit. (a practical limit is often
chosen as 107 cycles). '

The presence of a saline environment exacerbates fatigue. -

Surface roughness exacerbates fatigue. A polished surface is better. '

Rubbing or fretting' exacerbates fatigue. Re-design the part or use lubricants.
* Heat treatment to introduce residual surface compression can be helpful.
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Stress concentration |

Ratio of local maximum stress to applied stress in the absence of the heterogeneity is called the
stress concentration factor or SCF.

Stress concentration factors are determined from

+ FElasticity theory

s Experiment

» Finite elements. ,

Stress concentration factors arise from

*  Holes
s Notches
e  QGrooves

Heterogeneities in loading
Heterogeneltles in'material

[

~ Some par;ncu!ar values for holes and inclusions
Circular hole in plane uniaxial tensioﬁ, SCF=K=3.0

Elliptic hole, with a as major axis, b as minor axis, p as radius of curvature
SCF=K=(1+25)=1+2

Example, consider glass with theoretical strength of ot = 14 GPa, with cracks
2 um long with radius of curvature 1 A (0.1 nm). Then the strength of glass with these cracks is
o = 14 GPa/[SCF] = 70 MPa. This is about the strength of common glass.

Spherical cavity in uniaxial tension

3+15v 27-15v 315y

SCFlpotar = = 74 10vS CFleas = 14710y SCFleavy = = T4-10v

Spherical cavity in biaxial tension

Spherical cavity in pure shear

scp = 24-v)
7-5v

Rigid cylindrical inclusion in uniaxial tension

: 1 3
SCFlyotar = “(3-2v+ —") SCFleq = 5(1 +2v- m)
Rigid spherical inclusion in uniaxial tension

2 1 - _ v v
SCFlotar = T4y 775y SCFleq =T~ ~8-10v

Rigid spherical inclusion in hydrostatic tension
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L1y
SCllagim =315y

Reference: Goodier, J. N., "Concéntration of stress around spherical and qylindrical inclusions
and flaws", Trans. ASME Vol. 55, 1933, 39-44, (later called J. Applied Mech., Vol. 1)

. Observe that for the three dimensional cases, the stress concentration factor depends on
the Poisson's ratio of the material in question.

A heterogeneous load distribution

Consider a rigid circular ¢ylindrical indenter of radius R pressed with load F on a semi
infinite solid substrate. This could represent a building erected upon compliant earth, or an
industrial press operation. A solution for an elastic solid of Young's modulus E and Poisson's

ratio v is available. The indenter displacement is (Timoshenko, 8. P. and Goodier, J. N., Theory
of Elasticity, McGraw Hill, 1982.)

_F(1-v?)
WT O2RE . | S
The pressure distribution q(r) as a function of radial coordinate r is

2RR? —r?

Observe that the pressure becomes singular at the edge. The indenter is idealized as perfectly
rigid (much stiffer than the elastic substrate), and with a perfectly sharp edge.

Uses of concept of stress concentration.

@ Find stress distribution (nominal) in the absence of holes.

@ Multiply nominal stresses by the appropriate stress concentration factors. Many of these may
be obtained from a handbook.

@ The largest stress will cause failure. It is not necessarily the largest nominal stress.

@ Tn the design process it is sensible to ameliorate stress concentrations by avoiding sharp re-
entrant corners, and rounding them off when they are an unavoidable part of a structure.

Demonstrations, by photoelasticity. Circular hole at center of a compressed bar. Circular
hole in bar subjected to pure bending, Circular notches in bar subjected to pure bending.

Contact stress

From the theory of elasticity, we have several interesting solutions for spheres and cylinders
in contact. . '

For spheres of radius R of Young's modulus E, Poisson's ratio v, under force F,
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contact region radius: a = 0.880 (FR/E)V3. It increases slowly with force.

peak compressive stress:-  po = 0.616 (FE2/R2)1/3, Tt increases slowly with force.

Stress vs radial position in region, 6= - pg a

, a parabolic distribution.

" Overall 3-D pattern of stress is complex and multiaxial. Cracks may develop below the surface in
ball bearings.
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Fracture mechanics

As elliptic hole becomes progressively narrower, the ellipse approaches a crack shape and
SCF =K —»0, Actual observed stress concentration factors for cracks are not infinite.

Therefore a material with one perfectly sharp crack will have zero strength, since the stress
concentration factor becomes infinite. Experimentally, even for brittle materials, strength is
reduced by cracks but not infinitely. = : ‘ :

A criterion based on energy balance rather than on stress has therefore been adopted. The

approach is due to Griffith. The energy relations are visualized as follows. The energy required to

extend a crack is linear in crack length because the energy is expended in creating new free
surfaces. By contrast the strain energy available comes from a roughly semicircular region around
the crack and is therefore quadratic in crack length. As the crack propagates; the material in that
region is unloaded and its energy is made available to drive the crack. When the crack is long
enough that an increment in crack length gives rise to an energy release equal to energy

expended, catastrophic crack growth impends. - o

Griffith proposed an energy approach to fracture. The elastic energy stored in a test
specimen of unit thickness, in a circular region around a crack of length a, is:

2ma? ilﬁ o2 - | ‘ " FD)

1 1 . :
Recall that 5 Ee2= 5p o2 represents a strain energy per unit volume.

The elastic energy for a brittle material is twice the area under the stress strain curve. The elastic
energy is used to create two new surfaces as the crack propagates. The surface energy, 4 ya (y is
the surface energy; it is an energy per unit area.) should be smaller than the elastic energy for the
crack to grow. Thus, the incremental changes of both energies for the crack to grow can be
written,

(F2)

Hence,

o [2E
"N a F3)

Since for a given material E and y are constants,

op = -
" 7a - (F4)
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In this case K has the units of psi Afin or MPa \/ﬁ and is proportional to the energy required
for fracture. ‘ ' ' ’

K is a measure of fracrure toughness, called the stress intensity factor. Cracks and stress
‘concentrations also occur in ductile materials, but their effect is usually not as serious as in brittle
ones since local yielding which occurs in the region of peak stress will effectively blunt the
crack and alleviate the stress concentration.

The stress intensity factor K is the criterion for fracture in cracked objects. For a small Mode I
crack of length a, - ' '

K =06 V7 falc). \
Here f(a/c) is a dimensionless function of loading geometry; it expresses the effect of crack -
~ length in relation to block size. & is the stress required for fracture in the absence of a crack.,

The units for K are MPavm, in contrast to the stress conceniration factor which' is
dimensionless. Observed that there is no characteristic length scale in the classical theory of .

elasticity. The length scale must come from other considerations.

Fracture occurs when K; exceeds a critical value, K¢ determined from experiment. This is

the fracture toughness based on a static test. The fracture toughness for a dynamic situation
is NOT the same as for a static situation ' )

Formulas for K are valid over a range of geometrical parameters, specifically,
thickness t >2.5 (Ky/oy )2, and crack length a > 2.5 K /oy )2 ‘

In a thick block, the stress field around the tip of the crack is triaxial, since the Poisson
contraction in the highly stressed region near the crack is restrained by the surrounding
material, which is not so highly stressed. This triaxial stress causes brittle behavior in
seemingly ductile materials, since shear deformation is suppressed. :

If the block is thinner than the above limit, toughness depends on thickness, If the crack length is
less than the above limit, then the material may undergo yield before any fracture occurs from
the crack. _ :

Be aware that K, depends on temperature, and often drops precipitously at low temperature.

Example

Estimate the size of the surface flaw in a glass whose modulus of elasticity and surface energy
are 70 GPa and 800 erg/cm? respectively. Assume that the glass breaks at a tensile stress of 100
MPa.

Answer
From equation (F4), and keeping in mind the transformation from cgs to SI units,
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o 20E
nof
=2 x 800 dyne/ cmx 70 GPa
x (100 MPa)-

=3.565 um

To two significant ﬁgurés, a=3.6 pm. : :
[Note that if the crack is on the surface its length is a, if it is inside the specimen it is 2a.
Remember 1 erg =1 dyne cm] ' P

E'xampﬁe (adapted from example on page 62-63)

Consider a 1 cm crack ina lal;ge plate of steel. Assume the plate is large enough that f(a/c) =1.

What stress gives rise to fracture for a weaker or 'mild' steel (o = 500 MPa, K, =175 MPaVm) .

and a high strength steel (oy= 1410 MPa, K= 50 MPavm).
Solution; Use K; = o f(a/c) Jma ,so with falc) =1, 0= K/ Nma .

Weaker steel A, o= 987 MPa, which exceeds the yield strength, so it undergoes yield at 500 )

MPa rather than fracture from the crack.

Stronger steel, o = 782 MPa, which is less than the yield strength 1410 MPa, so it fractures
catastrophically.

Consequently, in the presence of 1 cm cracks, the stronger steel actually is weaker than the 'mild'
weaker steel. Moreover, the consequence of an overload is more severe for the stronger steel
since it catastrophically fractures rather than yields in bulk.

Example (adapted from Gordon, Structures )

Suppose we have a large structure such as a ship or a bridge and wish to tolerate a 1 meter long
crack without catastrophic failure. Consider 'mild' steel (o, = 500 MPa, K. =175 MPavm) .

Solution-
Wwith fa/c) = 1, 6= Ky [z = 90 MPa or 14,000 psi.

In foam, Gibson and Ashby [Cellular solids] predict toughﬁess Kic proportional to [V(cell
size)](density)*’2.

Stress concentrations: appendix
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Experimental stress concentrations in composite materials are consistently less than the
theoretical ones. The non-classical fracture behavior has been dealt with-using point stress
and average stress criteria, however that approach cannot account for non-classical strain
distributions in objects under small load. Such differences may be accounted for via a

~ generalized continuum approach. Reduced stress concentration factors for small holes are
known experimentally in fibrous composite materials. The fracture strength of graphite epoxy
plates with holes depends on the size of the hole [1]. Moreover the strain around small holes
and notches in fibrous composites well ‘below the yield point is smaller than expected
classically {2,3], while for large holes, the strain field follows classical predictions [4].

1. RF. Karlak, "Hole effects in a related series of symmetrical laminates", in Proceedings of
failure modes in composites, IV, The metallurgical society of AIME, Chicago, 106-117,
(1977 , .

2. J.M. Whitney, and R.J. Nuismer, "Stress fracture criteria for laminated composites
containing stress concentrations", J. Composite Materials, 8,(1974) 253-275.

3. M. Daniel, "Strain and failure analysis of graphite-epoxy plates with cracks", Experimental
Mechanics, 18 (1978) 246-252, .

4. R.E.Rowlands, I. M, Daniel, and J. B. Whiteside "Stress and failure analysis of a glass-
epoxy plate with a circular hole", Experimental Mechanics, 13, (1973) 31-37
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330 | THEORY OF ELASTICITY

a manner as to make these expressions single-valued. An analogous pro-
_ cedure is necessary in dealing with the torsion-of hollow shafts. The
constant values of the stress function along the boundaries should be deter-
mined in such a manner as to make the displacements single-valued. A
sufficient number of equations for determining these constants will then
be obtained. .

From Egs. (b) and (d) of Art. 104 we have

@S . @S
qﬂﬂQ AMM .I m@v, ﬂﬁ I.Q.A& + m&V A&

. Let us now calculate the integral _
Jrds : @)

along each boundary. Using (¢) and resolving the total stress.into its
components we find . :

,‘\’ﬂam

dz &.\ .
.\Aﬂﬁmnmuu_nﬂeu&.lm. ds

il

ow ,.  dw . 7
of @)oo -cw ow

The first integral must vanish from the condition that the Fﬁmmﬁmaob is
taken round a closed curve and thatw is a single-valued function. - Henece,

frds = 6Gf(z dy — y dz)
The integral on the right side is equal to double the area enclosed. Hﬁn?
frds = 2G84 - (175)

Thus, we must determine the constant values of the stress function along
- the boundaries of the holes so as to satisfy Eq. (175) for each boundary.

For any closed curve drawn in the cross section (lying wholly in the
material) the first and second members of (174) represent the line integral
of the tangential component of shear stress = taken round thé curve, and
this may Le called the shear circulation, by analogy with circulation in
fluid dynamics. Then (175) still holds and may be called the shear-
circulation theorem. : i

The significance of (175) for the membrane analogy was discussed on
page 306. It indicates that in the membrane the level of each plate; such
as the plate CD (Fig. 171), must be taken so that the vertical load on the
plate is equal and opposite to the vertical component of the resultant of
“the tensile forces on the plate produced by the membrane. If the bound-
aries of the holes coincide with the stress lines of the corresponding solid
mt&.ﬁ the above condition is sufficient to ensure the equilibrium of the
plates. In the general case this condition is not sufficient, and to keep

TORSION | 331

‘the plates in equilibrium in a horizontal position special guiding devices
become necessary. This makes the seap-film experiments for hollow
shafts more complicated. . :

To remove this difficulty the following procedure may be adopted.!. We make a
hole in the plate corresponding to the outer boundary of the shaft. The interior
boundaries, corresponding to the holes, are mounted each on a vertical sliding column
50 that their heights can be easily adjusted. Taking these heights arbitrarily and
stretching the film over the boundaries, we obtain a surface that satisfies Eq. (150) and
bourdary conditions (152), but the Eq. (175) above generally will not be satisfied and -
the film does not represent the stress distribution in the hollow shaft. Repeating
such an experiment as many times as the number of boundaries, each time with another
adjustment of heights of the interior boundaries and taking measurements on the film
each time, we obtain sufficient data for determining the correct values of the heights
of the interior boundaries and can finally stretch the soap flm in the required manner.
This can be proved -as follows: If ¢ is the number of boundaries and b1, D2, o . o, Di
are the film surfaces obtained with i different adjustments of the heights of the
boundaries, then a function’ :

¢ = mig1 +.».x..».v» + e A mags (®
in which m, ma, . . ., m; ave numerical factors, is also a solution of Eq. (150),
provided that. . : ,
my+meF - +my=1

Observing bo%. that .aww.m.vmpmmbm stress is mnzmpwo the slope of the membrane, and
substituting (e). into H.“n..m.. (175) we obtain ¢ equations of the form [

9¢ 4. _ .
\%%uw@?

from which the 7 factors-my, ms, . . . , m; can be obtained as functions of 9. Then
the true stress function is obtained from (e).? _This method was applied by Griffith

“and Taylor in determining stresses in & hollow circular shaft having a keyway in it.

It was shown in this manner that the maximum stress can be considerably reduced
and the strength of the shaft increased by throwing the bore in the shaft off center.

The torque in the shaft with one or more holes is obtained using twice
the volume under the membrane and the flat plates. To see this we cal-
culate the torque produced by the shearing stresses distributed over an
elemental ring between two adjacent stress lines, as in Fig. 171 (now taken
to represent an arbitrary hollow section). Denoting by & the variable
width of the ring and considering an element such as that shaded in the
figure, the shearing force acting on this element is 78 ds and its moment
with respect to O is 778 ds. Then the torque on the elemental ring is

dM, = [rréds : 1))

-1 Griffith and Taylor, loc. cit., p. 938.

% Griffith and Taylor concluded from their experiments that instead of constant-
pressure films it is more convenient to use zero-pressure films (see . 306) in studying
the stress distribution in hollow shafts. A detailed discussion of the calculation of
factors my, m,, . . . is given in their paper.
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334 | THEORY OF ELASTICITY

did for the ummbﬁ.mbﬁ corners om rolled sections A»f.n 112). The equation
of ﬁwm membrane at the reentrant corner may be taken in the mowup

a2 lde g
drt " rdr 8
Replacing ¢/8 by 2G¢ and noting gm.& T = —dz/dr (see Fig. 172), we find
dr _ .
= + = 2G9 ()]

>mmzu&bm that we have a tube of constant thickness § and denoting by
7o the stress at a considerable distance from gm corner calculated from
Eq. (176), we find, from (c),

= 7o
. 2Ge = i
Substituting in (d),
Jdr 1 Tes _ (&)
ar 7T T 4 X
The general solution of this equation is .
C , -
=2+ 6}

Assuming that the projecting angles of the cross section have fillets with

the.radius a, as indicated in the figure, the constant of integration C can-

be determined from the equation

J = R

a

which follows from the hydrodynamical analogy (Art. 114), viz.: if an
ideal fluid circulates in a channel having the shape of the ring cross sec-

"tion of the tubular member, the quantity of fluid passing each cross sec-

tion of the channel must remain constant. ~Substituting expression (f)
for r into Eq. (g), and Fﬂmmgﬂbm, we find that
1 — (s/44)2a + 5)

log. {1 + &/a)

Q"ﬂom

mbm“ from Eq. (f), that

_ Tod 1— (s/44)(2a + 8) . Tosr )
T Hom. 14+ d/a) 24

For a thin-walled tube the ratios s$(2a + 8)/4, .ﬁ.\k» will be small, mbm
(k) reduces to

T

ﬂom\ﬂ.
womn A + é/a)

T

@)

TORSION | 335

Substituting » = a we obtain the stress at the reentrant corner. This is
plotted in Fig. 174. The other curve® (4 in Fig. 174) was obtained by
the method of finite differences, without the assumption that the mem-
brane at the corner has the form of a surface of revolution. It confirms
the accuracy of Eq. () for small fillets—say up to a/é = ¥4. For larger
fillets the values given by Eq. (¢) are too high.

