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PREFACE

These notes form the textbook for the course ME 200B, Mathematical
Methods in Mechanical Engineering. The course covers three methods for solu-
tion of specific typesAof partial differential equation problems: self-similar
solutions, solutions by separation of variables, and solution by the method of
characteristics. The common feature of each of these methods is that it
allows a partial differential equation to be reduced to an ordinary differen-
tial equation, which can then be attacked by appropriate analytical or numeri-
cal means. In addition, the course deals with a variety of special functions,
with the construction of solutions of linear problems by superposition of
appropriate partial solutions, on the conditions that render a problem well-
posed, with the use of a mix of analytical and numerical methods in the solu-~
tion of practical problems involving partial differential equations, and with
other--aspects helpful in problem solution.

The course presumes‘a background in undergraduate calculus and ordinary
differential equations. Some familiarity with simple aspects of linear algebra
and complex variables is helpful. It is presumed that the student is familiar
with the derivation of partial differential equations from other courses in
engineering or applied science, and has a primary interest in obtaining tools
for solving these equations. The notes are designed for use with the Handbook

of Mathematical Functions, Abramowitz and Stegun, NBS Publication 535 (also

Dover Press), which is referred to by the abbreviation HMF throughout the text.
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Chapter 1

THE ORIGIN OF PARTIAL DIFFERENTIAL EQUATIONS

1.1 Fields and Partial Derivatives

Partial differential equations (PDE's) arise in the mathematical formula-
tion of physical problems involving quantities that vary in more than one space
dimension, or in both space and time. Such quantities are called field vari-
ables; the temperature field in the atmosphere and the wave-height field on

the ocean are familiar examples.

In most problems the field variables are the dependent variables of the

problem, and the space coordinates and time are the independent variables.

What one seeks as the solution of the PDE is a representation of the dependent

variables as functions of the independent variables. Thus, if £(x,y,t) rep-
resents the field variable of interest, here a function of the two space coor-

dinates x,y and of time, the pertinent first-order partial derivatives are

g;_ - 1im f(x+Ax,y,tZX- f(x,y,t) (1.1.1.a)
X Ax>o -~ -
_g_f . f(x,y+Ay,tZ - £(x,y,t) (1.1.1b)
y Ay+o L y —
3 - im [f<x,y,t+AtZt— f(x,yst)] (1.1.1.0)
At-o

Thus, partial derivatives can be thought of as ordinary derivaties with respect
to one variable, with the other variables held constant. They represent the
slopes of lines along which all the independent variables but one are held con-
stant (Fig. 1.1.1).

In writing partial derivatives, it is important to remember which variables
are held constant. 1In most of the literature this is left to the reader to
infer. Thermodynamics literature often employs subscripts to indicate which
variables are held fixed. For example, a thermodynamicist might at one time
be thinking of the entropy as a function of temperature and pressure, S = S(T,P)
and at another time work with entropy as a function of temperature and volume,
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S = S(T,V). Rather than write 9S/3T, which does not indicate the fixed

variable, one could write

S S

P Ty

(1.1.2)

Higher-order partial derivatives are simply partial derivatives of partial

derivatives. For example,

3°f _ 9 (af) (1.1.3)

9xdy  0x \dy

If there are no discontinuities in f and its first two derivatives, then

repeated application of the basic definition shows that

2 2
9°f  _ 9%f
%9y - Oydx (.14

That is, the order of partial differentiation is unimportant.
If one makes a small change in one independent variable, the change in
the dependent variable is, to first approximation, related just to the first-

order partial derivative. For example, from (1l.1l.1a),
| of 2 .
f(x+Ax,y,t) = f(x,y,t) + e Ax + 0(AxD) (1.1.5)

where the notation O(sz) means that the correction will involve powers of
Ax of 2 and higher, making them negligible compared to the first-order term
as Ax =+ 0. Similar expressions hold for the changes with respect to the other
independent variables, so that

of of

f(xtAx, y+Ay, t+AL) = f£(x,y,t) + == Ax + Ay of

L. 2 2
N 5y + 5 At + 0(Ax™) + o(Ay")

+ 0(AtD) (1.1.6)

The student may recognize this as the beginnings of a Taylor's series. This
series is especially useful in the derivation of PDE's governing physical prob-
lems. Note that the partial derivatives are understood to be evaluated at the
point (x,y,t).
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If all of the changes are infinitesimal, it is usual to denote them by
dx, dy, dt, etc., and to represent the total change in f by df =
f(x+dx,y+dy, t+dt) - f(x,y,t). Then, since the higher-order corrections are
infinitesimally smaller than the first-order terms, in the limit
of of of

df = 3—-d + 3y dy + 3t dt (1.1.7)

Here df is called the total differential of f£. Eqn. (1.1.7) is also useful

in deriving PDE's for physical problems.

Example 1.1.1

2
Suppose f(x,t) = e-k X gin (wt), where X and ® are constants.
Find 03f/9x and 0Of/3t:
2 2
of _ 2 -\"x ., ) of -A"x
= =T ATe sin wt e We cos Wt

1.2 Changes of Variables

Often the solution of PDE's are simplified by changes of variables. For
example, one might ultimately be interested in f(x,y) but find it easier to

solve the problem in other independent variables (&,n), where

£ = &(x,y) , n o= n(x,y) (1.2.1)

To do this requires expression of the PDE in terms of the new independent vari-
ables (&,n). This is accomplished by expressing the partial derivatives
0f/3x and 03f/dy in terms of 09f/3f and 09f/3n. These linkings may be de-
rived by first equating the total differentials in both sets of variables,
of of _ Bf

df = % dx + By dy = E d& + == dn (1.2.2)
Next we express d& and dn in terms of dx and dy by taking the total
differentials of (1.2.1),

- 38 9E - an n
g = grdx+g2dy ,  dn = dx+gody (1.2.3)
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Substituting in (1. 2.2) and regrouping terms, (,“)

@l
l_—s

Eg §£ o) dx (ag 55 EE'%H) dy  (1.2.4)

Q2
mi‘h

Comparing the right- and left-hand sides, we find

9f _ Of BE , Bf on _
5% - B 3% + 3 Bx (1.2.5a)
of _ 9f 9% [ 3f o (1.2.5b)

dy 3¢ dy ~ on oy

Eqns. (1.2.5) are called the chain rule; they tell us how to express the deriva-
tives with respect to the original independent variables in terms of derivatives
with respect to the new independent variables. The student should master the

use of the chain rule, as we shall use it frequently.

Example 1.2.1

Suppose £ =x+y, n=x-y. Transform df/3x, df/9dy, 82f/8x2, and /Kt>
2 2 : .
9°f/dy

08 9 _ o _ o _
= - Lo 5 - 1 oo 3 - Lo Sy 1
A af+af df _ Of  of
9x o ’ 3y 1 on
o’ 2 (). 2 Rryk, 2 erym
aX2 T 9x \9x 98 \9x/ 3x  9n \3x/ 9x
i} (ﬁ+_a_f_)+ _a_i+ﬁ)
8&2 9&9n aNodE anz
52f 32 5%f
= St lwmt 2
o9& on
Similarly,
o’ _ o _, 3%, 9t
= 3
ayz agz 3Eon an




3. Derivation of Partial Differential Equations

Partial differential equations are usually derived by applying a set of

basic physical principles to a region in space (a control volume) which is

infinitesimally small in at least one dimension. Phenomenological relation-
ships or equations of state frequently are involved.

We shall illustrate the approach with an example. Consider the problem
of transient heat conduction within and convection from a thin plate subjected
to internal heating. The control volume used is the infinitesimal piece of
the plate shown in Fig. (1.3.1). The six heat conduction rates él ces é6
move thermal energy in and out of the control volume as shown. In addition,
there is a source of thermal energy (perhaps chemical or nuclear energy release)
within the plate, occurring at the rate of s (W/m3). The energy balance on the

control volume is

61-62+63—64-65—é6+sv=3—5 | (1.3.1)

where V is the volume of the control volume and E is the thermalbenergy
contained therein. _

Having applied the pertinent basic principles, we next bring in the ép—
propriate phenomenological relationships, in this case the Fourier heat con-
duction law, which relates the conductive heat flows to the local temperature
gradients,

oT _k oT

q="k'&9 q._ =

% - Sy (1.3.2)

where 4, and qy are.the heat conduction rates per unit area (W/mz) at
any point (x,y) din the plate, and k 1is the thermal conductivity, W/ (m*K) .
Note that we have implicitly assumed that the plate is sufficiently thin and
the material conductivity k sufficiently high that the temperature does not
vary in the direction perpendicular to the plate. We can regard qx(x,y,t)

and qy(x,y,t) as field variables.

To evaluate the heat flows we shall determine the values of the fluxes at
the center of each face of the control volume, and then multiply by the area.
Thus,
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Q = q.(x,y+dy/2,t)dy * §
Q = q,(xHdx,yHdy/2,t)dy +
(1.3.3)
Q3 = qy(x+dx/2,y,t)dx « 8
(.24 = qy(X+dX/2,y+dy,t)dx ¢ §
Next we use a Taylor's series;
qu dy
qX(x’y+dy/2’t) = qX(X,Y,t) + ay_ 2 + ...
3q 3q (1.3.4)
- X _xdy
q, (xtdx,y+dy/2,t) U (xy,t) + 5= dx + 5250+ L

It is helpful to notice that the difference in these quantities is what is

needed, because then only one term remains. Hence,

. . 9q 5

= - Fdxedy 8 = 2 (kI
Q =Q = -5rdx-dy-3 o (k 3y ) dxdys (1.3.5)
Similarly,
9q
0, - Q, = - =X = 2L
Q3 = Q 55 dy dxS 5 (E ay) dxdys (1.3.6)

We also need phenomenological equations for the convective heat transfer
terms 65 and é6' We shall assume that the convective heat transfer rate
per unit area (W/mz) on each side at any point is given by the field vari-
able qc(x,y,t) =h (T—To), where T(x,y,T) is the local plate temperature,
TS is the temperature in the surrounding fluid, and h is the convective heat
transfer coefficient, W/(mz'K). Then we represent 65 + 66 as the value of
qC at the center of the sides of the control volume times the area of the side,

Qs + 66 = 2q_(xtdx/2,y+dy/2,t) + dx - dy (1.3.7)

Next we expand the field variable qc in a Taylor's series,

1]

q.(x+dx/2,y+dy/2,t) q.(x,y,t) + 0(dx) + 0(dy) (1.3.8)

hl T(x,y,t) - T ]+ 0(dx) + 0o(dy) ,.
L 0 | A
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where the 0(dx) and 0(dy) are to remind us that the neglected terms have
factors of dx and dy, respectively; we shall not need these, since when
we multiply them by dx+dy (see (1.3.7)) these terms will be infinitesimal
in comparison to the other terms in the equation, which are 0(dx-dy).

The source term sV is given by determining the value of the field vari-
able s at the éenter of the control volume, s(x+dx/2,y+dy/2,t), multiplied

by the volume. Using the Taylor's series for s,
sV = s(x,y,t)dxdyd + O0(dxdxdy) + 0(dxdydy) (1.3.9)

Note that again the higher-order terms need not be included.
We now have all of the terms on the left in (1.3.1), expressed in terms
of the temperature field T(x,y,t). To get the time-rate of change of thermal

*
energy we use the equation of state for the material , e = e(T), where e is

the energy per unit mass (J/kg). Since T is a field variable, e is also
a field variable. We evaluate the total energy in the control volume at any
instant as the value of e at the center of the control volume times the den-

sity o (kg/m3), times the volume.

b=
]

pe(x+dx/2,y+dy/2,t)dxdys (1.3.10)

pe(x,y,t)dxdyS + 0(dxdydx) + 0(dxdydy)

Again the higher-order terms are infinitesimal in comparison to those retained,

and may be neglected. Hence

dE de

& = P g dxdyS (1.3.11)

Finally, we use the equation of state relating thermal energy to temperature,

e = e(T), which, differentiated, gives de = ¢dT, where c¢ dis the specific
heat (J/kg-K) of the plate material. TUsing the chain rule,
de _ de 2T aT

% - 4T ot = ¢ 5% (1.3.12)

Thermodynamicists will recognize that we are treating the plate as an incom-
pressible medium.
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Hence, (‘ )

dE 9T
it - Pc 5E-dxdy6 (1.3.13)

We now substitute (1.3.5), (1.3.6), (1.3.7), (1.3.9), and (1.3.13) in the
basic energy balance (1.3.1), and drop all terms smaller than dx*dy. The re-

sult is

d oT 9 9T
[ﬁ (k g{') + 3_}; (k _a—};[l dxdy6 + Zh(T—TO)dXdy + s dXdy&

(1.3.14)

- T
= pc 7 dxdyd

Note that each term has dxdy as a factor. Finally, we divide by dxdy6 to
obtain the PDE for the temperature field,

%(k%)+—% (k%)+%(T—TO) ts = pedt (1.3.15)
To summarize, the process for deriving PDE's is as follows:
¢ Select an appropriate elemental control volume.
e Apply basic principles (conservation of energy, momentum, mass, etc.).
o Express the flow or force differences in terms of the desired field wvari-
ables using phenomenological equations and Taylor's series expansions.
e Bring in equations of state as necessary to express the problem completely
in terms of the desired field variables.
With some experience, the student will know in advance which of the Taylor's
series terms will not appear, and can leave them out of the development.
Another trick is useful in deaiing with products of field variables (feg+h).
Instead of doing separate Taylor's series expansions for each, simply do the
expansion for the product, producing terms like d(fegeh)/93x. The student
should select some physical problems from his own area of specialty and derive
the associated PDE's. Exercises from a selection of fields are included at
the end of this.chapter.

Equation (1.3.15) is a second-order PDE\for T, because it involves

derivatives no higher than second. If k, h, p, and c¢ are independent of T, \LHJ>

the equation is linear in T.
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\ j Many physical problems give rise to second-order PDE's or coupled second-
order PDE's. Therefore, we shall spend considerable time studying methods for
solution of such equations, particularly those that are linear in the depen-

dent variables.

1.4 Boundary Conditions, ‘Initial Conditions, and Well-Posedness

In addition to the PDE's, one must also have an appropriate set of bound-
ary and/or initial conditions. For example, the initial condi;ions for the
temperature PDE developed in the previous section would be the temperature
field at some starting time £, We can think of the initial conditions as

the specification

T(x,y,to) = f(x,y) (1.4.1)

In addition, we would require boundary conditions constraining the temperature
field all around the edge of the plate. One such possibility is to prescribe

the edge temperature,
T(x,y,t) = g(x,y) on C (1.4.2)

where C is the outer edge shown in Fig. 1.3.1. The initial conditions, the
boundary conditions, the PDE, and values for the parameters in the equations
define the problem to be solved.

I1f a portion of the needed boundary or initial condition information is

missing, the problem is said to be incompletely poSed. If too much information,
or the wrong type of information, is prescribed, the problem is said to be ill-
posed. For example, theproblemdefinedtnrEqns.(1.3.15),(1.4.1),and(1.4.2) would
be ill-posed if in addition we attempted to prescribe any of the following:

e The rate of change of temperature, 3T/dt, at time zero.

e The temperature field at some later time, T(x,y,tl).

e The heat transfer rates into the plate along C, (-k3T/dn).
It is important that the student learn to identify when a problem is not well-
posed. A good way to do this is to use physical.intuition. There are certain
mathematical rules, for some simple types of problems, and we shall discuss these

) later in‘the text. Unfortunately, they are applicable only to the simplest of

problems, and in dealing with the problems that typically arise in engineering

or applied science one has no choice but to rely on experience and intuition.
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A case in point can be illustrated by considering the steady-state heat
transfer problem formed by dropping the right-hand side of (1.3.15). For sim-
plicity, let's also drop the convective term, treat the conductivity as con-

stant, and write the equation as

9x oy

This problem clearly has a solution if one preséribes the boundary condition
T = g(x,y) on C; physically, a plate with internal thermal energy sources,
held at a prescribed edge temperature, can indeed reach a steady-state solu-
tion. But suppose we instead insulate the edges of the plate, corresponding
to a boundary condition

oT

e 0 on C (1.4.4)

where n is the outward normal direction. Clearly this problem does not have a
solution; there is no way for the internally generated thermal energy to get out,

and consequently the temperature will go up and up and the system will never {

reach a steady state. Hence (1.4.3) and (l.4.4)_form an ill-posed problem.
Suppose we insulate only a portion of the boundary, prescribing

3T
3n - 0 on part of C
| (1.4.5)
T = g(x,y) on the remainder

This is a well-posed problem; the energy can escape at the points where - T
is specified, and thus a steady-state solution can be reached.

Suppose now we remove the source term and have

3—§+3—§ = 0 |  (1.4.6)
9% dy

This is called Laplace's equation; it is one of the few equations for which

theorems about well-posedness are known. Clearly it is proper to specify T
on the boundary, or to specify T and some combination of 9T/9n on the bound-

/
ary, as we have discussed. However, can we specify only the heat flux, i.e., \ >
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9T/on, all around the boundary? On physical grounds we can argue that a

steady-state temperature field will be obtained only if the net energy input

1s zero, i.e., in this case only if

aT _
sa-ds = 0 ~on C (1.4.7)

Thus, the Laplace equation with 0T/dn specified on the boundary forms a well-
posed problem only if (1.4.7) is satisfied. But then the solution is not
unique, as one may add a constant to any solution and produce another!

Boundary conditions in which the function is specified on the boundary are

called Dirichlet conditions, while boundary conditions.specifying the normal

derivative are called Neumann conditions. Problems involving combinations of

these are called mixed or Churchill conditions. Theorems giving the conditions

for well-posedness of simple equations (e.g., the Laplace equation) for these
conditions may be found in more advanced books on the theory of PDE's.

In addition to the Laplace equation, there are two other simple equations
which form useful models for deciding upon the well-posedness of problems.

These are the wave equation,

2 2
_8__5__32 = 0 (1:4.8)
9x ot
and the (so-called) heat equation,
2
3°F _ of
5—5- = % (1.4.9)
X

The wave equation arises in simple problems of linearized vibration, one-~
dimensional acoustics, shallo&-water wave theory, and other simple wave propa-
gation problems. The heat equation (a special case of (1.3.15)) arises in
simple one-dimensional diffusion problems in heat transfer, fluid mechanics,
and other fields. Most problems of interest involve more complex equations,
often nonlinear. However, an understanding of these three simple equations

and their solutions is very helpful when one has to solve more difficult prob-
lems, analytically or numerically, and so we shall give them due attention in
this book. TFor each there are boundary and initial conditions which render

the problem well-posed, and we shall investigate these matters in a later chap-

ter.
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1.5 Other Notations

So far we have used the most common notation for partial differentiation,

daf /9x.

9 f to
X

f to

9 a2 2
V°F to mean + +

Other notations in use include

mean

mean

mean

e

In Cartesian coordinate systems

used. The independent variables are

322

52¢
o0x3y

(in Cartesian coordinates)

the subscript convention is frequently

written as X, (meaning X1, X,, O x3),

and the x derivatives are then denoted by subscripts after commas,

f . to mean

, 1

Alternatively, one sometimes sees

d.f
i

to mean

In this convention the appearance of a repeated subscript means that the term

represents a sum in which the repeated subscript in turn receives each of its

permitted values. For example,

5%¢

£ = 0%, 090X,
i

,1d

- 8 + 8 f + 8 f (1.5.1)
0t ax?  ox?
2 3
2 2
x] + x- + g (1.5.2)

Often the dependent variables are also vector quantities, such as velocity, and

their components are denoted by subscripts.

1.12
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velocity vector (ul,uz,uS) is represented by u, - Then the continuity equa-
tion, which expresses the principle of conservation of mass for an incompres-

sible medium, is simply

u, ., = 0 meaning = = 0

Bui
0x,
i

Bul 8u2 3u3

+ +
axl 3x2 3x3

or

= 0 (1.5.3)

When using the comma approach to spatial derivatives, time-derivatives are de-

noted by overdots:

L]
=N

u, to mean =

The subscript and comma notations have the great advantage of being very
compact; with some experience you can become quite comfortable with them. You
should practice writing the equations of your own special field in these dif-

ferent notations.

Fxercises

1.1 Express the first and second derivatives of f = sinh(Ax) cos(ly).

Show that f satisfies Laplace's equation (1.4.6).

o 2
1.2 Show that f = e_A Y cos(Ax) satisfies the heat equation (1.4.9).
1.3 Show that f = sin(Ax) cos(At) satisfies the wave equation (1.4.8).
1.4 Show that e Tel® satisfies the wave equation (1.4.8).

1.5 Show that e &’ satisfies the Laplace equation (1.4.6).
1.6 Let x=7rcos 6 and y = r sin 6. Show that the Laplace equation (1.4.6)

for £(x,y) transforms for £(r,0) to

2
aflaf_o
2 2

2
% 1o,
or® T T ¢% 5o
1.7 Let £ =x+t, n=x=-t. Show that the wave equation (1.4.8) trans-
forms to Bzf/BEBn

by direct integration.

0. Then develop the general solution to this equation

1.13
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Y
Let & =x+4+ 1y, n = x - iy. Show that this transforms the Laplace Q }
2
equation (1.4.6) to 3°f/3£3n = 0. Then develop the general solution to

this equation by direct integration.

(For fluid mechanicians) Derive the PDE's governing unsteady, one-
dimensional, inviscid compressible flow of a perfect gas. Assuming isen-
tropic flow, obtain a single differential equation for the pressure field.
Show that if the pressure changes are small you obtain the acoustic approxi-

mation (c2 is the sound speed)

2
Esz Vzp - c2 é—g— = 0
ot

(For heat transfer persons) Derive the PDE governing the temperature field
in an incompressible, inviscid fluid flowing with a prescribed velocity
field ui(xi). Show that if the thermal conductivity is zero the temper-

ature of each fluid particle remains constant.

(For heat transfer/fluid mechanics persons) Derive the set of PDE's govern- ‘
ing the temperature and velocity fields in a porous medium heated by inter- {’ >
nal sources and cooled by the interstitial flow of a fluid. Use Darcy's o
law for the fluid mechanics. Write some boundary and initial conditions

that you think are well-posed.

(For elasticians) Derive the PDE governing the vibrations of an elastic
bar. Assume linear stress laws and small amplitude deflections, and con-

sider only bending distortions.

7

(For oceanographers) Derive the PDE governing the wave height for long
waves in shallow water. Assume small-amplitude inviscid motion. You
should obtain a form of the wave equation. Write some boundary and initial
conditions appropriate to a tidal wave entering the San Francisco Bay.

Under what circumstances would your analysis apply to a water bed?

