Chapter 2

SELF-SIMILAR SOLUTIONS

2.1 Characteristic Scales; Scale-Similar Problems

It is often convenient to present the solution to a PDE problem in non-
dimensional form. This makes the results independent of the size of the system
for which the solution was obtained as well as independent of any choice of
dimensional system. Non-dimensionalization is usually accomplished by choosing
some length and time scales characterizing the problem, and then defining non-
dimensional independent variables based on these scales. For example, the
solution for fluid flow in a rotating sphere might be expressed non-dimensionally

in terms of the dimensionless radius, R = r/ro, where 'ro is the radius of

the sphere. Here r, is the characteristic length scale of the problem. If
the fluid is initially at rest, and at time zero it is put into rotation at
angular velocity  , then the period of rotatibn is T =27/w, and T would

be the characteristic time scale. Then a suitable dimensionless time would be

T = t/T. Note that one of the characteristic scales for the independent vari-
ables (ro) came from the geometry of the system, and the other (T) from the

boundary conditions.

The dependent variables also can be represented non-dimensionally. For -
example, in the rotating sphere problem fhe equaforial velocity is u, = wr,
and may be used as a characteristic velocity in the dimensionless velocity
U = u/u .

The problem may also contain some parameters, such as the kinematic vis-
cosity V. The parameters also can be reduced to non-dimensional form, and in
the case of viscosity it is customary to use a reciprocal dimensionless viscos-
ity called the Reynolds number, Re = uoro/v.

The solution for the velocity within the rotating sphere could then be ex-

pressed non-dimensionally as

U = _I_]_(R,T;Re)
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This says that the dimensionless velocity (a vector) U will be a function of ’ j
the dimensionless radial coordinate R, the dimensionless time coordinate T,
and the parameter Re. It might also happén that the flow depends upon the
polar angular coordinates ¢ and 6, which are additional non-dimensional
independent variables.

Problems which have natural characteristic scales for the independent

variables (here r, and T) are called scale-similar. Scale-similar solu-

tions for systems of different size will have the same non—dimenéional solution,
provided that the two problems also have the same values of the dimensionless

parameters and dimensionless boundary and initial conditions,.

2.2 Self-Similarity

There are a few very interesting and important PDE problems for which no
natural characteristic scales for the independent variables exist in the prob-
lem formulation. For example, consider the case of heat conduction in a semi-

infinite slab initially at uniform temperature, subjected to a step increase in

the surface tempéfature at time zero (Fig. 2.2.1). The approﬁriate PDE is //~>
2 . i . .
97T _ 1 ar Lo
2 oot i (2.2.1)
0x

where o 1is a constant parameter called the thermal diffusivity of the medium.

The initial condition is

(x,0) = T, x>0 (2.2.2)

The boundary condition at the surface is

T(0,t) = TS | | (2.2.3)

The temperature field must fall off to the initial temperature Ti as x >

giving a second boundary condition

T(x,t) ~»~ T as x > @ (2.2.4)

i
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There are no characteristic scales for either length or time in this problem.

This fact is the clue that a self-similar solution must exist. Since the solu-

tion to all physical problems must be expressible in dimensionless form (nature
is unawaye of the length of a meter), there must be some way to non-
dimensionalize the solution to this problem. The only possible way is for the
variables to appear together in a non-dimensional group. Looking at the de-
nominators in (2.2.1), it is readily apparent that x2 and ot have the same
dimensions, and therefore the quantity x2/(at) is dimensionless. Somehow the
solution must be expressible in terms of this quantity, in order to have dimen-
sionless form. Solutions made non-dimensional by combinations of the indepen~
dent variables, rather than by characteristic scales imposed by the geometry,

boundary, or initial conditions, are called self-similar solutions.

There is a characteristic temperature for this problem, namely the step
increase in temperature TS - Ti' Therefore, one might guess that the non-

dimensional form of the solution is
T - Ti X2
T -1 - fi\ae (2.2.5)
s i

As we shall see, this guess is correct. In a moment we shall develop a sys—
tematic way of discovering the forms of self-similar solutions.

If (2.2.5) is indeed correct, then another fully equivalent form would be

- T,
T = N S ) (2.2.6)
s i
and another would be
B Ti X
-7, = h(x//ot) (2.2.7)
s i vot

All of these solutions would really be the same, but the functions f, g, and
h would be different.