Let us consider now the case when the cross section of a tubular mem-
ber has more than two boundaries, Taking, for example, the case shown
in Fig. 175 and assuming that the thickness of the wall is very small, the
shearing stresses in each portion of the wall, from the membrane analogy,
are - ) -

= MlN T3 = 53 - = Wm A.ﬂ.v

T

1
|
o

in which %; and h» are the levels of the inner boundaries CD and EF.?
 The magnitude of the torque, determined by the volume ACDEFB, is

MA&.H\NH + k&.nm\nv M m.wmwﬂu + Mm.nwwﬂn Qov

where \»H and A, are areas indicated in the figure by dotted lines.
Further equations for the solution of the problem are obtained by

applying Eq. (160) to. the closed curves indicated in the figure by dotted

lines. Pmmcnzbm that the thicknesses 8y, 8z, 85 are constant and denoting

1 Huth, Ru..&.ﬁ
2 It is assumed that the plates are guided so as to remain horizontal (see p. 331).

3.5

30

2.5

Z, 177X

NQ .
20 A 0
L5 /A/

0 0.5 1.0 .5 2.0




9L1 *614

A 24

S

o\

poonpuI 58 pepieSar aq ued (2) mmmuv.w 9L, (P) 30 91 oY} WO} PouUILIqo

—_—— = L) — L)

(& _ ey _.av (224
SALB[OI AIONUN oY} Aq I9Yl0 oY} Suope Lqexe paaowr st 9983 ouUQ
0D [BIXE B SBY YOTgM ‘9 T ‘ST UISE Q> L > D 19pUIAD IB[NOITO MOT[0Y
® 0} wonmyos oy} Ajdde ued 9p\ 'SNONUIIUOD 30T ST @ JuowaaRIdsIp o1}
g "SUIPBO] WO} 991] ST JUBISUOD = L 9DBJINS £Lxepunoq eoupurfo Luy

ANV i O".«N.h “"“mlvll "A.N.h

-sjusuoduaoo .Hﬂom 9y} Aq woALS
ST pU® UOROAIp [B1}USISFWINOIM, 97} UI ST SS0I98 I¥ays Surpuodserion ay L
(» LBOIY— =¢ - fy =mp

SABY MOU oM “@ wory “($g "Iy 998) ﬂomw.mﬁhowm@ onserd wo

41057} WOIYBOO[SIp 9Y3 UT 480199 UI Je[noTyed Jo ST 4uwISU0D [vo1 e ST 7 9IoyM

) 430l p2 — 4 = (Ar+ 2) So] yr— = (fir + 2)f
. . ' 901079
OUL "UORO9S SS0Id 9y} Ul $9BUIPI00d xefod jueserder mou 4 ‘4 joy
T  "jusuodwoo juswsor[dsSIp 0IezTOu A1uo oy
9q T[t4 @ [OTA T ‘91B3S 94IUTOP B 9ABY OM “USSOYD ST f ToTIOUNy 0Y3 99U()

C) (fe + 2)f = 92 4- mp

‘snqy, “fiz + z jo wonyouny on4Jeus ue st ¢ 4 mp ‘e10je10Yy, ¢ pum @y
suorjouny ayy 10y (121 o8ed 99s) suonenbe UUBWILTY-AYoNe.)) I8 9597,
re . _ e zo . _ fie |

me? = 3o - me? = g

£q pooelder exe g6z oFed jo (f) 'shy qwﬂH ‘€62
a3ed uo (9) by jo (f‘z)hg wioy oy UBY} I9YBL M SSN ISNUT OM NG ‘TWOLY

(»)

g8 | Noiswor

.

juomsonidstp

- "UOIYRAIISD SIY} WX PAJOI[F0U 918 GOA 9Y) JO SSOUNDIYY 0}
SS0I08 SUBIQUIAW 917 Jo odo[s ur 93ureyo 97} 0} SWIPTodSIIIOD SISSOI)S [[BUIS 9T, ¢

~098 9]} JO 9AINO AIBPUNOG YIES UO JUBISUOD 9q 0] pue uoryenba s,008[de
£]ST1°8S 09 ST $ WOTOUNJ SSAIYS Y[, 0 = § 03 JWIPuUOdSOII0D $SOI3S JO 59988
puy o3 ofqissod st 91 987 995 Aomb uwo S8 ‘(ze1) womIpuod b@ﬁgo@
oqy pue ‘(19T) pue ‘(0ST) (6¥1) Sy SUUIUEXes: WY "UOISIO} JO 93E)S
® £[1091109 Ju9sezdes 0F ST UOIN]OS 9Y] JI UOTIOUNJ PON[BA-I[IUIS B oQ JSTWX
@ e} juewelmbol oY) PoAIssqo 9ABY om ‘soporiae Futpevord omg oty U

suonedo|sig Maids | [II

-2y onb10] oY) JO WOTOUNJ ¥ S¥ POUILL]O
aq wes g snyy, °(7) SbH oy JO oUO U $9SSOIJS oY) JO SON[BA OUY SOINGIYS
-qns auo ‘g1 Sy UI WMOYS 18] oI UoN0es Lur 103 3SIM] oY 303 O,

. . [ PoSSeI}SUN SUTBISI oM 9Y] puB

“‘oqny oY} JO [[EA 199N0 9y} £q UAY B} ST onbIo} oYy 9sEO SWY U] 0 = L

pue 4y = 1y %¢ = Ig s = s ‘UOI}09S SSOID [BOLIJOUILAS B JO 9SBO mﬁ uy

LGy + TP)ESTeTe + STSteRe + o TpEsteTelg =2

(0 (syrste — TSIy

(¥ + T7)iseete + FyIstete + JTyistetelg _
(w) . [Cy + Ty)esie + syistel
- GV + Tp)estere 4 Fyistede + S Festelelg = Tz
(w) . T [Cy + Tw)sste + TyEsteln

:onblo} oY) JO SUOTIOUN] $8 T UL Ts
$9850I3S 9} PWY oA ‘(7) pue (i) sba pus (£) .wdm o3 JO SB[ oY 3uisn £g
Syopg = FstL — siL

ANV ' T — £9% YA
9D = &ste J-1s
ves ‘SL1

“$1 WO} ‘PUY oM ‘SOAIMD Pa3jop Surpuodssrrod jo mﬂwﬂﬂ. 9T} &8 %8 T8 £q

L1 "bid

ALIOILSYT3 40 A¥OIHL | ‘9gg






Concept of superposition

The effect of a compound cause, say a loading configuration, is the sum of the effects of
the individual causes.

Motivation: solve probléms involving complex load configurations based on simpler
solutions. ‘

“... Caveat: Superposition depends on linearity, both material and geometrical. Geometrical
"nonlinear situations include large deformation of a bar in bending, and contact between two = -
spheres. ‘
Safety factor | ) .

.' tuilure | 4
Safety actor SF = oriing Iond

Failure does not necessarily mean fracture. It may mean excessive deformation, damage, or any
effect which causes the structure or structural element to no longer function as intended. - ,,
" - Example: What if airplane wings could be made of an infinitely strong but not infinitely
- ‘stiff'material? e . -

§2.1 Plane elasticity |

.Method of soluti_on."‘

Recall in the mechanics of materials method, we began witﬁ an assumption about the .
deformation field. We only checked the stresses to make sure they agreed with the applied loads

in terms of resultants . '

In the elasticity method, one must simultaneously satisfy:

1. equilibrium conditions in a continuum sense at each point,
2. . continuity of the displacement field,
3, boundary conditions at the surface.

If they are all satisfied exactly, we have an exact solution.

‘The theory’ of elasticity permits one to deal with problems which are not necessarily
geometrically simple.

' Few new elasticity solutions are now being discovered. Even so, study of elasticity aids in the .
development of physical insight. )

Stress-strain relations
Elementary form of Hooke's law for a linear, isotropic, elastic solid:
ExTE {Gxx = VOyy - chz} -
1 A
gy =E {Oyy - VOxx = VOy};
D "
EzTE ‘{Gzz = VOxx = VC’-yy}~

* These three are complete, but sometimes a shear relation is also presented,
1 : '
Yxy = G Txy-



Plane stress in Xy plane means ©,,, 0,,, and G, are zero. Then,

1 g
Ex T E {Oxx - VGyy }
1
€y =E 1Oy~ VOxx }
1
Yxy = G Txy -

' Although they are simpler in the compliance formulation, one can solve for stress and present
them in the modulus formulatlon for plane stress.

E
Oxx = 1-v2 {gxx + V}*fyy }
Oyy = TovZ &yt V&)

Txy = G Ty -

§2.2 Equilibrium equations, boundary conditions, Saint Venant's principle

We are familiar with the application of Newton's first law of equilibrium to macroscopic
objects. In solving problems on a continuum scale, a differential form of the equations of
equilibrium is needed.

Consider a free-body diagram of a differential element of thickness t of material.

:17
el gi?
W e

From sum of forces in the x direction,

. 51‘ am
-tcxde'Txyth+{0-xx+ —a—'o"ﬁdX}tdy'l'{Txy“*’ xy dy}’[dX:O eag &”@G
o dy ‘?%ﬂ “"’
%% Fronmmaliey
: ' B3¢ - Py o
From sum of forces in the y direction, ' » f / %‘%ﬂ E & i
o7, 9o, B ‘j E" s TN
Lty dy - Oy L+ {myy + — dx}tdy + {0y, + 5 dy} tdx=0 2 ;{ﬁ‘?
Sy
Simplifying, the equilibrium equations are:
or
00y + —2 =0 1n x direction
ax .
ot oo
—2+ —2=(iny direction.
ox

The equilibrium relations in the index notation are as follows for force -and moment
respectively: The Einstein summation convention assumed in which repeated indices are
summed over. The comma represents differentiation with respect to the spatial coordinate -
corresponding to the index after the comma.

ojj is stress

G; is a body force, or force per unit volume.

&jji is the permutation symbol

my; is a moment per unit area or couple stress. It is neglected in classical elasticity.
C; is a body moment, or couple per unit volume.

Gji,j + Gi =0 §))

€ijk O +myi;+Cy =0 @

‘Body forces arise due to gravitation.
Body moments arise due to electromagnetic interactions in magnetic materials.



Couple stresses represent a distributed average of moments upon fibers, ribs, layers, or other
structural elements in composite materials. :

In classical elasticity, in the absence of body couples or surface couples, Eq. 2 reduces to
il = OlL: '
ik Okje

that is, the stress is symmetric. :
If body couples or surface couples are permitted, the stress can become asymmetric.

Boundary conditions.

Boundary conditions entail prescription of stress or displacement upon the surface of the
object in question. In many problems, the surface tractions (stresses at the surface) are zero over
much of the surface.

Saint Venant's principle

Saint-Venant's principle is important in the application of elasticity solutions in many
practical situations in which boundary conditions are satisfied in the sense of resultants rather
than pointwise. For example, a bending moment may be applied to a beam via a complex array
of bolted joints, which generate a locally complex stress pattern. In view of Saint-Venant's
principle, one expects to observe bending type stresses far from the ends.

‘ Saint-Venant's principle states that a localized self-equilibrated load system produces
stresses which decay with distance more rapidly than stresses due to forces and moments. It is
applicable in many situations of interest in engineering.

Demonstration: stress fields for concentrated loads which give rise to compression or
bending, as seen with a photoelastic demonstrator.

A There are some counter-examples. Consider a sandwich panel with rigid face sheets
and an elastic material of Poisson's ratio v sandwiched between them. For Poisson's ratios in the
vicinity of 0.5, stresses applied to the end will decay with distance z as o(z) « ez The decay
rate is

-2V
YN/ 3 av -
The distance 1/y, over which there is significant stress, diverges as Poisson's ratio approaches % .

In some thin-walled structures, localized self-equilibrated loads may propagate a

significant distance. Saint-Venant's principle is inapplicable for such structures.
Constitutive relations

We mostly deal with linear isotropic elastic materials in this class. Many other
possibilities exist.

Anisotropic: Dependent upon direction, referring to the material properties of composites,
aggregates, single crystals, and oriented polycrystalline materials.

Creep: Time dependent strain in response to step stress; a manifestation of viscoelastic behavior.

Cubic: A type of anisotropic symmetry in which the unit cells are cube shaped. There are three
independent elastic constants. Material is invariant to 90 degree rotations.

Elastic: Stress-strain path for loading is identical to the path for unloading, with immediate
recovery to zero upon unloading.

Elastic-perfectly plastic: Elastic up to yield point after which strain increases with no increase
in stress. '



Elaétic-plastic with work hardening: Beyond yield point, stress increases with strain.

' Hexagonal: A type of anisotropic symmetry in which the unit cells are hexagonally shaped.

Material is invariant to 60 degree rotations about an axis. There are five independent elastic
constants. Transverse isotropy is mechanically equivalent to hexagonal although the structure
may be random in the transverse direction.

Homogeneous: Material properties are identical at every point in the body. Concept of symmetry
is expressed here as translational symmetry: material is invariant to translations. Homogeneous
materials may be isotropic or anisotropic. At the atomic scale all materials are heterogeneous, but

for many engineering applications we may view them as continuous media.

Isotropic: Independent of direction, referring to material properties. There are two independent
elastic constants for a linearly elastic material. Engineering constants are E, G, B, v, but they are
interrelated.

Linear: Stress is proportional to strain, assuming all other variables upon which stress or strain
might depend are held conStant. :

Orthotropic: A type of anisotropic symmetry in which the unit cells are shaped like rectangular
parallelepipeds. In crystallography, this is called orthorhombic. There are nine independent
elastic constants. Principal directions are mutually orthogonal. Material is invariant to reflections
in two or three orthogonal planes.

Piezoelectric: In some crystalline or polycrystalline materials which lack a center of symmetry,
thete is coupling in which both stress and electric field contribute to the strain.

Thermoelastic: In all materials with a nonzero coefficient of thermal expansion, there is
thermoelastic coupling in which both stress and temperature changes contribute to the strain.

Trlcllmc A type of anisotropic symmetry in which the unit cells are oblique parallelepipeds
with unequal sides and angles. There are 21 independent elastic constants. .

Viscoelastic: Relation between stress and strain depends upon time or upon frequency.

Principal stress

Principal stresses are normal stresses which act on mutually perpendicular planes. They include -
the absolute largest and smallest normal stresses at a given point,

Recall Mohr's circle is a tool for 2-D transformations of stress and special 3-D transformations. It
can be used to determine principal stresses under those special circumstances. It is not applicable
to general 3-D transformations.

Consider a ffee body diagram of a cut corner of a unit cube. This is called a Cauchy tetrahedron.
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Fatigue

A material loaded through multiple cycles will break at a stress considerably less than the
ultimate strength for a single application of load. Fatigue is quantified by the S-N curve, in which
the number N of cycles is plotted logarithmically.

The effect of cyclic stresses is to initiate microcracks at centers of stress concentration
within the material or on the surface resulting in the growth and propagation of cracks leading to
failure. '

As for fatigue testing, the rate of crack growth can be plotted in a log-log scale versus
time. Testing the fatigue properties to generate an S-N curve entails monitoring the number of
cycles to failure at various stress levels. This test requires a large number of specimens compared
with the crack propagation test.

The endurance limit is the stress below which the material will not fail in fatigue no matter how
many cycles are applied. Not all materials exhibit an endurance limit. (a practical limit is often
chosen as 107 cycles). -

The presence of

18
olished surface is better.
-design the part or use lubricants.
fu
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Stress concentration :

Ratio of local maximum stress to applied stress in the absence of the heterogeneity is called the
stress concentration factor or SCF.

Stress concentration factors are determined from

» Flasticity theory

o Experiment

o Finite elements.

Stress concentration factors arise from

» Holes

o Notches

o Grooves

s Heterogeneities in loading

Heterogeneities in material
~ Some particular values for holes and inclusions
Circular hole in plane uniaxial tension, SCF=K =3.0

Elliptic hole, with a as major axis, b as minor axis, p as radius of curvature

SCF=K=(1+2¢ ):”2\/%

Example, consider glass with theoretical strength of ovlt = 14 GPa, with cracks
2 pm long with radius of curvature 1 A (0.1 nm). Then the strength of glass with these cracks is
o = 14 GPa/[SCF] = 70 MPa. This is about the strength of common glass.

Spherical cavity in uniaxial tension

3+15v 27-15v . 3-15v
SCPlpotar = = T4-10vSCFlea0 = T4-10v> Fleavw ™ ~T4-10v

Spherical cavity in biaxial tension

Spherical cavity in pure shear

SCF = 15(1-v)
7-5v

Rigid cylindrical inclusion in uniaxial tension

1 1 1 3
SCFlpotar = 5(3-2v+ . 4V) SCFleg = 5(1 2v- 3 4V)
Rigid spherical inclusion in uniaxial tension
2 1 \ Sv
SCFlpotar = T4y " 2-5v SCFleg=T+v ~%-10v

Rigid spherical inclusion in hydrostatic tension
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contact region radius: a = 0.880 (FR/E)!/3. It increases slowly with force.

peak compressive stress: po = 0.616 (FE2/R2)13_ Tt increases slowly with force.

\fa? - 12

PR parabolic distribution.

Stress vs radial position in region, 6,= - py

Overall 3-D pattern of stress is complex and multiaxial. Cracks may develop below the surface in
ball bearings.
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' 1-v
SCF'radla] 375 1+v

Reference; Goodier, J. N., "Concentration of stress around spherical and cylindrical inclusions
and flaws", Trans. ASME Vol. 55, 1933, 39-44. (later called J. Applied Mech., Vol. 1)

Observe that for the three dimensional cases, the stress concentration factor depends on
the Poisson's ratio of the material in question.

A heterogeneous load distribution

Consider a rigid circular cylindrical indenter of radius R pressed with load F on a semi
infinite solid substrate. This could represent a building erected upon compliant earth, or an
industrial press operation. A solution for an elastic solid of Young's modulus E and Poisson's
ratio v is available. The indenter displacement is (Timoshenko, S. P. and Goodier, J. N., Theory
of Elasticity, McGraw Hill, 1982.)

_F1-v?)
W= IRE
The pressure distribution q(r) as a function of radial coordinate r is

q(r) = _
2aRVRE = #?

Observe that the pressure becomes singular at the edge. The indenter is idealized as perfectly
rigid (much stiffer than the elastic substrate), and with a perfectly sharp edge.

Uses of concept of stress concentration.

@ Find stress distribution (nominal) in the absence of holes.

@ Multiply nominal stresses by the appropriate stress concentration factors. Many of these may
be obtained from a handbook.

@ The largest stress will cause failure. It is not necessarily the largest nominal stress.

@ In the design process it is sensible to ameliorate stress concentrations by avoiding sharp re-
entrant corners, and rounding them off when they are an unavoidable part of a structure.

Demonstrations, by photoelasticity. Circular hole at center of a compressed bar. Circular
hole in bar subjected to pure bending. Circular notches in bar subjected to pure bending.

Contact stress

From the theory of elasticity, we have several interesting solutions for spheres and cylinders
in contact.

For spheres of radius R of Young's modulus E, Poisson's ratio v, under force F,
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EGM 5615 Synthesis of Engineering Mechanics

Fracture mechanics

As elliptic hole becomes progressively narrower, the ellipse approaches a crack shape and
SCF =K —»o. Actual observed stress concentration factors for cracks are not infinite.

Therefore a material with one perfectly sharp crack will have zero strength, since the stress
concentration factor becomes infinite. Experimentally, even for brittle materials, strength is
reduced by cracks but not infinitely.

A criterion based on energy balance rather than on stress has therefore been adopted. The

approach is due to Griffith. The energy relations are visualized as follows. The energy required to

extend a crack is linear in crack length because the energy is expended in creating new free
surfaces. By contrast the strain energy available comes from a roughly semicircular region around
the crack and is therefore quadratic in crack length. As the crack propagates, the material in that
region is unloaded and its energy is made available to drive the crack. When the crack is long
enough that an increment in crack length gives rise to an energy release equal to energy
expended, catastrophic crack growth impends.

Griffith proposed an emergy approach to fracture. The elastic energy stored in a test
specimen of unit thickness, in a circular region around a crack of length a, is:

1
2na? 55 o2 (F1)

The elastic energy for a brittle material is twice the area under the stress strain curve. The elastic
energy is used to create two new surfaces as the crack propagates. The surface energy, 4 ya (v is
the surface energy; it is an energy per unit area.) should be smaller than the elastic energy for the
crack to grow. Thus, the incremental changes of both energies for the crack to grow can be
written,

F2)

Hence,

o ma } (F3)

Since for a given material E and y are constants,

cf=q—-—

Tra (F4)
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In this case K has the units of psi \/II-i or MPa \/171 and is proportional to the energy required
for fracture.

K is a measure of fracture toughness, called the stress intensity factor. Cracks and stress
concentrations also occur in ductile materials, but their effect is usually not as serious as in brittle
ones since local yielding which occurs in the region of peak stress will effectively blunt the
crack and alleviate the stress concentration.

The stress intensity factor K is the criterion for fracture in cracked objects. For a small Mode I
crack of length a,

K, =0 vJm fa/c).

Here f(a/c) is a dimensionless function of loading geometry; it expresses the effect of crack
length in relation to block size. & is the stress required for fracture in the absence of a crack.
The units for K are MPaVm, in contrast to the stress concentration factor which is
dimensionless. Observed that there is no characteristic length scale in the classical theory of
elasticity. The length scale must come from other considerations.

Fracture occurs when K, exceeds a critical value, K, determined from experiment. This is

the fracture toughness based on a static test. The fracture toughness for a dynamic situation
is NOT the same as for a static situation

Formulas for K are valid over a range of geometrical parameters, specifically,
thickness t >2.5 (K, /oy )2, and crack length a > 2.5 (K, /o, ).

In a thick block, the stress field around the tip of the crack is triaxial, since the Poisson
contraction in the highly stressed region near the crack is restrained by the surrounding
material, which is not so highly stressed. This triaxial stress causes brittle behavior in
seemingly ductile materials, since shear deformation is suppressed.

If the block is thinner than the above limit, toughness depends on thickness. If the crack length is
less than the above limit, then the material may undergo yield before any fracture occurs from
the crack.

Be aware that K;, depends on temperature, and often drops precipitously at low temperature.