(For guitarists) Derive the PDE governing the vibrations of a taut string.
Assume small deflections and uniform string properties. You should obtain
a form of the wave equation, Write the boundary and initial conditions

for your favorite plucking mode.

o

(For drummers) Derive the PDE governing the vibrations of a circular drum.
Assume small deflections and uniform properties. Write the initial and

boundary conditions for your favorite whomp.

1.14
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at x=6, y=9, t=8

Fig. 1.1.1 Interpretation of Partial Derivatives

Fig. 1.3.1 Control Volume for Derivation of the PDE
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Chapter 2

SELF-SIMILAR SOLUTIONS

2.1 Characteristic Scales; Scale-Similar Problems

It is often convenient to present the solution to a PDE problem in non-

dimensional form. This makes the results independent of the size of the system

for which the solution was obtained as well as independent of any choice of
dimensional system. Non-dimensionalization is usually accomplished by choosing
some length and time gcales characterizing the problem, and then defining non-—
dimensional independent variables based on these scales. For example, the
solution foflfluid flow in a rotating sphere might be expressed.non—dimensionally

in terms of the dimensionless radius, R = r/ro, where 'ro is the radius of

the sphere. Here r, is the characteristic length scale of the problem. If
the fluid is initially at rest, and at time zero it is put into rotation at
angular velocity ® , then the period of rotatioﬁ is T = 2m/w, and T would

be the characteristic time scale. Then a suitable dimensionless time would be

T = t/t. Note that one of the characteristic scales for the independent vari-

ables (ro) came from the geometry of the system, and the other (t) from the

boundary conditions.

The dependent variables also can be represented non-dimensionally. For
example, in the rotating sphere problem the equatorial velocity is u, = wr
and may be used as a characteristic velocity in the dimensionless velocity
U = ulu.

The problem may also contain some parameters, such as the kinematic vis-

cosity V. The parameters also can be reduced to non-dimensional form, and in

the case of viscosity it is customary to use a reciprocal dimensionless viscos-

ity called the Reynolds number, Re = uoro/v.
The solution for the velocity within the rotating sphere could then be ex-

pressed non-dimensionally as

U = U(R,T;Re)
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This says that the dimensionless velocity (a vector) U will be a function of ‘{‘\)
the dimensionless radial coordinate R, the dimensionless time coordinate T,
and the parameter Re. It might also happen that the flow depends upon the
polar angular coordinates ¢ and B, which are additional non-dimensional
independent variables.

Problems which have natural characteristic scales for the independent

variables (here fro and T) are called'scale—similar, Scale-similar solu-

tions for systems of different size will have the same non—dimenSional solution,
provided that the two pProblems also have the same values of the &imensionless

parameters and dimensionless boundary and initial conditions,

2.2 Self-Similarity

There are a few very interesting and important PDE problems for which no
natural characteristic scales for the independent variables exist in the prob-
lem formulation. For example, consider the case of heat conduction in a semi-

infinite slab initially at uniform temperature, subjected to a step increase in

the surface temperature at time zero (Fig. 2.2.1). The appropriate PDE is /f‘>
2 ._
°T 1 3T g
2 T ot (2.2.1)
ox

where o 1is a constant parameter called the thermal diffusivity of the medium.

The initial condition is
T(x,0) = I, x>0 (2.2.2)
The boundary condition at the surface is
T(0,t) = Tg (2.2.3)

The temperature field must fall off to the initial temperature Ti as x > o

giving a second boundary condition

T(x,t) = Ti as x »> « (2.2.4)

2.2
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There are no characteristic scales for either length or time in this problem.

This fact is the clue that a self-similar solution must exist. Since the solu-

tion to all physical problems must be expressible in dimensionless form (nature
is unawaye of the length of a meter), there must be some way to non-
dimensionalize the solution to this problem. The only possible way is for the
variables to appear together in a non-dimensional group. Looking at the de-
nominators in (2.2.1), it is readily apparent that x2 and ot have the same
dimensions, and therefore the quantity le(at) is dimensionless. Somehow the
solution must be expressible in terms of this quantity, in order to have dimen-
sionless form. Solutions made non-dimensional by combinations of the indepen-—
dent variables, rather than by characteristic scales imposed by the geometry,

boundary, or initial conditions, are called self-similar solutions.

There is a characteristic temperature for this problem, namely the step
increase in temperature TS - Ti' Therefore, one might guess that the non-

dimensional form of the solution is
T - Ti X2
T o7 = flaE (2.2.5)
s i

As we shall see, this guess is correct. In a moment we shall develop a sys-
tematic way of discovering the forms of self-similar solutions.

If (2.2.5) is indeed correct, then another fully equivalent form would be

T - T,
Er_:_fi = g(x//&E) (2.2.6)
S i
and another would be
B Ti X
-7 " h(x//ot) , (2.2.7)
s i Yot

All of these solutions would really be the same, but the functions f, g, and
h would be different.

In terms of the similarity variable, n = x//ot, the family of tempera-

ture profiles existing at different times will collapse to a single curve (Fig.
2.2.1b). This is the essence of self-similarity; the solution does not scale

on the size of the system, instead it scales on itself.

2.3,



P
At first glance, it may appear disadvantageous to seek a solution in terms Q ) \

of the non-linear combination of variables n = x/V/ot . However, note that a

single function g(n) would be involved, and therefore one would only have to

deal with an ordinary differential equation (ODE). This is the practical

' advantage of a self-similar problem in two independent variables. The existence

of self-similarity will always reduce the number of independent variables by omne.
To summarize, self-similar solutions exist when a problem is not scale-
similar, i.e. when characteristic scales for the independent variables do not
exist in the problem formulation. In problems with two independent variables,
self-similar solutions represent a cbllapse of the family of solutions as func-
tions of the two variables to a single Function of the similarity variable. The
governing PDE is théreby reduced to an ODE, which may be solved by some appro-
priate analytical or numerical method. The proper form of the transformation
depends upon the equation, the initial conditions, .and the boundary conditions.
The transformation can be discovered systematically, as we shall now illustrate

by some examples.

2.3 Example with Constant Boundary Conditions \xw>

Consider the transient heat transfer problem discussed in section 2.2
The differential equation, boundary conditions, and initial conditions are
(2.2.1)-(2.2.4)., The solution must be expressible in terms of some similarity
variable, which must be non-dimensional. Let's assume that the similarity

variable is of the form

n = Ax/t" (2.3.1)

where A and n are constants to be chosen in a manner that reduces the PDE
problem to an ODE problem. Now, suppose we assume that the dimensionless solu-

tion has the form

= f() (2.3.2)

2.4
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This is suggested by the observation that the significant aspect is the
difference between the temperature at any point T(X,y) and the initial

%

temperature Ti . The form of 1 is suggested by the fact that the solu-

tion for t=0 and %X=% must give the same value of T , and hence must COY-—
respond to the same value of £ , and hence to the same value of n . Now, we
could have taken TN = -Axm/tn but this is no more general than the (2.3.1),
since this n is just a power of the other 1 . Also, we could have taken

n o= At/xn , which also is no more general. However, we will have to differ-—
entiate twice with respect to X » and only once with respect to t and we
will find our work casier if we keep the x-dependence of n as simple as
possible. For this reason, wé make 1 linear in X and then divide by t

to a power (to be chosen later).

The next step is to transform the PDE. Using the chain rule,

o _ dEM _ gpopy £+ A
vl (TS Ti) an ox (TS Ti) f 0 (2.3.3a)
22_1;'= (T_T)QA_QE_EY_‘_-: (T_T)'é_fn.é__ (2.3.3b)
5 2 s "i’ ndn 9x s i’ .n n *
X t t t
—a—r'];- = - "d_f' -B-D— = -— LY — é.n__}{——
ot (Ts Ti) dn ot (Ts Ti) £ < 1:n+].> (2.3.3¢)
Then, substituting in (2.2.1), we obtain
A2 1 Anx
_ A vt o L= - '
(Ts Ti) 2n £ o (Ts rI"i) n+l £
t t
%
We could instead take
T = g(n; TJ/T) | (2.3.2%)
Ts—Ti > gt i ot

The student should work through the problem with this starting assumption to
verify that the same solution is obtained.
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which simplifies to \

£ 4 anx %L L (2.3.4)
OA
Now, this {ig Supposed to be an ODE for f(n) . Therefore, it can only contain
£, £, gm » and 7 5 somehow we must make x gand t disappear. To do this,

we first replace x using (2.3.1), x = tnn/A » and find

£ +i2 g2n-1 nf' = g (2.3.5)
OA

Next, we can select the Proper value of n g that which drops out ¢t > Damely
n=1/2 . wWith this choice, (2.3.5) reduces to

1
20A

£'' + >N ' = ¢ (2.3.6)

This is an ODE, as desired. e still are free to choose A any way we like. To

make (2.3.6) ag simple as possible, let's pick

A = 1NV 2.3.7) ()

which reduces our ODE to
' +m £ = (2.3.8)
Note that n ig g dimensionless variable. Now we have
n = x/v2at (2.3.9)
We must also be able to express the boundary and initial conditions in terms

of f(n) in order to complete_the self-similar transformation, Egs. (2.2.2) and
(2.2.4) both require ‘

fn) > o as 1n > o (2.3.10)

And, (2.2.3) requires
£(0) = 1 (2.3.11)( )
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Egs. (2.3.8), (2.3.10), and (2.3.11) define

the ODE problem that we must solve.,

Eqn. (2.3.8) can be written as

df!
S = - ndn (2.3.12)
Integrating,
' 2
Q/n f' = - — + CO
or,
2
£ o= o 12 (2.3.13)
y’ s
Integrating again, {:le éqzﬁq‘*ct
n 2 C, =1
-0 /2 T ]
- 1 -9% .3.
£ clfe do + C, {a_‘+c'§&2¢(2314)
(*%] ° N '”%:07[2
el e
We must be careful not

The lower limit is arbitrary, and © is a good choice.
(n) with the variable of integratiom, and

to confuse the limit of integration

d o as the "dummy variable" of integration.

therefore have introduce
The boundary condition (2.3.10) requires C, = 0 . The boundary condition
(2.3.11) requires ' pe 146 F oo Q=..ﬁﬁ
H
0 9 £ uA§m «
1= ¢ / NERET F (2.3.15)
1 .
‘00 '"&C(’y&‘}

Hence, we can write the solution as

© 2 ®© 2

£ = /e"’ /2 45 fe“j /2 45 (2.3.16)
n - 0

own special functions by letting

We can express the solution in terms of kn
do = V2 dz , and

> 2
f = e dz e dz (2.3.17)
0

z = 0/V/2 . Then,



The denominator has the value VT/2 . The numerator is v7/2 erfc (n/v2) , ((ﬁ)

*
where erfc is the complementary error function. Hence, the solution is

T -1,
T = erfec (2.3.18)
Ts =T <z/&z

2.4 Example with Variable Boundary Conditions

The motion of a viscous fluid, initially at rest, over an infinite plate

that is set into motion at time zero is described by (Fig. 2.4.1)

2 .
v 2 t gg (2.4.1)

oy

where u 1is the velocity tangential to the plate, and v 1is the (constant)

kinematic viscosity, Suppose the boundary condition at the plate y=0 s 1is

u(0,£) = at? (2.4.2)
0)
where a and b are fixed parameters. The other boundary condition is L
u(y,t) > 0 as y > o (2.4.3)
The initial condition is
u(y,0) = 0 (2.4.4)

There are no characteristic length or time scales in either the domain or
boundary conditions of this problem, hence, we expect a self-similar solution.

Suppose we assume
u = AfM) , n = By/t" (2.4.5)

where A, B, and Il are parameters that we will try to select to produce an

ODE problem. The form of N 1is suggested by (2.4.3) and (2.4.4), which require

o

. .
,See HMF, Section 7.1.
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that the solution have the same behavior for large y as for small ¢t .
However, when we try to £it the boundary condition (2.4.2) with this form, we

get

A £Q0) = at’ (2.4.6)

gince A and £(0) ﬁill be constants, (2.4.6) can't be true except for the
special case b=0 (which reduces this example to the previous one). Hence,
(2.4.5) will not work.

We need to allow'additional freedom. If we expect the curves of
Fig. (2.4.la) to collapse on a single non—-dimensional curve, the value of the

fluid velocity must somehow scale on the instantaneous wall velocity. This

suggests that we try

u = AthEm n o= By/t (2.4.7)
Where now A, m, B, and n may be chosen to give us the desired self-similar
* -
solution.
We can immediately determine m using (2.4.2),

00,t) = At"£(0) = at? (2.4.8)

Hence, we must choose m=b . We may choose A any way we 1ike. If we choose

A=a , then we must impose the boundary condition
£(0) = 1 ©(2.4.9)
Now, we have
u = a tb £(M) n = By/tn _ _ (2.4.10)

which will fit the boundary conditions.

*We could have used u = A yk £ g(n) , or u=A ym h(n) . These forms
are equivalent to (2.4.7), with different functions f , 8 > and h . '
Eq. (2.4.7) is the simplest, since we must take two y derivatives and only one
t derivative.
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Next, we substitute (2.4.10) in the differential equation (2.4.1), and

find (f' = df/dan , £'' = d2f/dn2)

2 b—2nf,,

vaBZe b~1 _ b-n-1

= abt  f - at nByf'

As an ODE in f(n) only f and its derivatives, n,

constants;

» this may contain

¥y and t may not appear. So, we will replace y by

y = tnn/B
Then, (2.4.11) reduces to
vaBieP20grs abt?Lg _ at® Tyngr
In order that ¢ drop out, we must choose n such that
b-2n = p-1 or n = 1/2
With this choice, our ODE becomes
VB2 £ bf —-% n f'
Let's choose B such that sz =-% > or B =1//2V ., Then we have
£'"" + nf' - 2bF =

and our similarity variable n ig

n = y/v2vt

The boundary conditions on (2.4.15) are,

from (2.4.9),

£(0) = 1

2.10
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(2.4.11)

and

(2.4.12)

(2.4,13)

(2.4.14)

(2.4.15)

(2.4.16)

(2.4:17a)

J



and, from (2.4.3),

f(m) - O as N+ ® (2.4.17b)
To complete the problem, we must solve (2.4.15) subject to (2.4.17). This
will provide a good review of some ODE sdlution methods and will introduce us
to some special functions.

In order to solve (2.4.15), one must be specific about the value of b .

Let's first take b = 1/2 , for which (2.4.15) becomes
f''+nnf' - £ = 0 (2.4.18)
The general solution will be of the form

£f = le1 + C2f2 (2.4.19)

where fl and f2 are two linearly-independent solutions. For this case,

fl = n 1is one obvious solution; when the first solution to a second-order

linear ODE is known, the second can always be constructed by setting

£,(m) = £, - g(n) (2.4.20)
So, we assume

£, = n g
Differentiating, and substituting in (2.4.18), we find
ng'' + 2g' + n(ng'+g) - ng = O (2.4.21)

The zero-derivative terms cancel, which is why this methods works. So, we have

ng'' + (2+n2)g' = 0 (2.4.22)

which is really a first-order ODE for g'! ; separating the variables,
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de_ -<3+n> dn (2.4.23)
g n
*
Integrating, and taking the exponential,
2 : 2
g' = exp <—2 £n n-2—> = l—ze'” /2 (2.4.24)
n
Integrating again, .
n 2
g(n) = '/1—2e"j 12 4 (2.4.25)
b O
The lower limit choice is arbitrary, except that zero will cause problems;
infinity is an "artistic" choice. So, we now have the general solution to
(2.4.18) as
n 2, o
£ = cn+enf L9724 (2.4.26) [ )
1 2 02 S
o0
Note that again we were careful not to confuse the limit of integration (n)
with the variable of integration (o)
We now apply the boundary condition (2.4.17b), which will require Cl =0
if we can show that the second solution f2 is bounded as n + ® , We have
n 2 N 2 ~N_ 2
£.(m) = n/I—e'O/zdo < n[ L0772 4 o / e 0 /2 4o
2 2 n
(o2} G [o.0]
(for n > 1) (2.4.27)
' So, clearly fz(n) >0 as n > o, Therefore, Cl is indeed zero,

%
We choose the constant of integration to be 0. Any g(n) will
do since we can use any second solution.
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\> The behavior of fz at n =0 can be clarified through use of one of

%
the most powerful tools of analysis-integration by parts. With it, £ can

2
be rewritten as
n n
2 2
= — _]_" -0 /2 - _1—_ (_ -0 /2
f2 n. Ge f(— O) G)e do
o [o0]
2 n 2
- -2y fe‘“ /2 49 (2.4.28)

oo

Now it is clear that f2(0) = -1 . Since (2.4.17a) requires that £(0) =1,
02 = -1 . Therefore, the final solution is
2 it 2
gy = e /74 n/ 92 4o (2.4.29)
(o]
Using the charge of variables, 2z = g//f , this can be written as
) Y
f(n) = e - nV/; erfc(n/v2) (2.4.30)
(for b =1/2)
Next, let's consider the case b = n/2 , where n 1is an integer.
Eqn. (2.4.15) is then
£'' 4+ nf'-nf = 0 (2.4.31)
If weilet z = n/v2 , then (2.4.31) becomes
de df
X4 922=—=-2nf = 0 (2.4.32)
dz2 dz

* .
Recall that fudv = uv —fvdu ; this is called integration by parts;

/
‘kmd) become adept at doing it, because it is tremendously useful and important.
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The two linearly independent solutions of this equation are repeated integrals

of the error function,*

f = Clinerfc(z) + Czinerfc(-z)

where the function inerfc(x) ig**

00 n 2
inerfc(x) - Z iE:%l— e—t dt
/TT n.
x
Hence, our solution is
£ = cli“erfc(n//f) +Czinerfc(—n//2—)
The boundary condition £(®) = 0 requires 02 =0 , since inerfc(-m)
constant. The boundary condition f£(0) = 1 fixes Cl aghtt®
¢, = —=—— - pm &)
ierfc(0)
where TI'(x) 1is the Gamma function,
I'(x) = ftx_l et at
0
Hence, the solution is
f(n) = 2% F(3H) ierfe(n/va)

(for b =n/2)

*
HMF Section 7.2.2.

%k
The student should verify (2.4.33) by substitution in (2.4.32),
Integration by parts will be required.

kk
See HMF Section 7.2.7.
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A ) 2.5 Example with Integral Constraint

Consider the problem of diffusion of a contaminant deposited at time zero
at the surface of a semi~infinite slab (Fig. 2.5.1). The diffusion process is

described by.

) dc
oa 2 £ oc

2c
A 5 = (2.5.1)
X

where c¢(x,t) is the concentration per unit volume, and o 1is the diffusion

coefficient for the contaminant. The initial condition is
c(x,0) = 0 x>0 (2.5.2)
The boundary condition for large x is
c(x,t) > O as X > © (2.5.3)

The total amount of contaminant contained in the slab is fixed. This gives an

> integral constraint,

<0

/cdx = Q (2.5.4)
0

This problem has no matural characteristic length or time scales and, hence, we
. expect a self-similar solution.

Let's try to construct the solution in the form®

c = At? £(m) n = Bx/t" (2.5.5)

where A, n , B, and m are constants to be chosen. The integral constraint

(2.5.4) immediately tells us something about n

N .
; ) Again, the similar boundary condition (2.5.3) and initial condition
\ (2.5.2) suggest the form of n .

e
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o0 [oe]
m
Q = /Atnf(n)dx = / At™E(n) 'g—dn
0 0
[o0]

= %tn-l'm/ f(n) dn = constant _ (2.5.6)

b )
The integral will be some number. Therefore, for Q to be constant n = -m .

We will later use (2.5.6) to help determine other constraints.

Next, we substitute (2.5.5), with n = -m , in (2.5.1), and obtain

-m-1

aaB2t 3 grr o e Af - mat ™1

£! (2.5.7)
Note we have already eliminated x in favor of 1 . For this to be an ODE,
t must drop out, hence -3m =-m-1, or m= 1/2 . We pick aBZ =1/2 ,
B = 1/V/20. , and then our ODE becomes
f'"" +nf' +f = 0 (2.5.8) - .
The boundary condition (2.5.3) requires

fnm) = 0 as N > (2.5.9)

We have the freedom to match this integral constraint with the choice of A .

Hence, let's choose
£(0) = 1 : 1 (2.5.10)

Eqs. (2.5.8)-(2.5.10) define the ODE problem to be solved.

Our task becomes easy when we recognize that (2.5.8) is expressible as
D'+ (mH' = 0 (2.5.11)
Integrating,

/ )
£' +nf = ¢ (2.5.12) .



N

Since the boundary condition (2.5.9) requires f(n) -0 as n » » ,

f'(m) 0 as n =+ « , and hence Cl will have to be zero unless
nf - constant as 1N * o ., Let's assume (subject to later verification) that
nf -0 as 1n >, and hence that C, = 0 . Separating the variables and

1
integrating again,

2
£ = ¢y e /2 (2.5.13)
Note that indeed nf - 0 as 1n - « , as assumed. Our choice £(0) =1
requires C2 = 1 . Hence,
2
£(n) N2 (2.5.14)

To complete the solution we need®

” s 2/2 ® _? T |
/f(n)dn = [e n dn = /e VZdo = /3 (2.5.15)
0 : 0

Using this in (2.5.6), we find

A. o —Q__
A= (2.5.16)
Hence, the final solution is
Q. ?
c = exp |- %%7; (2.5.17)
Tt o
Note that the concentration at x = 0 is infinite at t =0 . This reflects

a modest deficiency in the model, namely we assumed that we could place a
finite amount of contaminant in a zero thickness layer at time zero. Thus, the
solution is not useful for very small times. Fig. 2.5.1 shows the form of this

solution.

%
See HMF Section 7.1.
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2.6 A Non-Linear Problem (fﬁ)

The laminar boundary layer over a flat plate is described by

Y = vy (2.6.1)

Vy Yoy - wx vy yyy

where V is the kinematic viscosity and Y(x,y) is the stream function,

which must satisfy the boundary conditions

Y= 0 at y=0 (2.6.2a)
wy = 0 at y=0 (2.6.2b)
A as x>0 (2.6.3a)
A as y -+ (2.6.3b)

Students of fluid mechanics should look up the derivation of this problem; others
may treat it simply as a mathematical example.
Since there are no characteristic scales in the problem, we look for a ‘ i)

self-similar solution of the form

P(x,y) = Ax" £(n) , N = By/x"

(2.6.4)
Note that we will need three <y derivatives, and only one x derivative, so
we chose a form that keeps the y dependence simple.