In terms of the similarity variable, n = x/vot, the family of tempera-

ture profiles existing at different times will collapse to a single curve (Fig.
2.2.1b). This is the essence of self-similarity; the solution does not scale

on the size of the system, instead it scales on itself.
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At first glance, it may appear disadvantageous to seek a solution in terms

of the non-linear combination of variables n = x/vot . However, note that a
single function g(n) would be involved, and therefore one would only have to
deal with an ordinary differential equation (ODE). This is the practical

advantage of a self-similar problem in two independent variables. The existence

of self-similarity will always reduce the number of independent variables by omne.
To summarize, self-similar solutions exist when a problem is not scale-
similar, i.e. when characteristic scales for the independent variables do not
exist in the problem formulation. In problems with two independent variables,
self-similar solutions represent a cbllapse of the family of solutions as func-
tions of the two variables to.a single function of the similarity variable. The
governing PDE is théreby reduced to an ODE, which may be solved by some appro-
priate analytical or numerical method. The proper form of the transformation
depends upon the equation, the initial conditions, -and the boundary conditions.
The transformation can be discovered systematically, as we shall mow illustrate

by some examples.

'
2.3 Example with Constant Boﬁndary Conditions . 7 \»/>

Consider the transient heat transfer problem discussed in section 2.2
The differential equation, boundary conditions, and initial conditions are
(2.2.1)-(2.2.4). The solution must be expressible in terms of some similarity
variable, which must be non-dimensional. Let's assume that the similarity

variable is of the form

n o= Ax/t" (2.3.1)

where A and n are constants to be chosen in a manner that reduces the PDE
problem to an ODE problem. Now, suppose we assume that the dimensionless solu-
tion has the form
T - Ti '
= f(n) : (2.3.2)

T - T,
s i
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This is suggested by the observation that the significant aspect is the
difference between the temperature at any point T(x,y) and the initial
temperature Ti .* The form of n 1is suggested by the fact that the solu-
tion for t=0 and x=%« must give the same value of T , and hence must cor-
respond to fhe same value of f , and hence to the same value of n . Now, we
could have taken n = Ax"/t" but this is no more general than the (2.3.1),
since this n 1is just a power of the other 1 . Also, we could have taken
n = At/xn , which also is no more general. However, we will have to differ-
entiate twice with respect to x , and only once with respect to t , and we
will find our work easier if we keep the x-dependence of 1n as simple as
possible., For this reason, we make n linear in x , and then divide by t

to a power (to be chosen later).

The next step is to transform the PDE. Using the chain rule,

3T df 9 A
= = (T-T) Eﬁa_?z = (T-T) f' . S , (2.3.3a)
t
3% A df' O A ., A '
N = (Ts—Ti) Y _1_’]— —; = (TS—Ti) Y f i a (2.3.3b)
9x t t t
_a_l = - §£ ir_]_ — - ', _ Anx
T (TS Ti) an 5c (TS Ti) £ < tn+1> (2.3.3¢)
Then, substituting in (2.2.1), we obtain
A2 1 Anx
— R 1t = - = - ata [
(TT) 5 f a (Tt g f
t t
%
We could instead take
T _ ) v .
= = &(n; T_/T)) (2.3.2%)
s i .

The student should work through the problem with this starting assumption to
verify that the same solution is obtained.
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which simplifies to \ )

£ +—12—Anx e o | (2.3.4)

A
Now, this is supposed to be an ODE for £(n) . Therefore, it can only contain
£, f'" , £, and n ; somehow we must make x and t disappear. To do this,

we first replace x using (2.3.1), x = tnn/A , and find

£ 4 n2 t2n—l
O0A

nf' =0 (2.3.5)

Next, we can select the proper value of n as that which drops out t , namely

n =1/2 . With this choice, (2.3.5) reduces to

1
200A

£+

5 N £' = 0 (2.3.6)

This is an ODE, as desired. We still are free to choose A any way we like. To

make (2.3.6) as simple as possible, let's pick

A = 1/NV2a - (2.3.7) ()
which reduces our ODE to | |
" +n £ = 0 (2.3.8)
Note that 1 1is a dimensionless variable. Now we have
n = x//2at - (2.3.9)

We must also be able to express the boundary and initial conditions in terms
~of £(n) in order to complete the self-similar transformation. Eqs. (2.2.2) and

(2.2.4) both require

f(m) = O as n >« (2.3.10)

And, (2.2.3) requires

= .3. ([
£(0) 1 (2.3.11) L )

e
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Egs. (2.3.8), (2.3.10), and (2.3.11) define the ODE problem that we must solve.