Example

Estimate the size of the surface flaw in a glass whose modulus of elasticity and surface energy
are 70 GPa and 800 erg/cm? respectively. Assume that the glass breaks at a tensile stress of 100
MPa. :

Answer v
From equation (F4), and keeping in mind the transformation from cgs to SI units,
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nof

_2x 800 dyne/ cmx 70 GPa
7 (100 MPa)y

=3.5665 um

To two significant figures, a = 3.6 pm.
[Note that if the crack is on the surface its length is a, if it is inside the specimen it is 2a.
Remember 1 erg = 1 dyne cm]

Example (adapted from example on page 62-63)
Consider a 1 cm crack in a large plate of steel. Assume the plate is large enough that f(a/c) =1.

What stress gives rise to fracture for a weaker or 'mild’ steel (o, =500 MPa, K. = 175 MPavm)
and a high strength steel (o, = 1410 MPa, K, = 50 MPaVm).

Solution: Use K; = & f(a/c) Jma , so with fale) = 1, o= K/ ma .

Weaker steel A, o = 987 MPa, which exceeds the yield strength, so it undergoes yield at 500
MPa rather than fracture from the crack.

Stronger steel, 6 = 282 MPa, which is less than the yield strength 1410 MPa, so it fractures
catastrophically. ' ' ‘

Consequently, in the presence of 1 cm cracks, the stronger steel actually is weaker than the 'mild’
weaker steel. Moreover, the consequence of an overload is more severe for the stronger steel
since it catastrophically fractures rather than yields in bulk. ~

Example (adapted from Gordon, Structures )

Suppose we have a large structure such as a ship or a bridge and wish to tolerate a 1 meter long
crack without catastrophic failure. Consider ‘mild’ steel (5, = 500 MPa, K, = 175 MPaVm) .

Solution-

With fla/c) = 1, 6= K/ +7a =90 MPa or 14,000 psi.

In foam, Gibson and Ashby [Cellular solids] predict toughness Kic proportional to [N(cell
size)](density)*’2.

Stress concentrations: appendix
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Experimental stress concentrations in composite materials are consistently less than the
theoretical ones. The non-classical fracture behavior has been dealt with using point stress
and average stress criteria, however that approach cannot account for non-classical strain
distributions in objects under small load. Such differences may be accounted for via a
generalized continuum approach. Reduced stress concentration factors for small holes are
known experimentally in fibrous composite materials. The fracture strength of graphite epoxy
plates with holes depends on the size of the hole [1]. Moreover the strain around small holes
and notches in fibrous composites well below the yield point is smaller than expected
classically [2,3], while for large holes, the strain field follows classical predictions [4].

1. R.F.Karlak, "Hole effects in a related series of symmetrical laminates”, in Proceedings of
Jailure modes in composites, IV, The metallurgical society of AIME, Chicago, 106-117,
(1977)

2. J.M. Whitney, and R.J. Nuismer, "Stress fracture criteria for laminated composites
containing stress concentrations”, J. Composite Materials, 8, (1974) 253-275.

3. M. Daniel, "Strain and failure analysis of graphite-epoxy plates with cracks", Experimental
Mechanics, 18 (1978) 246-252, . ,

4. R.E.Rowlands, I. M. Daniel, and J. B. Whiteside "Stress and failure analysis of a glass-
epoxy plate with a circular hole", Experimental Mechanics, 13, (1973) 31-37
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EGM 5615 Synthesis of Engineering Mechanics

Failure criteria

Failure criteria deal with failure of a material, in contrast with failure of a structure.

Brittle materials

Maximum normal stress criterion

- Failure if 6; > olt, thatis, if the largest tensile principal stress exceeds the ultimate strength.
The other principal stresses are ignored. Similarly in compression, the applied stress is compared
with the ultimate strength in compression. This criterion is simplistic since if all the principal

stresses are compressive, most materials are much stronger than would be expected based on
uniaxial tests.

Mohr criterion

This takes into account ultimate tensile, compressive and shear stresses. Represent each state
by a Mohr circle. Draw an 'envelope' tangent to the circles. Mohr suggested that, provided an
arbitrary state of stress was represented by Mohr circle within that envelope, failure would
not occur. Sometimes a simplified form is taken in which the shear test is ignored. Then the
envelope is a straight line and failure is predicted if 5,/6,%lt - 53/c W1t > 1. This also is not ery
realistic for hydrostatic compression. T

Ductile materials: vield criteria

Maximum shear stress criterion (Tresca criterion)
Yield when 1., > Ty.
In principal stress space this looks like a hexagon.

Tension test to yield.

‘Recall that the maximum shear stress is Toax = 2 (0 - 03) , but the minimum principal stresj__ys__ is
zero so for tension, Ty = 0.5 oy. - '

Von Mises
Yield when G4 > Ty.

Recall of = % {0y 02+ (0 0,2+ (0,7 G2+ 6{1 21, 41,21} 12,

. 3 1
Distortional energy, Upq = G Tou> = 5G  Cef>-

In principal stress space, the Von Mises criterion looks like an ellipse.
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Section 3.5 Introduction to Fracture Mechanics 59

Most failure criteria for composite materials address failure of an individual ply.
Failure of the laminated structure is more complicated because of unresolved ques-
tions about interlaminar stresses, how degraded plies unload, and how failure of some
plies influences the remaining intact plies. At present, no failure criterion intended for
a laminated structure is reliable enough to be used without experimental confirmation.

INTRODUCTION TO FRACTURE MECHANICS

Cracks and Brittle Fracture. One expects that materials such as glass and rock will
fail in a brittle manner. A normally ductilg material such as structural steel may also fail
in a brittle manner if it contains a crack in a region of tensile stress. Typically a crack
begins at a stress raiser and grows gradually, due to cyclic loading or due to corrosion
under steady loading, When a crack reaches a “critical length” it suddenly propagates as
a brittle fracture, and the part or structure breaks, perhaps completely in two. Complete
separation may be prevented by progagation of the crack into a “crack arrester” such as
an existing hole, or by deformations that happen to relieve the mechanism that causes
the crack to propagate. Crack propagation speeds may exceed 1000 m/s.

The Liberty cargo ships of World War IL are classic examples of this kind of fail-
ure. Of some 2700 built, more than 100 broke in two. Part of the trouble was welded
construction, in which edges of adjacent plates were welded together. (Previously,
ships were constructed of overlapping plates connected by rivets, thus incorporating
“crack arresters” in the structure.) Also, the material itself was made more susceptible
to brittle fracture by heat of the welding process and by cold conditions in ‘which these

_sh1ps often operated.

“The state of stress at a crack tip causes material there to lose ductility. Consider,
for example, a flat plate with a crack oriented perpendicular to the direction of load
(Fig. 3.5-1a). Near the crack tip, normal stresses in the plane of the plate are tensile

-and very large. Consequently, due to the Poisson effect, material around the crack tip

tries to contract in the, thickness direction (normal to the plate surface) However, the

Opening: Sliding: o Tearing;

t

(a) A (b) ©
FIGURE 3.5-1 The three crack modes, commonly named I, II, and III.

Sl S s 5 ..w—
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Fracture mechanics

As elliptic hole becomes progfessively narrower, the ellipse approaches a crack shape and
SCF = K —0. Actual observed stress concentration factors for cracks are not infinite.

Therefore a material with one perfectly sharp crack will have zero strength, since the stress
- concentration factor becomes infinite. Experimentally, even for brittle materials, strength is
reduced by cracks but not infinitely. '
A criterion based on energy balance rather than on stress has therefore been adopted. The
approach is due to Griffith. The energy relations are visualized as follows. The energy required to
extend a crack is linear in crack length because the energy is expended in creating new free
surfaces. By contrast the strain energy available comes from a roughly semicircular region
around the crack and is therefore quadratic in crack length. As the crack propagates, the material
in that region is unloaded and its energy is made available to drive the crack. When the crack is
long enough that an increment in crack length gives rise to an energy release equal to energy
expended, catastrophic crack growth impends.

Griffith proposed an enexgy-approach to fracture. The elastic energy stored in a test

specimen of unit thickness, in a circular region around a crack of length a, is:
1 ) , e GR
2 T a2 2E 62 = Z’ Srl(livtwu »i‘/‘r\f.:\%éd. t?f{ﬁ‘..'& lr 1‘11 v ] ‘ﬂ&* ¢ 4 ! (F].) .
1 1 ! . @

Recall that 5y Ee2 = 5 o2 represents a strain energy per unit volume.
The elastic energy for a brittle material is twice the area under the stress strain curve. The elastic
energy is used to create two new surfaces as the crack propagates. The surface energy, 4 ya (y is

the surface energy; it-is an energy per unit area.) should be smaller than the elastic energy for the
crack to grow. Thus, the incremental changes of both energies for the crack to grow can be

written, '

‘ . i mmma 2 %‘Vﬂé“v'hé{) 25 sty ? 22(' Z@;
d(5@)")_d ., | P LA
da* E da , (F2) Suaface drsig

2
2 ﬁ_ﬁ_@' = 4 X

Hence, E T v

21E B _

ma (F3)
Since for a given material E and y are constants, ‘} G

Og = —K ’ ’
P ra . (F4)

In this case K has the units of psi yfin or MPa/m and is proportional to the energy required for
fracture. :

K is a measure of fracture toughness, called the stress intensity factor. Cracks and stress
concentrations also occur in ductile materials, but their effect is usually not as serious as in brittle
ones since local yielding which occurs in the region of peak stress will effectively blunt the
crack and alleviate the stress concentration.
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The stress intensity factor K is the criterion for fracture in cracked objects. For a small Mode I
crack of length a, :

K, =0 v flal).

Here f(a/c) is a dimensionless function of loading geometry; it expresses the effect of crack
length in relation to block size. o is the stress required for fracture in the absence of a crack.
The units for K are MPa m, in contrast to the stress concentration factor which is
dimensionless. Observed that there is no characteristic length scale in the classical theory of
elasticity. The length scale must come from other considerations.

" Fracture occurs when Kl exceedsacrltlcalvalu , K. detert nt.. This is
- the fracture toughness based on a static test, The fracture toughness for a dynamic situation”

* is NOT the same as for a static situation’:

t22.5 (Ko, 7, and,

range of geometrical parameters, specifically,

ck length a>2.5 (K, /o, )

In a thick block, the stress field around the tip of. the crack is triaxial, since the Poisson
contraction in the highly stressed region near the crack is restrained by the surrounding
material, which is not so highly stressed. This triaxial stress causes brittle behavior in
seemingly ductile materials, since shear deformation is suppressed.

Formulas for K are valid over a

If the block is thinner than the above limit, toughness depends on thickness. If the crack length is
less than the above limit, then the material may undergo yield before any fracture occurs
from the crack. : A

Be aware that K. depends on temperature, and often drops precipitously at low temperature.

Example

Estimate the size of the surface flaw in a glass whose modulus of elasticity and surface energy'

are 70 GPa and 800 erg/cm? respectively. Assume that the glass breaks at a tensile stress of 100 -
MPa. v

?rrcl)sr:lvzguation (F4), and keeping in mind the transformation from cgs to SI units,
a=21E |
nof
_2x800dyne/cmx70 GPa
o (100 MPay?

=3.565 ym

To two significant figures, a = 3.6 pm.
[Note that if the crack is on the surface its length is a, if it is inside the specimen it is 2a.
Remember 1 erg = 1 dyne cm]
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Example (adapted from example on page 62-63)
Consider a 1 cm crack in a large plate of steel. Assume the plate is large enough that f(a/c) =1.

What stress gives rise to fracture for a weaker or 'mild' steel (5, = 500 MPa, K, = 175 MPavm)
and a high strength steel (o, = 1410 MPa, K;.=50 MPavVm).

Solution: Use K = & f(a/c) Jma ,so withfla/c)=1, o= K,/ Jma .

Weaker steel A, o = 987 MPa, which exceeds the yield strength, so it undergoes yield at 500
MPa rather than fracture from the crack.

Stronger steel, o = 282 MPa, which is less than the yield strength 1410 MPa, so it fractures
catastrophically. :

Consequently, in the presence of 1 cm cracks, the stronger steel actually is weaker than the 'mild'
weaker steel. Moreover, the consequence of an overload is more severe for the stronger steel
since it catastrophically fractures rather than yields in bulk.

Example (adapted from Gordon, Structures )

Suppose we have a large structure such as a ship or a bridge and wish to tolerate a 1 meter long
crack without catastrophic failure. Consider 'mild' steel (o, = 500 MPa, K =175 MPa\m) .

Solution- -
With fa/c) = 1, o= K,/ vz =90 MPa or 14,000 psi.

In foam, Gibson and Ashby [Cellular solids] predict toughness Kic proportional to [V(cell
size)](density)*’2. :

Stress concentrations: appendix

Experimental stress concentrations in composite materials are consistently less than the
theoretical ones. The non-classical fracture behavior has been dealt with using point stress
and average stress criteria, however that approach cannot account for non-classical strain
distributions in objects under small load. Such differences may be accounted for via a
generalized continuum approach. Reduced stress concentration factors for small holes are
known experimentally in fibrous composite materials. The fracture strength of graphite epoxy
plates with holes depends on the size of the hole [1]. Moreover the strain around small holes
and notches in fibrous composites well below the yield point is smaller than expected
classically [2,3], while for large holes, the strain field follows classical predictions [4].

1. R.F.Karlak, "Hole effects in a related series of symmetrical laminates", in Proceedings of
failure modes in composites, IV, The metallurgical society of AIME, Chicago, 106-117,
(1977) : ' _

2. J.M. Whitney, and R.J. Nuismer, "Stress fracture criteria for laminated composites
containing stress concentrations", J. Composite Materials, 8, (1974) 253-275.

3. M. Daniel, "Strain and failure analysis of graphite-epoxy plates with cracks", Experimental
Mechanics, 18 (1978) 246-252, .

4. R.E.Rowlands, I. M. Daniel, and J. B. Whiteside "Stress and failure analysis of a glass-
epoxy plate with a circular hole", Experimental Mechanics, 13, (1973) 31-37
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just ahead of the crack tip is therefore in a state of #rigy-
re more than plastic flow.

zate at great speed after reaching a critical length? The
5y considerations, which are summarized as follows,
metry of Fig. 3.5-1a, which is shown again in Fig. 3.5-2a.
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U, = energy expended to
propagate the crack

U, = strain gmwmw released

(®)

FIGURE 3.5-2 (a) Plate with an edge crack of length a. (b) Energy

relations for crack extension.

TABLE 3.5-1  Stress intensity data for flat plates, of isotropic material and uni-
form thickness, with in-plane loading [3.6].
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Pure bending, edge crack of length a
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K= Bofm
8= 1-0.5(alc) + 0.326 (a/c)?
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Accurate to within 1% for all
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K 1= \wnﬁ\m
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K; = Boyma
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Fatigue

A material loaded through multiple cycles will break at a stress considerably less than the
ultimate strength for a single application of load. Fatigue is quantified by the S-N curve, in which
the number N of cycles is plotted logarithmically.

The effect of cyclic stresses is to initiate microcracks at centers of stress concentration
within the material or on the surface resulting in the growth and propagation of cracks leading to
failure. ‘

As for fatigue testing, the rate of crack growth can be plotted in a log-log scale versus
time. Testing the fatigue properties to generate an S-N curve entails monitoring the number of
cycles to failure at various stress levels. This test requires a large number of specimens compared
with the crack propagation test.

The endurance limit is the stress below which the material will not fail in fatigue no matter how
many cycles are applied. Not all materials exhibit an endurance limit. (a practical limit is often
chosen as 107 cycles).

The presence of a saline environment exacerbates fatigue.

Surface roughness exacerbates fatigue. A polished surface is better.

Rubbing or 'fretting' exacerbates fatigue. Re-design the part or use lubricants.
Heat treatment to introduce residual surface compression can be helpful.
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Fig. 21 Fig. 22

forces on the boundaries must equal the stresses at these points as dis-
cussed on page 28; in the case of a rectangular plate with sides parallel to
the coordinate axes, these forces are shown in Fig. 21.

Let us consider now a stress function in the form of a polynomial of the

third degree:

?uwﬂlmw.\%.*.wwma@+%a@“+w%mw% ©
This also satisfies Eq. (a). Using Eqs. (29) and putting pg = 0, we find
oz = m%%w. = ¢sx + ds¥
gy = mMMw = azz + bay
Tay = — %MWM\ = —bsx — CaY

For a rectangular plate, taken as in Fig. 22, assuming all oom&mommbmm
except d; equal to zero, we obtain pure bending. If only ooomwoabw az 18
different from zero, we obtain pure bending by normal stresses applied to
the sides y = *c of the plate. If coefficient bs or c; is taken &mm_..m.an
from zero, we obtain not only normal but also shearing stresses moe:.ym
on the sides of the plate. Figure 23 represents, for instance, the case 1

it 1t { oy=-byc
: Tﬂnv\.-m\
I\*l\ll\ﬁx
T
T
y

TWO-DIMENSIONAL PROBLEMS IN RECTANGULAR COORDINATES |

which all coefficients except bs in function (c) are equal to zero. Alongt.
sides y = +¢ we have uniformly distributed tensile and compressi
stresses, respectively, and shearing stresses proportional to z. On 1l
side z = [ we have only the constant shearing stress —bal, and there are1
stresses acting on the side z = 0. An analogous stress distribution

obtained if coefficient ¢ is taken different from zero.

In taking the stress function in the form of polynomials of the secor
and third degrees we are completely free in choosing the magnitudes
the coefficients, since Eq. (a) is satisfied whatever values they may hav
In the case of polynomials of higher degreés Eq. (a) is satisfied only if ce
tain relations between the coefficients are satisfied. Taking, for instanc
the stress function in the form of a polynomial of the fourth degree,

b d .
by = va zt + wAmv 2y + W%@N + wIAMM zy* + »va y* (c

and substituting it into Eq. (a), we find that the equation is satisfie
only if
€y = |Am9 + aJ)

The stress components in this case are

2
Gz = WHM = cx? + dazy — (2¢4 + a9y’
a? |
oy = QMW = a? + by + cy?
_ %y bs _, _ds
T T aray . 20 Zewy — 5 ¥

Coefficients a4, . . . , d4in these expressions are arbitrary, and by suits
bly adjusting them we obtain various conditions of loading of a rectangt
lar plate. For instance, taking all coefficients except ds equal to zer
we find

or = d4Ty o, =0 T =~ 5 y? (e

L SR
} i .
i < LA
4 i Ly
9 x

7 Qk.uam?.
Y
Fig. 24
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Assuming d, positive, the forces acting on the rectangular plate mvoéw in
Fig. 24 and producing the stresses (e) are as given. On the longitudinal
sides, ¥ = *c¢ are uniformly distributed shearing forces; on the ends,
shearing forces are distributed according to a parabolic law. The shear-
ing forces acting on the boundary of the plate reduce to the couple!

dac?l 1 duc? 2

This couple balances the couple produced by the normal forces along the
side ¢ = [ of the plate. .

Let us consider a stress function in the form of a polynomial of the
fifth degree.
€5 .\. 5

u N &u n

as @m

—_ 5
5 = m?t& +ﬁwv
Substituting in Eq. (@) we find that this equation is satisfied if

es = —(2¢s + 3as)
Js = —14(bs + 2ds)

The corresponding stress components are:

I

or = Fds _ S5 s + dsz% — (2¢5 + 3as)zy? — w (bs + 2d5)y*

dy? 3
¢ ds
oy = 33 = a5z’ + bz + csay® + 3 Y
2 1 1
Toy = — %“WW =-3 bsx® — cszly — dszy? + 3 (2¢s + wgmvww.

Again coefficients as, ., ds are arbitrary, and in adjusting a.ums we
obtain solutions for various loading conditions of a plate. Taking, for
instance, all coefficients, except ds, equal to-zero we find

Oz = &mﬁ&wﬁ - x@uv
Yedsy® )

Tey = — &m&w\n

I

oy

The normal forces. are uniformly distributed along the longitudinal .mEom
of the plate (Fig. 25a). Along the side z = [, the normal forces consist of
two parts, one following a linear law and the other following the law of a

! The thickness of the plate is taken equal to unity.

e e me

. £
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Fig. 25

cubic parabola. The shearing forces are proportional to z on the longi-
tudinal sides of the plate and follow a parabolic law along the side z = .
The distribution of these stresses is shown in Fig. 25b.