Substituting (2.6.4) in (2.6.3),

A" ') > U as (n -+ ) (2.6.5)

vy o

Now, £'(®) will be a number; hence, for this to be constant, m=n . We
will make the arbitrary choice £'(®) = 1 . Then, we will have to choose A
and B such that AB = UO . With these choices, (2.6.5) will be satisfied
for all x .

Next, we substitute (2.6.4) in (2.6.1), using m = n . This produces
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)

3, -2m

-AB f' o ABx'lmn £ - me"lm(f-nf')BAzx'm £'' = VB Ax “U £

(2.6.6)

Note that we have already replaced y by nxm/B . For x to drop out,

3
-2m = -1, or m=1/2 . Then, if we pick A2B2 = VB A, the equation reduces

to

£ +-% f£'" = 0 (2.6.7)
We have already chosen £f'(®) = 1 , which led us to AB = Uo . Hence,
A = /Uo/v B = /Uov (2.6.8)

The boundary conditions are, from (2.6.2a)
£(0) = 0 (2.6.9a)
and from (2.6.2b)
£'(0) = O (2.6.9b)
Egs. (2.6.3) will be safisfied by our choice of constants if
£F'(n) > 1 as N > © (2.6.9¢)

Eqn. (2.6.7) must now be solved, subject to the boundary conditions (2.6.9).

The solution will introduce you to two useful ideas; rescaling, and numerical

- solution as an initial value problem.

In problems of this sort, it is often possible to use a "rescaling tech-—
nique" to convert the two-point boundary value problem to a one-point initial
value problem. The advantage of this is that the initial value problem can be

solved numerically with a single-pass technique. To rescale, we let
z = Cn £m) = c"glz) (2.6.10)

2.19
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The idea is to pick an n such that we can solve the g equation without (’q)
knowing the value of the constant C , which will be determined after the g
equation has been solved. Substituting (2.6.10) in (2.6.7), one finds
(g' = dg/dz, ete)

n+3 1 C2n+2g g

> (KX} +
- C g + 5

Now, if we pick n+3 = 2n+2 , i.e. n =1 » the g equation is

ght +.% gg' = 0 (2.6.11)

The boundary conditions on g are, from (2.6.9a and b),

g(0) = (2.6.12a)
g'(0) = (2.6.12b)
We replace the outer boundary condition by a third condition at z =0 . Let's /'")
use N
g''(0) =1 (2.6.12¢)

If we can solve (2.6.11), subject to (2.6.12), we can choose C to produce an
f satisfying (2.6.9c), and the solution will be complete.
So now we go to the local computer center, and use a program that solves

systems of first order ODE's by a marching method. These methods deal with

systems of the form

= = Ay ‘ (2.6.13)

with the "initial" (x = xo) values of the solution vector Y4 prescribed.

We define the three variables as
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linearly, Yy = g'

vy, = 8
vy, = 8
vy = g''

Then, (2.6.11) is the first order equation

]

. 1
I3 2 7173

The other two equations are, from the definitions,

yl - y2
' =
k) 73
The initial conditions are
= 0
¥1(0
y,(0) = 0
= 1
y3(0)

(2.6.14a)
(2.6.14b)

(2.6.14c)

(2.6.15a)

(2.6.15b)

(2.6.15¢c)

(2.6.16a)
(2.6.16b)

(2.6.16c)

Tt takes only a few lines of program to tell the general purpose program that we

want it to solve (2.6.15), subject to (2.6.16), over a range from x =

some large x (perhaps 20). We execute, and print

different values of x. If all has gone well, at large =x ¥1

will be constant, and y,; = g" will be very small.

Knowing the value of z > ®

g'(z) as

transformation (2.6.10) and the outer boundary condition (2.6.9¢)

2

fl(@) = C g'(x) =1

0 to
Yy » ¥y » and yq at

will be growing

, we go back to the rescaling

Hence, C = 1// g'(®) . We can now calculate and plot f(n) for 0<n<=®,

and the problem is finished.
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2.7 An Example in More Dimensions

The transient heat conduction in a quarter-infinite block (Fig. 2.7.1) is (lﬁ)
described by o
2 2

0T ., 3T _ 13T
—2-+-2 TS (2.7.1)

ox oy t

where the quantities are as defined in §2.3, Suppose that the initial condi-
tion is

T(x,y,0) = T . for x>0, (2.7.2)
y >0

the boundary conditions are

T(x,0,t) = TS (2.7.3a)
T(0,y,t) = T, (2.7.3b)
Let's seek a self-similar solution in terms of two similarity variables,” (/j>
£ = Ax/t" n = Ay/t" (2.7.4)
Following the example in §2.3, we assume
- T.
_ 1
TS - Ti = F(&,n) (2.7.5)
Substituting in (2.7.1) s
2 -2n nt_ : ;
ATt F,_ _+F = - F_4nF 2.7.6
(FegtBp) = = B (EFgmE) (2.7.6)

We choose n = 1/2 to reduce (2.7.6) to a PDE in just & and n .
Then, with A = 1/Vo ,

*Because the problem is symmetric in x and y , we have no reason to use / )
different powers or coefficients in the two similarity variables. i
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wa

F,_+F_ +EF
mn

= 2.7.
£c + nFn 0 (2.7.7)

g

Note that the self-similar transformation has reduced the number of independent

variables by omne.

The boundary and initial conditions produce

F(0,n) 1 (2.7.8a)

F(E,0)
Now, as & - «, the solution should approach that of the semi-infinite
solid (see § 2.3), so

1 (2.7.8b)

F > g erfc(n) as & » o (2.7.8¢c)

Similarly,

F > £(&)

erfc(f) as n > = (2.7.84)
The PDE for F can be solved by the method of separation of variables,

discussed in the next three chapters. Following the approach to be presented

there, we assume

F(E,n) = £(&) + g(n) + H(E,n) (2.7.9)

Since o+ E%' =0 and §" + ng' 0 (see 2.3.8), H also satisfies

(2.7.7). Now, we assume a separable solution for H

H(E,n) = £(&) * g(n) (2.7.10)
Substituting (2.7.9) in (2.7.7), and dividing by H , one finds

£'' ; gt _ _ <g" + ng'> (2.7.11)
g

Since the left-hand side is independent of n , and the right-hand side is

independent of & , both must be constant, and

£'' + Ef c
£

E" + ngl _ —C
g .
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or,

£'' + Ef' = cf (2.7.12a<’m7

g" + ng'

-Cg (2.7.12b)
The boundary conditions on H are, from (2.7.8),

H>0 as & > (2.7.13a)

H->0 as n -+ ® . (2.7.13b)
H(O,n) = -g(n) ' (2.7.13¢)
H(E,0) = =-£(&) | (2.7.13d)

By symmetry, f and g must be the same function, hence C = 0. So if we take

cC =0 £(g) = 1if(E) g(n) ig(n) (2.7.14)

(2.7.12) will be satisfied, and the boundary conditions (2.7.13) are all satisfied.

+ erfc(E/VT) + erfc(n/v2) (2.7.15)

Hence, the solution is

F(E,n) = =-erfc(&/V2) erfc(n/V2)

2.8 Summary

We have seen that self-similar solutions arise when thereuare no natural
characteristic scales for the independent variables in the problem formulation.
The self-similar transformation will always reduce the number of independent
variables by one, so that in a problem with two independent variables the PDE
will become an ODE. The steps used to systematically develop the self-similar
solution are as follows:

(1) Assume a general form for the transformation, guided by the initial
and bgundary'conditions. Use a form in which the variable that
appears in the most complex way in the equations appears as simply
as possible in the transformation.

(2) Express the boundary and initial conditions in terms of the simi-

larity transformation, and verify that they can be satisfied by the / )

[

o
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assumed transformation. If they can not, add additional degrees
of freedom.

(3) Remove one (or more) of the independent variables using the
similarity variable. Then, determine the parameters of the trans-
fbrmation necessary to reduce the PDE order by one.

(4) Express the boundary and initial conditions for the reduced problem,
and solve by appropriate methods.

In all of the examples worked here, the similarity variable involved forms

like y/vYx . The square-root behavior occurs‘frequently, but not exclusively.

Some of the problems at the end of this chapter will require other powers in
the similarity variable.

For Further Reading on Similarity Solutions

Kline, S. J., Similitude and Approximation Theory, McGraw-Hill Book Co.,
New York, 1965.

Hansen, A. G., Similarity Analysis of Boundary‘Value Problems in
Engineering, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.

Sedov, L. I., Similarity and Dimensional Methods in Mechanics, Academic
Press, New York, 1959,
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L
Exercises: _ v/

2.1 The temperature field T(x,t) din a semi-infinite slab with a constant
heat flux is described by

°T _ 9T -
a.a 5 T 3¢ 3 T(x,0) = Ti
X
T(x,t) - T, as x > 3 -k T at x =0
9’ i s ax q.

Solve for the temperature field for x>0, t >0 .

2.2 The temperature field in the thermal boundary layer that grows within a

hydrodynamic boundary layer at a step in wall temperature is described by

2
0" T oT
Ot——ayz = Byyy 3 TOy) =T, y>0

]
=
L J

T(x,y) » T, as y=>o 3 T(x,0)

Solve for the temperature field for x>0, y >0 .

2.3 A device for measuring the velocity gradient in flows is shown in the
figure. It.consists of a heated plate at the wall, over which a thermal
boundary layer grows. As long as the thermal boundary layer is confined
to the region where the flow velocity u 1is linear (u = By) , the

problem is described by
3T 3T
2

o— = Bygx 3 TO,y) = T, y>0
oy :

oT
T(x,y) ~ T, as y > : -k 5; = q at y=20
Derive an expression relating the locél wall temperature, TW(x) , to the

flow parameters and x . Evaluate any constants in this expression.
Hint: T .
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medium is described by

* %;-(r %% = r %% 3 c(r,t) > 0 as r >
c(f,O) = 0 r >0 : 21 fcrdr = Q
0

Solve this problem, an&’give an expression for ¢(0,t).

medium is described by

) 2 9¢y _ .2 09c -
¢ NE (r ar) = r Bt 3 c(r,t) - 0 as r ~»
® 2
ce(r,0) = 0 >0 lmfcr dr = Q
0

Solve this problem, and give an expression for c(0,t) .

2.6 Consider a non-linear diffusion problem described by

) de
o (1+8c) N

dc _
N c(x,0) = 0 x>0

ﬁ,. s

c(O,t) = 1 3 c(x,t) - O as x >

2.4 The diffusion of a contaminant deposited along a line within an infinite

2.5 The diffusion of a contaminant deposited at a point in an infinite

Derive the similarity transform and associated ODE. Solve the problem

numerically for B = -0.5, 0, and 0.5 . Use the B =0

case to check

the numerical solution against the exact solution, and to guide the

starting and direction of numerical marching.
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Chapter 3

SOLUTION OF EIGENVALUE PROBLEMS BY SEPARATION OF VARIABLES

3.1 Introduction

Solutions to linear, homogeneous partial differential equations, ot

. coupled systems of such equations, can usually be obtained by‘the‘methodf

of separation of variables (SOVj. In some problems, such as vibration
analysis, the SOV solutiohé are of gréatkphysical interest, as theyrrééfésent}
the natural modes or eigenmodes of vibrétion.: In other problems the SOV
solutions are of little interest by themselves, but they can be used as
building blocks to construct solutions that are of interest. In this
chapter we shall discuss the general idea behind the development of solutions
by S0V, and present a number of examples in which the SOV method is used to
construct interesting eigensolutions. In subsequent chapters we will
examine the role of these solutions in constructing more complicated solutions.
With very few exceptions;)thé SQV methbd is oniyvuseful in 1inear,T f
homogeneous equations; A linear equation is one in which the dependentj
variable and its‘partial dérivativés #pﬁeér only to>the first power,-and neVerf
in'products. Iﬁ a homogeneous equation one may multiply the dependent
variable (or variables) by a constant, with the result that the constant
drops out of the equation. Examples of linear, non-linear, homogeneous, and
inhomogeneous PDE's are given in Table 3.1.1.
EigéﬁVéer prbblems'arisé in iiﬁeérkhdmogenébﬁé PDE's-fof ﬁhiéh fﬁér

bqundary conditions are also linear and homogeneous. in such cases it is

obvious that one solution to the equation and boundary conditions is that:the
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the dependent variable is zero; this is called the trivial solution.} If

-nontrivial solutions- also exist, they are called eigensolutions; each is

u;ually associated with a particular value of a parameter, called thé
eigénvalueﬁ In vibration problems the eigenvalues are the natural
frequencies of vibration; in nuclear reactors the eigenvalue is the critical
mass. Table 3.1.2 gives some examples of homogeneous and inhomogeneous
boundary conditions.

Thé‘generaividea of}SOV is to assume that the solution for the dependent
variable (or variables) exists as a Brbduct of functidns; each of which is a
function of only one of the independent variables. For example, one would

assume

u(x,y,t) = X(x)*Y(y)*T(t) | (3.1.1)

(The use of capital letters for the functions, and small letters for their
arguments, is customary). Then, one manipulates with the equation to separate
terms that depend upon each of the variable from one another. Thig.léads to
a situation where the equation réquirés that a’fuhc;ion (ﬁot those above)

of one independent'variable must be equal to a function of another independéﬁt

vériable,‘fdrvany arbitrary values of the fwo independent»variables.f The

only way that this can be true is for the functions to be .constants.; This

in turn leads omne to ordinary differential equations for th% assumed functions

X(x), Y(y), etc., in which the separation constant appears. The separation

constant, or eigenvalue, is then determined from the linear homogeneous :

- boundary conditions. We will now illustrate this methodology by several

examples.
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3.2 Vibration of a String ; (A&)

The equation describing the small-amplitude motion of a taut string

is the wave equation,

au_ -u_ =0 ) (3.2.1)

Here u 1is the transverse deflection of the string (Figure 3.2.1), x is
the coordinate along the string, t is time, and: a2 _is.a physical conétanﬁ
that depends on the string tension'and mass per unitulengih.ﬁ§

Let us suppose that the ends of the string are fixed, so that the

boundary conditions are
u(0,£) = 03 u(l,t) = 0 / (3.2.2a,b)

We will seek the solutions to (3.2.1) and (3.2.2) that can be obtained by SOV.
We assume | ’ <h/>
Culx,t) = X(x) - T(t) (3.2.3)
Substituting in (3.2.1),

a?x"r - Xt = 0 (3.2.4)

Here primes denote the derivatives of the functions with respeét to their
own arguments, i.e. X" = dZX/dxz, " = dzT/dtz. The variables are
separated by dividing by X< T, which yields

2 Xll T"

a X '— T (3.2.5)

" Since the left-hand side is a function of x alone, and the right-hand |
side depends upon t ,only, and x and t are independent variables that

may have any values,g(3.2.4) can only hold ﬁrue if each side is (?he same) Q&;)

*#Students of mechanics should be able to derive this equation.
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constant: We may call this constant anything we like (e.g. C, -C, C2, Oy

- . . 2 ,
—wz, etc.) The "artistic" choice is -w“ , for reasons that will be clear

very shortly. So we have

11 1"
22X _ IV
a

= - 2
X T o (3.2.6)

Therefore, the SOV solution requires that the functions X and T satisfy

the two ordinary differential equations

™ + T = 03 ! aZx" + o2%x =0 / (3.2.7a,b)

The T -equation (3.2.7a) has two linearly independent solutions
sin (wt) and cos (wt). Thus, if w turns out to be a real number, the
solution will oscillate with frequency w (rad/s). The expectation of this
behavior is what prompted the choice of -wz for the separation constant.

The general solution to the T equation is
T = Al sin wt + A2 cos wt ; (3.2.8)
which, using trigonémetric identities, may be recast as
T = A3 cos(wt - ¢) v(3.2.9)

where ¢ 1is a phase angle. AtAﬁhis point A3 » ¢ and ® are all unknown. -

The X equation (3.2.7b) may be rewritten as

o+ A% = o (3.2.10)
A2 o W22
The general solution is
X = By sin(w) + B, cos(Ax) | (3.2.11)
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Therefore, the SOV process has produced the following solution to the PDE:

)

u(x,t) = Ay cos(ut - ¢) [By sin (Ax) +. B, cos(Ax)]

(3.2.12)

Any set of values,for,-,A3 ) ’ Bl s 32 », ,and ® will produce j

. a solution to the PDE.}fHowever, the boundary conditidnsflimit the values

which give solutions meeting the boundary conditions. Eq. (3.2.2a) requires

that ‘- u be zero at.)<=(),for’all :t.'f This can only be true if

X(0) =0 ] (3.2.13)
This in turn requires that B2 = 0. . Likewise, the condition on u at
x = L requires
X(L) = 0 (3.2.14)
; .
This requires that L ')
B1 sin(AL) = 0 (3.2.15)

One possibility is Bl = 0 , but this will produce a trivial solution. The
other possibility is

sin(AL) = 0 (3.2.16)
This will be satisfied if AL is assigned any of the following values:

AL = m, 27, 3m, ..., oT (3.2.17)

Associated with each of these possible choices, or eigenvalues, is an

eigenfunction

Xp(x) = Bln sin(Ax)

(3.2.18)
}\n = n’lT/L
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Since W = al, for each n there is a corresponding frequency

wn = akn = nMa/L (3.2.19)

We now have a complete description of the normal modes or eigenmodes

for this problem. They are described by

u (X?t) = A sin(A x) cos(wnt )]
(3.2.20)
w o= nfa/L; A, = aT/L

Note that the amplitude A cannot be determined; this is a consequence of
the homogeneous feature problem. In addition, the phase ¢ is also
undetermined. All we can determine are the mode shape sin(lnx) and the
vibration frequency wn. The shapes of the first few modes are shown in
Figure 3.2.1b. Note that the higher modes oscillate atahigher frequencies,

and have nodal points at which the string remains motionless.

Suppose that a guitarist had sufficient dexterity to pluck his strings
in one of the normal mode shapes shown in Figure 3.2.1. At time zero the
defléction would then exactly match the x-dependence of the eigensolution,
and the string velocity at the moment of release du/dt, would be zero.
The condition 0du/d9t = 0 requifes ¢ = 0, and the amplitude of the pluck
would determine A. Thus, if we add to the PDE and boundary conditions the

initial conditions

u(x,0) = A sin(lhx) (3.2.21a)
Su 0 = 0 (3.2.211)
at = at t - . .

then the solution is fully determined as

u = A sin()\_x) cos(w t)
n n (3.2.22)
w, = akp : ,
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3.3 One-Dimensional Acoustic Vibrations <w”“*7

7

The deviation of the fluid pressure from ambient during one-dimensional

acoustic vibrations is also described by the wave equation,

2 2
c2 ng. - @.% = 0
- 5t | (st'l)

where c is the speed of sound in the fluid. The lateral velocity u
‘associated with acoustic motions is related to the pressure fieid by*
ol L _
ot ox (3.3.2)

where o is the fluid density.

At an open-end of a tube or duct the boundary condition p =0 1is a
good approximation if the wavelength is long compared to the duct diameter.
At a closed-end of the duct the fluid velocity u is zero, and hence the /”\)
boundary condition 9p/3x = 0 is appropriate. Figure 3.3.1 shows the
boundary conditions of interest in a number of simple one-~dimensional acoustic
vibration problems.

As an example, let's take the case of a tube closed at x = 0 and
open at x =L , and seek the normal modes of acoustic vibration for this

case.® Thus, the boundary conditions are

%E = 0 at x = 0 (3.3.3a)
(3.3.3b)
p = 0 at x = L

*Acoustic waves correspond to motions of the fluid in the same
direction as the wave propagation (lateral waves), while in the string
vibration previously considered the string motion is perpendicular to the
direction of the wave propagation (the string). M»/

*These modes can be excited in a tall-slender bottle by blowing
across the mouth.
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Note that these are both linear homogeneous conditions. We assume

P = X(x) * T(t) (3.3.3)
Substituting in (3.3.1), and separating the variables, we find

2 X o2 (3.3.4)

X T

where again we chose to call the separation constant -w2 for the same

reasons as in the previous example. Hence,

T + sz = 0
"+ A% = 0
where
A = w/e (3.3.5)

The general solution of the X equation is

X = Cl sin()x) + C2 cos()\x) (3.3.6)

The boundary conditions, which must be satisfied for all t , require

that
X'(0) = O X(L) =0 (3.3.7a,b)
The first tells us that C1 = 0. The second requires
C2 cos(AL) = O (3.3.8)

C2 = 0 dis one possibility, but this produces a trivial solution. So we

conclude that X must be such that

cos(AL) = 0 (3.3.9)

which will be true if AL has any of the following values:

o= 5 %, 5—1;, ey (20-1)7, L (3.3.10)
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Hence, for the nth mode, A, = (2n-1)7/(2L) and X, = C2 cos(lnx). ‘ (/m)

The T equation has the general solution

T = Al cos(wt) + A2 sin(wt) = A3 cos(wt - ¢) (3.3.11)

So, the normal modes of acoustic oscillation are described by

p(x,t) = A cos(X x) cos (wnt - ¢)
A, = (2n-1) w/(2L) (3.3.12)
w. = (2n-1) me/(2L)

Again, we find that the amplitude A and phase ¢ of the acoustic pressure
field cannot be determined (without the addition of initial conditions).
This is always a characteristic of normal-mode vibration problems.

We can now calculate the velocity field associated with eéch eigenmode,

.

f“)
using (3.3.2); A

p-g% = A, sin(A,x) cos(wnt -¢) (3.3.13)

Integrating and using the fact that wn = Anc,

u(x,t)

oo sta0yx) sin e - 6) (3.3.14)

(The constant of integration must be zero for the fluid to remain’
motionless at the closed end.) Note that the nodes of p , where the
pressure fluctuations aré always zerd, are the antinodes of u (points
where the u field has maximum amplitude).
Let's look briefly at a very simple application of this theory.
Suppose you are trying to reduce the noise present in a long room in
which the acoustic motions of this type occur to the bother of the ( ’)

occupants. One solution is to damp the motions by providing a fine fibrous
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material that will oppose the fluid motion through viscosity. Obviously

the best place to locate this ﬁaterial is where the fluid velocity is great-
est (a velocity antinode); the material would have little effect if placed at
a velocity node*. This means that the material to quiet the room should be
plaéed at a node in the pressure field, i.e., where the sound you are trying

to kill can not be heard!

3.4 Membrane Vibration

The vibration of a taut membrane is described by

2.2
a’Vu - U, = 0 (3.4.1)

2
In Cartesian coordinates the Laplace operator V is

2 2
A o (3.4.2)
ox oy
while in cylindrical coordinates
2 2
v el 20 (3.4.3)
ar r 90

The parameter a depends upon the membrane tension and density. The bound-
ary condition is that the displacement u must be zero all around the edge
of the membrane.

