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special equation y* = Ay, A constant, is usually considered sufficient,ho\,»
ever, to give an indication of the stability of a method.

We consider first the Adams-Bashforth fourth-order method. If -
(8.47) we set f(x, y) = Ay we obtain

with p(B) =pB>-1

o(B) = B2+ 4B +1
This time p(B) =0 has the roots B, =1, 8, = — 1, and hence by the
definition above, Milne’s method is not strongly stable. To see the implica-

tions of this we compute the roots of the stability polynomial (8.76). For A

AA A
Y1 = Vn = 57 (550, = 5%, + 37y, , — %, 5) =0 (87
‘ small we have

The characteristic equation for this difference equation is
Bi=1+M+ 0K

By=—(1—-An/3) + O(H?) (8.77)
- Hence the general solution of (8.75) is
Yo =ci(1 + A+ O(h))" + cp(~1)"(1 — Ar/3 + O(hY))"

Bt - B3 — %(55[?3 ~59B2+378-9)=0

The roots of this equation are of course functions of AX. It is customary
write the characteristic equation in the form

A p(B) + hAo(B) =0
where p( 8) and o( 8) are polynomials defined by

o(B)=pB*-p’
 0(B) = — 5;(55B° — 5987 + 378 — 9)

We see that as / — 0, (8;'/"4) reduces to p(8) = 0, whose roots are 8;
2= B3 = By =0.For h # 0, the general solution of (8.73) will have 1
form . ;

- If we set n = x,/h and let 4 — 0, this solution approaches
V= 1€ + cy(—1)"e /3 (8.78)

- In this case stability depends upon the sign of A. If A > 0 so that the
desired solution is exponentially increasing, it is clear that the extraneous
solution will be exponentially decreasing so that Milne’s method will be
stable. On the other hand if A < 0, then Milne’s method will be unstable
since the extraneous solution will be exponentially increasing and will
eventually swamp the desired solution. Methods of this type whose stabil-
ity depends upon the sign of A for the test equation Y’ = Ay are said to be
weakly stable. For the more general equation y’ = Sf(x, y) we can expect
weak stability from Milne’s method whenever 9f/dy < 0 on the interval of
integration.

In practice all multistep methods will exhibit some instability for some
range of values of the step 4. Consider, for example, the Adams-Bashforth
method of order 2 defined by

h
yn+1 =Du + _2—{3-](;1 _J:l—l}

, Yo =18l + e B7 + 3B + ¢, By
where the B; are solutions of (8.74). It can be shown that BT approache
desired solution of y’ = Ay as & — 0 while the other roots COITESPO
extraneous solutions. Since the roots of (8.74) are continuous functions.
h, it follows that for & small enough, |B,| < 1 for i = 2, 3, 4, and )
from the definition of stability that the Adams-Bashforth metho:
strongly stable. All multistep methods lead to a characteristic equatio:
the form (8.74) whose left-hand side is sometimes called the stabili
polynomial. The definition of stability can be recast in terms of the stab
polynomial. A method is strongly stable if all the roots of p(B)=0
magnitude less than one except for the simple root 8 = 1. :

We investigate next the stability properties of Milne’s method (8:¢
given by i

If we apply this method to the test equation y' = Ay, we will obtain the
difference equation

hA
A yn+l~yn_7{3yn~yn—l} =0
Inel = Vpq + §'(fn+1 +4f, + f,1)

Again setting f(x, y) = Ay we obtain

and from this the stability polynomial

hA
. hA B*—B-—5{38-1)
Inir V1 = 3 Onar + 40, + y,21) = 0
or the equation
and its characteristic equation becomes

p(B) + hho(B) =0

P (14 2R B
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If A <0, the roots of this quadratic equation are both less than one in
magnitude provided that —1 < A\ < 0. In this case we will have absolute
stability since errors will not be magnified because of the extraneous
solution. If, however, |#\| > 1, then one of these roots will be greater than
one in magnitude and we will encounter some instability. The condition
that —1 < hA < O effectively restricts the step size 4 that can be used for
this method. For example, if A = — 100, then we must choose 2 < 0.01 to
assure stability. A multistep method is said to be absolutely stable for those
values of A\ for which the roots of its stability polynomial (8.74) are less
than one in magnitude. Different methods have different regions of ab-
solute stability. Generally we prefer those methods which have the largest
region of absolute stability. It can be shown, for example, that the
Adams-Moulton implicit methods have regions of stability that are more
than 10 times larger than. those for the Adams-Bashforth methods of the
same order. In particular, the second-order Adams-Moulton method given
by : o