Since Eq. (a) is a linear differential equation, a sum of several solutions
of this equation is also a.solution. We can superpose the elementary
solutions considered in this article to arrive at new solutions of practical
interest. Several examples of the application of this method of super-
position will be considered. ,

19 | End Effects. Saint-Venant’s Principle

In the previous article several solutions for rectangular plates were
obtained from very simple forms of the stress function ¢. In each case
the boundary forces must be distributed exactly as the solution itself

. requires. In the case of pure bending, for instance (Fig. 22), the load-

ing on the ends must consist of normal traction (o st z=00rz =10
proportional to y. If the couples on the ends are applied in any other
manner, the solution given in Art. 18 is no longer correct. Another solu-
tion must be found if the changed boundary conditions on the ends are
to be exactly satisfied. Many such solutions have been obtained (some
are referred to later) not only for rectangular regions but for prismatic,
cylindrical, and tapered shapes. These show that a change in the distri-
bution of the load on an end, without change of the resultant, alters the
stress significantly only near the end. In such cases then, simple solu-
tions such as those of the present chapter can give sufficiently accurate
results except near the ends.

The change of distribution of the load is equivalent to the super-
position of a system of forces statically equivalent to zero force and
zero couple. The expectation that such a system, applied to a small
part of the surface of the body, would give rise to localized stress and
strain only, was enunciated by Saint-Venant! in 1855 and came to be

! B. de Saint-Venant, “Mémoires des Savants Etrangers,” vol. 14, 1855.
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known as Saint-Venant’s principle. It accords with common experience
in a variety of circumstances not confined to small strains in elastic
materials obeying Hooke's law—for instance, the application of a small
clamp to a length of thick rubber tube causes appreciable strain only in
the immediate neighborhood of the clamp.

Tor bodies extended in two or three dimensions, such as disks, spheres,
or the semi-infinite solid, the stress or strain due to loading on a small
part of the body may be expected to diminish with distance on account
of “geometrical divergence,” whether or not the resultant is zero. It has
been shown! that vanishing of the resultant is not an adequate criterion

for the degree of localization.

20 | Determination of Displacements

When the components of stress are found from the previous equations,
the components of strain can be obtained by using Hooke’s law, Eqgs. (3)
and (6). Then the displacements u and » can be obtained from the
equations

du _ o u W (a)
oz ay @ gy ' oz Ve

The integration of these equations in each particular case does not pre-
sent any difficulty, and we shall have several examples of their appli-
cation. It may be seen at once that the strain components (¢) remain
unchanged if we add to u and v the linear functions

uy = a+ by vy =c¢— bx ®)

in which @, b, and ¢ are constants. This means that the displacements
are not entirely determined by the stresses and strains. A displacement
like that of a rigid body can be superposed on the displacements due to
the internal strains. The constants a and ¢ in Eqs. (b) represent a trans-
latory motion of the body and the constant b is a small angle of rotation
of the rigid body about the z axis. :

It has been shown (see page 31) that in the case of constant body

forces the stress distribution is the same for plane stress distribution or.

plane strain. The displacements are different for these two problems,
however, since in the case of plane stress distribution the components of
strain, entering into Egs. (@), are given by equations

1 1

1
€z = le AQn - E‘uv €y = M AQu - §.wv Yoy = mﬁuc

t R. von Mises, Bull. Am. Math. Soc., vol. 51, p. 555, 1945; E. Sternberg, Quart.
Appl. Matk., vol. 11, p. 393, 1954; E. Sternberg and W. T. Koiter, J. Appl. Mech., vol.
25, pp. 575-581, 1958.
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and in the case of plane strain the strain components are:

1
= tlo— s+ ol = w (1 — o — »(1 + o]
] 1
o= 2loy— o+ o)) = H UL = Moy = (1 + ]
1
Yzy = mﬂue

1t is easily verified that these equations can be obtained from the pre-
ceding set for plane stress by replacing F in the latter by E/(1 — »%),
and » by »/(1 — »). These substitutions leave G, which is E/2(1 + »),
unchanged. The integration of Egs. (a) will be shown later in discussing
particular problems.

21 _ Bending of a Cantilever Loaded at the End

Consider a cantilever having a narrow rectangular cross section of unit
width bent by a force P applied at the end (Fig. 26). The upper and
lower edges are free from load, and shearing forces, having a resultant P,
are distributed along the end = = 0. These conditions can be satisfied
by a proper combination of pure shear with the stresses (¢) of Art. 18

L - represented in Fig. 24. Superposing the pure shear 7., = —b, on the
stresses (e), we find
oz = A2y ay, =0
d (@)
Tzy = —by, — |ww Qn

P4 fe—————£ II.IL‘\
T 7 o i
C g .
Y x 4
7
P “
2
Y
Fig. 26
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from which

To satisfy the condition on the loaded end the sum of the shearing forces
distributed over this end must be equal to P. Hence!

. _ e c c mv
ARR A — \.1 Ty dy = \xn A@N - Mw@nv %\, =P

from which
b, =2 F
T4
Substituting these values of ds and b; in Eqgs. () we find
3P
o= — 55y gy, =0

Noting that 24c? is the moment of inertia I of the cross section of the
cantilever, we have

P1 ®
Tay = — QM.AO» -9

This coincides completely with the elementary solution as given in books
on the strength of materials. It should be noted that this solution repre-
sents an exact solution -only if the shearing forces on the ends are dis-
tributed according to the same parabolic law as the shearing stress Tay
and the intensity of the normal forces at the built-in end is proportional
to y. If the forces at the ends are distributed in any other manner, the
stress distribution (b) is not a correct solution for the ends of the canti-
lever, but, by virtue of Saint-Venant’s principle, it can be considered
satisfactory for cross sections at a considerable distance from the ends.

Let us consider now the displacement corresponding to the stresses (b).
Applying Hooke’s law we find

e Pmyo W e Py
“T% ETTEl %" &%~ " E " EI ‘
e P

YT 5y Tz G %G @ =¥ @

! The minus sign before the integral follows from the rule for the sign of shearing
stresses. Stress 7z, on the end = = 0 is positive if it is upward (see p. 4).
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The .Hz.owm@cwo moH. .ogwmbwbm the components « and v of the displacement |
consists in integrating Egs. (c) and (d). By integration of Eags. (¢) we find

_ NU&»Q . .w 2
vs gt v =220 4

in SE.% .\..@v and fi(z) are as yet unknown mﬁboao.bm of y only and z only.
Substituting these values of « and v in Eq. (d) we find

_ Pz dfly) | vPy? | dfi(z) P
Iy Tt < s @ - )

In zwmm equation some terms are functions of only, some are functions of
y only, and one is independent of both and y. Denotin

. g these groups
by F(z), G(y), K, we have sronp

- _ P2 @) W) , Py Py
Fg) = — L2 1 - YW , vPy* P
@) It @ CW) =G+ g - B
llNun»
K=-5m

and the equation may be written
Flz) +Gy) = K

Such an equation means that Nu@ must be some constant d and G(y)
Some constant e. Otherwise F(z) and G(y) would vary with z and Y,

respectively, and by varying z alone, or y alone, he lit
violated. Thus ’ ) equality would be

_ Pc?
m. +d= — MN’Q Amv
dfi(z) _ Pz? df(y) Py? i
and = 57 AL, 5 Py
. It g 281 Taig T
Functions f(y) and fi{z) are then
i) = — Y2y | Py
i) = 687 Terat et
_ Px
.\HAHV I%I.TANHJF}‘
Substituting in the expressions for % and v we find
= _ Pzl wPys | pys
“TT3EI TeEr Teg Tt
vPzyt = Pgs @)

"= 2mr tegp e th
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The constants d, e, g, k may now be determined from Eq. (¢) and from
the three conditions of constraint that are necessary o prevent the beam
from moving as a rigid body in the zy plane. Assume that the point A4,
the centroid of the end cross section, is fixed. Then w and v are zero for
z =1, y =0, and we find from Egs. ()

PP
" BEI

The deflection curve is obtained by substituting y = 0 into the second
of Egs. (g). Then '

—dl

d(l — ) (»)

For determining the constant d in this equation, we must use the third
condition of constraint, eliminating the possibility of rotation of the beam
in the zy plane about the fixed point A. This constraint can be realized
in various ways. Let us consider two cases: (1) When an element of the
axis of the beam is fixed at the end A. Then the condition of constraint is

(2) When a vertical element of the cross section at the point A4 is fixed.
Then the condition of constraint is

Awmvﬁ =0 @

In the first casé we obtain from Eq. (k)

PI?
4=~ 351
and from Eq. (¢) we find
_ PR _ Pg
¢ =981~ 2IG

Substituting all the constants in Egs. (g), we find

Py Py Py (PR PC
w=—557 ~ ekl T 61¢ T \2EI " 21G)"Y -
m
_ vPxy? T Pz* Plz T pp
Y= -3Er " 6EI 2EI ' 3EI

The equation of the deflection curve is

wauENaE“
+ 35T (n)

()0 = gE7 ~ 2EI

i
A
e
!
i
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i
]
|
— =l ]

/
Lsp | (@

) G
Fig. 27

MM%%W %Mwm for the deflection at the loaded end (z = 0) the value PI?/

. 1s coincides with the value usually derived in el

on the strength of materials. i elementary books
To illustrate the .&mﬁowﬁob of cross sections produced by shearing

mﬁammmm. let us consider the displacement u at the fixed end (z = I)

For this end we have from Egs. (m), .

vPy? Pyr  PeYy

AﬁvRHN = - @@N .WNIQ — NNQ
A@lzv - vy v P
3Y Jemt 2ET ' 2IG  2IG (0)

Amlzv __Pe_ 3P

dy)zzh T T 2IG T T 4@

Hg shape of the cross section after distortion is as shown in Fig. 27a
Owing to the .mrmplbm stress 7z, = —3P/4c at the point 4, an element owm
the cross section at A4 rotates in the zy plane about the point A through
an angle 3P/4cG in the clockwise direction. ¢

If a vertical element of the cross section is fixed at 4 (Fig. 27b), instead

of & hori . .
o W @M.H.szﬁ& element of the axis, we find from condition (I) and the first

P2

* = 3E1
and from Eq. (¢) we find

P2 P
2FEI  2IG
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Substituting in the second of Egs. (¢) we find

Pz3 Pl!z , PP Pe?

@0 =557 ~ 357 T 3857 T o Y )

Comparing this with Eq. (r) it can be concluded that, owing to rotation

of the end of the axis at A (Fig. 27b), the deflections of the axis of gm
cantilever are increased by the quantity

P 3P

e A v

This is an estimate! of the so-called effect of shearing force on the deflec-
tion of the beam. In practice, at the built-in end we have conditions
different from those shown in Fig. 27. The fixed section? is usually not
free to distort and the distribution of forces at this end is different from
that given by Egs. (»). However, solution (b) is satisfactory for com-
paratively long cantilevers at considerable distances from the terminals.

(I — x)

22 | Bending of a Beam by Uniform Load

Let a beam of narrow rectangular cross section of unit width, supported
at the ends, be bent by a uniformly distributed load of intensity g, as
shown in Fig. 28. The conditions at the upper and lower edges of the
beam are:

(Tey)ymte = 0 (0))y=te = 0 (0)ym—re = —q (@)

The conditions at the ends z = +1 are

[frmdy=Fa [ edy=0 [‘oyay=0 @

—c —c —-¢

The last two of Eqgs. (b) state that there is no longitudinal force and no
bending couple applied at the ends of the beam. All the conditions (a)

1 Others are indicated in Prob. 3, p. 63, and in the text on p. 49.
* The effect of elasticity in the support itself is examined experimentally and
analytically by W. J. O’Donnell, J. Appl. Mech., vol. 27, pp. 461-464, 1960.

bbbl pe o £

L~
!

- C) bt €
[0y 0-‘

(a) 6) (c/
Fig. 28

- “from which

TWO-DIMENSIONAL PROBLEMS IN RECTANGULAR COORDINATES | a7

and (b) can be mwﬁwm.mmm by combining certain solutions in the form of
polynomials as obtained in Art. 18. We begin with solution (9), illus-

... trated by Fig. 25. To remove the tensile stresses along the side y = ¢

and the m.rm.mlbm stresses along the sides y = +¢, we superpose a simple
compression o, = a: from mo.anb (b), Art. 18, and the stresses oy = byy
and 7., = —bsz in Fig. 23. In this manner we find

o = ds(z’y — 259°)
oy = 13dsy® + bay + a (c)
Toy = —dszy? — bz
From the conditions ?v we find
—dsc? — b; = 0
14dsc® + bsic +a, = 0
—%3dsc® — bic + az = —q

m»u”

1w
O

Ay = —

o

&m“'

W[ 00
wWha

g Substituting in Eqs. (c) and noting that 2¢3/3 is equal to the moment of

Fo&m I of the rectangular cross-sectional area of unit width, we find

_ 3By, 2 : 2
o= = mmAH awﬁvurwliasnw%v

- _3q¢(1, 2 1
o = !@Awai@ﬁ%vnleﬁwaiwiwmv @
3
Tay = — Nam (¢t — ¢z = — %N (c? — yD)z

..Ha can easily be checked that these stress components satisfy not only
- conditions (a) on the longitudinal sides but also the first two conditions

(b) at the ends. To make the couples at the ends of the beam vanish,

.. 'we superpose on solution (d) a pure bending, o, = dsy, o, = r y =0
. =z ,

shown in Fig. 22, and determine the constant d; from the condition at

€ _ [ 3q 2
\Aq&%l\.l%l.me@lw%v.*.&&@%no

from which
do=29(l _2
&J:Am:wv

L=+l
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Hence, finally,

_ _349(, _ 2. 3¢ r_2
Oz = ﬁthud@ WQVITPG c? 5 4
2 2
H%MQNI%V@;.%AW%IWA@V (33)

The first term in this expression represents the stresses given by the usual

elementary theory of bending, and the second term gives the necessary
correction. This correction does not depend on x and is small in com-
parison with the maximum bending stress, provided the span of the beam
is large in comparison with its depth. For such beams the elementary
theory of bending gives a sufficiently accurate value for the stresses os.
It should be noted that expression (33) is an exact solution only if at the
ends # = +! the normal forces are distributed according to the law

- 3q (2 2
X=x-=lzv—
I»Q“Aw@ mo@v

i.e., if the normal forces at the ends are the same a8 gz for z = *1from
Eq. (33). These forces have zero resultant force and zero resultant
couple. Hence, from Saint-Venant’s principle we can conclude that
their effects on the stresses at considerable distances from the ends,
say at distances larger than the depth of the beam, can be neglected.
Solution (33) at such points is therefore accurate enough when no such
forces X are applied. .

The discrepancy between the exact solution (33) and the approximate
solution, given by the first term of (33), appears because in deriving the
approximate solution it is assumed that the longitudinal fibers of the
beam are in a condition of simple tension. From solution (d) it can be
seen that there are compressive stresses oy between the fibers. These
stresses are responsible for the correction represented by the second term
of solution (33). The distribution of the compressive stresses gy over the
depth of the beam is shown in Fig. 28c. The distribution of shearing
stress 74, given by the third of Egs. (d), over a cross section of the beam
coincides with that given by the usual elementary theory.

When the beam is loaded by its own weight instead of the distributed load g, the
solution must be modified by putting ¢ = 2pgc in (33) and the last two of Egs. (d) and

adding the stresses
oz =0 oy = pglc — ¥) T2y =0 Aa.v

For the stress distribution, (e) can be obtained from .Mnm. (29) by taking
¢ = Ypg(y® + 3cz?)

and therefore represents a possible state of stress due to weight and boundary forces.
On the upper edge y = —c We bave o, = 2pgc, and on the lower edge ¥y = ¢, oy = 0.
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Thus, when ».&o stresses Anv. are added to the previous solution, with ¢ = 2pgc, the stress
cu.vmﬂr horizontal edges is zero, and the load on the beam consists only of its own
weight. .

. The &mﬁanBmwd.m u and v can be calculated by the method indicated
in the previous article. Assuming that at the centroid of the middle
naow mmﬂwn%ocH (z = 0, y = 0) the horizontal displacement is zero and the
vertical displacement is equal to the deflection é, we find si 1

gy R , using solutions

B R s
__q |y ey 2 : s |
-l Y o[-

g [P22 21 1
ﬂ@%@ @t 0 tg? &L +3é
It can be seen from the expression for u that the neutral surface of the

beam is not at the centerline. Owing to the compressive stress

q

Ae,eveﬂo = - 2

the centerline has 2 tensile strain »q¢/2E, and we find

(Wy=o = .Mlmmluw

From the expression for v we find the equation of the deflection curve,

_ g [P2* =z 1
@ = & ~ 357 ﬁ% “TE T 0 +3 v Qi !)

Assuming that the deflection is zero at the ends (z = +10) of the center-

line, we find
ﬂhmi& 12 ¢ (4 v
=52 NTerNJAsz (34)

The factor before the brackets is the deflection that is derived by the
&msmbgu.% analysis, assuming that cross sections of the beam remain
plane &E.:ym bending. The second term in the brackets represents the
ooﬂooawu usually called the.effect of shearing force.

By differentiating Eq. (f) for the deflection curve twice with respect
to z, we find the following expression for the curvature:

a\ _ g [e—2= 4
(@) [ 572G+ 3)] @

It will be seen that the curvature is not exactly proportional to the bend-
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ing moment! g(i* — x?)/2. The additional term in the brackets repre-
sents the necessary correction to the usual elementary formula. A more
general investigation of the curvature of beams shows? that the correction
term given in expression (35) can also be used for any case of continuously
varying intensity of load. The effect of shearing force on the deflection
in the case of a concentrated load will be discussed later (page 122).

An elementary derivation of the effect of the shearing force on the curvature of the
deflection curve of beams was given by Rankine® mn England and by Grashof! in
Germany. Taking the maximum shearing strain at the neutral axis of a rectangular
beam of unit width as 34(Q/2¢G), where @ is the shearing force, the corresponding
increase in curvature is given by the derivative of the above shearing strain with
respect to z, which gives 34 (g/2¢G). The corrected expression for the curvature by
elementary analysis then becomes .

gb-z,349 _ 9 Tn lzN u
Bz tiae =Bl 2z TEUFY
Comparing this with expression (35), it is seen that the elementary solution gives an

exaggerated value’ for the correction. )

The correction term in expression (35) for the curvature cannot be attributed to
the shearing force alome. It is produced partially by the compressive stresses oy.
These stresses are not uniformly distributed over the depth of the beam. The lateral
expansion in the z direction produced by these stresses diminishes from the top to the
bottom of the beam, and in this way a reversed curvature (convex upwards) is pro-
duced. This curvature together with the effect of shearing force accounts for the
correction term in Eq. (35).

23 _ Other Cases of Continuously Loaded Beams

By increasing the degree of polynomials representing solutions of the
two-dimensional problem (Art. 18), we may obtain solutions of bending
problems with various types of continuously varying load.® By taking,
for instance, a solution in the form of a polynomial of the sixth degree
and combining it with the previous solutions of Art. 18, we may obtain
the stresses in a vertical cantilever loaded by hydrostatic pressure, as
shown in Fig. 29. In this manner it can be shown that all conditions
on the longitudinal sides of the cantilever are satisfied by the following

1 This was pointed out first by K. Pearson, Quart. J. Math., vol. 24, p. 63, 1889.

2 See paper by T. v. Kérmén, Abhandl. Aerodynam. Inst., Tech. Hochschule, Aachen,
vol. 7, p. 3, 1927.

s Rankine, “Applied Mechanics,” 14th ed., p. 344, 1895.