To study the normal modes, we assume

u(x,y,t) = F(x,y) * T(t) (3.4.4)

In actual situations the acoustic field is much more complicated. However,
it is in general true that placing the acoustic damping material away from
solid walls, out in the room where the air can move through it, is most ef-
fective.
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We have chosen not to split F as yet in order that the analysis apply to (/ )
a variety of membrane geometries. Substituting in (3.4.1) and separating

the variables,

2
2 V'F " 2
a” % T -w (3.4.5)
The choice of - w2 as the separation constant was again dictated by our

expectation that the time-~solutions would be periodic. Thus, we have

T 4 02T = 0 (3.4.6)
VF+ 2% = 0 (3.4.7)
32 wlsa?

The time solution again has the general form
. o
T = A cos(wt-0) \

The eigenvalues (w or M) are determined by the solutions to the eigen-
value problem formed by (3.4.7), with the boundary condition F =0 on C,
where C denotes the outer edge of the membrane.

For a rectangular or circular membrane we can solve the F problem by
SOV in appropriate coordinates. For other shapes the SOV method will not pro-
duce a useful solution, but in such cases it is possible to obtain the solu-
tion to the F problem by suitable numerical means.

Let's now consider the case of a square membrane (Fig. 3.4.1b). Our F

equation is then

F +TF + sz = 0 (3.4.8)
XX vy

We assume

J

F = X(x) ° Y(y) (3.4.9)
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Substituting in (3.4.8) and separating the variables,

" "

2
We could have placed the A term either on the x-side or on the y-side;
the same solution would be obtained in the end in either case. We chose to
. 2 . .
call the separation constant - &  because this will produce an X-equation of

X"+ 0%X = 0 (3.4.10)

and hence X will be periodic in x and can go from zero at one side of the

membrane to zero on the other, as the boundary conditions require.*
The Y-equation may be written as
482 = 0 where 82 =% - o (3.4.11)
Equation (3.4.10) has the general solution
X = C1 sin(ox) + 02 cos(ox)
The boundary conditions F(O0,y) = 0, F(L,y) = 0 require
| C2 = 0 Cl sin(al) = 0 (3.4.12a,b)
Hence the eigenvalues’ o ~are
o, = /L (3.4.13)
Similarly, the Y solution is
Y = C3 sin(By) + C4 cos(By) (3.4.14)
and the boundar? conditions F(x,0) = 0, F(L,0) = 0 require
c, = 0 C, sin(BL) = O (3.4.15a,b)

3

2 \ . \
If instead we had chosen + 0, we would have ended up with an imaginary
value for o, which is "inartistic".
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Hence, there is another set of eigenvalues Bm,
B, = mm/L (3.4.16)

Thus, it takes two indices (n and m) to identify each eigensolution of

the F problem. The solutions are

_ . {nTX ., (MTYy
an = AnmSlntiT? 81an?ﬂ (3.4.17)
and the associated eigenvalues are
2 2 2 2, 2,2, 2
Xnm = o + Bm = ‘(n +m)7T/L (3.4.18)

We can now express the frequency of each mode of oscillation using the

relationship between w and A,

o = aVN@+nd) /L (3.4.19)

nm
Note that the higher modes (larger n and m) oscillate at higher frequen-
cies, and that modes héving the same values of n2 + m2 will oscillate at
the same frequency (but with different mode shapes). The lowest frequency of
vibration, called the fundamental, is associated with the (1,1) mode, and

is V2ma/L.

Figure 3.4.2 shows the first few mode shapes. Note that all except the

fundamental mode have nodal lines along which the membrane remains motionless.

These lines divide the membrane into regions within which, at any instant of
time, the membrane is moving in the same direction, and across which the di-

rection of motion changes.

3.5 Circular Membrane —- Bessel Functions
Let's now examine the case of the vibration of a circular membrane (Fig.
3.5.1), which will serve to introduce us to some new special functions. In

cylindrical coordinates (3.4.7) is
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1 1 2
Frr+;Fr+;§Fee+)\F = (3.5.1)
We assume
F = R(r) @) (3.5.2)

Substituting in (3.5.1) and separating the variables,
2 1" \] 2 2 1"
+ R
r'R +r§ Ar _ _Qe - 0(,2 (3.5.3)

Note that we had to multiply by rz/Re to effect the separation. The deci-
sion to call the separation constant + az in this case was dictated by the

realization that the solution must be periodic in ©O. Thus we have
9" +0'® = 0 | (3.5.4)
2R+ R+ WPrZ-ahR = 0 | (3.5.5)
The € solution will be written as

B cos(ab - )

where | is a phase angle constant. Again, we can not determine B or ¥
without initial conditions. However, we can determine the possible wvalues of

0. The argument used in the solution can not be double-valued, i.e.,

e’ = @(6+2m

This can only be true if o 1is an integer, so
6 = n (3.5.6)

The R-equation (3.5.5) has solutions in terms of Bessel functions (see

HMF 9.1). If we let z = Ar, (3.5.5) becomes

2
LZAR L R GZHR = 0 (3.5.7)
d22 dz

The general solution consists of two linearly independent Bessel functions

and may be expressed as
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R = ClJa(z) + CzYa(z) (3.5.8) |

where the functions Ja(z) and Ya(z) are called the Bessel functions of
the first and second kinds, respectively, of order o. These functions are
no different in concept from the sin(z) and cos(z) functions that satisfy
the ODE dzR/dz2 +R = 0. Power series can be found for the Bessel functions
using standard methods for developing series solutions of ODE's, just as one
can for the trigonometric functions. If you have not encountered them before,
think of them as slightly complicated functions which can be computed, tabu-
lated, looked up, or called in FORTRAN programs, just as those functions with
which you are already familiar.

Just as one takes linear combinations of e° and e 2 to define new
functions sinh(z) and cosh(z), one can define other functions as linear
combinations of J and Y. Thereforé, in the literature one may encounter //t>
the Hankel functions of the first and second kinds, Hél)(z) and Héz)(z),
which are particular linear combinations of J and Y. Hence, other valid

forms of the solution to (3.5.7) are

R = ¢ Hél)(z) +C Héz)(z) (3.5.9a)

3 4

R = CSJa(Z) + C6

Hél)(z) (3.5.9b)

etc. In some literature Y, 1s denoted by N,

Note that (3.5.7) is even in the parameter o. If one replaces o by
- al in the series expansion for Ja(z), one obtains another Bessel function,
J_a(z). If o is not an integer; then Ja(z) and J_a(z) are linearly in-

dependent, and an acceptable general solution to (3.5.7) . is

R = C7Ja(z) + CSJ—a(Z) (0 non-integer) (3.5.9¢)



However, if o is an integer, then Ja(z) and J_u(z) are the same function
(except for a constant factor) and hence are not linearly independent and
(3.5.9¢) is not the general solution for integer a. Eqn. (3.518) is the usual
representation of the general solution in the modern literature, and we shall
use it for the remainder of the analysis. Fig. 3.5.2 shows the form of Ja(z)
and Ya(z).

- The Bessel functions YG(Z),‘J_a(z), and Héz)(z) have one important j
propertyfinicdmmon; they all are infinite at =z = 0. Therefore, these func-

tions cannot appear in the description of the deflection of a continuous mem-

~ brane that includes the point z = 0-}(although_they would appear in the /

solution for an annular membrane)l The functions Ja(z)_ and Hél)(z) are

well-behaved at z = 0 and present no problem. Hence, for our circular mem-

brane we must take 02 = 0, and with o = n our solution reduces to

R = ClJ#(Kr) ‘ (3.5.10)

The remaining boundary condition will determine the eigenvalue A. Since

the deflection must vanish at r = r, for all 6, R must be zero at r = r,.
ClJn(Aro) = 0 (3.5.11)

Looking at Fig. 3.5.2, we see that there are indeed points at which the Bessel
function Jn(z) is zero. These points are given in HMF Table 9.5, where
jn n is the value of 2z at which Jn(z) has its mth zero, Hence, it again

b

takes two indices to identify the eigenfunction and eigenvalue,

A = ] /r0 (3.5.12)
Recalling the relationship between A and the frequency (see 3.4.7)), the
frequency of vibration of the n,m mode is seen to be

w = aj /r (3.5.13)

nm n,m o
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e
Table 3.5.1 gives the first few values of these frequencies in dimensionless ( )
form. The solution for the membrane displacement - in the vibration

eigenmode n,m is then

unm(r,e,t) = AnmJn(Xnmr) cos(nb - ) cos(@nmt-¢)

(3.5.14)

The phase angles ¢ and Y, and the amplitude A remain undetermined.
The lowest frequency occurs for the 0,1 mode. Note that for n =0
the motion is axisymmetric, and has no nodes. The next higher frequency

occurs for the 1,1 mode. This mode has one diametral node.along which the

TABLE 3.5.1
DIMENSIONLESS MEMBRANE FREQUENCIES /”T>

n n jn,m N mnmro/a

0 1 2.40483

11 3.83171

2 1 5.13562

) 5.52008

3 01 6.38016

1 2 7.01559

4 1 7.58834

membrane does not move. (The phase angle of this node cannot be determined
without initial conditions). The third mode is the 2,1 mode, which_has
two diametral nodes, and the fourth is the 0,2 mode, with one circular
node at the point where JO(AOZr) =0, i.e. at Aozr_= 30’1 = 2.40483.

Figure 3.5.3 shows the nodal lines for the first several modes. L_/)
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3.6 Nuclear Reactor Criticality

A very simple but conceptually useful model for the neutron density

in a nuclear reactor is that the neutron density 4¢ is described by

vZ% + W% = o0 (3.6.1a)
where
2

Vi = ¢ + %¢r + lé¢ee
r

. + ¢ (3.6.1b)

ZZ

The parameter u2 depends upon the reactor size and design and the position
of the control rods. For a cylindrical reactor, the boundary conditions are

(Fig. 3.6.1)

¢, = 0 at z =0 (3.6.2)
=%, = B¢ at r =r, (3.6.3)
—¢z = R at z = L/2 (3.6.4)

Equation (3.6.2) is a symmetry condition; (3.6.3) and (3.6.4) equate the
neutron diffusive flux at the outer surface to the diffusive loss through
shielding. This model is far too simple to be useful in reactor design.
Nevertheless, it does display many of the features of more complex models
that are solved by any heavy numerical analysis in actual reactor design.
The example will also serve to introduce some aspects of Bessel functions
and graphical solutions of transcendental algebraic equations. Equations
(3.6.2) - (3.6.4) are linear and homogeneous. It is clear that ¢ =0

is one solution. TFor small U (small reactor volume) it is the only
solution, but as pu 1is increased the point is reached at which a non-
trivial solution becomes possible. This non-trivial solution, ah

eigensolution of the linear homogeneous problem, represents the neutron

density field for steady-state reactor operation. The lowest value of U
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(lowest eigenvalue) determines the critical mass of the reactor.* The

C)

objective of our analysis is therefore to calculate .

We will seek axisymmetric eigensolutions of the form
¢(r,z) = R(r) * Z(z) (3.6.5)

Substituting in (3.6.1), and separating the variables,

1

n 1
L A AR (3.6.6)
R \z M) T

2

The separation constant was called -q~ because this will lead to positive,

real 0. So,

" +v2 = 0 (3.6.7)
where
YZ = u2 - az (3.6.8) N
/-
and \,/>
R" +%—R' +0%R = 0 (3.6.9)
The Z solution is
Z = Cl sin(yz) + C2 cos(YZ) _ (3.6.10)

But Cl = 0 by (3.6.2), then since (3.6.4) requires

Z' +B8Z = 0 at z = L/2 (3.6.11)

*The transient behavior would be governed by

| 02 o v2y 4% (3.6.X1)
2 , ot : 56
If M<U, v < 0 and the reactor shuts down. If yu > Mo 5;—> 0 and

the neutron population builds up. The reactor control system increases u

to slightly above u_, then allows the neutron population to build up to the .
desired operating level (reactor power), and then resets u to U, to hold (~/)
a steady-state critical condition. . \
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it follows that

-y sin(YL/2) + B cos(YL/2) = 0 (3.6.12)
oY
_ (e (_2_)
tan(YL/2) = (2) T (3.6.13)

This defines an eigenvalue problem for Y. Figure 3.6.2 shows how the
eigenvalue 7Y can be determined graphically. This plot would be very
useful in helping one structure a computer program to calculate the eigenvalue(s).

The R equation general solution is

R = BlJO(ur) + B2 Yo(ar) (3.6.14)

But B, = 0 since YO(O) = ~© Then, (3.6.3) require

2
R' (rg) + BR(rg) = O (3.6.15)
Now (see HMF 9.1.28)
JO'(x) = -Jl(x) (3.6.16)
So (3.6.14) gives
Bl[-Jl(arO)° o + BJO(arO)] = 0 (3.6.17)
B, = 0 produces a trivial solution. Therefore, we require the term in

1
brackets to be zero. This determines the eigenvalue o. HMF Table 9.7 gives

the roots of

-XJO(X) + le(x) = 0 (3.6.18)

Hence, if we multiply (3.6.17) by r, and set Bro = A and arg = x, we

can use HMF Table 9.7 to determine arg. For example, if Bro = 0.2,

or, = 0.6170. Finally, we know that uz = az + Yz, and hence can calculate

4 from the known values of o and Y.
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The neutron density distribution is then

¢ = A cos(yz) I5 (ar)

The amplitude A cannot be determined. It depends on the reactor thermal

power output, and will increase as the reactor power increases.

3.7 Summary

We have seen that the eigensolution to linear, homogeneous PDE's sub-

Jjected to linear, homogeneous boundary conditions, can be obtained by SOV.

The general approach is as follows:
1. assume the solution in SOV form;
2. separate the variables and define the separation constants, ‘
3. invoke the boundary conditions, first to simplify the solution and
then finally to determine the separation constants (eigenvalues). /”\>

The amplitude of the eigenfunctions cannot be determined, because of the

homogeneity of the boundary conditions.
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Exercises.

3.1.

3.2.

3.3.

Find the eigenmodes and frequencies for an annular membrance with

inner radius r and outer radius r

i 0 (u=0 at r, and rO).

For the special case ro/ri = 2,5, give the lowest four values of

wro/a. (HINT: HMF Table 9.7)

Consider the pie-shaped membrane shown in the sketch.

Calculate the eigenmodes and eigen-

. . . . /4
frequencies, in non-dimensional form.

1
r r
o

Problems 3.3a - 3.3d all deal with acoustic waves in a cylindrical

«

enclosure. In each case the governing PDE for the pressure is

2.2
cVp - Py = 0

where, in polar-cylindrical coordinates

1
Py + r2 Pgp + Pyz

N
H |

The boundary condition at the solid walls (at z =0, at z =1L,
and at r = ro) is that the derivative of the pressure field normal

(perpendicular) to the wall must vanish, i.e.

P, = 0 at z = 0O,L

p. = 0 at r = ry

a. TFind the eigenmodes and freqﬁencies for axial modes where
p = p(z,t).
b. Find the eigenmodes and frequencies for radial modes where

p = p(x,t)
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3.4

c. Show that there are no modes where

)

p = p(6,t).
d. Find the eigenmodes and frequencies for the general case where

p = p(r,0,z,t)

In the analysis of seismic loading on nuclear reactors, oil storage
tanks and other large fluid containers, one needs to know the natural
frequencies of sloshing motions. This problem will acquaint you with

the typical analysis.

z

Consider a circular geometry, with vertical ‘ ﬁ 0
walls at r = Ty and the bottom at =z = -~h. ;f - 7
The equations governing the sloshing are ;? 4

2, _ 1 1 { -
@ v = ®rr+r®r+r2®ee+®zz =0 7llevgve’
(2) 30 "o l
2) 9% - =

St +gn = 0 on z=20 (4) %g, - 0 at r =1

T /ﬁ\v

(3) oy _ 20 = 0 =0 (5) 299 N

ot 0oz on z = — = 0 at z = -h

®(r,0,z,t) is the velocity potential; the fluid velocity is the gradient
of @ ; n(r,0,t) is the surface displacement. g is the acceleration
of gravity, g = 9.8m/sec2. Equation (1) is the continuity equation
for irrotationél flow, (2) is the Bernouli equation applied on the _
free surface, (3) is a kinematic condition relating surface motion to
velocity, and (4) and (5) are boundary conditions that the flow cannot

penetrate the wall. Students with expertise in fluid mechanics should

_derive (L - (5).

(a) Using the method of separation of variables, derive an expression
for the natural frequencies. Express them non-dimensionally as

© 9 = ur/g = £/ry)

Express the solution for the surface deflection n(r,8,t) in the

non-dimensional form

Y
e

e

N E ) . '
M ko= (ro) G(w_"t) H(nd)

where na is the maximum deflection at r = g (the sloshing

amplitude) , R
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(b) For the special case h/rO = ®© | calculate the values of Qz for
the modes having the five lowest natural frequencies, and sketch
the node-lines in the surface displacement n(r,0,t) for each

of these modes. Check-point; the fundamental has QZ = 1.841.

HINT: See HMF 9.1.1,.9.1.11, Table 9.5.

(c) Consider a large oil tank 30m in diameter, filled to a depﬁh of

10m.. Calculate the lowest natural frequency of vibration (hz).

(d) Find a coffee cup, jar, or other circular container. Fill with
water to a selected depth, and manually excite the first mode
by moving the container sideways. Compare the '"measured"
frequency (hz) with the value predicted by the analysis{
Visualize the radial node-lines of part (d) in your cup by
banging it (gently!) on the table.

3.5 Consider the sloshing of a fluid in a rectangular

z
tank. The motion is described by the equations
of Problem 3.4, except that
v = + + 0 M-
b = bt bt b, y
and (4) is replaced by b//;’
6 = 0 at x = 0,a b
X
—h 0
>
¢y = 0 at y = 0,b 0 a 3

(a) Calculate the natural frequencies of fluid sloshing in the tank. Show
that they are given by

2 2 2 m2 n2
w = gk tanh(kh) kKW = w5+
nm a b

(b) Give the expression for nnm(x,y,t) , apart from an undetermined phase

and amplitude.
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(c) Find a bathtub, wash-basin, or kitchen sink, fill with water to a
reasonable depth. Manually excite the fundamental sloshing frequency
and compare the theoretical value with an "eyeball" experimental

measurement (hz).

)

- 3.26
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Chapter 4

EIGENFUNCTION EXPANSIONS IN LINEAR PROBLEMS

4.1 Introduction

In the previous chapter, we saw how linear, homogeneous problems led to
eigenvalue problems when attacked by the method of SOV. For the problems
examined there, the initial condition information needed to complete the prob-
lem formulation was missing. In this chapter, we will see that it is possible
to combine the various eigensolutions of the '"partial problem" formed by the
homogeneous PDE and homogeneous BC's to generate the solutions to the complete
problem.

Suppose a PDE is a linear, homogeneous equation; let's denote

this equation by L(u) = 0 . Then, if wu4 and u, are two functions that
satisfy the equation, L(ul) =0 and L(u2) =0 . It follows from the

linearity and homogeneity that ug = Au, + Bu, also satisfies the equation,

1 2

since

L(u3) = L(Au1 + Bu L(Aul) + L(Bu

2) 2)

= AL(ul) + BL(uZ) = 0

So, we can take arbitrary linear combinations of functions satisfying the same
linear homogeneous equation and thereby construct new functions satisfying the
same equation.' This is the property of linear homogeneous equations that
enables us to use the eigensolutions as building blocks for more complex
problems.

Let's illustrate the idea with a simple example. In the vibrating string

problem (Section 3.2 ), we had the linear homogeneous problem _

2
au _-u., = 0 (4.1.1a)
u(0,t) = 0 (4.1.1b)
u(L,t) = 0 (4.1.1c)
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We can group the eigensolutions that we found into two classes: (/“)

uél) = sin (EEE) cos (Egé_t) (4.1.2a)
uéz) = sin (“—E"—) sin (E}I—"i ) (4.1.2b)

Eqn. (4.1.2a) represents those solutions that have du/dt =0 at t =0 s
while (4.1.2b) gives the eigensolutions with u(x,0) = 0 . Now, suppose

that we pose a complete problem by adding to (4.1.1) the initial conditions
du/dt = 0 at t =0 (4.1.3a)

u(x,0) = 3 sin (%§>- 2 sin (2%&) (4.1.3b)

Since all solutions (4.1.2a) satisfy both (4.1.1) and (4.1.3a), and since each

of these equations is linear and homogeneous, the linear combination

u = 3u£1) - 2u§l)

R X Ta . 27X 2ma
3 sin (L ) cos (L t) - 2 sin ( I ) cos ( I ) (4.1.4)

also satisfies (4.1.1) and (4.1.3a). Moreover, at t = 0 it matches

precisely the inhomogeneous initial condition (4.1.3b). Hence, it is the
solution to the complete problem formed by (4.1.1) and (4.1.3).

This example had such a simple initial condition that the proper mix of
the eigensolutions could be found by inspection. But we would like to be able
to deal with more complex situations, for example, the case where (4.1.3b) is

replaced by

u(x,0) = f£(x) (4.1.5)

where £(x) 1is any continuous function consistent with the end boundary con-
ditions (4.1.1b) and (4.1.1lc). You might correctly guess that this general

case would require a mix of all of the eigensolutions uél) » such that ng)
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N

alx,t) = z A_ ur(ll)(x,t) (4.1.6)
n=1

The question then is, how can the coefficients An be evaluated? Students
who have encountered Fourier series will recognize that in this case the
coefficients A.n are just the Fourier coefficients in the sine series for

f(x) , since
u(x,0) = 2 A sin (E%‘—) = f(x) (4.1.7)
n=1

However, suppose the eigenfunctions were not sinusoidal in x (as would be

the case for a non-uniform string). Recalling that
un(x,t) = Xn(x) . Tn(t) (4.1.8)

%
since we can always normalize the eigensolution such that Tn(O) =1, the

inhomogeneous initial condition would take the form

u(x,0) = z AX (0 = £ (4.1.9)

The function Xn might be sines, or Bessel Functions, Legendre polynomials,
or other special functions, depending upon the problem. The need to determine

the coefficients An still remains, as we shall see, a property of the

eigenfunctions Xn(x) , the orthogonality property, allows the An to be
determined. ‘
Thus, the solution to the complete problem can indeed be constructed as

a linear combination of the solutions to the linear homogeneous partial

problem,
* . . . @h) , .
Meaning those for which Tn(O) #0, i.e., the u functions in
(4.1.2a).
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4,2 The Sturm Liouville Problem (/\)

The key to determining the An's in an expansion solution is the

eigenfunction orthogonality property, which can be established for each
particular eigenvalue problem by mathematical analysis of the ODE's govern-
ing the eigenfunctions. Second-order ODE's arise in many problems; a

reasonably general second order problem is the Sturm Liouville problem.