- Yn+1 = Vn +‘ h(f;ﬂ-l - %j;: + % n—l)

is absolutely stable for —oco < AA < 0 for the test equation y’ = Ay with
A <O

For equations of the form y’ = Ay where A > 0, the required solution
will be growing exponentially like e”*. Any multistep method will have to
have one root, the principal root, which approximates the required solu-
tion. All other extraneous roots will then have to be less in magnitude than
this principal root. A method which has the property that all extraneous
roots of the stability polynomial are less than the principal root in
magnitude is said to be relatively stable. Stability regions for different
multistep methods are discussed extensively in Gear [30].

EXERCISES

8.10-1 Show that the corrector formula based on the trapezoidal rule (8.52) is stable for
equations of the form y’ = Ay (see Exercise 8.8-1).

8.10-2 Show that the roots of the characteristic equation (8.76) can be expressed in the form
(8.77) as h — 0, and that the solution of the difference equation (8.75) -approaches (8.78) as
h—0.

8.10-3 Write a computer program to find the roots of the characteristic equation (8.73) for the
Adams-Bashforth formula. Take A = — 1 and k = 0(0.1)4. Determine an approximate value
of i beyond which one or more roots of this equation will be greater than one in magnitude.
Thus establish an upper bound on h, beyond which the Adams-Bashforth method will be

unstable.
8.104 Solve Eq. (8.67) by Milne’s method (8.64) from x = 0 to x = 6 with & = 1. Take the
starting values from Table 8.1. Note the effect of instability on the solution.
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In Sec. 8.4 we defined the discretization erTor €, as

| & =¥(x,) =y,
where y(x,,) is the true solution of the differential equation, and y_ is the
:'XTCt solu'tlon of the @fference equation which approximates the d’i'fferen-
ia eguatlon: In practice, because computers deal with finite word lengths
we will obtain a value ¥, which will differ from ¥, because of round ff,
errors. We shall denote by " °
r’l = y)l - );’1

thle :?ccumulated .round-off error, ie., the difference between the exact
solution of the QIfference equation and the value produced by the com-
put;r at x = Xy At each step of an integration, a round-off error will be
produced vszhlch we call the local round-off error and which we denote b
&,- In Euler’s method, for example, ¢, is defined by d

-);n+1 =j;n + hf(xn’j;n) + €n
The accumulated round-off error is not simply the sum of the local
round-off errors, because each local error is propagated and ma eift)lfa
grow or decayeas the computation proceeds. In general, the sul};'ect e;
round-off-error propagation is poorly understood, and ver;I few thecgret' 0l
results are available. The accumulated roundoff depends upon ans
facfors, 1nclu§ing (1) the kind of arithmetic used in the computef e IEanc}l,
(1:;)(;161; ior fl}cigt;lng poigt; (2) the way in which the machine rounc’is; 23) ):lele
pmcedﬁrgbl:in gﬂfs :gthmehc oOperations are performed; (4) the numerical
As shown in Sec. 8.10, where numerical instability was considered th
effect of round-off propagation can be disastrous. Even with st, ble
methqu, however, there will be some inevitable loss of accurac dua te
rounding errors. This was illustrated in Chap. 7, where the trapezo)i/dal T‘ulO
Was used to evaluate an integral. Over an extended interval the loss (;
accuraf:y may be so serious as to invalidate the results completel °
;t 1s possible to obtain estimates of the accumulated roundingy 'error b
making some statistical assumptions about the distribution of local roundy
off errors. These possibilities will not be pursued here. We wish to consid .
here a simple but effective procedure for reducing the loss of accura Sld "
to rcl)&nd-ofif errors when solving differential equations e
ost of the formulas di in thi . i i i
cquations oS er.ttensi ;htslf:sftclln in this chapter for solving differential

Ynt1 =V, + h Ay,

wlllere h Ay{, represel}ts an increment involving combinations of f(x, y) at
selected points. The increment is usually small compared with ¥ its;:]f In
' .