¢ Grashof, “Elastizitat und Festigkeit,” 2d ed., 1878.

5 A better approximation is given by elementary strain-energy considerations.
See S. Timoshenko, “Strength of Materials,” 3d ed., vol. 1, p. 318.

¢ See paper by Timpe, loc. cit.; W. R. Osgood, J. Res. Nat. Bur. Std., ser. B, vol. 28,
p. 159, 1942.
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fam C ot C et

Y7ANTINY V Q774 P =

Fig. 29

system of stresses:

_ g=%y q 6
=5 Tis Alm% *3 oiv

= ¥y _ 3y
oy 5 + ¢z Awnlw — MV (@)

E\uwmaﬁ%le IFTI» g3 .,
8¢ 8c3 \° 3+mmww (¢ —y%

Here ¢ is the weight of unit volume of the fluid, so that the intensity of
the load at a depth z is gz. The shearing force and the bending EouW\mbﬂ
at the same depth are gz?/2 and gz3/6, respectively. It is evident that
the first terms in the expressions for ¢, and r,, are the values of the
stresses calculated by the usual elementary formulas.

A M
AVHM &MHO ﬁomu OHHAM [633 &HHO NVON.HHH T = o ﬂww@ bOH.H.KHN.M MGHQMM 18 zero HHHO
v

= 9 s g3
Tay g (' —¥) +gmz e —v)

Eﬁ%zmw .ﬁ.Em is not zero, it is small all over the cross section and the
resultant 1s zero, so that the condition approaches th

from external forces. o ot of an end free

. wx%m&wm to o; in Egs. A.av the term —qz, in which ¢; is the weight
om unit volume of the material of the cantilever, the effect of the weight
of the ,Uows on go.mﬂmmm distribution is taken into account. It has been
vaovOmm@ to use the solution obtained in this way for calculating the
mwaommmm.un masonry dams of rectangular cross section. It should be noted
M at dEm.moFSou Q.omm not .mmam&\ the conditions at the bottom of the

am. Solution (a) is exact if, at the bottom, forces are womdm which are

1 M. Levy, Compt. Rend., vol. 126, p. 1235, 1898.
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distributed in the same manner as oz and 7, in solution (a). Inan actual
case the bottom of the dam is connected with the foundation, and the
conditions are different from those represented by this solution. From
Saint-Venant’s principle it can be stated that the effect of the constraint
at the bottom is negligible at large distances from the bottom, but in the
case of a masonry dam the cross-sectional dimension 2c is usually not
small in comparison with the height ! and this effect cannot be neglected.’

By taking for the stress function a polynomial of the seventh degree,
the stresses in a beam loaded by a parabolically distributed load may be
obtained. In Chap. 6 (page 178) it is shown how, by use of the complex
variable, the polynomial stress function of any degree may be written

down at once.

In the general case of a continuous distribution of load g (Fig. 30) the stresses at
any cross section at a considerable distance from the ends, say at a distance larger than
the depth of the beam, can be approximately caleulated from the following equations:®

M = _ 3
o LG

9= 2¢2 10¢

. _g 3y _ ¥

ow=—3+\% " aF -89
Tay = %M?» -9

in which M and Q are the bending moment and shearing forces calculated in the usual

1 The problem of stresses in masonry dams is of great practical interest and has
been discussed by various authors. See K. Pearson, On Some Disregarded Points in
the Stability of Masonry Dams, Drapers’ Co. Research Mem., 1904; K. Pearson and
C. Pollard, An Experimental Study of the Stresses in Masonry Dams, Drapers’ Co.
Research Mem., 1907. See also papers by L. F. Richardson, Trans. Roy. Soc. (London),
ser. A, vol. 210, p. 307, 1910; and S. D. Carothers, Proc. Roy. Soc. Edinburgh, vol. 33,
p. 292, 1913. 1. Muller, Publ. Lab. Photoélasticité, Ziarich, 1930. Fillunger, Oesterr.
Wochschr. Offentl. Baudienst, 1913, No. 35. K. Wolf, Sitzber. Akad. Wiss. Wien, vol.
123, 1914. -

* ¥, Seewald, Abhandl. Aerodynam. Inst., Tech. Hochschule, Aachen, vol. 7, p. 11,
1927. Concerning further development of such approximations see B. E. Gatewood
and R. Dale, J. Appl. Mech., vol. 29, 1962, pp. 747-749. i

par L

-—0-—"“—’
L]

Fig. 30
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Mm.% %um g is the .wmgm#% of load at the cross section under consideration. These

quations agree with t 1 1 i .

S gree with those previously obtained for a uniformly loaded beam: (see Pwn
: If the load of intensity g, in gm downward direction, is distributed along the lower

edge (y = +¢) o.m the dme, the expressions for the stresses are obtained from Egs
(36) by superposing a uniform tensile stress, o, = ¢, and ’

_ My y* 3y
Iz I +mAwnulan

-9 3y_ ¥
oy w..: ac 4 . 68

Tzy = M;w Anu - m\»v _ ¥

24 | Solution of the Two-dimensional Problem
in the Form of a Fourier Series!

Tt has been shown that if the load is continuously distributed along the length of a
rectangular U.mms of Rarrow cross section, a stress function in the form of a polynomial
may _om used in omng.E simple cases. A much greater degree of generality is attained
by taking the function as a Fourier series (in z). Each component of load on the

upper and lower edges can then have the i ible i i

1 d generality possible

instance, it may have discontinuities. 7P iR such series. - For
The equation for the stress function,

w.nv 1P e
dxt +2 ax? 9y? oyt =0 (@)

may be satisfied by taking the function ¢ in the form
ez
¢ = sin .lwlu,@v )]

in which m is an integer and f(y) a function of ituti i
C int y only: Substituting (5) into Eq. (a
and using the notation mr/l = a, we find the following equation for mmnmﬁibmumn\ vavn

aif(y) — 2" (y) + V(W) =0 (©
The general integral of this linear differential equation with constant coefficients is

fly) = C.cosh ay + C:sinh ay + Csy cosh ey + Cuy sinh ay

The stress function then is
¢ = sin az(C; cosh ay + C:sinh ay + Csy cosh ay + Cuy sinh ay) @

@ 1 wmnwmwm A.Urm earliest Edmm.ﬁmm.&oﬁ of .H.oE.on. solutions, and still one of the most
orough, is given by E. Mathieu, “Théorie de I'Elasticité des Corps Solides,” seconde
partie, chap. 10, pp. 140-178, Gauthier-Villars, Paris, 1890. Single Fourier ,mm&mm in

and y are superposed to solve problems of finite rectangles. Convergence in .Suw.

Q al
€r ¢ EO
etermination C» :..O HOCH 0€ ients MH om an nw*mbuom set, Om MH~HuEﬂPU®Ocm WwNO_UHm.MG
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Florida International University
_ Department of Mechanical and Materials Engineering

EGM 5615 EXAMINATION 2A 22 November 2019

This examination is a take-home examination and is due by 4pm on 25 November 2019.
This exam allows you to use your notes and book only.

Please sign the following;:

I certify that I will neither receive nor give unpermitted aid on this examination. Violation
of this may result in failure of the exam.

PRINT NAME ‘ SIGN NAME

This examination consists of three problems with several parts to two of the problems.
Do all problems. Read each question carefully. Show all work!!!!!

Problem 1 (30 points). The beam shown is 30 mm thick and is made of glass. It contains a
crack 0.2 mm emanating from one edge. What bending moment will produce fracture in
each case? Compare the ratio of M to Ma. Use Kic =0.25 MPaVm and oy = 100 MPa for
glass. ' ’ :

Also, check to see if this is a valid test specimen.

Problem 2 (40 points). Show that @ = aj(x* - 3x%y?) where a; is a constant, satisfies
V4®=0. Sketch the stresses that act on the boundaries of the region 0<x<1 and O<y<lI.
Show that moments about the point x=y=0 sum to zero. Also find uy, uy from knowledge
of stresses.

Problem 3 (30 points). Given the following stress field

ox=-a1x’y, Oy=-a1y/3, Ty =axy?
with a; being a constant and the stresses do not depend on z i.e., a plane strain. probiem,
DETERMINE if this is a valid solution of an elasticity problem. If these stresses are not

valid, give the reason why not. Lastly, if this is a valid elasticity solution, FIND the strains
and displacements.
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Problem 2 (40 points). Show that ® = ai(x* - 3x%y?) where a; is a constant, satisfies
V4®=0. Sketch the stresses that act on the boundaries of the region 0<x<1 and 0<y<I.
Show that moments about the point x=y=0 sum to zero. Also find ux, uy from knowledge
of stresses.

Problem 3 (30 points). Given the following stress field

Ox = -a1x%y, Gy=-a1y/3, Txy = aixy’
with a; being a constant and the stresses do not depend on z, i.e., a plane strain problem,
DETERMINE if this is a valid solution of an elasticity problem. If these stresses are not

valid, give the reason why not. Lastly, if this is a valid elasticity solution, FIND the strains
and displacements.
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With the use of Eqs. (14.21) and (14.22), the four independent shear flows
can be evaluated explicitly and the unit angle of twist « is given by the
expression on any one of the sides of the equality signs in Eq. (14.22). The
following numerical example will illustrate the procedure.

Example 14.2 Consider a bar of thin-walled closed section having the geometry illustrated
in Fig. 14.7a. While the thicknesses ¢ vary from wall to wall as indicated, they are
assumed to remain constant along each wall. If the bar is subjected to a torque
T = 900,000 in.-Ib and length @ = 9 in., determine the shear-stress distribution in
the walls and the unit angle of twist of the section (G = 4 x 10¢ psi).

t= X " t: X L3
p Lm0 =005
¥ A
q .
@ 949 3
2a Cq
O R o C«z Pl
" y __|F ! — 2%
! i
= ” q—q
t=0035"1— () ‘= 00257 a q, ! ZT qu a,
, Ll
‘L 2a Dl 3a i E
! i t,=0.06"
(a) (&)
Fig. 14.7

Solution Subject to the condition that the total shear flow away from a junction of the
section be equal to the total shear flow toward the junction, the shear-flow distribu-
tion in the walls is as indicated in Fig. 14.76. With the use of the given dimensions,
the areas enclosed by the three cells are found to be
A; = Ay = 6a? A, = 3a? (@)
Further, since ¢ is assumed to remain constant along each wall, it can be shifted out
of the integral signs from equations analogous to those in Eq. (14.22) and the
resulting line integrals | dS' can be readily evaluated. Thus, for Fig. 14.7a

Sy = ABCD = Ta So=DEF=4a @ S;=FGA = 5a ®
S1o=DH =q S:s = HF = 3a S3; = HA = 2a
Next, with the use of the areas and the lengths of the wall segments in Eqs. (@)and (),

respectively, the three equations for the determination of the independent shear flows
41, 42, and g; are found by analogy with Eqs. (14.21) and (14.22) to be

T
6a’q, + 3a*q. -+ Gaqy = 3

1=

1 [Tagq, | alqy —q2) | 2a(q: — qo)
1zGa2|: + +

©
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=@___

1 [4aq2 3a(q2 —qs) alg — qZ):I
_I_. p—
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For the given values of the thicknesses (Fig. 14.7a), the solution to these three
-independent equations is

q1—00292— q2—00347I g —00368— )
XA w56 ° 4og.49%

Hence, the shear flows in the remaining walls of the section are (Fig. 14.7b)

T T

12 = g1 — g = —0.0055 o (n=f = —0.0021 -
- ‘ l‘ lz ‘.23-33
gs1=q1 — qs = —0. 0076" ()
-8¢.4§
The negative signs indicate that the directions are opposite to those assumed in
Fig. 14.7b. For the given values of T and a, use of the relation = = g/t in Fig.
14.7b yields the shear-stress distribution
71 = 8110 psi 75 = 6420 psi 73 = 8180 psi o
Tie= —1750psi T3 = —930 psi 75 = —2810 psie’
Finally, the unit angle of twist « of the entire section must be equal to the unit
angles of twist of each cell individually. Hence, substitution of Eq. (<) in any one of
the expressions for the angles in Eq. (c) and use of the given values of T, 4, and G
yield
T 0.3700 x 900,000

=03700 — = —————— =0. 10-° rad/in.
o 7006(13 FEY TN 0.1142 % 102 rad/in 03}

144 THE EFFECT OF RESTRAINED WARPING

The discussion in the present chapter has thus far been restricted to the pure
twisting of bars whose cross sections warp freely. In many practical cases,
however, external constraints cause some sections of a bar to remain plane.
Thus, when the bar is subjected to pure torsion, the prevention of out-of-
plane displacements at the constrained sections curtails the free warping of
the other sections. Such a deformation pattern of zero warping of the
constrained planes and restrained warping of the others must give rise to
normal stresses in the axial direction which produce a bending of the bar.
Since these normal stresses at a section depend upon the amount of restraint
to warping at the section, they generally vary along the axis of the bar.
Therefore, they must be accompanied by transverse shear stresses caused by
bending and these, too, generally vary from section to section along the axis.
Since the transverse shear stresses and the shear stresses due to twisting at a
section must jointly give rise to the torque at the section, it is evident that the
unit angle of twist no longer remains constant in the axial direction. The
type of mechanical behavior discussed thus far is also exhibited by a bar
without cross-sectional constraints when it is subjected to an axially varying
torque which produces a differential warping of the cross sections.

In a bar of solid cross section subjected to pure torsion, the effect of
constraining a plane is usually restricted to the vicinity of the plane. There-
fore, by St. Venant’s principle, a greater portion of the bar a few cross-
sectional dimensions away from the plane can be assumed to warp freely.
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Florida International University
Department of Mechanical Engineering

EGM 5615 FINAL EXAMINATION 6 December 2002
This examination will be a takehome exam. This exam allows you to use your book and
notes only as well as one book on fluid mechanics. This exam is due 9 December at 5 pm
in my office EAS3462

Please sign the following:

I certify that I will neither receive nor give unpermitted aid on this examination. Violation
of this may result in failure of the exam.

PRINT NAME SIGN NAME

This examination consists of four problems with several parts to one of the problems.

Problem 1 (30 points). Consider a bar of thin-walled closed section having the geometry
illustrated in the accompanying figure. While the thicknesses ¢ vary from wall to wall as
indicated, they are assumed to remain constant along each wall. :
If the bar is subjected to a torque T= 9 x 10’ in-Ibs and length a = 9 inches, determine the
shear stress d1str1but10n in the walls and the angle of twist per unit length of the section..
Take G =4 x 10° psi.

t= X " = X L2
p L=004 005"
t
O ~rg,=00s" O e
£,,=0.03 J
. A 1
‘ 1,=0.038%~  (2) t5=0.025 j_
! [’
©C D ' E
‘ |<—-—2a ' 3a

- ¢,=0.06"
Problem 2 (20 points). Please do problem 10.2.9 on page 339 of Cook and Young.
(b) Also determine the shear stress at a point a little to the left of the upper righty hand

corner of the figure.
(c) Where will the maximum shear stress occur? What will its value be? Take t=4.8 mm






Problem 3 (30 points). A hollow cylinder of very long length, inner radius Ri and outer

radius Ro, is submerged in an infinite, incompressible, inviscid fluid flowing with a

uniform velocity U” as shown.
Determine the stress state in the cylinder at steady state flow. Clearly state all assumptions

you are making in formulating the associated boundary value problem. Indicate which
book on Fluid Mechanics you are using.

Hint: Look at potential flow theory. Assume no pressure on the inner surface and find an
expression for the pressure on the outer surface as a function of U” and the angle 6. The
angle O is measured positive counterclockwise from the x axis. Show that the pressure is in

the form A+Bef(0). Write the boundary conditions on o and 6,9 from this information
and solve.

Problem 4 (20 points). Do problem 4.5.2 part (c) only, found on page 121 of Cook and

- Young,






CHAPTER

Orientation. Review of
Elementary Mechanics
of Materials -

This chapter includes a selective and brief review of important assumptions, proce-
dures, and results from a first coursé in mechanics of materials. Some items of i Impor-
tance ate incorporated in subsequent chapters rather than appearing here. The reader
is encouraged to consult a textbook of elementary mechanics of materials for detailed
treatinent of material reviewed in this chapter.

1.1 METHODS OF STRESS ANALYSIS

Typical questions posed in stress analysis are: Given the geometry ofa body or structure as
well as its material properties, support conditions; and time-independent loads applied toit,
what are the stresSes and what are the displacements? A solution may be obtained by ana-
lytical, numerical, or expérimental methods. Analytical methods include mechanics of
materials and theory of elasticity. This book considers both, and places empbhasis on the first.

Mechanics of materials is the engineer’s way of doing stress analysis. The method
involves the followmg steps.

1. Consider deformations produced by load, and estabhsh (or approx1mate) how
" they are distributed over the body This may be done by experiment, intuition,
symmetry-arguments, and/or prior knowledge of similar situations.
Analyze the geometry of deformation to determine how strains are distributed
OVer a cross section. , :
Determine how stresses are distributed over a cross section by applying the
stress-strain relation of the material to the strain distribution.
Relate stress to load. This step involves drawing a free-body diagram and wiiting
equations of static equilibrium. The result is a formula for stress, typically in
terms of applied loading and geometric parameters of the body.
Similarly, relate load to displacement, either by integration of the strain distribu-
tion determined in step 2 or by using energy arguments that relate work done by
applied loads to elastic strain energy stored.
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Results of a mechanics of materials analysis may be exact, or good approximations, or
rough estimates, depending mainly on the accuracy of assumptions made in the first
step. Examples of the foregoing analysis are reviewed in subsequent sections, which
point out that a substantial list of restrictions is needed if the resulting formulas are to
be valid.

Theory of elasticity is the mathematician's way of doing stress analysis. In this
method, one seeks stresses and displacements that simultaneously satisfy the require-
ments of equilibrium at every point, compatibility of all displacements, and boundary
conditions on stress and displacement. In contrast to the mechanics of materials
method, this method does not operate under any initial assumption or approximation
about the geometry of deformation. Therefore theory of elasticity can solve a problem
for which deformations cannot be reliably anticipated, such as the problem of deter-
mining stresses around a hole in a plate. However, the technique is more difficult than
the mechanics of materials method and cannot be successfully applied to as great a
variety of practical problems. Often, a practical problem is treated by a mixture of elas-
ticity and mechanics of materials techniques.

Many problems of stress analysis are best solved numerically, on computers that
range from PCs to supercomputers. Numerical analysis software is powerful and versa-
tile; it has become comparatively easy to use and presents results graphically with great
polish. None of this analytical power assures that results are even approximately cor-
rect. An analyst might easily blunder in deciding what simplifications are appropriate,
in choosing the specific computational procedures to use, or in preparing input data.
Computed results may contain large errors and, in any case, must be checked against
results obtained in some other way. Mechanics of materials analysis serves well for
checking, even in cases where it provides only a rough approximation. Regardless of
the analysis method, success in solving a problem depends mainly upon the analyst’s
having clear insight into the phenomenon under study.

An analysis, by any method other than experiment, is applied to a model of real-
ity rather than to reality itself. One cannot possibly take full account of the numerous
details of the actual problem. Accordingly, the model is an idealization. in which geom-
etry,loads, and/or support conditions are simplified, based on the analyst’s understand-
ing of which aspects of the actual problem are unimportant for the purpose at hand.
Thus, a stress raiser may be temporarily neglected, weight of the body may be ignored,
or a distributed load may be regarded as acting at a point. (As a practical matter, even
the magnitude of loading is not usually known with much precision.) After devising a
model, one must do all appropriate analyses. For example, one must not stop with

- stresses if buckling is also a possible mode of failure. Accordingly, a goal of studying

stress analysis is to learn what idealizations and analysis goals are appropriate, which
implies that one must learn how bodies of various shapes and support conditions
respond to various loads,

Finally, some words about derivations. Why study the derivation of a formula?
First, it makes the formula plausible. A more important reason is that a derivation
makes clear the assumptions and restrictions needed in order to obtain the formula.