The Sturm-Liouville problem is the eigenvalue problem described in the

linear homogeneous ODE

4 dy 2 -
ax (S(x) dx) + [Q(x) +.A P(x)|y 0 (4.2.1)
and the linear homogeneous boundary conditions
oy + By' = 0 at x = a (4.2.2a)
Yy +8y' = 0 at x=b (4.2.2b)
4 )
All of the second-order ODE's that appeared in Ch. 3 can be placed in this S

form; indeed, any second-order linear homogeneous ODE can be transformed to
the form of (4.2.1).

In this section, we are gding to explore the nature of the solutions to
problems of the Sturm-Liouville class, and develop the orthogonality property
of the Sturm-Liouville eigenfunctions. We will discuss questions of conver-
gence of eigenfunction expansions, but will use heuristic arguments rather than
formal mathematical proofs. Exacting proofs are available in books on advanced
theory of ordinary differential equations.*

Let's begin by looking at a simplified form of (4.2.1),

v+ A2 B(x)y = 0 ' 4.2.3)

P(x) > O

with the boundary conditions

%
See, for example, Ince, E. L., Ordinary Differential Equations, Dover,

New York, 1956.
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) y(0) = 0 y(Ly = 0 (4.2.4a,b)

If we momentarily replace (4.2.4b) by the inhomogeneous condition

y'(0) = 1 - (4.2.5)

then (4.2.3), (4.2.4a), and (4.2.5) precisely defines a function y(x;A) for
any A . Fig. 4,2.1 shows what these functions might look like for P(x) > O
over 0 < x <L . Note that y'' will change sign when y = 0 . Hence, the
solutions will oscillate as shown in the figure. The larger the value of A ,
the larger will be y'' and for any given y , and hence large A " solutions
will oscillate most rapidly.

Now, in this case the equation solutions y(x3;A) do not necessarily
satisfy the boundary condition (4.2.4b). However, for certain values of A

this boundary condition will be satisfied. The eigenfunction yn(x) is then

Y, = YA | , (4.2.6)

N’

It is clear that for this case there is an infinite set of eigenvalues and no

two eigenvalues are the same. Hence, we can think of ordering them such that

2 2 2 2
Al < ‘AZ < A3 < A4 e (4.2.7a)
and Ai -+ as n + ® (4.2.7b)

In general, for (4.2.1) subject to (4.2.2) it may be shown that, if S(x) > O
and P(x) > 0 over the problem domain (a < x < b) , then the eigenvalues are
distinct and may be ordered as in (4.2.7).

We are now ready to develop the‘orthogonality property. Let Y, and Vo
be two eigenfunctions associated with eigenvalues kn and km , respectively.

' Then, Yy and Yo satisfy slightly different ODE's.

1 1] 2
(Sy))' + [Q + AHP}_ v,

It
o

(4.2.8a)

[
o

(Syl;'l)' + {Q + AiP] Yo (4.2.8b)

4.5



Now, multiplying (4.,2.8a) by y_ and (4.2.8b) by y_ , subtracting the (/ﬁ?
m n

second equation from the first, and integrating, one obtains,

b ' b .
/[ym(syr'l)' - Yn(SYI;l)']dx = (xi - Ai) f Py y dx (4.2.9)
a

a

Integrating the integral on the left by parts, the left-hand side becomes

b b
- 1! _ 1!
| (Synym symyn) dx

a
a

r gy!
ymSYn V.5

But the integrand is zero, hence (4.2.9) is
b b

~ 2,2
a— o 'x\n)/ Py v _dx (4.2.10)

a

v '
s( Yon = YoIa)

The boundary conditions at x = a (4.2.2a) require

[}
o

ay  + By}
at x = a (4.2.11)

I
(@)

+ 1
ay + By
Thinking of this as a pair of linear homogeneous equations for o and B ,

which must have the problém values as a non-trivial solution, it follows that

the determinant of the coefficients must wvanish, or
' ! = = .2.12
(Ynym men) 0 at x'=a (4.2.12)

A similar result is found at x = b . Hence, the left-hand side of (4.2.10)

is exactly zero. Hence,
| b
02-2% | pyydx = o0 (4.2.13)
m n’ J n’m

e 2 4 42 . ' ‘
Thus, if An # Am , as will usually be the case if n # m &M/)//
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b
/Pynymdx = 0 n#m (4.2.14)

a

Eqn. (4.2.14) is the orthogonality property of the eigenfunctions. The eigen-

functions are said to be orthogonal with respect to the weight function P(x) .

Now, suppose that, in the course of trying to comnstruct the solution to
a PDE as a linear combination of eigensolutions of the linear, homogeneous
partial problem, we are led to the point where we wish to determine the

coefficients in an eigenfunction expansion,

F(x) = z Ay (x) (4.2.15)

where the y, are eigensolutions of a Sturm-Liouville problem. Multiplying

(4.2.15) by Pym , and integrating over the problem domain,

fny dx = z A nyydx (4.2.16)

a

But, because of the orthogonality property (4.2.14), all of the integrals on

the right will drop out, except the one where n = m . Hence, we can immedi-

b .
fnymdx

a
Am = 75——" (4.2.17)

ately solve for Am ,

Pyidx
a
The infinite series (4.2.15) will be useless if it fails to converge to
f(x) . In specific problems where one calculates the An it is easy to
perform the standard tests for series convergence. It is somewhat more
difficult to prove convergence in general. However, if f 1is square-

integrable, i.e., if
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b
fszdx is finite ﬂ

a

*
then the series converges in the sense that

2
dx »~ O

b N
lim f lf(x) - Ay (%)
Noco o ;z; n’n

This means that, if f is continuous over the interval a <x<b, the
series converges uniformly (at all x). However, if f 1is discontinuous at
some point, then the series will give a value at that point that is the
average of the values of f at points infinitesimally above and below the
point of discontinuity.
There are many problems of interest involving higher order system of
linear homogeneous equations. In these cases, there are no theorems or
general proofs of convergence of the eigenfunction expansions. One has to
proceed by examining each case separately. However, problems arising from
well-thought through physical formulations rarely, if ever, give rise to non- L )
convergent expansions, so the analyst is usually safe in going ahead, x
assuming convergence, and then verifying it after the fact by ratio tests,

numerical calculations, or other appropriate means.

4.3 Example - Vibrating String

For the vibrating string problem discussed in 84.1, the solution is given
by (4.1.6). The coefficients An must be chosen such that (4.1.9) is

satisfied. The eigenfunctions Xn are eigensolutions of
" 2 =
X''"+A7X =0 (4.3.1)
n n'n

and hence, from Sturm-Liouville theory, have the orthogonality property

%
See, for example, Ince, Ordinary Differential Equations, Dover,
New York, 1956,
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L
/Xndex = 0 n+mnm (4.3.2)
0
Recalling that
_ nmx
Xn = gin (—3:-> (4.3.3)
we see that (4.3.2) is equivalent to
L
nmx mwx 3
/sin(L>sin<L>dx—0 n#m

0

which is indeed correct. So, to determine the An we multiply (4.1.9) by

Xm and integrate,

1,
/medx
0
Am - L
X2dx
m
0
(4.3.4)
L
f(x) sin (M-}—{-) d
L
_ 0
L
/ sin2 (mzx) dx
0
The integral in the denominator has the value L/2 , for all m . Hence
L .
. 2 mTX
A = L/ £ sin () ax (4.3.5)
0 _

To be more specific, let's suppose that

4.9



2¢ x/L x < L/2
f(x) = (4.3.6)
2 (1-x/L) x > L/2

This corresponds to an initial pluck in the center. Integrating, one finds

4e (_l)(m+l)/2

> m odd
(mm)
A.m = (413.7)
0 . m even
Hence, the complete solution for (4.3.6) is
- 4 +1)/2
u(x,t) = . . (—l)(n ) sin (EE&) cos (EEE t) (4.3.8)
(nﬂ)z L L
n=1
(n odd)

Noting that A.n v l/n2 , we see that (4.3.8) is absolutely convergent for all

X and t .

A real string would exhibit damping, not present in the mathematical model

used here. Damping would cause the higher frequency modes to decay faster
than the lower frequency modes, with the result that the fundamental (lowest

frequency) mode would dominate after a period of time.

4,4 Example - Quenched Sphere

A metal sphere is heated to a uniform temperature To » then quenched
by dunking in water. If we assume that the surface temperature is instantly
dropped to T = 0 by the dunking, the temperature history in the sphere is

described by the linear, homogeneous PDE

5 [ 29T % 9T
— T —— = — —
or

Ny o ot (4.4.1)

and the linear, homogeneous boundary condition

4.10
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T(r,t) = 0 (4.4.2)

and the linear, inhomogeneous initial condition

T(r,0) = To r >0 (4.4.3)
This problem can be solved by the methods just described, The first step is
to construct the eigensolutions ef the homogeneous problem formed by the
linear, homogeneous PDE and boundary condition (4.4.1) and (4.4.2). Then,
a linear combination of these solutions will be taken to satisfy the inhomo-
geneous initial condition (4.4.3).

For the homogeneous problem, we look for eigensolutions in the form

Tn(r,t) = R(r) * F(t) (4.4.4)
Separating the variables,
(rZRv)v _ 1E - A2 (4.4.5)
2 aF _ t
r R

The decision to name the separation constant —Az was dictated by the fact

that the F equation then becomes
F'+ A% = 0 (4.4.6)

which has the solution

1 (4.4.7)
Thus, each of the eigehsolutions will decay in time. The R equation is
(xR + A%%R = 0 (4.4.8)

This equation has solutions in terms of the spherical Bessel Functions
(HMF 10.1.1); the general solution is
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R = C,  (Ar) + Cyy (Ar) (4.4.9) (7

The functions jo(z) and yo(z) are related to the Bessel functions of
order 1/2 , as shown in HMF §10.1. Now, yo(O) is infinite (see HMF 10.1.5),
so C3 = 0 1is required. Since we are going to multiply the eigensolutions
by expansion coefficients A.n when we construct the complete solution, we
lose nothing by setting Cl'C2 = 1 , and hence take the eigensolutions
Tn(r,t) as

—Aiat
Tn(r,t) = jo(Anr) e (4.4.10)

The eigenvalues An are determined by the homogeneous boundary condition

(4.4.2), which requires Rh(ro) = (, Hence, the condition

Jor) = 0 (4.4.11)
fixes the An . HMF Table 10.6 gives the roots of this equation, \\,>
Each of the eigensolutions (4.4.10) satisfies the PDE and boundary con-
dition, both of which are linear and homogeneous. Therefore, any arbitrary
sum of the eigensolutions will also satisfy the PDE and boundary condition.

So, we take
T(r,t) = z AT (r,t) (4.4.12)

and will try to find expansion coefficients A.n such that the infinite sum
also satisfies the initial condition (4.4.3). Thus, the initial condition

takes the form

T = z A J (A1) = Z AR (1) (4.4.13)
n=1 : n=1

»
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The orthogonality property, used to evaluate the A.n , may be developed by
manipulations with the ODE (4.4.8). One multiplies the equation for R.n by
R > the equation for R by R > subtracts, and integrates by parts.
Alternatively, the result may be taken directly from Sturm-Liouville theory.
In either approach one finds
r
)
/ r  R_R dr = 0 if n#m (4.4.14)
n m
0

So, multiplying (4.4.13) by r2Rm , and integrating, one finds
r

° r°2 2
T / err = / rRRdr = A f r"R°dr (4.4.15)
) E m m
' 0 0

Note that the orthogonality property drops out all of the integrals except

the one with n = m . Hence,

T/ err
A TI

A = = = = (4.4.16)

2
./(. r R dr
0

Thus, once these integrals have been calculated, the solution will be com-

pletely known.
The integrals Il and I2 can be evaluated using the differential
equation (4.4.8). This avoids the need for explicit integration. Integrat-

ing (4.4.8), one finds

r r

o o
= 2 = — —];— 2 ry? = -
Il / r Rndr 2/ (r Rn) dr
A
n 0

0

2 _, :
r Rh(ro)

> i
=] BJ

(4.4.17)
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Thus, the integral can be evaluated in terms of the derivative of the (ﬁ )
eigenfunction at the boundary.
In order to evaluate 12 » a special trick is helpful. Let R(r,A)
denote any solution to (4.4.8) that is finite at the origin (here
= jo(Ar)). Note that, R(r;A) satisfies (4.4.8) for all X .

Differentiating with respect to ), we obtain

2
g—r(rz %137)+A2r2 g§+zx R = 0  (4.4.18)

We multiply (4.4.18) by Rn and integrate over the problem range, obtaining

r
o 2
3 2 3°R 2.2 3R _
f R, 'B?(r 5?57>+>‘ a>\+2}\rR dr = 0 (4.4.19)
0

Integrating the first integral by parts,

r
2
R r2 R

n-  3rdA

r
o o 2 3 R _, _ '
_/ AR dr+ .. = 0 (4.4.20)

0 0

The boundary terms drops at r =0 , and also at r = r, because Rn(ro) =

Hence, only the integral remains. Integrating it again by parts, (4.4.20)

becomes
r0 ro ro
_ 2 3R _, dR 2 4y 2 2 2 _
r” Ay Ry +/ ) (c Rn) + A"c"R ) dr + 2) r'RRdAr = 0
0 0 0

(4.4.21)
Now, the integrand of the first integral is zero everywhere (it contains the

equation for Rn)' and hence this term drops out., With A = Kn’ R(r,ln) =
Rn(r),_ and hence the second integral is a constant times Iz; thus (\))
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. 22, 1 2., 3R
I2 = / r Rndr = ——2>\n r, Rn(ro) TN (4.4.22)

Thus, we are able to evaluate the integral I2 in terms of properties of
the solution at the boundary points. This is very useful, especially in

problems where we must resort to numerical solution of the eigenvalue ODE.

Hence,

- T r?R'(r ) 22
A - o on (o] . 2 n
n 2 []
) An roRn(ro)(BR/BA)
A=A
n
r=rr
o}
2T
0
A, (3R/8R)
A=A
n
r=r1, (4.4.23)

For the problem at hand, jo(z) = sin(z)/z (see HMF 10.1.25). Hence,
the eigenvalue~defining condition Rn(ro)

0 becomes

sin (Anro)
-5 - 0 (4.4.24)

no

and we see that the eigenvalues are given by the roots of sin (ano) ,

Anro = T (4.4.25)

Moreover,
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R(r,\) = ﬁfﬁi@— (4.4.26) )

1
T~ cos(lnro) (4.4.27)

oz
S——”
]
>

thing that cos(lnro) = (—l)n , (4.2.23) gives

o = 26D (4.4.28)
So, our final solution is, from (4.4.12),
sin(amr/r ) _ 2. 2 2
— 0l mTat/x (4.4.29)

HODIEI A -1t
(o]

- nTr/r

n=1 o]

Note that the series converges for all t . The series for 9T/dr , developed
from (4.4.29) by differentiation, will converge for all t > 0 because of the
exponential, but does not converge at t = 0 . But this is not a serious
limitation. As t increases the series converges more rapidly, and at large

t the solution is given (approximately) by just the first term,

sin(mr/r ) 2 2
T = 2To _—2% . m OLt/ro

(4.4.30)
mr/r
)

4,5 Sturm-Liouville Denominator Integral

In analyses,leading to the Sturm~Liouville problems, the orthogonality
property will produce (4.2.17)., The denominator integral may be expressed in
terms of quantities evaluated at the boundary using a generalization of the
trick employed in the previous example. Let y(x,A) be a solution to (4.2.1) [ )
not necessarily satisfying the boundary conditions (4.2.2). Then, y(x,An) .
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) will be an eigensolution satisfying the boundary conditions. We differentiate
(4.2.1) with respect to A , obtaining

L s-@EL #lo+ 2| Z v ey = 0
5% \° DxoA Q B y = (4.5.1)

Next, we multiply (4.5.1) by Yy and integrate over the problem range,

b
2 .
gy [ 2]3 _
/Yn 9% (S axax)” Q+ A"P| 3%+ 2APy | dx = 0  (4.5.2)
a

The first integral is integrated twice by parts, and (4.5.2) becomes

2 b b
3 ¥y .
Yo 5 Bxox | T X Yn®
- a a
)
b b
3
+/ sx (Syr'l)' + [Q + )\ZP:Iyn dx + Zkf Pyy dx = 0 (4.5.3)
a a

Now, if we set A = Xn s the first integral drops out (because the integrand

contains the Yn equation), and hence

b b , |
2 . 1 1a OY _ oy
/ LS Yol RES a8 Sxon (4.5.4)
a a ' a |y 2

Thus, the denominator in A.n can be evaluated without recourse to integration.

4.6 Removal of Inhomogeneities in the PDE and BCs

In the previous problem, the PDE and BCs were homogeneous, and there-

{
'\w/) fore eigensolutions of this homogeneous problem could be found. By taking a
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linear combination of these eigensolutions, we were able to construct a (/\)
solution which satisfies an inhomogeneous initial condition. In many
problems, the PDE and BCs also are inhomogeneous. In such cases, one must
"remove" the inhomogeneities to form a homogeneous problem which can be
attacked successfully by the methods presented above.
To illustrate the problem, suppose we are interested in the time-
history of the diffusion of a contaminant in an annular system in which the

contaminant is continually produced (Fig. 4.6.1). The governing PDE is

3 9 3
z (r 35) - 5.3%_ rs (4.6.1)

Here ¢ 1s the contaminant concentration'(kg/m3), .0, is the (constant)
diffusivity of the contaminant, and s is a "source" term. Let's suppose
that the outward diffusion is blocked at r = r by a barrier, so that the

boundary condition at r = r, is

—
= =0 at r=r (4.6.2) i :)

And, let's suppose that the contaminant is removed convectively at the inner

radius r, » S0 that the inner boundary condition is

¢
or

h(cme,) = D at r=r (4.6.3)
Here h 1is the convective transport coefficient, c¢_, 1is the concentration
(fixed) in the fluid passing through the annular hole, and P is the
diffusion coefficient for ¢ in the solid. Finally, let's suppose that

initially ¢ = <, throughout the solid,
c(r,0) = <, (4.6.4)

Eqs. (4.6.1) - (4.6.4) define the problem to be solved. (4.6.1) contains the
inhomogeneous term rs ; (4.6.2) is homogeneous; (4.6.3) contains the

“,

inhomogeneous term /’Lc°° . If we could somehow remove these inhomogeneities, the/
)
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PDE and BCs would be linear and homogeneous, and we could find the
eigensolutions and then combine them to satisfy the initial condition.
In transient problems such as this one, the inhomogeneities can usually

be removed by use of the steady-state solution. Let Y(r) be a solution of

(4.6.1), (4.6.2), and (4.6.3) that is independent of time (t) . Hence, the
steady-state solution UY(r) will satisfy

.g? (r %) = = rs (4.6.5)
%% = 0 at T =1 (4.6.6)
hy-c,) = D22 at r=r, (4.6.7)
Now, if we put
c = YP(r) + ¢(r,t) (4.6.8)

then the transient function ¢(r,t) will have to satisfy

Sy _ rd »

or (x 3r) o 9t (4.6.9)
%% = 0 at r = r (4.6.10)
h¢ = D %%- at r =1, (4.6.11)

Note that (4.6.9) - (4.6.11) are all linear and homogeneous in ¢ ; the

inhomogeneities that appeared in the equations for c¢ have been '"removed".
Hence, the ¢ problem can be attacked by separation of variables, and its

eigensolutions found. The initial condition for the ¢ problem is then
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-
6(r,0) = o0 - U@ = c - U(x) 6.2y ()

Thus, the structure of the ¢ problem is the same as in the problems
previously studied: homogeneous PDE and BCs, inhomogeneous initial condition.

The Y problem is solved simply by integrating; the first integration
yields

2

P! = ——;—s +c (4.6.13)

1

but (4.6.6) requires that ¢ = ris/Z + Thus, the second integration yields

r's 2
_ o _ sr (4.6.14)
Yy = - fn r -Z—-+ <y
¢, is found using (4.6.7) . The result is
2
(r, - ") r
- s ) .2 Tyt~ D[70

Y = c + R n (ri) + 5 + T T, ri> (4.6.15)

Next, we attack the ¢ problem. We look for eigensolutions of the form

¢ = R(r) * T(t) (4.6.16)
Eqn. (4.6.9) produces
%%")" _ %'i_' = - )2 .(4.6.17)
Hence, the T equation is
T +A%ar = 0 ~ (4.6.18)
and
T = exp (- \at) (4.6.19)
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) Since we expect the eigensolutions to decay with t (leaving the steady-
. , 2 \
state solution), the choice of -\ as the separation constant was
appropriate. The R equation is
Ty ? 2
(rR")' + A"rR = 0 (4.6.20)
which has the solution (see HMF 9.1.1).

R = ClJO(Ar) + CZYO(Ar) | (4.6.21)

The boundary conditions (4.6.10) and (4.6.11) require

' ' =
C AT (A ) + CAY! (Ar ) 0 (4.6.22a)

]
o

Cy [hJO(Ari) - DKJ&(Kri)] +C, [hYo(Ari) - DxYé(Ari)]

)  (4.6.22b)

Eqs. (4.6.22) are a pair of linear, homogeneous algebraic equations for Cl
and C2 . Non-trivial solutions can be obtained only if the determinant of

the coefficients is zero,

AJ;(ArO) KYé(kro)
D)) = ' = 0
n JO(Xri) - DAJ&(Ari) hYo(Xri) - DKY&(Ari)

(4.6.23)

D(A) 1is called the "characteristic determinant" of the problem. The zeros of
D(A) defines the eigenvalues Xn . They could be determined by a suitable
graphical or numerical routine, using Fig. 4.6.2 as a guide.
Now, the amplitude of the eigenfunctions can be anything, since they
satisfy homogeneous equations. Therefore, we can arbitrarily scale the
) eigenfunctions in any way we like. The choice Cl = 1 1is convenient; with
T Cln = 1, either of (4.6.22) will produce
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C2n = _Jc')(}\nro) /Y(')(Anro) .(4.6.24)

The éigenfunctions Rn(r) are now completely known, and hence the Rn(r)
can be calculated.

Finally, we expand the solution for ¢ in terms of the eigensolutions,

© o 2
o = z A ¢ (r,8) = z A R (r) et (4.6.25)

n=1 n=1

Evaluation of the A.n requires the orthogonality property. It is derived by
multiplying the Rn equation by Rm , the le equation by Rn » subtracting
the two equations, and integrating. After integrating by parts, using the

boundary conditions, one finds

) _ o
T Rn Rm dr = 0 n#m (4.6.26) | )

e

We could have taken this directly from Sturm-Liouville Theory (4.2.14). Hence
multiplying (4.6.25) by rRm , and integrating, one finds, for t = 0 s

r

o 1’:0 2
A = / ¢(r,0)r R dr / r R dr (4.6.27)
r,
1

Ty

Using the initial condition en ¢ , (4.6.12), the Am can now be evaluated.

If we were doing this analysis completely, we would write up a computer
program to evaluate the A.m and graph the solution for a range of r and ¢t .
Computer center libraries have routines that generate Bessel functions with
the same ease as exponentials, sines, and other functions, so this would be a
very easy task. The hardest part would be solving D(A) = 0 for a large
number of A's . One would start by plotting D(A) vs. A , which would give
an idea of the structure of the problem, after which an "automatic" root- K&W)

finder could be constructed.
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We note that the denominator integral in (4.6.27) could be evaluated
using the approach of the previous section. The numerator integral would

involve

T r r

0 o 4 )
Il = / ardr 12 = / T Rndr 13 = / T !Ln(r:-)Rndr

r, r, r,
1 1 1

(4.6.28a,b,c)

Il can be found, in terms of boundary quantities, directly by integrating

(4.6.20). 12 can be found by multiplying (4.6.20) by r2 and integrating:

Fo 2 2
1y 1! =
/ r®(rR!)'dr + A° I, 0 (4.6.29)
r,
1

Integrating by parts, the first integral is

-
o
H
~
o]
H
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=
)
e
o
L
]
2]
w
g
o]
|
(S
[}
puN
=]
]
I
N}
(@]
W
=]
(=%
”

So, we can evaluate 12 in terms of Il and boundary quantities. I3 can

also be found by multiplying (4.6.20) by 2n(r) and integrating,

T
)
2 .
1yt =
f n (¥) (ar) dr + >\n I3 0 . (4.6.30)

r,
1

Integrating by parts, the first integral is



and hence I3 can also be evaluated in terms of boundary quantities. Thus, <k )
the An can be found without recourse to any numerical integration! This

is often the case; the key is always integration by parts.

4.7 Splitting

We have seen that problems with linear PDEs and BCs can be solved by
constructing linear combinations of the eigensolutions for appropriate homo-
geneous partial problems. We also saw that in transient problems the
inhomogeneities can be "removed" by "splitting'" the solution into steady-state
and transient parts. The concept of problem splitting can also be used to
"remove inhomogeneities'" in other problems.

To illustrate the idea, consider the problem shown in Fig. 4.7.1. The

PDE is the inhomogeneous Laplace equation,

V2¢ = ¢ +9¢ = h(x,y) (4.7.1)
XX vy :
The domain is the rectangle shown, and the boundary conditions specify ¢ /»x)
around the boundary, in terms of the functions shown. Note that all of these
boundary conditions are inhomogeneous.
To use the methods developed in this chapter, we can "split" the problem
into the five problems shown in Fig. 4.7.1. Problem (p) will take care of the

¢(p)

inhomogeneity in the PDE. The solution is any particular solution of

the PDE, without regard for boundary conditions. It will yield the values of
¢(P) on the boundaries denoted by the functions g gql.We shall discuss
means for finding the particular solution shortly. The four problems

¢(l) - ¢(4) involve homogeneous PDEs and nearly completely homogeneous bound-
ary conditions. Therefore, for each the eigensolutions of the homogeneous
partial problem can be found, and then a linear combination of these eigen-
functions taken to construct a solution satisfying the remaining inhomogeneous

boundary condition. Note that the sum
4

6 = o 4 25 ) (4.7.2)
k=1
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satisfies the inhomogeneous PDE and inhomogeneous boundary conditions. This

type of splitting can, of course, only be done in linear problems.
Let's presume that we have the particular solution ¢(p) , and are ready

¢(l) - ¢(4) We will do the ¢(l) problem; the other

to solve problems
three are done in the same way.

The ¢(l) PDE is, dropping the superscript (1),

¢xx + ¢yy = 0 (4.7.3)

and the boundary conditions are

o = 0 on y=20 (4.7.4)
¢ = 0 on x =20 (4.7.5)
¢ = 0 on x =a (4.7.6)
o = fl(x) - gl(x) = q(x) on y=b> (4:7.7)

We look for eigensolutions to the homogeneous partial problem (4.7.3) - (4.7.6)

in the form

¢ = X Y (4.7.8)
and, from (4.7.3), find
%" - _%L = _ )2 | (4.7.9)
Hence,
X' +A%x = o0 (4.7.10)
-l o= 0 (4.7.11)

The decision to name the separation constant —Az was dictated by the recogni-
tion that the X-solutions must oscillate in X din order to match the boundary

conditions. The X solution is
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X = C1

The BC (4.7.5) gives 02 = 0 . Then, the BC (4.7.6) requires sin(Aa) =0 .

Hence,
Xna = a7 (4.7.13)
The Y equation solution is
Y = C3 sinh(Ay) + Cy cosh(Av) (4.7.14)

The BC (4.7.4) requires C4 = 0 . Hence, the eigensolutions are (apart from a

scaling constant)

¢n(x,y) = sin(nmx/a) sinh(n7my/a) (4.7.15)

Finally, we seek the solution satisfying the inhomogeneous condition

(4.7.7) as an expansion in the eigenfunctioms,

¢ = n§=:1 AL b, (4.7.16)
Thus, at y = b,
op(b,x) = q(x) = 22 Ah sin(nmx/a) sinh(nmb/a) (4.7.17)
n=1

The orthogonality property for the Xn eigenfunctions is®

a

/Xndex = 0 n#m (4.7.18)
0

*
Developed in the usual way.
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C)

So, multiplying (4.7.17) by sin(mmx/a) , and integrating

a

/q(x) sin(mmx/a)
A = 0 - (4.7.19)
Sinh(mﬂb/a)/sinz(m’lTx/a)dx
0

¢ (1)

Given q(x) , we could compute the A.n . Hence, the solution is com-
pletely known.

The ¢(2) s ¢(3) , and ¢(4) problems could be handled in much the same
way. In the ¢(3) problem, the Y equations would again be (4;7.11), and
Y(b) = 0 . Hence, rather than (4.7.14), a "more artistic" form of the Y

solution is

Y = sinh[A(y-b)] + C, cosh[A(y=b)] (4.7.20)

Cs

because C6 will have to be zero for Y(b) =0 .
Let's now discuss the particular solution. If h depends upon only one
of the independent variables, say x , the particular solution may be developed

by assuming

o = Fx) (4.7.21)
The inhomogeneous PDE is then

F'' = h(x) (4.7.22)
which has the solution (by double integration)

X g

F =/ / h(o) >d0 dg (4.7.23)

0 0
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If h = h(x,y) , the particular solution can be obtained by expanding
h in a Fourier series in either x or y . If we choose to do it in x ,

we would write

o0}

h(x,y) = 25 an(y) cos(2nmx/a) + 25 bn(y) sin(2nmx/a)

n=o n=1

(4.7.24)

The coefficients a and bn are determined using the orthogonality property

of the sine and cosine functiomns;

a
a = -al-f h dx (4.7.25a)
-0
a
a = zzl-/h cos (2mTx/a)dx (4.7.25b)
0
a
bm = %/h sin(2mmx/a)dx (4.7.25¢)
0

Next, one would look for a particular solution in the form

¢(P) = ;2; Fn(y) cos(2nmx/a) + ;g; Gn(y) sin(2nmx/a)

(4.7.26)

Substituting into the PDE, and equating coefficients of the sines and cosines,

one finds

4.28

)

;7 ,,>



)

-
F0 a (4.7.27a)
2
o 2321) =

) ( )y a (4.7.27b)
2nm 2

G'"' - (—9;) G = b (4.7.27¢)
a n n

Particular solutions to these three ODEs can be obtained by standard methods
(e.g., the method of separation of variables).

In this problem, the corners would be singular points. The series solu-
tions would converge everywhere, except at the corners, where the solutions

cp(l) _ ¢(4)

would all be zero because of the method of solution.

4.8 Some Generalizations

While some problems fall into the Sturm-Liouville form, others do not.
However, the same general ideas can be used with the help of a new concept,
adjoint operations.

Suppose that the SOV process in a linear, homogeneous PDE problem produces
the ODE '

Lu = Mu+ ANu = 0 (4.8.1)

where L , M, and N are linear operators. Suppose that the linear,

homogeneous boundary conditions are a set of equations of the form
fBju = 0} at x=aorb (4.8.2)

where the Bi are also linear operators. The eigenvalues A are those values
for which non-trivial solutions to (4.8.1), and (4.8.2) exist. The adjoint

operators L* , M* , N* | and Bz are defined by the requirement that

b

. b
/vLudx = /uL*vdx (4.8.3)
a

a
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where a < x < b 1is the range of the problem. Thus, the adjoint operators
are identified by integration by parts. The adjoint ODE, L*v =0 , will be
uniquely determined, but the adjoint boundary condition set {B;i'v = 0} is
not always unique.

For example, suppose that the ODE is

Lu = u'''' + £(x)u'’ + A\ %g(x)u = 0 (4.8.4)
and the boundary conditions are
u(@ = u'(a) = u(b) = u'(b) = O (4.8.5)

To identify the adjoint operators, we multiply (4.8.4) by v , and integrate

b b
/VLudx = fv[u"" + fu'' + }\zguJ dx = 0 (4.8.6)
a a

Integrating by parts (several times) to transfer the differentiation from u

to v , one finds

b b
/vLudx = (vu'""' = v'u'"' + vy - v
a a
b b
+ [vf‘u' - u(vf)'} +/ ul:v"" + (fv)'' + }\zgv:|dx = 0
a
a

(4.7.7)

Now, (4.8.5) drops out almost all of the boundary terms. The remaining

boundary terms will drop if we choose
v(a) = v'(a) = v(b) = v'(h) = 0 (4.7.8)

4.30
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These, then, are the adjoint boundary conditions. In this problem, they are

the same as the basic boundary conditions (4.8.5). The adjoint ODE is then

Ldv = v'''"'" 4+ (fv)'' + Kzgv = 0 (4.8.9)

Note that, if f is not constant, (4.8.9) is different than the basic ODE
(4.8.4).

If the adjoint ODE and adjoint boundary conditions are the same as those

of the basic problem, the problem is called self-adjoint. The Sturm-Liouville

problem is self-adjoint, which is why we did not require the concept of the
adjoint in our earlier examples.

The adjoint problem is also linear and homogeneous. It will have solu-
tions only for particular values of A .

It is easy to argue that the eigenvalues A of the adjoint problem are
identical with those of the basic problem. Let v(x,A) be a solution of the
adjoint equation L*v = 0 that satisfies all but one of the adjoint boundary
conditions {Biv = 0} . Suppose that )\ is an eigenvalue of the basic

problem, associated with eigenfunction u . Hence, integration by parts gives

b b
/ vLudx = / uL*vdx + boundary terms (4.8.10)

But, the integrals are both zero, and therefore the boundary terms must vanish.
Hence, v must also satisfy the one remaining boundary condition; therefore v
is an eigensolution of the adjoint problem, with eigenvalue X .

The orthogonality property of the eigenfunctions is derived by multiplying
the equation for u, by 'vm , the equation for v by uos subtracting and

integrating (by parts, of course!). Thus,

b

V/h{v (Mu_ + A Nu ) - u_ (M*v_ + A N¥v )} dx = 0 (4.8.11)
mS o n n on n m m m
a
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Integrating the first terms by parts, this becomes

b

* % - * * =
/{un(M v + )\nN vm) un(M v + KmN Vm) } dx 0
a

or
b

M) / u v dx = 0 (4.8.12)

a

Hence, if )\n # )\m ,

b
/unN*v dx = 0 (4.8.13a)
a
Alternatively, if A_# X, >
, n m
b
/v Nu dx = 0 (4.8.13b)
m n

a

Eqs. (4.8.13) are the orthogonality property of the eigenfunctions (and their

adjoints).
In PDE problems, one may want to expand in terms of the eigenfunctions.
The orthogonality property allows the expansion coefficients to be evaluated.

For example, if we set

h(x) = z A]__1 un(x) (4.8.14)
n=1

then

C
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b

/ h(x) N*vm dx

_ a
Am 5 (4.8.15)
%
.)(.umN vm dx
a .

Many PDE problems involve more than one dependent variable. If we denote
the vector of variables in a coupled set of ODEs arising in a SOV analysis by

ui(x) , then the coupled ODEs will be of the form
M,, u, + AN,, u, = 0 - (4.8.16)
ij] 1 1] 1
where here we use the subscript summation convention (see §1.5), the sums to

be carried out over the k variables in the solution vector. The adjoint

equations

ngvj + xN:j v, (4.8.17)

Il
o

are identified by integration by parts in the scalar equation
b b

%
/V.L..u.dx = /u.L..v.dx (4.8.18)
i7ij j73id
a a :

The boundary condition will be of the form

{Bij uy = 0} (4.8.19)

The adjoint boundary conditions
{87, v. = 0} (4.8.20)

are also identified in the integration by parts operation. The orthogonality

property is the scalar equation
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b
/u§n)N:j v§m)dx =0 . n#m (4.8.21)
a

where here we use superscripts to denote the (vector) eigenfunctions.

In complicated problems, the ODEs will have to be solved numerically to

calculate the basic and adjoint eigenfunctions, and the integrals for the

expansion coefficients (4.8.15) will have to be done numerically. There are

now numerous problems in the literature that have been solved in this way.

4.9 Summary

In pfoblems described by linear equations and linear boundary conditions,

in domains of simple shape, solutions can be obtained by the following process;

1.

Split the problem into a number of parts, each of which takes care of

some of the inhomogeneities. A particular solution of the PDE will

take care of the PDE inhomogeneity. Where boundary conditions are to (/\)
be specified, the split problems should involve homogeneous PDEs and e
boundary conditionms that are homogeneous in at least one of the

coordinate directions.

Solve the homogeneous partial problems associated with the split
problems by SOV. Take a linear combination of these eigensolutions to
form the complete solution to the split problem, using the eigenfunction

orthogonality property to evaluate the expansion coefficients.

Assemble the full solution.

(\/)
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FExercises

4.1 The temperature field in a slab, initially at uniform temperature, sub-

jected to a sudden increase in the temperature of one face, is described by

2

3°T _ 1 9T _
o2 a0 =
~dx

T(0,t) = T, T(L,t) = T,

Develop the solution to this problem, giving expressions for any integrals

involved in the solution. Does your (series) solution converge?

4.2 The temperature field in a slab, initially at uniform temperature, subjec~—

ted to a step input in heat flux at one surface, is described by

97T _ 19T _
2 T oam Te0 =T
ox
- aT - "
T(0,t) = T k=2 = ¢
x=L

Solve this problem, giving expressions for any integrals involved in the

solution. Does your (series) solution converge?

4.3 The azimuthal velocity field in a cylinder of radius a filled with fludid
initially at rest, subject to a sudden rotation of the cylinder is de-

scribed by

Solve this problem, giving expressions for any integrals involved in the

solution. Hint: The steady-state solution is solid body rotation.

4.4 The motion of the fluid in an annular cylinder, set into motion by the sud-
den rotation of the outer surface, is described by the PDE and initial con-

dition of exercise 4.3, and the boundary conditions

u(ri,t) = 0 u(ro,t) = u,

4.35 !



4.5

4.6

4.7

.
\
where r, and r, are the inner and outer radii, respectively. Solve ( )

this problem. Express any integrals involved in terms of functions

evaluated at r, and r .
i o

The concentration of a contaminant in a hollow sphere, initially "clean'),

subjected to a step jump in the concentration at the inner radius L
is described by

2
L) 2 dcy _ r 3dc _
= () = T c(r,00 = 0
c(ri,t) = c c(ro,t) = 0

Solve this problem, developing expressions for any integrals involved in
terms of functions evaluated at ry and ro. This problem has applica-

tion in the geological diffusion of nuclear wastes.

The transient temperature of a circular fin is described by

Ely ()

9 (r %%)-BZr(T—TO) = t SN

in

0

2|
B
o
o
T
H
i
H
3
N
H
H-
L
N’
I

T(r,0) = T
Solve this problem, developing expressions for any integrals in terms of
functions evaluated at r, and .

The steady potential field in a circular object, with potential specified

around the perimeter (r = a), is described by

2
9 3¢ 19379
— [r—=}+=—%t = 0
or ( Br) T 862
¢(a,8) = £(0)

Develop the solution to this problem, expressing the result in terms of

appropriate integrals. Q\_}
rd
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) 4.8 The temperature field in a quarter-circular sector>plate cooled by con-

vection is described by

2
3 (F 50) + 5 g - Br(rmy) = o
00
T(ri,e) = T T(ro,e) = a+ bb
g%' = 0 at 6 =0, m/2

Solve this problem, evaluating any integrals that appear in terms of

functions evaluated at ry

4.9 Study the Sturm-Liouville problem (4.2.1). Show that, if P is

or r_. What happens at the corners?

real, the eigenvalues are all real. Hint: Let them be complex; consider

the conjugate equations. Use our favorite tool, integration by parts.

4,10 Consider Bessel's equation and boundary condition

r2R" + rR' + erzR = 0

N

R(a) = 0
Find the adjoint equation. If the eigenfunction is Jo(kr), what is the

adjoint eigenfunction, and what is the orthogonality property? Is this the

same as obtained from the Sturm Liouville form of Bessel's equation?
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Chapter 5

MORE ON PERIODIC SOLUTIONS. IN LINEAR PROBLEMS

5.1 Introduction

In Chapters 3 and 4, we used the separation of variables method to develop
solutions to linear PDE problems.' In many instances, the solutions were periodic
in time and/or space. When solutions of this form are expected, somewhat more
direct and more versatile procedures are possible, and these are the subject of

this Chapter.

5.2 Complex Imbedding

Let's begin with the notion of "complex imbedding". If we have a PDE
expressed in terms of real quantities, it is often very useful to let these
quantities be complex, with real and imaginary parts. The real part of the
solution is all that is of interest. Often it is easier to find the complex
solution first and then take its real part to find the solution of interest.
The process of extending the dependent variables to think of them as complex
is called "complex imbedding". It is a valid process in any real linear
problem because in such problems the real part of the complex solution will
satisfy the originalreal equations. This is not the case in non-linear problems.
and hence complex imbedding is restricted to linear problems.

Let's illustrate the idea with a simple example. A problem of interest
in I.C. engine cooling and in the thermal storage of solar energy in the earth
is the temperature field in a semi-infinite solid, subjected to periodic

variations in surface temperature,

2
o’r _ 1t
E_E = 35t (5.2.1)
X
T - 0 as X > o (5.2.2)

T(0,t) = A cos(wt) (5.2.3)

No initial condition is imposed because we seek only the "periodic steady-state"

solution,
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Since

eiwt = cos(wt) + i sin(wt) (5.2.4) (fm)

the complex imbedding of this problem just involves allowing T to be complex
and replacing (5.2.3) by

T(O,t) = A et (5.2.5)

Now, since we expect a periodic solution, we can assume#®

T(x,t) = F(x)e Wt (5.2.6)

In linear homogeneous equations with coefficients that do not depend on a
particular variable (here t ), the solution will always be exponentials in that
variable. Equ. (5.2.5) tells ‘us what the exponentials must be, so we use this
insight to write (5.2.6).

Substituting in (5.2.1), we find

Frto- %% F =0 (5.2.7) {/\)
This has the solution T
Fo= 0™ 4 ™ (5.2.8a)
where
@ = Vg - (5.2.8b)

‘When we opefate with complex quantities, we are obliged to define quantities

like i, and v i, uniquely. To do so, we shall define i as¥**

i = oi™2 (5.2.9)

in which case

/T = A4 (5.2.10)

F(x) » G(t) and would find G = elwt. ( ‘)

*Alternatively, we could assume T _
exp(5mi/2).

N
n

*%Another choice would have been
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Hence,

',w. im/4 W
a = T e = 2 (1 + 1) (5.2.11)
The real part of a is greater than zero. Hence e 2% will decay as x » o ,
while e®¥ will increase as X + o. Hence, to satisfy (5.2.2), we must
take C1 =0 . Also, (5.2.5) requires F(0) = A. Hence 02 = A . The solution
then is
VZ“ (5.2.12)
and so the complex T solution is
A2 iy By
T = Ae 20, 20, eimt
- % X i[ J;;x+ U)t]
= Ae e (5.2.13)

Finally, we extract the desired real part of the solution,

- .
-ﬂv—— X
20 cos (- j&_}< + wt) (5.2.14)

T = Ae 74

The skeptical student should verify, by substitution, that (5.2.14) is indeed
the solution to the original real problem.

Because the cosine is an even function of its argument, the cosine term is

L ©
cos 7g X - Wt

The peaks of this function occur when

5w X - Wt = 0, 2m, 47, etc.

Thus, as time passes, the peaks move outward to increasing x, and the solution
exhibits the behavior ofva damped (by the exponential term) traveling wave.

This problem could have been solved by standard SOV methods. It would
require the superposition of two SOV solutions, and about twice as much work.

The complex imbedding process greatly streamlines the solution process.
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5.3 Traveling Wave Solutions

()

Physical problems described by the wave equation can exhibit traveling
wave solutions. These can be found by an extension of the SOV approach, or
by complex imbedding.

To illustrate the ideas, consider acoustic waves in a circular pipe.

The fluctuating preséure field is described by

2.2 _
¢ Vp - Py = 0 (5.3.1a)

where, in cylindrical coordinates,

w2 - _32_ + %529; +L2_§_§ - (5.3.1b)
or r~ 30 ox
The boundary condition is
i -
ot 0 at r r, (5.3.2) ( ‘>

We want to find out if waves can travel in the duct; so, we look for solutions

of the form
p = F(r,0) G(x-at) (5.3.3)

G provides the desired traveling wave behavior, with a as the wave propagation

velocity. Substituting in (5.3.1), and separating,

l l nB
2| Fer T Y77 Fog ) g g
7 = (a” - ¢") o (5.3.4)

Let's first inquire as to what waves can travel at the sound speed c¢ .