Thus, by knowing the derivation, one can recognize situations in which a formula
should not be applied.
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12 TERMINOLOGY

The following list is far from exhaustive. Terms listed are used throughout this book.’

Beam: An elongated member usually slender intended to resist lateral loads by
bending.

Body forcei A loading that acts throughout a body rather than.only on its sur-
face. Self-weight and the inertia force of spinning about an axis are instances of
body force.

Boundary conditions: Prescribed displacements at certain locations; for example,
the stipulation that the supported end of a cantilever beam neither translates nor
rotates. These boundary conditions may also be called support conditions. The
term “boundary conditions” may also indicate prescribed stresses, forges, or
moments. For example, at the unsupported end of a cantilever beam loaded only
by its own weight, transverse shear force and bending moment must both vanish.
Brittle behavior: A material failure in which fracture surfaces show little or no
evidence that failure has produced permanent deformation.

Cold working: Deformation that results in residual stresses. (In contrast, kot working
is deformation at high enough temperature that stresses quickly dissipate by anneal-
ing.) Cold working by shot peening is the bombarding of an object by metal shot
(roughly 0.2 mm to 4 mm in diameter) thrown at substantial velocity (roughly 70
m/s) the purpose being to produce residual compressive stresses in the surface layer.
Curvature: The reciprocal of the radius of curvature p, that is, k = 1/p; used in
beam theory.

Ductile behavior: Material behavior in which apprecrable permanent deforma-
tion is possible without fracture. :

Elastic: Material behavior in wh1ch deformations produced by load disappear
when load is removed. :

Elastic limit: The largest uniaxial normal stress for which materlal behavior is
elastic. (Compare yield strength.) :

Elastic modulus: The ratio of axial stress o, to axial strain €, in un1ax1a1 loading;
E =g /e, Restricted to a linear relation between o,and e, Also called modulus
of elasticity or Young’s modulus. :

Fixed: A boundary condition in which all motion is prevented Also called built-
in, clamped, or encastre.

Flexure: Bending. ; :
Frame: A structure built of bars, in which relative rotation between bars is pre-
vented at joints, as by weldmg bars together where they. meet. Bending of the
bars is usually important in the calculation of stresses. (Compare truss.) -
Homogeneous: Having the same material properties at, all locatlons

Isotropic: Having the same properties (stiffness, strength, conduct1V1ty, etc.) in
every direction. As examples, glass is isotropic, wood is not; 1sotr0plc (Compare
orthotropic.) :
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Lateral: Directed to the side; thus, directed normal to the axis of a beam or nor-
mal to the suiface of a plate or a shell.

Nonlinear problem: A problem in which deflections or stresses are not directly
proportional to the load that produces them. An example is the contact stress
where a train wheel meets the rail. The area of contact grows as load increases.
Another example is an initially flat membrane, like a trampoline. Lateral load is
resisted by forces in the membrane that are functions of both the amount of
deflection and the deflected shape. ‘

Orthotropic: Having different stiffness (or other properties) in different direc-
tions, with the directions of maximum and minimum stiffness being mutually per-
pendicular. (Compare isotropic.)

Permanent set: Deformation that remains after removal of the load that pro-
duced it. '

Plastic: A state of stress or deformation that results in permanent set if the load is
removed. '

Poisson’s ratio: Designated by v, where v = — €/€,,and €, and ¢, are respectively
the transverse and axial strains produced by a uniaxial stress o, below the pro-
portional limit. ,

Principal stress: A normal stress o, acting on an area A (or dA) when A (ordA)is
free of shear stress. In this book, numerical subscripts on principal stresses indi-
cate algebraic ordering, maximum to minimum; that is;o; = o, = o

Prismatic member: A straight bar with identical cross sections. Ini other words, a

unifoim straight member; the solid generated by translating a plane shape along
a straight axis normal to its plane.

Proportional limit: The largest uniaxial normal stress for which stress is directly
proportional to strain. (Compare yield strength.) , '
Safety factor (SF): The number by which the working load (the maximum load
anticipated in normal service) must be multiplied to produce the design load (the
load that causes failure). If the loading has more than one component force or
moment, all components must change proportionally if this definition is to apply.
If stress is the quantity indicative of failure, and if stress is directly proportional
to applied load; then SF ¢an also be regarded as the number by which the stress
that causes the material to fail must be divided in order to obtain the allowable
stress, which is the maximum stress to be allowed in service. Typically, design
codes prescribe allowable stresses. The number chosen for SF is influenced by
uncertainties about loads, material properties, quality of fabrication, and accu-
racy of design procedures; by the cost of failure; and by the cost of adopting a
large SE :
Saint-Venant’s principle: The proposition that two statically equivalent loadings,
applied (separately) to the same region of a body, each produces essentially the
same state of stress and deformation in the body at distances from the loaded
region greater than the larger dimension of the loaded region. (Caution: This

principle is not reliable for thin-walled construction or for some orthotropic
materials.) '
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Shaft: An elongated member, usually slender and straight, intended to resist tor-
sional loads.

Shear modulus: The ratio of shear stress 7 to shear strain y; G = 7/y. Restricted
to a linear relation between 7 and vy. Also called modulus of rigidity. .

Simply supported: A boundary condition in which lateral displacements are pre-
vented but rotations are allowed. A simple support applies no moment to a struc-
ture. A simple support may also be called pinned or hinged.

Static indeterminacy: A condition in which one is unable to calculate all support
reactions, or all internal forces or stresses, by use of only the conditions of static -
equilibrium. (Deformations must also be considered in order to obtam a com-
plete solution.)

Static load: A load that does not vary with time. A more precise term would be
“quasi-static load,” because a truly static load could be neither applied nor
removed.

Superposition: The principle that two or more static loads, applied sequentially in
any order, produce the same final result as obtained by applying all loads simul-
taneously. The principle is not applicable in instances of nonlinearity of response,
under either an individual load or combinations of loads.

Transverse: Across, Thus, for load or deflection, the same as lateral.

" Truss: A structure built of bars in which each bar is idealized as'a two-force
member, as if ends of bars were connected together by frictionless pins.
(Compare frame.)

Yield strength: The maximuin uniaxial tensile stress that can be applied without
exceeding a specified permanent set upon reléase of load. It may also be called
yield stress. The specified permanent set is often taken as an axial strain of 0.002.
In a metal, numerical values of the elastic limit, proportional limit, and yield
strength are usually quite similar.

1.3 PROPERTIES OF A PLANE AREA

Properties of a plane area are often needed, particularly for beam problems. The more
essential properties and manipulations are reviewed here.

Definitions. Consider a plane area A, with rectangular Cartesian coordinates st in
the same plane, Fig. 1.3-1a. By definition,

I, = /A PdA I, = /A 2dA I, = /A stdA (13-1)

I, and I, are moments of inertia, about s and t axes respectively. [, is the product of iner-
tia. I, and I, are always positive, but I, can be positive, negative, or zero. Contributions
st dA are positive for areas dA in the first and third quadrants and negative for areas
dA in the second and fourth quadrants (Fig. 1.3-1b). If 5 or ¢ is a symmetry axis of 4,
then I, = 0. The argument is shown in Fig. 1.3-1b. Each contribution +s¢ dA4 is matched
by a contribution —st dA. Summing over A, we obtain I, =0.
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(b)

7. 01y

©

FIGURE 1.3-1 (a) Arbitrary plane area A. (b) Plane area symmetric about the ¢ axis. Quadrants bear
signs corresponding to their contribution to I, (c) Plane area with centroidal axes xy and ém.

Parallel Axis Theorems. These theorems relate quantities in Eq. 1.3-1 to corre-
sponding quantities referred to parallel axes in the plane of A whose origin is at the
centroid of area A. In Fig. 1.3-1c,let x and y be rectangular centroidal axes of 4, respec-
tively parallel to axes s and ¢, and in the plane of A. The parallel axis theorems are

I,=1I,+A2 I,=1I,+ A8

I, =1,, + Asgt,

(1.3-2)

where 1= [y* dA, I,= [x* dA, and I, = [xy dA. Distances s, and ¢, are the coordi--
nates of centroid g in the st system. These distances carry algebraic signs (both are posi-
tive in Fig. 1.3-1c). The argument for the last of Eqs. 1.3-2 is as follows. Substitute

s=s,+x and t=1¢,+y into Eq. 1.3-1, and note that

becaus

e the xy system is centroidal. Thus

I, = /A(x+sg)(y+tg)dA= /AxydA-I-O-I-O-I-sgtg/AdA

= I, + Asgt,

Jx dA and [y dA both vanish

(1.33)

The remaining two theorems in Eqs. 1.3-2 are proved in similar fashion.

Centroidal Principal Axes. In general, equations for principal axes do not require
that axes be ceritroidal. However, in what follows, the origin of coordinates is placed at

the centroid of area A because centroidal coordinates ar

t

e the most useful.

‘Consider ‘Fig. 1.3-1c. Systems xy and én are both rectangular, centroidal, and
coplanar with A. The orientation of system xy can be chosen for convenience; for
example, parallel to straight sides if area A happens to have them. System &7 is ori-
ented at arbitrary angle § with respect to system xy. Coordinates of a point in the
rotated system £v are ¢ = y sin 6 + x cos 6 and M =y cos § — x sin 6. Thus we can obtain
the following expressions by integration and substitution of trigonometric identities

for sin

6, cos’0, and sin 6 cos 0 (see Eqs. 1.10-1).

1
I, = /A"IZ dA yields I, = %(Ix +1,) + E(Ix — I,)cos20 = I,,sin20 (1.3-4a)
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Iy = [ndA  yields I, = %(Ix — I,)sin20 + I, cos20 (1.3-4b)

One can select 0 so that the moment of inertia of A becomes a maximum about
either the ¢ axis or the 7 axis. If I, is the maximum J, it happens that I, is the mini-
mum I, and vice versa. The maximum I and the minimum I are called principal
moments. of inertia and their corresponding axes are called principal axes. The value
of 6 that maximizes (or minimizes) I, is called 8,. It is determined from the equation
dl,/df = 0, which yields

21

xy
=T | (1.3-5)

tan 20, = 7

y

Angle 8, has two values, /2 apart, one for I,,,, the other for I,;,. By using Eq. 1.3-5in
Eq. 1.3-4a, we obtain the principal moments of inertia:

I+ 1 I —1,\2 |
Imax,min = '—21 + \/(7-1) + Ichy : (13'6)

Substitution of Eq. 1.3-5 into Eq. 1.3-4b yields I,, = 0. That is, the product of inertia is
zero for principal axes. The converse is also true: if I, = 0, then axes ¢ and » are princi- .
pal. Therefore, if £ or  is an axis of symmetry, then § and v are principal axes. '

From Eq. 1.3-6, we see that I,,, + I;;, = I, + I, This relation.can be useful in cal-
culation, for example to determine I;, when I, I,, and I, have already been calcu-
lated. It may be physically obvious which of the two angles in Eq. 1.3-5 refers to the
I, axis, as in Fig. 1.3-2b. Otherwise the candidate angle can be substituted into Eq. -
1.3-4a to see if I, turns out to be I, or Iy, Or, adapting a formula developed for stress
transformation (see below Eq. 2.2-5), the counterclockwise angle 6, from the x axis to
the axis about which I is maximum is given by tan 6, = (I, — La) /Ly

If I, =1, angle 6 does not matter. Then all centroidal axes yield the same I, -

min?

and the product of inertia is zero for all these axes (Fig. 1.3-2c).

@ ' (b) | ©

FIGURE 1.3-2 Various plane areas with centroidal axes xy. (2) Right triangles. (b) Isosceles
right triangle. {c) Circle, square, and equilateral triangles. For each, I, = I, and I, =0.
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Polar Moment of Inertia J. Let r be the distance from the origin of xy coordinates
to an element of area dA. Then 7 = x* + y?, and with respect to the “pole” at x =y =0,

J= /A PdA  yields J = /A (2 +y)dA o J=1I,+1, (137)

The latter formula may be useful as a calculation device. Also, J is used in the torsional
analysis of bars of circular cross section.

EXAMPLE

For the plane area in Fig. 1.3-3 we will determine I,, I, I, , locate the principal centroidal axes,
and determine the principal moments of inertia.

The centroid of A, at x =y = 0, has already been located, by means of calculations explained
in textbooks about statics. For convenience in the following calculations, the cross section is arbi-
trarily divided into parts 1 and 2, as shown. Centroids of these parts are at x =y =—15 mm for
part 1,and x =y =25 mm for part 2. Equation 1.3-2 yields

20(100)
- | 200

+ 2000(—15) ] [60(220)3 + 1200(25)? (1.3-8) -

where the two bracketed expressions come from parts 1 and 2, respectively. , is obtained from a
similar calculation and 7, is

I,=10 + 2000(—15)(—15)] + [0 + 1200(25)(25)] (1.3-9)

Collecting resuits, we have '
I, =2907(10° mm* I, = 1.627(10°) mm* I, = 1.200(10°) mm* (1.3-10)
From Eq. 1.3-5, we calculate the orientation of a principal axis. '

2(1.200)
T 1627 — 2.907

tan 26, which yields 9, = —31.0° (1.3-11)

p

which is the clockwise angle shown in Fig. 1.3-3. The other possible angle, 6, +90°, is a 59°
counterclockwise angle from the x axis to the 7 axis, From Eq. 1.3-6,

Ingy = 3.627(10°) mm* Ly, = 0.907(10°) mm* (13-12)

_>| \_1_ 60 mm — —»l [«— 5 mm
20 mm

FIGURE 1.3-3 A plane area. Axes xy are centroidal. Axes £n are centroidal and principal.
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In this example it is clear by inspection of Fig. 1.3-3 that I, = I,,,, rather than
I, = I, Angle 6, = —31° to the I, axis, shown in Fig. 1.3-3, is verified by the formula

tan 6 - (I max)/

1.4 AXIAL LOADING. PRESSURE VESSELS

Straight Bars. Consider a prismatic bar loaded by centroidal axial force P, Fig. 1.4-
1a. The basic assumption about deformation is that plane cross sections remain plane
when load P is applied. Thus any two cross sections a distance dx apart increase their
separation an amount du (Fig. 1.4-1b), and axial strain is € = du/dx at all points in a
cross sectioti. If the same stress-strain relation prevails throughout a cross section (that
is, if the material is homogeneous), then axial stress o is also the same at all points in a
Cross sectlon Equilibrium of axial forces requires that oA = P. Thus the stress formula
becomes o = P/A. This result is not valid close to points of load application, where it is
obvious that plane cross sections do not remain plane. According to Saint-Venant’s
principle, o = P/A should be an accurate formula at distances greater than ¢ from the
loaded points, where € is shown in Fig. 1.4-1c. The resultant force provided by a uni-
form stress distribution acts at the centroid of a cross section. For any cross section,
load P must be collinear with this resultant. Therefore, if o is to be uniformly distrib-
uted over a ctoss section, load P must be directed through centroids of cross sections.
Accordingly, the bar cannot be curved. Taper, if not pronounced, causes little departure
from the basic assumption; then ¢ is almost uniform over a cross section and is a func-
tion of axial coordinate x.

In uniaxial stress, a linearly elastic material has the stress-strain-temperature
relation

e = % + a AT (4

where « is the coefficient of thermal expansion and AT is the temperature change.
From the strain expression € = du/dx, an increment of axial displacement is du = € dx.
Combining this expression with Eq. 1.4-1 and integrating, we obtain

u= (% 4 aaT )ax - 1.42)
[ (G +eor) e

yl' N s o.ﬂdxl‘_

) H

T, e

(@ ®) (©

FIGURE 1.4-1 (a) Prismatic bar under centroidal axial load P. (b) Axial deformation, and ax1al stress 0.
(c) Typical cross section.

\_.
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as the axial deformation over a length L. (The symbol u is used in preference to 6 or A
in order to agree with notation in subsequent chapters, where u, v, and w denote dis-
placement components in X, ¥, and z directions respectively.) Any of the quantities in
parentheses in Eq. 1.4-2 may be a function of x, For the uniform bar in Fig. 1.4-1, with
AT =0, Eq. 1.4-2 reduces to the familiar expression u = PL/AF: The presence of E in

this formula—or in any other formula—makes it obvious that the formula is restricted
to linearly elastic conditions. '

wall. If the material is homogeneous, uniform strain implies uniform stress. Hence
summing forces in the direction of pressure p in Fig. 1.4-2c, we obtain

p(2ridx) = 2(otdx)  from which o = % (1.4-3)
In similar fashion one can obtain axial stress pr;/2tin the cylindrical tank and stress pr/2t
in any surface-tangent direction in a spherical tank. These formulas are not reliable, even
for thin-walled pressure vessels, near changes in geometry such as A4 and BB in Fig. 1.4-
2a, which are circles where end caps are connected to the cylindrical vessel,
If the vessel were thick walled, we could not conclude that circumferential strains
are almost uniform through the vessel wall. Imagine, for example, that t=r, Then, for
circumferential strain to be the same both inside and outside, radial displacement of .

N .
,.\* et
A i Atr=r;e= ;4—1
- (@ : (b) ©

FIGURE 1.4-2 (a) Side view of a thin
wall due to internal bressure, viewed
contains the axis of the cylinder. -

-walled cylindrical pressure vessel, (b) Deformation of the vessel
axially. (¢) Circumferential stress, exposed by a cutting plane that
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1.5 TORSION
Consider a prismatic bar of.circular cross section, whose material is homogeneous

and isotropic. The geometry of deformation, which ‘may be established by experi-
ment or by symmetry arguments, is that initially plane cross sections remain plane
when the bar is twisted. Also, radial straight lines remain straight, and rotate about
the axis. The diameter and length of the bar do not change. From all this one deduces
that radial, circumferential, and axial normal strains are absent, and that shear strain
y varies linearly with distance r from the axis but is independent of the circumferen-
tial and axial coordinates. If a rectangular grid is drawn on the surface of the bar, one
finds that twisting produces the deformed grid shown in Fig. 1.5-1a. All right angles
of the grid change by the same amount. This amount is the value of shear strain vy at
radius r=c. ' : .

Let the shear stress versus shear strain relation be linear, 7= GY. Then, since
shear strain vy varies linearly with distance from the axis, so does shear stress 7: symbol-
ically, 7 = kr, where k is a constant. To relate 7 to the torque T that produces it, we con-
sider equilibrium of moments about the axis of the bar. Thus, from Fig. 1.5-1b.

7= [r(rdd) o T=k [raa=ki (1.5-1)

Hence k= T/J, and the expression 7= kr becomes 7 = Tr/J, which is the standard tor-

sion formula. Note that 7 acts on longitudinal planes as well as on transverse planes, as

shown in Fig. 1.5-1c. v _
Figure 1.5-1c leads to a formula for 6, the angle of twist of one end of the bar rel-

ative to the other. Angles y and df are small, so

L
ds=ydx=rdg Thence 0= / %dx (1.5-2)
0

<

FrTr 7117
EEEaEe
| NN

T,

A= d :
d rdrda ‘ de"

(@) (®) L ©
orque T applied to a bar of circular cross s¢cﬁon.