Setting a = c¢ , we have

1
Frr + 1_’_Fr + r2Fee = 0 (5.3.5a)
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The boundary condition is

Fr(ro,e) = 0 (5.3.5Db)

Separating the variables by assuming F = R(r)0(8),

2

r’R" + rR' e 2

IR -— -5 = g (5.3.6)
So,

" 2
" 4+ B0 = 0 (5.3.7)

and continuity requires that B8 be a integer then, with B = n , the
R equation is

rzR" + rR' - an = 0 (5.3.8)

This equation is homogeneous in the independent variable r. Such equations

have power solutions, so we assume

R = r' (5.3.9)
substituting,
Y(Y__l)r2+y-2 + Yr1+y—l _ n2r2 = 0
2 2 \
or, Y -n =0, yY=41n. So, the general solution is
R = or" + czr_n (5.3.10)
For the solution to be finite at r = 0 > €y = 0 . Then, the boundary
condition (5.3.2) requires
R'v(ro) = 0 (5.3.11)

There is no way that (5.3.10) can satisfy (5.3.11) with g # 0, except for

n =0 . Hence, the only eigensolution to (5.3.5a,b) is F = constant. Thus,
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waves that travel at the sound speed c¢ will exhibit no variation with r

or © . These are called "plane waves'.
From (5.3.4) we see that G can be any function if a = ¢ . Hence,

one type of traveling wave is
P = G(x - ct)

where G 1is any function. Note that the wave will preserve its shape.

Such waves are called non-~dispersive.

In particular, consider
G(x — ct) = A coslo(x - ct)] (5.3.12)

corresponding to a periodic wave train. The frequency is w = oc , and the

wavelength is A = 2m/a ; o is called the wavenumber. The relationship

w(a) = oac (5.3.13)

is called the dispersion relationship for these waves.

Next let's look for waves that move at speeds other than the sound
speed c¢ . Returning to (5.3.4), we set each side equal to a separation

2
constant -l , and have

2
"+ —E ¢ = 0 (5.3.14)
2 2
(a” - c)
1 1 2.
Frr+ ]:_Fr + ;EFGG + YyF = 0 (5.3.15)

where Yz = u2/c2 . Eq. (5.3.14) reveals that the only possible waves will

2 |
G = C; cos ‘\/:21_‘—02 (x - at) - ¢ (5.3.16)

where ¢ 1is a phase angle. It also suggests that we may find a2 > c2 s

be sinusoidal, with

i.e. waves propagating faster than the sound speed!

Now we attack (5.3.15) by SOV; with F = R(r) ©(8),

2 " ' "
ERUEIR 22 L O g2 (5.3.17)

5.6
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So,
o" + @0 = o0 (5.3.18)

© = C, cos(BO-y) (5.3.19)

where ¥ is a phase angle. For continuity 8 must be an integer, so we
set B=n . Then, the R equation is

PR+ mR' 4+ (Pr° - nHR = 0 (5.3.20)

\

The solution is
R = CSJn(Yr) + CAYn(Yr) (5.3.21)

C, must be zero for finite pressures at r = 0 . The boundary condition

(5.3.2) then requires R'n(ro) = 0 ; hence,

1 =
Jn(yﬁmro) 0 (5.3.22)
Eq. (5.3.22) defines the eigenvalues Yﬁm , where _Yﬁmro = Ja n 18 the mth

L]

root of Jn'(x). (See HMF Table 9.5)
We can now calculate the propagation velocity a for mode n,m. From

(5.3.16) the frequency is

A

2 2
c a

(5.3.23)

. For a given mode, <Y is fixed at Ynm . However, a range of frequencies is

possible for each mode. The highest possible frequency is <« , for which

from (5.3.23), a =c¢ . The lowest frequency occurs where a = o, and is

w = C
e Y

This is called the cut-off frequency for propagation of that mode. No

waves of mode n,m can propagate at frequencies below Ynmc . These

modes are called "spiral modes'" because they correspond to spiraling pressure

waves.
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Table 5.3.1 lists the first few spiral modes. ©Note that the first
spiral mode corresponds to the Bessel function Jl(yllr) « This function is (/N)
anti-symmetric, and hence can be detected by looking at the difference in the
signals detected by microphones on opposide sides of a duct. The plane waves
do not show up in this difference signal, since their contribution to the
difference is zero. Fig. 5.3.1 shows the pressure amplitudes of plane waves
and the first two spiral modes for sound generated by an obstruction in duct
flow. The onset of the spiral modes, at precisely their theoretical cut-off
frequencies, should be noted.”

We could have attacked this problem by complex imbedding, looking for
solutions of the form

p = F(r,0) eiOL(x—at)

Exactly the same results would have been obtained, but in this case there
would be no significant saving in effort.

Returning to (5.3.12), we see that the wavenumber o 1is

_ =_U_)‘ ~
o = a » (5.3.24)
So again ® = 0a . However, here a depends upon ® , so from (5.3.19)
w =
or
2 2

w = c 4y +o0o (5.3.25)

*
The student should reflect upon the microphone placement and signal
processing required to separate out the second spiral mode.
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This is the dispersion relationship for spiral modes. Note that the shorter
wavelengths (higher o ) have higher frequencies and (from 5.3.19) travel
slower than longer waves. This means that a wave composed of Fourier modes
of several wavelengths will change shape as it propagates. This is a

characteristic of a dispersive wave system.

5.4 Multiple Variables

Problems with multiple variables arise quite frequently. TIf periodic
behavior is sought for each variable, complex imbedding usually simplifies
the solution. To illustrate the approach, let's consider the radially

symmetric oscillation of a bubble of gas surrounded by a liquid. The equa-

tions of motion in the liquid are

pu, = -p (5.4.1)

(rzu)r = 0 | (5.4.2)

where u is the radial velocity, p 1s the liquid fluctuation pressure
and p 1is the liquid density. Eqn. (5.4.1) is the momentum equation,

and (5.4.2) expresses conservation of mass. The radial displacement n of
the bubble radius about its average position r, is related to u by (for

small displacements)

dn
P u(r,t) (5.4.3)

assuming isentropic expansion and compression of the gas in the bubble, the

bubble pressure p(ro,t) is related to n by

p, + 3ppn/r = 0 (5.4.4)
where PB is the average pressure in the bubble, and po(t) = p(ro,t) is

the bubble pressure fluctuation. Far from the bubble p > 0 . The objec-

tive of the analysis is to find the bubble oscillation frequency.

5.9



We complex imbed, and assume

u(r,t) = F(xr) eiwt (5.4.5a)
p(r,t) = G(r) et (5.4.5b)
- iwt
nt) = Ae (5.4.5¢c)
Then, (5.4.1) - (5.4.4) give
piwF(r) = = G'(r) (5.4.6)
2.1
(r'®' = 0 (5.4.7)
Adw = F(ro) (5.4.8)
Q(ro) + 3PBA/r0 = 0 (5.4.9)
Eqn. (5.4.7) integrates to give
C
F = —% (5.4.10)
r
Eq. (5.4.6) then gives
€1
¢' = ~iwp —5 (5.4.11)
Y
so,
G = iwpcl/r + c, (5.4.12)

02 = 0 by the boundary condition at r = « . Then, (5.4.8) gives

iwA = ¢ /r2 , Sso ¢, = iwAr2
o o

Then, (5.4.9) gives

5.10
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0)

" )

iwp(iwArg) 3PBA
+ = 0
r r
o o

This fixes w ,

==

e
]

(5.4.13)

oN

This gives the bubble oscillation frequency.

The complex solutions are now

iwAr .
o int
u = 5 e
r
2
- w Arop iwt
P r
n = Ae1(,0t
Extracting the real parts,
wArg
u = --— sin(wt)
r
szrip ,
p = - 5 cos(wt)
T
n = A cos(wt)

Note that the velocity and pressure oscillators are out of phase. This is

a feature of the problem that makes complex imbedding an attractive

approach; the 90° phase difference is represented simply by the factor 1
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Table 5.3.1 (fm)

= 5! .
Ynmro Jn’m ; see HMF Table 9.5
m
" 1 2 3
0 0 3.83 7.02

1 1.84 5.33 8.54

2 3.05 6.70 | 9.97

3 4.20 8.01 |11.33

80 Plane-wave mode
First spiral mode
70 ( ’>
60 |- !
SPL (dB) :
50 }- |
|
|
40 |
!
|
i
30 i It | | 1 1 ]
0] ] 2 3 4 5 6 7

FREQUENCY (kHz)

Fig. 5.3.1. Sound pressure amplitudes in a circular pipe,
produced by flow through an orifice.
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Exercises.

5.1 Consider the damped vibration of a string, described by

u(0) = u(l) = 0

Derive an expression for the eigensolutions of this problem. Do

low frequencies die out faster or slower than high frequencies?

5.2 Consider a rectangular duct with cross-section 0 <y < a ,
0 <z <b . Examine the acoustic waves that can propagate along

the duct (in the =x direction). The governing PDE is

2.2 2 2
cVp - p, = 03 V'p pxx+pyy+pzz
The boundary conditions are
py =0 at y=0,a; P, = 0 at 2z=0,b

5.3 Consider the flow field produced by axially oscillating the walls

of a round tube. The velocity is described by

u(ro,t) = A cos(Wwt)

Develop the periodic steady-state solution to this problem. Express

the solution in terms of known functions.

5.13
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Chapter 6

GREEN'S FUNCTIONS

6.1 The Basic Idea

The solution of inhomogeneous linear PDE problems is sometimes developed

using "Green's functions." A Green's function is simply a solution to a sim-
plified inhomogeneous problem with a unit value of.the inhomogeneous term
located over an infinitesimal portion of the solution domain. The solution to
the problem of interest is then obtained as a weighted sum of an infinite num-
ber of these solutions; the sum takes the form of an integral involving the
Green's function and inhomogeneous term specifications. Thus the Green's func-
tion can be regarded as a fundamental solution to the problem, which is used to
obtain the solution to more general problems using superposition. In this chap-

ter a brief introduction to the Green's function is presented by example.

6.2 Boundary Inhomogeneity Example

Suppose we want to solve Laplace's equation in a ciréle; with prescribed
values on the outer radius. Suppose we had a solution to the following sub-
problem (Fig. 6.2.1):

1

1 . .
¢rr +-; ¢r + rz ¢66 = 0 in the circle r < a (6.2.1a)

0<86<2m

On r = a:

6= 1, v-SLcocy+d |
s (6.2.1b)

¢ = 0 , elsewhere

Denote the solution of this problem as G(r,9;y)dy. Note that the fundamental

solution G is zero on the boundary, except at the angle ), where G has

a unit value. Then, by superposition, the solution to (6.2.12) satisfying

¢(a,8) = £(8) would be

2T
b = fo £ 6(x,030) & (6.2.2)
6.1 .



We will now develop the solution G (the Green's function) for this (/“)

problem. First, we use SOV to give partial solutions:

¢ = R(r) 6(9) (6.2.3)
Substituting in (6.213),
R @ 2 (6.2.4)
R B e "

Since the boundary condition on G is symmetric about the pdint 0 =1y, we

take the @ solution as

On = cos[n(6-y)] (6.2.5)
The R equation is
1 n2 )
" = v _ = ‘ e
R' + R 2 R 0 (6.2.6){ t)

This ODE is homogeneous in the independent variable r. Such equations have

. m \ , -
power solutions; we assume R = r , and substitute in (6.2.6) obtaining

m(m-1) + m - n2 = 0 (6.2.7)

which has the two roots m = 4+n. Hence, the general solution to (6.2.6) 1is

= n -n (6.2.8)
R Clr + C2r

C2 must be zero for solutions finite at the origin. Hence, the partial solu-

tions are

o, = t cos[n(6-y)] (6.2.9)

Now we comnstruct the general solution

¢(r,059) = ] Ar" cos[n(6-y)] (6.2.10)
n=1
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with the boundary condition

1, P - Ay_g 0 <y + %?

s 2
¢(a,059) = l . (6.2.
o , otherwise
Using the orthogonality property of the cosines, -
YA/ 2
/ cos{m(o-y)] 46
A = Y-/ 2
m n 2 9
af cos [m(6-¢P)] do6
0
29 11 +oap) ] (6.2
Ta
where O(AYy) represents terms that vanish as AY -+ 0. Hence,
% n
T
d(r,039) = 2 ) (;) cos[n(0-¢) ] AP[1+0(AY)] (6.2.
n=1
This series converges for all r < a. Now we let Ay »+ dy, and ¢(x,0;¢)
+ G(r,0;y) dy. Then the Green's function is then
G(r,050) = 2 ) \=) cosIn(6-y)] (6.2.
n=1 ‘2 .
The solution to the general problem with ¢(a,8) = £(8) dis then (6.2.2).
If we attack the ¢(a,0) = £(8) problem directly, we obtain
) _
n ,
b = nzl r [B, cos(nf) +C_ sin(n6)] (6.2
2T
f £(8) cos(md) do |
- Yo (6.2
Bm - l_am
2T 2 .
f £(68) sin(mf) dO
o
Cm = l.am (6.2
2

Substituting (6.2.16) in (6.2.15) and using a trigonometric identity, (6.2.13)
is again obtained.

6.3
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This example illustrates a Green's function for a boundary condition in- </ﬂ)
homogeneity. Note that the genmeral solution involves an integral in which the

Green's function gives the effect of a unit value at one point on the boundary.

6.3 Equation Inhomogeneity

The Green's function is also useful in treating inhomogeneous terms in
PDE's in a general way. For example, consider the Laplace equation problem in

three dimensions, in an infinite medium:

Vo = £ (6.3.1a)
¢ - 0 as l§| > (6.3.1b)

The Green's function G(x,x') for this problem is obtained from the solution

to the problem for

1, in dV about point x' }
) o
VCI) = % (6.3.23-)‘\/\)
o , elsewhere
¢ > 0 as Jx)-+w (6.3.2b)

The solution to (6.3.1) is then

o = fex) tahar (6.3.3)

We can develop the fundamental solution by considering the spherically symmetric
problem

2 2 _
V¢ = ¢rr +-; ¢r = f (6.3.4)
sl s r < a
£ = l (6.3.5)
0o , r > a /
U
$ ~» Q0 as r > @ (6.3.6)



The solution for r > a (invoking (6.3.6)) is

C
I
¢ = " (6.3.7)
For r < a the bounded solution is
r2
d) = Al+—6— (6.3-8)
Matching ¢ and ¢r for these two solutions at r = a,
3 2
¢, =.-a’/3 , A, = -a/2 (6.3.9a,b)

Now, the volume of the sphere of radius a about the origin is
3
AV = s ma = -4mC (6.3.10)

Hence, outside of the region where the inhomogeneous term is non-zero, the solu-

tion is, letting AV - dv,

o = - (6.3.11)

4Tr
This is the solution for a unit inhomogeneity in Laplace's equation over the
region dV around the origin. Hence the solution for a unit inhomogeneity in

Laplace's equation over the region dV around any other point x' is

v
©4mfxxT]

d(x3x") (6.3.12)
Note that this holds only for an infinite three~dimensional domain.
Now, to construct the solution to (6.3.1), we superimpose the solutions

for inhomogeneities at all points, which from (6.3.11) is

6 = _—l%T?f 1 f(ﬁ') dv (6.3.13)

x-x'

Thus, we see that the Green's function for the inhomogeneous Laplace equation

in an infinite three-dimensional domain is
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G(x,x") = -~ (6.3.1‘4,\)

6.4 Summary

The Green's function is a fundamental solution useful in handling general
inhomogeneities. It is very problem-specific, depending on both the domain of
solution , the differential equation involved, and the form of the boundary
conditions. It is a concept that is useful chiefly as a tool for representing

the solution to certain problems in a convenient general way.

Exercises.

6.1 Consider the problem V2¢ = f(x) 1in the two-dimensional domain D, with
¢ = h(x) prescribed on the boundaries. Express the solution in terms of

two Green's functions, and describe their meanings.

%

6.2 Consider the problem V2¢ + 0¢ = 0 in the three-dimensional domain D
with boundary conditions 09¢/9n = h(x) given on the surface of D.
Express the solution in terms of a Green's function and discuss the

meaning of this function.

6.3 Consider U " U T f(x,t) with u(0,t) = u(L,t) = u(x,0) = u (x,0) =0
and f(x,t) = f%(x,w)eﬂ“t dw. Write the solution in terms of a Green's
function G(x,x',w) and describe the meaning of this function. This problem

arises in acoustic oscillations forced by combustion.
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Chapter 7

CHARACTERISTICS

7.1 Introduction

We have thus far studied two means for reducing PDEs to ODEs: self-
similar transformations and separation of variables. The "method of char-
acteristics' is a third. The idea is to find a transformation of the
equations such that on certain lines the transformed PDEs contain only
derivaties along these lines, and hence can be integrated along those lines
as if they were ordinary differential equations. These lines are called

the characteristics of the problem. In linear problems they are set by the

coefficients in the equations, and hence can be found before the solution
has been generated. However, in nonlinear problems they can depend upon
the solution itself, and must be generated hand-in-hand with the solution.
We shall see some examples of both types of problems in this chapter.

In most textbooks a slightly different point of view is taken. Char-
acteristics are described as lines along which derivatives of the dependent
variables might be discontinuous. This concept is equivalent to that de-
scribed above, but is more difficult to generalize and harder to grasp.
Therefore, we shall use the idea that characteristics are lines along which

the PDEs can be made to look like ODEs.

7.2 Characteristics in a First-Order Equation

Let's begin by considering a simple, first-order PDE:
AuX + But +C =0 (7.2.1)
The coefficients A, B, and C will be allowed to be functions of the

independent variables x, t, - and the dependent variable u, so (7.2.1)

could be nonlinear. The idea is to seek a transformation,

€ = E&(x,t) n = n(x,t) (7.2.2)
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such that the transformed equation will contain derivatives only with
respect to one variable (say, &) on any line along which the other
variable (say, n) is constant. The PDE would then be like an ODE and
could be integrated along these characteristic lines.

Transforming (7.2.1) to the &,n coordinates,
A(uEEx + unnx) + B(ugét + unnt) +C = 0 (7.2.3)
Regrouping terms,
(A‘Ex + BEt)u£+(Anx + Bnt)un +C = 0 (7.2.4)

We would like the coefficients of either u or un to be zero along

g

lines of either constant & or constant n, respectively, so that we can
integrate (7.2.4) along these lines. Let's make the v coefficient van-
ish along lines of constant n. To do so we must select the transformation
such that
AnX + Bnt = 0 (7.2.5)
on lines of constant n. Now, along any line,
dn = nxdx + ntdt

and so along a line of comnstant n

dx - Ny + dt - ng = 0 (7.2.6)
Eqs. (7.2.5) and (7.2.6) can be regarded as a set of two linear, algebraic,

homogeneous equations for nx and nt. They will have a non-trivial solu-

tion only if the determinant of the coefficient matrix vanishes; so

)
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The condition D = 0 defines the characteristic lines

Adt - Bdx = 0
or
dx A
v o B2 _ A
X = dt B (7.2.8)

We now know the slopes of the family of characteristic lines. If A and
B are functions just of x and t, we could integrate (7.2.8) to find
the equations of the characteristic lines., But if A and B also depend
upon u, (7.2.8) will have to be solved in conjunction with ﬁhe differen-
tial equation, along the characteristic, (7.2.4). Fig. 7.2.1 shows. the
characteristics schematically.

We next select the definition of §&. Any definition that provides
£-lines that intersect the characteristics (n-lines) will do. Let‘sN
suppose that & = t meets this specification. Then, from (7.2.4), along

the characteristics the differential equation is

Bu, + C = 0 (7.2.9)

g

It must be remembered that this is only the form of the equation along the
characteristic lines. On other lines all of the terms in (7.2.4) will
appear.

Let's be more specific. Suppose the equation is

u, + au = 0 (7.2.10)

In physical terms, this describes the one-dimensional convection of u-stuff
by fluid moving at constant velocity a in the x direction. Here

A=a an% B =1, so the slope of a characteristic line is
x' = a (7.2.11)

The convection velocity a is constant, so we can integrate (7.2.11)
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/w,«’*w .

()

x = at + const (7.2.12)
Thus, the characteristics are straight lines with slope a (Fig. 7.2.2).
Along any characteristic n will have a constant value, and (7.2.12) sug-
gests that we might find it useful to take
n = x - at (7.2.13)
Indeed, the coefficient of un in (7.2.4) is then

a*l-1+<a = 0 (7.2.14)

and so un will not appear in the transformed equation. Let's choose

£ = t, in which case (7.2.4) reduces to

u = g% = 0 (7.2.15)
constant n .
{/ \,‘s
Therefore, in this case it also happens that u itself is constant along NS
the characteristic lines (though this is not the general case). Integrat-

ing (7.2.15) withrespect to &, holding n constant, we have the solu-
tion

u = £(n) (7.2.16)
Or
u = f(x-at) (7.2.17)
Suppose we had an initial condition
u(x,0) = g(x) | | (7.2.18)

where g is any known function. It is clear by comparison of (7.2.17)

and (7.2.18) that f and g must be the same function, so the complete

solution is (\J,A

u(x,t) = g(x-ct) (7.2.19)
7.4 .



Thus, in this simple example, the solution would propagate along the

characteristics. Indeed, the solution on any characteristic would depend

only upon the initial value of the solution on that characteristic, and

would be independent of initial conditions at other values of x.

More-

over, if g has some discontinuities, these will propagate along the

characteristics, in accord with the "usual" conceptualization of charac-

teristics mentioned in §7.1. Fig. 7.2.3 shows the propagation along

characteristics schematically.

Let's complicate the model slightly by assuming that the equation

now is

up +au, = h(x)

corresponding to one-dimensional convection of u-stuff with a source h(x).

The characteristics are again given by (7.2.12), If we again take

the equatioﬁ is (since x =n + at = n + af)
ug = h(n + a&)

Integrating along lines of constant n,

2
/ h(n + ag&') d&' + £(n)
(o]

u =
1 n‘+a€
= E/ h(o) do + £(n)
n
So
1 X
u(x,t) = —/ h(o) do + f(x-at)
a8 J x-at

The student should work out the solution for the cases

€ =t,

(7.2.20)

(7.2.21)

(7.2.22)

and

h = h(x,t), think about how the initial conditions would be satisfied,

and examine the influence of the initial data on the solutions at later

times.
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7.3 A Nonlinear Example (M))

The one-dimensional, time-~dependent motion of water waves, with amp-

litudes that are not too large, is described by

(1 +-% z)zx + z, = 0 (7.3.1)

where 2z 1s the height of the wave above the undisturbed surface. The
nonlinear coefficient makes a first correction for the finite-amplitude
effects. We shall study the solutions of this problem in the domain

-0 < x < 40, subject to an initial condition
z(x,0) = g(x) (7.3.2)
Going through the transformation steps as in the previous section

(or applying those results directly), one finds that the slopes of the

characteristics are (with £ = t)
x' = dx/dt = 1+33z (7.3.3) >
and that along the characte?istiCS'the transformed PDE is
z, = 0 (7.3.4)

Hence, in this particular example 2z, the dependent variable, is constant
along the characteristics. Thus, the characteristics will be straight
lines (see (7.3.3)), but each will have a slope that depends upon the value
of the solution at t = 0., Since 2z will be constant on any characteris-

tic, we can integrate (7.3.3) along the characteristic to find
3
x = (1 +-§ z)t + const. (7.3.5)
Since n 1is also constant along the characteristic, we are led to choose

n = x—(l+-%z)t (7.3.6) ()

e
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Hence, integrating (7.3.4),

z(&,n)

£() = f(x - [l+%z]t)
(7.3.7)

z(x,t)
This is an equation that involves 2z on both sides, but it could be solved
implicitly if the function £ were known. It is determined by the initial

condition
2(x,0) = g(x) = f£(x) (7.3.8)
so the functions f and g are the same function, and the solution is
3
z(x,t) = g(x - [1+ 75 z]t) (7.3.9)

Figure 7.3.1 displays the form of the solution for a Gaussian pulse
wave. Note that the crest of the wave, with a higher value of z than
the tails, will travel faster than surrounding portions of the wave, and
hence the wave front will steepen and the back of the wave will become
flatter. This is an observed characteristic of water waves that helps
make surfing possible. When the characteristics catch one another, a sharp
front forms (the wave breaks) and the second-order finite-amplitude model
underlying (7.3.1) breaks down. The student with access to a digital com~
puter would find it interesting to calculate and display the solution for

the Gaussian pulse g = 0.1 exp(—xz).

7.4 Higher-Order Systems

In a first-order problem of the type just discussed, there always is
a set of characteristic lines that can be used to solve the porblem. 1In
some higher-order systems there will be real characteristics; but in other
problems the characteristics will have imaginary slopes, and hence the
method of characteristics is not useful. Most textbooks discuss the ap-
proach to the characteristics of a general second-order equation, but
leave the student with no real idea of how to handle a system of second-

order equations or a higher-order equation system. Our approach will be
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to present a basic four-step process which can be used to examine the X
characteristic structure of any set of partial differential equatioms.

The methods are most useful in two dimensions, where the character-
istics are lines. In problems with three dimensions, the characteristic
lines become characteristic surfaces, and the usefulness of the concept
is not as great. Therefore, webshall limit our discussion to problems
in two independent variables (two dimensions).

The four steps are as follows:

1. Reduce the PDEs to a system of first-order PDEs by defining new depen-
dent variables.

2. Transform the equations to new, unspecified independent variables.
3. Take a linear combination of the first-order PDEs.

4, . Require that the coefficient of the derivatives with respect to one
variable be zero on a line along which that variable is constant.

This defines the characteristics.

. /'
We shall now illustrate this process by a second-order example. Con- K ;>

sider the quasi-linear PDE

Au  +Bu__+Cu _+D = 0 (7.4.1)
XX xy yy |

The coefficients A, B, C, and D may be functions of the independent
variables x, y and also functions of u, us and uy. Hence, (7.4.1)

could be a nonlinear PDE. The first step is to reduce to a set of first-

order PDEs. Let

v = u , W = u (7.4.2)

and then (7.4.1) becomes
Av + Bv. + Cw._+D = 0 (7.4.3)
X y y

Note that we have a choice as to how to represent the cross-derivative. PN

From the definitions, the second equation is )
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v ~w_ = 0 (7.4.4)
Eqs. (7.4.3) and (7.4.4) form a set of two equations for v and w, whose

characteristic lines we shall now discover. Once v and w are known,

u could be calculated from either of (7.4.2).
The second step is to transform. Let

g = &x,y) , n = n(x,y)
Then (7.4.3) becomes

A[VEEx + vnnx] + B[VEEy + vnny] + C[wggy + Wnny] +D = 0 (7.4.5)

And (7.4.4) 1is

vggy + vnny - (wgix + wnnx) = 0 (7.4.6)

The third step is to take a linear combination of these two equations.

We take Cl * (7.4.5) + C, *(7.4.6) and obtain the following equation:
VE[(Aix + BEy)Cl + (EY)CZ]
+w [(CENC + (-EC,]
(7.4.7)
+ vn[(Anx + Bny) C, + (”y)CZ]

+w[On)Cy + (-nJCl + ¢p = 0

The fourth step is to demand that the coefficients of the derivatives
with respect to one variable vanish in a line along which that variable is

constant. We elect to deal with lines of constant n, and hence set

(7.4.8a)

L]
o

(an_+Bn )€y + (ny)C,

(7.4.8Db)

n
o

4(Cny) Cl + (-T]X)Cz
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This can be regarded as a pair of homogeneous linear algebraic equations (ﬂmj
for the constants Cl and C2. Non-trivial solutions will exist only if

the C determinant of the coefficient matrix vanishes. Hence
(An. + B C ﬂz = 0 7.4.9
- n (An_ ny) - y (7.4.9)
We must keep 1N constant along lines satisfying (7.4.9), and hence
dn = nxdx + nydy = 0
or
n = -n.y' (7.4.10)

where y' is dy/dx. Substituting (7.4.10) in (7.4.9), we find the equa-

]

tion for the slopes vy of the characteristics,

T

//
Ay’ - By'+C = 0 (7.4.11) )
y y .

So we have two families of characteristics, with slopes given by

,[—‘2
v . B *NB”-4AC (7.4.12)

yo = 2A

The nature of the problem solution is determined by the sign of

B2-4AC, as follows:

2
e B - 4AC > O0: "Hyperbolic" problem, two real characteristics.
° B2 - 4AC = O0: "Parabolic" problem, only one characteristic.
° B2 - 4AC < O0: "Elliptic problem, no real characteristics.
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The three model problems discussed in Section 1.4 display these

three types of problems:

Wave equation

u . —u, =0 hyperbolic (7.4.13a)

Heat equation

u_-—-u, = 0 parabolic (7.4.13Db)

Laplace equation

wtu, = 0 elliptic (7.4.13c)

As we shall see, hyperbolic problems are of such a nature that information
propagates forward along characteristic lines. In vibration problems, or
acoustics, the propagation is forward in time, while in supersonic flow

the propagation is downstream. In such problems there are regions where
the solution is independent of certain initial and boundary conditions.

In contrast, in elliptic problems, where there are no real characteristics,
the solution in all regions depends upon all of the boundary conditions.
Parabolic problems are more like hyperbolic problems, in that information
propagates (forward in time, or downstream).

The four-step process exhibited above can be used in any PDE or sys-
tem of PDEs that is quasi-linear in the derivatives that remain after the
problem has been reduced to a first-order system. In each case one obtains
equations for the slopes of the characteristic lines.

The equations along the characteristics are found from the linear-
combination equation (7.4.7). The generalizations used above become cum~
bersom at this point, and so it is easier to deal individually with specific

cases. The wave equation is treated in the next examples.

7.5 Method of Characteristics for the Wave Equation

Let's consider the wave equation in the form it appears in dynamical

problems,
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2
au U = o - (7.5.1) (ﬂﬂ)

Here a 1is the basic propagation speed for the problem, x 1is a spatial
coordinate, and t is time. Following the above procedures, or replacing
t by v in (7.4.12), one finds that the slopes of the characteristics

are given by
x' = dx/dt = * a (7.5.2)

Hence the characteristics are straight lines, one family sloping to the
right and the other sloping to the left; as shown in Fig. 7.5.1.

Let's work out the equations along the two characteristics. We shall
denote the characteristics by their sign in (7.5.2). On the "+" charac-

teristics, =x = at + const, which suggests that we choose
n = x - at (7.5.3a)

)
We can take any convenient set of lines & that intersects the character- .

istics and

E = ¢t  (7.5.3b)

v = u w = u (7.5.4)
X t
and then our first-order system is
a2v -w, = 0 (7.5.5a)
% ¢ .5.
Ve "W, = 0 (7.5.5b)

Transforming these two equations to (n+,£) coordinates, one finds

/ ,)
a2v - wg + aw = 0 (7.5.6a) .
n+ n+
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VE - av. -w = 0 (7.5.6b)

To drop out the n, derivatives, we multiply (7.5.6b) by a and add it

to (7.5.6a) (corresponding to a linear combination with one constant unity

and the other a), and have

- wg + avg = 0 on n (7.5.7)

+
Note that Ny must be held constant as these £ derivatives are formed.
Hence, this does indeed apply on a line of constant n,. Eqn. (7.5.7)

can be integrated along lines of constant n, (the "+" characteristics)
from some point 1 on the characteristic to point 3 (see Fig. 7.5.1)

to give
-V, +owy + a(v3—-vl) = 0 (7.5.8)

If we know conditions at point 1, this gives us one equation connecting

the variables at point 3. The other is provided by the equation along

the "-" characteristic passing through point 3. With
n_. = x+ at (7.5.9a)
E =t (7.5.9b)

av - Wg - aw = 0 (7.5.10a)
VE + avn -w = 0 (7.5.l0b)
This time we multiply the second equation by a and subtract it from the

first (corresponding to Cl =1, C2 = - a in the linear combination),

and obtain

- WE - av(E = 0 on 1 (7.5.11)
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Integrating on the characteristic passing from point 2 to point 3, (fw>

we_find
Wy = W, + a(v3-v2) = 0 (7.5.12)

Egqs. (7.5.8) and (7.5.12) can be used to solve for Wa and Va if these
quantities are known at points 1 and 2. Note that these are exact solu-
tions in this problem. (In more complicated problems with nonlinear co-
efficients the equations must be solved numerically, with finite-difference
approximations that are not exact.) Hence, for the wave equation one can
build up the entire field of v and u (ux and ut) exactly, as finely
resolved as desired, by a simple numerical calculation on the character-
istic mesh depicted in Fig. 7.5.1.

To get u one must solve one of (7.5.4). If we elect to integrate

u. = w forward in time along a line of constant x, we have

3
u, = u +f w(x,t)dt (7.5.13) SR
3 1.5 1.5 \

//
\

It will take an infinitely fine mesh to calculate the integral exactly.
However, in a numerical analysis one would approximate the integral in

some way, perhaps-as indicated below.

1| f¥1tv
uy = Uy + S\ + Vg (t2-tl.5) (7.5.14)

Thus, in the "method of characterisfics" for numerical solution of the wave
equation, the algorithm for advancing the solution would be provided by
(7.5.8), (7.5.12), and (7.5.14). Note that the solution within the tri-
angle 1-2-3 would depend only upon the initial conditions along the

line 1-2, as it is a feature of hyperbolic problems that the solution

ip any region depends only upon a limited amount of the initial and bound-

ary data.
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7.6 General Solution of the Wave Equation

The general solution of the wave equation can be found if we use

both of the characteristics as coordinates. We take
n = x-at , £E = x + at (7.6.1)

Here, 1 corresponds to the "+" characteristics and & to the "-"
1%

. %
characteristic. Transforming (7.5.1) to these coordinates,

Y

u, = ug + un , u, = a(ug-un)
u = Up, + 2u,_+ u , u = az(u -2u,_+u_)
XX gg gn nn tt 133 En mn
So the wave equation (7.5.1) becomes
= 0 7.6.2
en . ( )

We can solve this exactly. Integrating with respect to &,

un = g(n) (7.6.2a)

Now, integrating with respect to n,

u = /g(n') dn' + F(&) (7.6.2b)

or,

u = F(&) + G(n) (7.6.3)

The use of both characteristics as the coordinates for the equation is
functional only if there are two characteristics; it is not a useful
approach in a two-dimensional problem with more than two characteristics,
such as occurs in certain types of turbulent boundary layer models.
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Hence, the general solution of the wave equation is ‘ [’“W

A /

u = F(x+at) + G(x- at) ' (7.6.4)

The general solution can be used to solve some problems, but it is

a cumbersome approach for others (those handled better by separation of

variables). For example, let's consider the problem where the initial

conditions are specified, for - » < Xx <+ ®, as
u(x,0) = p(x) (7.6.5a)
%% = 0 (7.6.5b)
t=o0

Applying (7.6.5b) to (7.6.4),
a[F'(x) - G'(x)] = 0 (7.6.6)
Therefore, \h:>
G(x) = F(x) +C (7.6.7)
Now (7.6.5a) requires

F(x) + G(x) = p(x) (7.6.8)

Combining with (7.6.7),

1 1
F(x) = 5 p(x) - 3 Cl (7.6.9a)
Gx) = Zpx) ++c (7.6.9b)
2 P 2 1 o
So the solution satisfying (7.6.5) is
1 1 |
u(x,t) = 5 p(x+at) +-§ p(x ~at) (7.6.10)

)
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At point (x,t), the quantity p(x+at) will have a value determined by
the intercept of the '"-" characteristic passing through point (x,t)
with the line t = 0 (Fig. 7.6.1); similarly, the quantity p(x-at) is
constant along the '"+'" characteristic passing through (x,t). There-
fore, for this problem the value of the solution at point 3 in Fig. 7.6.1
depends only upon  the values of the initial data at points 1 and 2! The
solution at point 3 is merely the average of the initial values at points

1 and 2.

For example, suppose that the initial distribution is a Gaussian

pulse

u(x,0) = exp(- x2) (7.6.11)

Then the solution at later times will be

u(x,t) = %-exp[—(x4-at)2] +-% exp[—(x-at)z] | (7.6.12)

The solution says that the initial pulse splits into two parts, one which
propagates to the left, the other to the right. The center of each pulse

moves out along a characteristic line, so each pulse travels at the speed a.

7.7 Imaging in Wave Equation Solutions

Suppose we are interested in the reflection of a wave from a boundary.
Eqn. (7.5.1) and the initial conditions (7.6.5) again govern the problem,

but now we add the boundary condition

du _
3% = 0 (7.7.1)

X=0

and restrict our interest to the domain 0 < x < ©, This problem can be

solved by the general solution. We set
u = F(x+at) + G(x-at) (7.7.2)

The initial conditions (7.6.5) require
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F(x) + 6(x) = px) x>0 (7.7.3a)
F'(x) - G'(x) = 0 x >0 (7.7.3b)
So (7.6.4) again give F and G, but only for positive arguments! Note
that now the functions F and G are not defined for x < 0 by the ini-
tial conditions. Instead, we have, from (7.7.1),
F'(at) + G'(-at) = 0 (7.7.4)
This must hold at all times. Therefore, for negative argurﬁents the function

G must be such that its derivative is the negative of the derivative of

the function F for the same value of positive argument; i.e.,

G'(-0) =+-F'(0) (7.7.5)
This will be the case when G is the mirror image of F (Fig. 7.7.1). -
In mathematical terms, : \>
G(-x) = F(x) = F(x)/z x>0 (7.7.6a)
F(-x) = G(x) = pY, x>0 (7.7.6b)

Therefore, since the cq terms cancel, we can take

(x+at) >0 F(x+at) = %—p(x+at)
(x+at) <0  F(x+at) = 7 pl-(x+at)]
(7.7.7)
(x-at) >0 G(x=-at) = %—p(x-at)
(x-at) <0  G(x-at) = = p[-(x-ab)]

The solution (7.7.2) therefore can be thought of as a combination of four U _
wave packets, as shown in Fig. 7.7.1. The first is half of the p(x)
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wave, which moves to the right away from the reflecting boundary. The
second is the other half of this wave, which moves to the left and passes
through the boundary to negative =x. The third is the mirror image of

the p(x) wave, which starts to the left of the reflecting wall (outside
of the real problem) and travels to the right, entering the wall as its
"mate' passes through going left. This image wave then appears in the
domain of interest as a reflected wave. The fourth wave is the other half
of the image p(x) wave, which travels to the left and never enters the
domain of interest.

Wave-equation solutions obtained by these imaging methods must be
represented segmentally. If there are only one or two segments, this is
not too difficult and is a convenient way to get the solution. However,
if there are many reflections, such as would be the case for the solution
of standing acoustic waves in a duct or the long-term vibration of a
finite string, the approach becomes very cumbersome and the separation of

variables technique usually is easier to execute and present.

7.8 Characteristics for the Laplace Equation

For the Laplace equation,
u__ -+ u = 0 (7.8.1)

the characteristic slopes are y' = * i, so the characteristics are

given by
x + 1y = const. and x - iy = const. (7.8.2)
On the surface this does not appear too useful, because the characteris-

tics are not lines in the real x-y plane. However, we can learn some-

thing by transforming the equation to new variables £&,n such that

E = x4+ iy , n x - iy
u_ o= ug + u , u_ = i(ug-un)
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Integrating as before, we have the general solution of Laplace's equation

as
u = F(§) + G(n)
or
u(x,y) = F(x+iy) + G(x-1iy) (7.8.4)

This equation forms the basis for solution of the Laplace equation by the

method of complex variables. These methods are beyond the scope of the ‘/":>
present text, but are discussed in depth in courses on the applications .
of complex variables.
L)
“Sean” d
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Exercises

7.1. The fluid temperature field in a nuclear reactor is described by the
simple model

9T 9T
rYs + Vv T A gin(m x/L)
T(0,£) = 0 , T(x,0) = 0

where A and V are constants. Develop the solution to this problem

using the method of characteristics. At what time is the steady-state

solution achieved?

7.2, The Bradshaw-Ferris turbulent boundary layer model is described by

uu_ + vu = e +h
X y y
ue_ + ve = aeu_+ g
X y y
u_ +v = 0
y

where h, g, and a are functions of the dependent variables u, v,

and e. u and v are velocity components, and e 1is the turbulent
kinetic energy per unit mass., Find the slopes of the three characteris-

tics for this problem, and write the three quasi-ODEs that apply on these
characteristics. '

7.3. The equations for time-dependent, one-dimensional compressible flow
are
3 3
§E‘(DA)+—8;'(AQV) = 0
Jp 9 2 3 _
A % + . (ApV™) + oy (ApV) = O
9 _ 230 .
9x c 9x 0
where A(x)

is the prescribed duct.cross-section area, and

7.21



.

where C2 = kp/p 1is the isentropic sound speed. The independent vari- v

ables are the velocity V, pressure p, and density p. |
Develop the expressions for the slopes of the characteristics, and

write pseudo-IDEs that apply on each characteristic. Organize an approxi-

mate numerical algorithm to solve this problem marching forward in time,

using the method of chéracteristics.

7.4. Consider the wave equation u  ~-u. = O; with the initial condi-

tt
tions u(x,0) = 0, ut(x,O) = exp(-x) in - ®© < x < 4+ o, Derive an

expression for the solution using the general solution of the wave equation.

7.5. Consider the wave equation Uy = Yp © 0, with the initial and
boundary conditions

u(x,0) = xe % 0 <x<w
ut(x,O) = 0 o
u(0,t) = 0

Develop (segmental) expressions for the solution to this problem in
0 < x <o, and give an expression for the solution at t = 1. Interpret

in terms of right- and left-running waves, using a sketch.

7.6. Consider the wave equation U o~ U = 0, with the initial and
boundary conditions
u(x,0) = 0 0 <x<1
1 0<x<1/2
ut(x,O) =
0 x > 1/2
u(0,t) = 0
u(l,t) = 0 N\

Develop this solution by the method of characteristics and by separation

of variables, and compare.
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APPENDIX A

REFERENCES IN APPLIED MATHEMATICS

Handbooks and Basic References

l‘

Manual of Mathematics, McGraw Hill, 1967.

A good handbook containing basic material on ode's, pde's, linear
algebra, geometry, transforms, complex variables, plus the usual array
of integrals and special functions. A valuable tool for any working

analyst.

Jolley, Summation of Series, Dover, 1961

If you are in the series summing business, this will save you lots
of work.

Kober, Dictionary of Conformal Transformations, Dover,1957

If you move from complex plane to complex plame in your work, this
will help you map the way.

Abramowitz and Stegun, Handbook of Mathematical Functions, Nat. Bu.
Stds. Publication; also Dover paperback.

A very useful reference; includes numerical analysis recipies.

Jahnke and Emde, Tables of Functions, Dover, 1933.

01d, but the numbers never change. Neat pictures! Note; commas are
decimal points in this classic. Excellent section on differential
equations that give rise to wierd Bessel functions.

Grobner and Hofreiter, INTEGRALTAFEL (Vols. 1 and 2), Springer, 1961.
Handwritten German tables of integrals, including an incredible number
of definite integrals.

Erdelyi, Magnus, Oberhettinger, Tricomi, Higher Transcendental Functions,
Volumes 1-3. MecGraw Hill, 1955. '

Complete information on all sorts of wierd functions. A must for the
serious analyst.

Kamke, Differential Gleichungen, Chelsea of Dover, 1948,

In German, a very complete tabulation of the solution of ode's. The
German presents no problem at all, since the equations are well
catalogued. Provides a great way to solve ode's fast!

Textbooks

1.

Carrier and Pearson, Partial Differential Equations, Academic Press, 1976

A new book that threatens to become a classic. Includes material on
perturbation solutions. If you want to order a new book on pde that
will have lasting value, try this one.

Whittaker and Watson, A Course of Modern Analysis, Cambridge Press, 1962.

A classic that is strong in transcendental functions.



3. Courant and Hilbert, Methods of Mathematical Physics, Volumes 1 and 2. (/"

This is the real classic, and very deep. Its depth makes it difficult A
to pick up a topic in the middle, but 1f you can spend two years
reading both volumes you really will be an expert in analysis.

4, Lin and Segal, Mathematics Applied to Problems in the Natural Scilences,
Macmillian, 1974.

A good basic book, by two excellent applied mathematicians, for a year-
long course in applied mathematics.

5. -Braun, Differential Equations and Their Applications, Springer-Verlag, 1975.

A good basic book in differential equations (mostly ordinary).

6. - Raven, Mathematics of Engineering Systems, McGraw Hill, 1966,

A good basic book with good ties to physical problems; a little thin
on pde's.

7. Boas, Mathematical Methods in the Physical Sciences, Wiley, 1966.

Similar in scope to Raven, but solider and a little harder to read.

8. Nayfeh, Perturbation Methods, Wiley, 1973.

A comprehensive treatment of this powerful technique for approximate
analysis.

9. DeBruijn, Asymptotic Methods in Analysis, North Holland, 1961.
An excellent textbook for a course on how to develop asymptotic expan-
sions of integrals, sums, etc.

10. Sokolnikoif and Redheffer, Mathematics of Physics and Modern Engineering,
McGraw Hill, 1958,

A very solid basic book.

There are many other good books on pde's. Consult the Engineering Library,
Math Library, Physics Library, etc. to find one that you can easily use.
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