FIGURE 1.5-1 (a) Deformation produced by t
ment r(rdA). () Geometry of deformation that

(b) Force increment 7 dA produces torque incre
leads to a formula for angle of twist 6. -
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This result does not require that the material be linearly elastic. But if it is, we can sub-
stitute y =1/G = Tr/GJ, whereupon the integrand in Eq. 1.5-2 becomes Tdx/GILIf T,
G, and J are independent of x, we obtain the familiar expression 6 = TL/GIJ. The pres-
ence of G in this formula makes it obvious that the formula is limited to linearly elastic
conditions. :

The manner of support or torsional load application, or the presence of stress
raisers such as circumferential grooves, causes only local disturbances of stress, in
accord with Saint-Venant’s principle. These disturbances have little effect on the angle
of twist. If the bar is tapered, then J = J, (x). The formula r = Tr/J has little error pro-
vided the taper is slight. Changes that would invalidate our simple formulas, and the
reasons why, are as follows. Orthotropy, unless it is polar about the axis of the bar,
would make y and 7 depend on the circumferential coordinate as well as on 7 The
same effect would be produced by material properties that vary circumferentially, and
by a noncircular cross section (see Section 7.11). A sharply curved geometry, as for the

coil of a massive helical spring, would make 1y larger toward the inside of the coil (see
Section 6.1). '

1.6 BEAM STRESSES

Bending. Consider a prismatic beam, whose material is homogeneous and isotropic.
We require that the beam have a plane of symmetry, and that the beam be bent to an
arc in this plane (Fig. 1.6-1). The geometry of deformation can be established by exper-
iment or by symmetry arguments: Initially plane cross sections remain plane when
bending moment is applied. Arbitrary cross sections AB and CD have the relative
rotation df. At coordinate y, axial strain is —e and axial displacement is —e dx, negative

because ¢ is compressive when y is positive. With p the radius of curvature, the small
angle df can be expressed in two ways.

—edx dx y
do = and do = — hence € = —= 1.6-1
y p p ( )
Thus we see that e varies linearly with y. It is reasonable to assume a uniaxial state of
stress. If the stress-strain relation is linear, then axial stress o is o = ky, where k is a
constant. Two equilibrium conditions are applicable: The stress distribution provides
zero axial force and bending moment M. That is, ’

0 .= /A odA hence 0= k/AydA (1.6-2a)

M= [yoda) heme M=-k[yaa= ki (16

Equation 1.6-2a demands that Jy dA =0, which means that the z axis, at y =0, passes
through the centroid of the cross section. From Eq. 1.6-2b we obtain k =—M /I, where I
is the moment of inertia of cross-sectional area A about its centroidal axis z. Hence the
expression o =ky becomes o = —My/I, which is the standard flexure formula.
Typically we write simply o = My/I, because the algebraic sign of o at a given y is obvi-
ous from the direction of the bending moment. '
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ae
T\k/ Cross section:

—edx
i Y |
M 4 C M p A ' C dAm
. 1
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\
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\
—J |<— dx i . [
\ Area A
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1
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B “p
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dx —»|
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FIGURE 1.6-1 (a) Beam bent in the xy plane. (b) Deformations in the xy plane. (c) Arbitrary
(but symmetric) cross section of area A. The symmetry plane of the cross section is normal to
the paper. .

Common situations to which the flexure formula is not applicablé, or applicable

“only after modification, are as follow. If there is no symmetry plane, we cannot pre-

sume that axial strain € is independent of z (axis z is shown in Fig. 1.6-1c). That is,
Eq. 1.6-1 is no longer correct. This situation is called unsymmetric bending and is dis-
cussed in Chapter 10. If the beam has pronounced initial curvature before load is
applied, plane cross sections still remain plane, but we cannot conclude that e varies
linearly with y (see Chapter 6). If the material is not linearly elastic, then o # ky, and
the latter forms of Eqs. 1.6-2 no longer apply. Similarly, if the material is not homoge-
neous, then o # ky. Therefore we cannot use o = My/I to analyze a reinforced con-
crete beam. Finally, if the cross section is wide we must consider that the body is a plate
rather than a beam (Chapter 12).

Transverse Shear. If bending moment M is not constant, a transverse shear force V
exists in a straight beam. Force V produces transverse shear stress, which acts on trans-
verse planes and on longitudinal planes. Formulas for shear flow and shear stress are
derived from the flexure formula and are therefore subject to the same restrictions.
From the shear flow formula, usually written as ¢ = VQ/I, we obtain the average trans-
verse shear stress 7= g/t = VQ/It, where t is a thickness measured in the plane of the
cross section. This average shear stress may be quite accurate or quite inaccurate,
depending on circumstances. For example, in Fig. 1.6-2b, shear stress on plane AB is
small because ¢ in 7=VQ/It is large (here ¢ is the width of the flange). Moreover, if
plane AB is moved very close to the inner flange surface, 7 must approach zero on that
portion of the inner flange where the adjacent surface is free of stress. On the portion
of plane AB immediately adjacent to the web, 7 approaches the transverse shear stress
on plane CD, where ¢ is the web thickness and = VQ/It is accurate. The largest trans-
verse shear stress in the flange is exposed by a vertical cutting plane such as EF, where
tin VQ/It is the flange thickness. Details of these matters, and of how to use the for-
mula VQ/It, appear in textbooks of elementary mechanics of materials. )







14 Chapter 1 Orientation. Review of Elementary Mechanics of Materials

Free

(@) (b

FIGURE 1.6-2 Cross section of a beam that carries transverse shear force V. Cutting
planes AB, CD, and EF are normal to the yz plane.

1.7 BEAM DEFLECTIONS

Briefly, the formula that relates lateral deflection v to bending moment M is developed
as follows. We use notation in Fig. 1.6-1. If |dv/dxf <1, as is usual in practical beams,
then the curvature of the deformed beam can be written as 1/p = dlv/dxz. Also, for a
linearly elastic material, Eq. 1.6-1 and the flexure formula o =—My/I yield another

expression for curvature: 1/p =—¢/y = —(0/E)/y =—(—My/EI)/y = M/EI Equating
the two expressions for curvature, we obtain

v M
d_xz = E 1.7-1)

Restrictions on this formula include those on the flexure formula. Also, deflections
must be sufficiently small that slope 6= dv/dx of the deformed beam is everywhere .
much less than unity in magnitude. Transverse shear deformation has been neglected.
Equation 1.7-1 actually says that M/EI is equal to the change in curvature. This view-
point may become important for a beam having initial curvature before load is
applied. For a beam initially straight and then bent to radius p, the initial curvature is
zero, and the change in curvature is (1/p — 0) = 1/p.

An alternative form of Eq. 1.7-1 can be written, as follows. Equations of static
equilibrium, applied to Fig. 1.7-1a, yield dM/dx=V and dV/dx = q, where g is the
intensity per unit length of distributed lateral load. Eence d*M/dx*> = q. For M we can
substitute EI(d’v/dx?) from Eq. 1.7-1. Thus

2 d2 4 . .
Zi%;( Idhxv2-> =gq or Elgxi: =gq it EI isindependentofx (1.7-2)

The latter form will be useful in subsequent chapters. :

One can determine beam deflections (or solve statically indeterminate beam
problems) by integrating Eq. 1.7-1 and making use of support conditions to evaluate
constants of integration (and redundant reactions). Usually it is easier to solve these
problems by use of tabulated beam formulas and the superposition principle. Indeed,
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FIGURE 1.7-1 (a)Loads on a differential element of a beam. (b) Formulas for tip deflection and tip
rotation of a uniform cantilever beam. (c) Problems of deflection, rotation, or static indeterminacy
solvable by use of formulas in (b).

the few formulas in Fig. 1.7-1b are sufficient to solve most common'problems of straight
beams, including all those shown in Fig. 1.7-1c. An example problem is solved in Sec-
tion 1.8. Like Eq. 1.7-1, formulas in Fig. 1.7-1b require that §| < 1 throughout the beam.

1.8 SYMMETRY CONSIDERATIONS. STATIC INDETERMINACY

Symmetry Considerations. Sometimes one can exploit symmetry to obtain internal
forces, determine support conditions, or reduce the effort required for analysis. For
example, consider the simply supported beams in Fig. 1.8-1. Both have symmetry of
geometry, elastic properties, and support conditions with respect to a plane normal to
the beam axis at its center. The beams differ only in loading. In Fig. 1.8-1a, a mirror
reflection of either half in the symmetry plane yields the other half in geometry, elastic
properties, loading, support reactions, deformations, and internal forces at the symme-
try plane. For antisymmetric loading, Fig. 1.8-1b, one half yields the other half after
reflection and reversal of loading, support reactions, deformations, and internal forces
at the symmetry plane. These considerations, in combination with the action-reaction
nature of internal forces exposed by cutting open the beam, preclude the existence of
shear forces V. for symmetric loading and bending moments M for antisymmetric
loading. Thus in either case the number of unknowns is immediately reduced by half.
The same considerations can be used in three dimensions. The semicircular beams
in Fig. 1.8-2a lie in the xy plane. For each, there is symmetry of geometry, elastic proper-
ties, and support conditions about the yz plane. For symmetric loading, Fig. 1.8-2a, sym-
metry considerations dictate that at midpoint C there is no x direction displacement, no
rotation about the y axis or the z axis, no transverse shear force in the y direction or the
z direction, and no torque about the x axis. These conditions are listed in Fig. 1.8-2a.
Unknowns at C are displacements v.and w, rotation 6, about the x axis, axial force F,,
and bending moments M, and M, about the y and z axes. These unknowns could be
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T Symmetric loading: Antisymmetric loading:
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FIGURE 1.8-1 Uniform simply supported beams, showing internal moments and forces
at center C. Supports apply negligible horizontal force if deflections are small.

determined by analysis of either half of the semicircular beam. In Fig. 1.8-2b two of
the forces P and Q are reversed, so the load is antisymmetric. Symmetry considerations
dictate the zero quantities listed in Fig. 1.8-2b. Again, analysis of either half of the beam
is sufficient to determine the unknown quantities at C, which are u, 0,0,V V,and T,
‘The foregoing arguments are not immediately obvious. The reader is urged to
consider these examples patiently, and to make supplementary sketches that show

internal forces and moments.

Static Indeterminacy. The term is defined in Section 1.2. Calculations are illustrated
by the following examples.

The stepped bar in Fig. 1.8-3a is all of the same material. It is to be uniformly
heated from its stress-fre¢ temperature while confined between rigid walls. Statics tells
us only that the walls apply forces P of equal magnitude. To determine them we must
use a compatibility condition, which here is that the bar has no net change in length
from end to end. Thus, taking P positive in tension and presuming that conditions are
linearly elastic, we write

PL PL
L AT+———~-I-
al AT + al CAE

where « is the coefficient of thermal expansion and AT is the temperature change.
Solving for P and then for stresses oy = P/A and o, = P/2A, we obtain

4EAa AT 4Ea AT 2Ea AT
P=———- 01=—-3— 02=———3—

3

=0 (1.8-1)

(1.8-2)

Note that axial strains are not zero, even though the overall change in length is zero.
For example, in part 1, ¢, = (0/E) + a AT =—a AT/3. Note also that modest tempera-
ture change can produce large stress. In the present example, if the bar is steel and
AT =100°C, then ¢ is about 320 MPa in magnitude.

As a second example, consider the beam in Fig. 1.8-3b. It is statically indetermi-
nate to the second degree. Symmetry considerations can be used to reduce the degree
of indeterminacy. Imagine that M. is applied as two couples M /2, an infinitesimal dis-
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Symmetric loading: Antisymmetric loading:

Zero at C:u, 0y, 6, V,, Vo, Ty Zero at C:v,w, O, Fy, My, M,
(a) ’ (®)

FIGURE 1.8-2 Uniform semicircular beams in the xy plane.

tance apart, and straddling point C. The loading is antisymmetric, so at C there is a
transverse shear force V. but zero bending moment and zero vertical displacement
(Fig. 1.8-3¢). Using formulas in Fig. 1.7-1b to state that the transverse displacement is
zero at C, we solve for V- and then for moment M at the wall. '

3Mc

Ve ==—"%

__(MC/Z)a2 Ve@ 4q
261 T 3EI 0 Me M (1.8-3)

(Ms=Vea =" =7

Finally, having resolved the indeterminacy, we can use Fig. 1.7-1b again to determine

-the rotation at C.

Mc/2 2 Mca
= (Mc/2)a _ Vea hence Oc = cd

EI  2EI "~ 8EI (1.8-4)

Oc

Problems such as those in Fig. 1.8-3 are probably called to mind by the term “statically
indeterminate analysis.” However, the term is also appropriate for the derivation of
conventional stress formulas such as o = My/I: an equilibrium equation, such as the
first of Egs. 1.6-2b, yields the second only when it is known how stress varies over the
cross section. The variation is obtained by consideration of displacements.

Mc M
-_>P %A c ;? Vc1C B"”'
‘«L»L—L»l ‘ L—a—>t<—a44 “‘“"‘

@ (®) ©

FIGURE 1.8-3 (a) Stepped bar held by rigid walls. (b) Statically indeterminate beam. (c) Right
half of the beam, with symmetry considerations exploited.
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1.9 PLASTIC DEFORMATION. RESIDUAL STRESS

Here we review the problem of plastic torsion for a shaft of solid circular cross section.
Other instances of plastic action are considered in subsequent chapters.

The stress-strain relation in Fig. 1.9-1a is linearly elastic up to stress 7y and flat-
topped thereafter. This idealized behavior is called “elastic-perfectly plastic” and is
appropriate for low-carbon steel. Because strain hardening is ignored, calculations
provide a maximum or “fully plastic” torque T 7 that is less than the actual maximum
torque. We now ask for 7, and the pattern of residual stress upon unloading.

As twist increases, yielding eventually begins. It spreads from the outer surface
toward the axis of the shaft. To calculate T}, we assume that twist is sufficiently great
that practically all the material has yielded. Thus, shear stress is the constant value Ty
throughout, and the first of Eqs. 1.5-1 provides

amore ' 2arc? 4 acd
Ty, = Ty/ / r(rdrda) = 1y hence Ty, = —<’Ty_> (1.9-1)
i3 o Jo 3 : 3 2

where the latter expression in parentheses is the torque that initiates yielding, obtained
from the torsion formula for linearly elastic conditions; that is, r = Tr/J with =17, at
r= c. This result shows that torque can be increased 33% after yielding begins.

Unloading can be accomplished by superposing on T}, a torque of equal magni-
tude but reversed in direction. Anticipating that unloading will be elastic, we obtain
the stress distribution in Fig. 1.9-1c from the reversed torque T= T}, and the elastic
stress formula 7= Tr/J. At first glance this calculation may appear wrong because the
largest stress exceeds 7. However, stresses in Fig. 1.9-1c always appear in combination
with stresses in Fig. 1.9-1b. In combination, 7 never exceeds 7 in magnitude, so unload-
ing does not produce further yielding. If torque T, is again applied, residual stresses
combine with the reverse of stresses in Fig. 1.9-1c to produce again the fully plastic
stress pattern of Fig. 1.9-1b, but without renewed yielding.

The residual angle of twist after unloading cannot be calculated because we have
not specified how much the shaft was twisted in producing T4 An infinite angle of
twist would be required to bring inelastic strains all the way to 7 = 0.

What is the range of torque for which conditions are linearly elastic? If there are
no residual stresses, a torque T'= 1, J/c = 7y ¢*/2 could be applied in either direction
without yielding, for an elastic range of r,mc®. If the residual stresses in Fig. 1.9-1d pre-

/“ /‘\T=Tfp

T T . % Ty
: 0 (-G
G 37 T
Py Loading Unloading T Residual
@® (b) © (@

FIGURE 1.9-1 (a) Elastic-perfectly plastic material. (b,c,d) Stress distributions corresponding
to fully plastic torque, unloading (reversed elastic) torque, and resultant (zero) torque.
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vail, we could apply a torque T}, in the original direction or (2/3)(7-;, J/c) in the
reversed direction without renewed yielding, for an elastic range of Tymc®. Thus the
magnitude of the elastic range has not changed.

1.10 OTHER REMARKS

Stress Transformation. For referencé, and for use in chapters that follow, two-dimen-
sional stress transformation equations are shown in Fig. 1.10-1. These equations may be
restated in other forms, for which the following trigonometric identities are useful.

sin 20 = 2 sin 6 cos 6 cos?0 = %(1 + cos 29)
(1.10-1)

. ) 1
cos 20 = cos’® — sin’0  sin%) = 5(1 ~ cos 26)

Dimensional Homogeneity. In the calculation of stresses and deflections, it is often
best to obtain a numerical result as the final step of solution, by substitution of data
into a symbolic result. Thus we avoid manipulating numbers for some quantities that
may cancel if manipulated as symbols. A more important reason is that a symbolic -
result permits a partial check on the correctness of the solution. A valid result is
dimensionally homogeneous. For example, in Fig. 1.7-1b let [v,] and [6;] denote the
respective dimensions of deflection and rotation. With F and L used here to denote
dimensions of force and length respectively, dimensions of terms that contain M; in
the formulas of Fig. 1.7-1b are

[v,] = (FL)L? (FL)L
/AL (F/L*)L*
These dimensions are correct: length units for v, and dimensionless (radians in this

case) for 6, . This result does not prove the formulas to be correct, but had we obtained
any other dimensions we would know for sure that the result is wrong.

=L and (6.] = =1 (1.10-2)

’|
A
T _ 2 in2
— . Ty Oy = 0y €08“0 + gy 8in”0
. \ffs . n +2 7yysin @ cos §
T, e}
/ / ns/n g
—~— \ —_— 05 = 0y sin?6 + oy cos?d
o x
AN\ * -2 7y sin G cos 0
—_— Ty = %(U'y—tfx) sin 26
i "+ 7yc0820

FIGURE 1.10-1 Transformation of stresses in a plane.
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Units. Example problems and homework problems serve as vehicles to convey con-
cepts, principles, and procedures. Accordingly, the system of units used for numerical
problems is of little importance. SI units are used in this book. Note that the average
stress due to a 1 MN force on a square meter can be written in the following forms:

6 10°N :
=T = 10Pi=IMPa  or o= 1000 mmy? = 1 MPa (L10-3)

The latter form, which is used in subsequent chapters, avoids the conversion factor of
108, That is, forces in newtons, dimensions in millimeters, and stresses and moduli in
megapascals form a consistent set of units, without need for conversion factors.
However, if mass must be considered, as for inertia force loading, it will be easier to use
meters rather than millimeters. '

Classification by Problem Geometry. A slender member is usually called a bar,
beam, or shaft, depending on whether the load is axial, lateral, or torsional. These
problems are called one-dimensional, even though stress varies-over a cross section
as well as axially under bending or twisting load. A flat body whose thickness is much
less than its other dimensions provides a two-dimensional problem. It is usually
called a plane problem if loads have no lateral (thickness-direction) component, and
a plate or plate bending problem if they do. In general, stresses in plane and plate
problems vary with both of the in-plane directions. Stresses also vary in the thickness
direction of a plate under lateral load. A floor slab is a familiar example. A shell is
like a plate, but curved; familiar examples include an egg shell and a water tank. A
shell can carry both surface-tangent and surface-normal loads. Many shells, and
many solids too thick to be called shells; are symmetric about an axis and have load-
ing that is also axisymmetric. Then nothing varies in the circumferential direction
and analysis is simplified. Such a body is called a shell of revolution if it is thin-walled

or a solid of revolution if it is not. An example of the latter is a turbine disk of

strongly varying thickness that rotates at constant speed.

Connections. In this book, as in most other books about stress analysis, we may sim-

- ply state that members are connected together, without saying how, and perhaps even

disregarding stress concentrations associated with the connection. Thus we limit the
scope of the book. Unfortunately the reader may then infer that connections are unim-
portant, which is far from the case. The behavior of a real structure may depend as
much on its connections as on its individual members. Connections are often the weak-
est parts of a stucture. :

Bolted or riveted connections are sometimes analyzed in a first course in
mechanics of materials. One learns that several modes of failure are possible and that
analysis can be tedious, despite simplifying assumptions that neglect stress concentra-
tions, friction and possible slipping, making and breaking of contacts, misalignment,

_ Initial stresses, and damage to the material from cutting, bending, and punching holes.

Other complexities. arise if we consider gluing, welding, and shrink fits. Practical
analysis and design of connections may be done using accepted codes and procedures
that differ according to type of joint, and which vary considerably with type of indus-
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Problems ™ 21

try. The study of connections is an important specialty in stress analysis. References
include [1.1-1.5].

Handbooks. Many useful formulas for stress analysis do not appear in textbooks but
may be found in handbooks or their computer software equivalents. The existence of
this information does not erase the need for ability in stress analysis. Formulas can be
used successfully only if the engineer understands the physical problem well enough to
know what sort of formula to seek, understands the assumptions that underlie a for-
mula, and is able to judge whether an answer produced by the formula is reasonable.
Useful handbooks include [1.6, 1.7] for widespread coverage of stress and deflection,
[1.8] for pressure vessels and the ASME code for them, [1.9] for buckling of bars,
frames, plates, and shells, and [1.10] for modes and frequencies of vibration.

Codes. Engineering societies have produced codes that mandate allowable stresses,
design procedure, and methods for testing, construction, operation, and maintainance
of plants and equipment. Much of this information has grown out of experience with
costly failures [1.11, 1.12]. Codes and specifications may receive little mention in engi-
neering education, but it would be shortsighted to ignore them. Indeed, the engineer is -
often legally bound to follow one or more codes. Also, in situations where a code is
applicable, it is likely to be the easiest route to an acceptable design. Students of struc-
tural engineering are probably familiar with design specifications of the American
Institute of Steel Construction. There are a great many other codes and specifications,
so many that space does not permit us to list them all.

The value of codes is illustrated by the history of boiler accidents. About the year
1900, on average, one boiler explosion occurred every day in the United States.
Subsequently, codes for the design, construction, and operation of boilers were written
and widely adopted. Today boiler explosions are rare despite a fifteen-fold i increase in
operating pressure since 1900 [1.13].

PROBLEMS

The following problems can be solved using the review material presented in this chap-
ter, although many of the problems are less familiar or more challenging than those usu-
ally seen in an elementary textbook. Assume that materials are linearly elastic unless a
nonlinear stress-strain relation is provided. State results symbolically in terms of loads,
dimensions, properties of cross sections, and material constants, unless a numerical
answer is required or other instructions are given.

1.4-1. A prismatic bar is loaded by an axial force P. Show that P must be directed through cen-
troids of cross sections if axial stress ¢ is not to vary over a cross section,

1.4-2. Springs in the structure shown are linear and are unstressed when displacement v is zero.

""" Determine an expression for v without assuming that » < L. With L =100 mm and
k=20 N/mm, obtain numerical values of P for displacements v of 10 mm, 40 mm, and
50 mm. Show that superposition using the first two results does not yield the thxrd Plot P
VErsus v. .

1.4-3. Two slender rings, one aluminum and the other steel, just fit together at temperature
T'=0°C, as shown. What is the contact pressure between them when T > 0°C?
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PROBLEM 1.4-2 PROBLEM 1.4-3

1.5-1. A shaft of solid circular cross section is loaded by torque 7. Consider a half-cylinder cut

‘from the shaft by three cutting planes (see sketch). Show that stresses exposed by the
cutting planes keep the half-cylinder in static equilibrium,

f—, —]

"u"

Glue layer, area A
PROBLEM 1.5-1 . . PROBLEM 1.5-2

1.5-2. A flatplate is attached to a flat surface by a thin layer of glue of arbitrary shape and com-
paratively low modulus. An x-parallel load P is applied to the plate (see sketch). Axes xy
are centroidal axes of the glue layer. What are shear stresses 7,, and 7., in the glue layer?
(Suggestion: Assume that these stresses are proportional to displacement components of
the plate, and that the plate has rotation @ and translation components u, and v, at
x =y =0.Area A and its properties will appear in the solution.)

L6-1. The sketch shows the post-buckling shape of a slender bar that was initially straight.

Load Fis known, and the shape y = f(x) of the buckled bar is accurately known. What is
the easiest way to determine support reactions at ends of the bar?

y

X

PROBLEM 1.6-1

1.6-2, In the beam of Fig. 1.6-1, it is proposed that flexural stress has the form o = ky. Show that
the cross-sectional area must have a zero product of inertia if this equation is to be correct.
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1.6-3. (a) Consider a prismatic beam, and conjecture that plane cross sections do not remain
plane when bending moment is applied. W1th0ut equations, devise arguments that
refute the conjecture.

(b) Similarly, consider a prismatic bar of circular cross section. Refute the con-
jectures that cross sections warp and radial lines become curved when torque is
applied.

(¢) The flexure formula o = My/I follows from the condition that plane cross sections
remain plane in pure bending. A cantilever beam under transverse tip load experi-
ences transverse shear deformation, and plane cross sections do rot remain plane.
Yet the flexure formula loses no accuracy. How can this be?

" 1.6-4. Let a prismatic beam have a rectangular cross section, b units wide and h units deep The

material has elastic moduli E, in tension and E, in compression. Derive expressions that
relate stress to bending moment. The expressions should reduce to the conventmnal flex-
ure formula if E,= E_.

1.6-5. The uniform beam shown has weight ¢ per unit length. It rests on a rigid horizontal sur-
face. If one end is lifted by a force F < gL/2, what is the maximum bending moment in
the beam in terms of F and g?

PROBLEM 1.6-5 : PROBLEM 1.6-6

1.6-6. When not loaded, the uniform beam shown has constant radius of curvature p, where
p > L. Downward forces F are then applied to the ends.

“(a) What value of Freduces curvature at the center of the beam to zero?
(b) For larger F, a central portion of length s becomes flat. Obtain an expression fors.
1.6-7. The beam shown has a slight taper. For what value of h,/h, does the largest flexural stress

appear at x = [,/2? What then is the ratio of flexural stress at x = L/2 to flexural stress at
x=L7

A2
- %EL h h=h,,+hL£h"x
X ¥ T

F =
1

PROBLEM 1.6-7

1.7-1. A cantilever beam is loaded by uniform shear stress = applied to its upper surface only, as
shown. Obtain expressions for x-direction normal stress at A and at B. Neglect stress con-
centration effects. Also determine the deflection components of point C.
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PROBLEM 1.7-1 PROBLEM 1.7-2

, 1.7-2. The slender bar shown is initially curved, so that with no load its axis has the equation

i : y = (4h/L*)(Lx — x*). What center deflection v, is produced by force P? Assume that

SL v,<h<L

1.7-3. Let the cantilever beam of Problem 1.7-1 be thermally loaded; such that the temperature
varies linearly from AT on the lower surface to —AT on the upper surface. Obtain an
expression for the deflection of point C due to AT,

1.7-4. Tt is proposed that a beam be constructed with a joint consisting of two horizontal links,
as shown, so that the joint will transmit bending moment but no transverse shear force.
Will this construction work as intended when load P is applied? Explain.

iy T E

PROBLEM 1.7-4 PROBLEM 1.7-5

1.7-5. The cantilever beam shown is so slender that its material remains linearly elastic even
when displacements are large. Obtain expressions for the horizontal and vertical dis-
placement components of the tip. Show that these expressions reduce to the expected
small-deflection results when M L/EI is small

1.7-6. For what value of a/b will the two parts of the beam shown have the same slope at hinge
B when moment M, is applied at A?

EI

Vel B A
\ \

ey TE 6

h %l

| a r~ b_'|
PROBLEM 1.7-6 PROBLEM 1.7-7

1.7-7. It is desired that both ends of a uniform beam remain horizontal when moments M, are

applied as shown. For what value of a/b will this be so?
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Problems 25

1.7-8. Each of the beams shown is to be made with a small initial curvature, such that a load F .
moving across the beam will have no vertical displacement. What should be the initial
shape y = f(x) of each beam?

PROBLEM 1.7-8

1.7-9. Two identical rollers of average radius R are to be pushed together by end forces P, as
shown. It is desired that the contact force between them be uniformly distributed along
length L. Thus the rollers should not be quite cylindrical. How should R vary with x?
Assume that the rollers are compact rather than quite slender, but that transverse shear
deformation can be neglected.

| L -
PROBLEM 1.7-9 ' PROBLEM 1.8-1

1.8-1. Members of the three-bar truss shown are identical except for length. Determine the dis- .
placement of joint D due to each of the following loadings. (a) P=0, @ > 0. (b) P >0,
Q =0.(c) P= Q =0; all bars uniformly heated an amount AT
1.8-2, Let gears of different sizes be fastened to either end of a prismatic shaft of circular cross
 section. Let there be two such shafts, set parallel so that gears of radius R and 2R engage
in the manner shown. Frictionless bearings, not shown, ensure that the shafts twist with-
out bending, What torsional stiffness 7/8 is seen by torque T?

1.8-3. A square frame is made by welding together four identical slender bars of circular cross
section. The frame is placed horizontally atop corner supports that can exert vertical
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PROBLEM 1.8-2 PROBLEM 1.8-3

force but no moment. A vertical load P is applied to the middle of one side, as shown.

What is the displacement of the loaded point and of the point opposite it? Let G = E/2;
thus ET=GJ.

1.8-4. Two slender beams are built-in to a rigid disk and to rigid walls, as shown. Through what
angle does the disk rotate if a small torque T'is applied?

PROBLEM 1.8-4

1.8-5. Use formulas in Fig. 1.7-1b to determine the center deflection of each beam in Fig. 1.7-1c.
In the second case, determine also the rotation at the right end.

1.8-6. A bimetal beam is constructed by bonding together two slender beams of rectangular
cross section. Material properties of the component beams differ, including thermal
expansion coefficients a, and «,. With «; < a,, uniform heating an amount AT causes the
deformation shown. Write, but do not solve, sufficient equations to determine radius of
curvature p, internal forces P; and P,, and internal bending moments M, and M,. Also,

write expressions for axial stresses at upper and lower surfaces of the composite beam in
terms of the internal forces and moments.

7

l Mo
Ey L A o hy _ Py
B L A o hy ‘ Py

PROBLEM 1.8-6

1.8-7. Let several vertical posts of diameter D be arrayed in a straight line with distance L
between them. A long slender beam is woven between the posts, as shown. Determine
the maximum flexural stress in the beam.

1.8-8. A long straight beam has weight ¢ per unit length. The beam is laid atop a small cylinder,

" asshown. Over what span 2L is the beam not in contact with the horizontal rigid floor?
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PROBLEM 1.8-7 PROBLEM 1.8-8

Two flat rigid walls include a small angle § between them. A beam of rectangular cross
section is just in contact with the walls, as shown. What uniform temperature increase AT
is sufficient to place both ends of the beam in full contact with the walls? Express AT in
terms of 6, h, o, and L.

—>‘ b I<— /MG—’*\;‘
_}f )

_—L \/
]

PROBLEM 1.8-9

The bar shown has uniform cross-sectional area A and is fixed at both ends. An idealized

- stress-strain relation is also shown. Assume that the relation is valid in compression as

well as in tension. ‘

(a) Determine the value of load P that initiates yielding.

(b) Determine the fully plastic load P,

(c) Determine the state of residual stress after load Py, is removed.

PROBLEM 1.9-1

Let the bar in Fig. 1.8-3a have the stress-strain relation used in Problem 1.9-1. Ends are
fixed to the walls. Starting from the stress-free state, lower the temperature of the entire
bar 1.5 times the amount AT that initiates plastic action.

(a) What then are the axial stresses? Express answers in terms of o'y.

(b) What are the residual stresses, and the residual displacement at the step, if the tem-
perature is restored to its original value? Express answers in terms of oy, L, and E.

For the three-bar truss of Problem 1.8-1, let O = 0 and let the stress-strain relation be as
depicted in Problem 1.9-1. Determine the fully plastic load P, Also construct a dimen-
sionless plot of P versus the horizontal displacement u;, of point D, using P/Acy as ordi-
nate and Eup/Loy as abscissa. .
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1

6.

7.

0.

THEORY OF ELASTICITY

Sketch the deformed shape of the supported end (z = 1), and indicate on the
sketch bow this mode of support could be realized (hinges? rollers bearing on
fixed planes?).
The beam of Fig. 28 is loaded by am own weight instead of the load ¢ on the
upper edge. - Find expressions for the displacement components % and ». Find
also an expression for the change of the (originally unit) thickness.
The cantilever of Fig. 26, instead of having a narrow rectangular cross section,
has a wide rectangular cross section, and is maintained in plane strain by suit-
able forces along the vertical sides.” The load is P per unit width on the end.
Justify the statement that the stresses 0z, Oy, Ty aTe the same as those found
in"Art. 21. Find an expression for the stress o, and sketch its distribution along
the sides of the cantilever. Write down expressions for the displacement com-
ponents u and » when a horizontal element of the axis is fixed at z = L
Show that if V is a plane harmonic function, i.e., it satisfies the Laplace equation

vV | vV 0
azt " By .
then the functions 2V, yV, (z* 4 y*)V will each satisfy Eq. (a) of Art. 18, and so

can be used as stress functions.
Show that

(Aewv 4 Be—ow + Cye*¥ + Dye 2¥) sin ax

is a stress function.
Derive series expressions for the stresses in a semi-infinite plate, y > 0, with
normal pressure on the straight edge (y = 0) having the distribution

marz
by 8l ——

l

3
s

1

Show that the stress o, at a point on the edge is a compression equal to the

applied pressure at that point. Assume that the stress tends to disappear as y

-becomes large.

Show that (a) the stresses given by Eqs. Aav of Art. 24 and AS the stresses in
Prob. 9 satisfy Eq. (b) of Art. 17.
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10

THEORY OF ELASTICITY

Sketch the deformed shape of the supported end (z = 1), and indicate on the
sketch how this mode of support could be realized (hinges? rollers bearing on
fixed planes?).
The beam of Fig. 28 is loaded by its own weight instead of the load ¢ on the
upper edge. - Find expressions for the displacement components » and ». Find
also an expression for the change of the (originally unit) thickness.
The cantilever of Fig. 26, instead of having a narrow rectangular cross section,
has a wide rectangular cross section, and is maintained in plane strain by suit-
able forces along the vertical sides. The load is P per unit width on the end.
Justify the statement that the stresses oy, oy, 7., are the same as those found
in"Art. 21. Find an expression for the stress o, and sketch its distribution along
the sides of the cantilever. Write down expressions for the displacement com-
ponents u and » when a horizontal element of the axis is fixed at z = L
Show that if V is a plane harmonic function, i.e., it satisfies the Laplace equation

SV &V
az? m@»
then the functions zV, yV, (z? + y*)V will each satisfy Eq. (a) of Art. 18, and so

can be used as stress functions.
Show that

=0

(Ae*¥ 4 Be~2v + Cye*¥ + Dye~v) sin az

is a stress function.
Derive series expressions for the stresses in a semi-infinite plate, ¥ > 0, with
normal pressure on the straight edge (y = 0) having the distribution

M b, sin SIM_‘&: :
me

Show that the stress o, at a point on the edge is a compression equal to the
applied pressure at that point. Assume that the stress tends ﬁo disappear as y

- becomes large.

Show that (a) the stresses given d% Eqgs. QV of Art. 24 and (b) the stresses in
Prob. 9 satisfy Eq. (b) of Art. 17.
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Florida International University
Department of Mechanical and Materials Engineering

EGM 5615 . " EXAMINATION B 1 November 2010

This examination will be a 75 minute exam. This exam allows you to use your notes only.
Please sign the following:

I certify that I will neither receive nor give unpermitted aid on this examination. Violation
of this may result in failure of the exam.

PRINT NAME SIGN NAME

Problem 1 . For the following truss, find the displacenient in the direction of the bar BC
caused by the load P using Castigliano’s second theorem. Assume all bars have the same
E and A. Give your answer in terms of P,L, Aand E.

B \.
/’XJ/T‘? P
A /45 4"’ . C
£ AN
—01 —

Problem 2. Given the following stress tensor at a point, determine the principal stresses

" and determine the directional cosines for the second highest principal stress.

Hint: Get determinant first. If you factor determinant correctly, you don’t have to
use Newton-Raphson method.

50 O 0
c=|0 -20 15| MPa
0 15 45}

Problem 3. Determine the octahedral stress for the stress tensor data of Problem 2. What
is the hydrostatic pressure for that stress tensor. .
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Florida International University
Department of Mechanical and Materials Engineering

EGM 5615 EXAMINATION 1 November 2010

This examination will be a 75 minute exam. This exam allows you to use your notes only.
Please sign the following:

I certify that 1 will neither receive nor give unpermitted aid on this examination. Violation
of this may result in failure of the exam.

PRINT NAME SIGN NAME

Problem 1 a. For the following truss, find the displacement in the direction of the bar BC
caused by the load P using Castigliano’s second theorem. Assume all bars have the same
E and A. Give your answer in terms of P, L, A and E.

B S P
SN
) _
p \\ﬁ\
4:) \ C

b). f L= \2 m, E=200 GPa, the cross-sectional area A= 5.1 cm?, and P=100KN, what is
the displacement in the direction of the load P ‘

Problem 2. Given the following stress tensor at a point, determine the principal stresses
and determine the directional cosines for the second highest principal stress.

Hint: Get determinant first. If you factor determinant correctly, you don’t have to
use Newton-Raphson method.

50 0 O
c=|{0 -20 15| MPa
0 15 45
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Florida International University
Department of Mechanical Engineering

EGM 5615 ’EXAMINATION 8 March 2004

This examination will be a takehome exam. This exam allows you to use your book
and notes only. This exam is due 11 March at class time

Please sign the following:

I certify that I will neither receive nor give unpermitted aid on this
examination. Violation of this may result in failure of the exan.

PRINT NAME SIGN NAME

This examination consists of five problems with several parts to one of the
problems. Do all problems. Read each question carefully. Show all work!!!!!

1. For the beam- and loads shown in the diagram below, £find the support
forces and moments at B using energy methods.

LR

2. The components of stress at a point in a body referred to a rectangular
Cartesian system of coordinates are given by

ox= 5 Mpa ixy= 5 MPa txz = 8 MPa
Tyx = 5 Mpa oy = 0 MPa tyz = =-7.5 MPa
1zx = 8 MPa izy = -7,5 Mpa oz = -3 MPa

3

a) Find the principal stresses gl, g2, and g3 and
b) the directions that accompany these principal stresses;






c) Find the octahedral and absolute maximum shear stress
d) The deviatoric stresses

3. If the angles of the plane truss problem illustrated in the figure are

o =450 , B = 30° , y = 45° , determine the forces in its bars and the
horizontal and vertical displacements u and v of joint O. Assume the bars have
the same cross-sectional area A and the same elastic modulus E.

4. For the given stress state in the body,
displacement components u(x,y) and v(x,vy),
€x=0u/0x and gy=9v/dy

derive expressions for the
where ¢ is a constant. Remember






Florida International University
Department of Mechanical Engineering

EGM 5615 .EXAMINATION 8 March 2004

This examination will be a takehome exam. This exam allows you to use your book
and notes only. This exam is due 11 March at class time

Please sign the following:

I certify that I will neither receive nor give unpermitted aid on this
examination. Violation of this may result in failure of the exam.

PRINT NAME SIGN NAME

This examination consists of five problems with several parts to one of the
problems. Do all problems. Read each question carefully. Show all work!!!!!

1. For the beam and loads shown in the diagram below, find the support
forces and moments at B using energy methods.

38

2. The components of stress at a point in a body referred to a rectangular
Cartesian system of coordinates are given by

ox= 5 Mpa xy= 5 MPa txz = 8 MPa
Tyx = 5 Mpa oy = 0 MPa - tyz = -7.5 MPa
12X = 8 MPa tzy = -7.5 Mpa oz = ~3 MPa

a) Find the principal stresses ¢gl, o2, and g3 and
b) the directions that accompany these principal stresses;






c) Find the octahedral and absolute maximum shear stress
d) The deviatoric stresses

3. If the angles of the plane truss problem illustrated in the figure are

o = 45° , B = 30° , y = 450 , determine the forces in its bars and the
horizontal and vertical displacements u and v of joint 0. Assume the bars have
the same cross-sectional area A and the same elastic modulus E.

4, For the given stress state in the body, derive expressions for the
displacement components u(x,y) and v(x,y), where c is a constant. Remember
gx=0u/dx and gy=6v/dy
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