Eqn. (2.3.8) can be written as

df'
o= - ndn (2.3.12)
Integrating,
n2
fn £' = - 5 + Cy
or,
2
£ o= g e /2 (2.3.13)
7 13
Integrating again, 4;6,] eqadT-+cz
n 2 C, =1
-0°/2 t y
= 1 -9%
£ lee do + C, (.- \+c.f o vy (2.3.14)
/ ° lal‘i:%';

p ), gt
TR RO
The lower limit is arbitrary, and ® is a good choice. We must Be careful not

to confuse the limit of integration (n) with the variable of integration, and

therefore have introduced o© as the "dummy variable" of integration.

The boundary condition (2.3.10) requires C2 = 0 . The boundary condition
(2.3.11) requires os 14¢ & o ﬁ="ﬁﬁ
2
0 2 w2l .
1 = clfe"7 /2 4o ”‘(2.3.15)
00 :"44(()'&)

Hence, we can write the solution as

® )
£ =fe'° /2 45 /e“’ /2 4o (2.3.16)
W

0

We can express the solution in terms of known special functions by letting
z =0/vV2 . Then, do = V2 dz , and

22 ® 2
f = / e ? dz /ez dz (2.3.17)
n/vz } 0
I
2
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' — r
The denominator has the value /m/2 . The numerator is V7/2 erfc (n/V/2) , \/‘)

*
where erfc 1is the complementary error function. Hence, the solution is
T - Ti X
T -1 = erfe (2.3.18)
s i 2/ot

2.4 Example with Variable Boundary Conditions

The motion of a viscous fluid, initially at rest, over an infinite plate

that is set into motion at time zero is described by (Fig. 2.4.1)

2
du _ odu

v é 5 = 53¢ (2.4.1)
y v

where u 1is the velocity tangential to the plate, and Vv is the (constant)

kinematic viscosity. Suppose the boundary condition at the plate y=0 , is

b

u(Q0,t) = at (2.4.2)
. ) //
where a and b are fixed parameters. The other boundary condition is L
u(y,t) -~ 0 as y =+ ® (2.4.3)
The initial condition is
u(y,0) = 0 (2.4.4)

There are no characteristic length or time scales in either the domain or
boundary conditions of this problem, hence, we expect a self-similar solution.

Suppose we assume
u = Af(M , n = By/t" (2.4.5)

where A, B, and n are parameters that we will try to select to produce an

ODE problem. The form of 1 1is suggested by (2.4.3) and (2.4.4), which require

* .
See HMF, Section 7.1.
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that the solution have the same behavior for large y as for small t .
However, when we try to fit the boundary condition (2.4.2) with this form, we

get

A £(0) = at? (2.4.6)

Since A and f£(0) ﬁill be constants, (2.4.6) can't be true except for the
special case b=0 (which reduces this example to the previous one). Hence,
(2.4.5) will not work.

We need to allow‘additional freedom. If we expect the curves of
Fig. (2.4.1a) to collapse on a single non-dimensional curve, the value of the
fluid velocity must somehow scale on the instantaneous wall velocity. This

suggests that we try
u = At f(m) n = By/t" (2.4.7)
Where now A, m, B, and n may be chosen to give us the desired self-similar
*
solution.

We can immediately determine m using (2.4.2),

u(0,t) = A t™ £(0)

at (2.4.8)

Hence, we must choose m=b . We may choose A any way we like. If we choose

A=a , then we must impose the boundary condition
£f(0) = 1 " (2.4.9)
Now, we have

a = at? £(n) n By/t® (2.4.10)

which will fit the boundary conditions.

*We could have used u = A yk ™ g(n) , or u=A ym h(n) . These forms
are equivalent to (2.4.7), with different functions f , g , and h .

Eq. (2.4.7) is the simplest, since we must take two y derivatives and only one
t derivative.
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Next, we substitute (2.4.10) in the differential equation (2.4.1), and \ \)

find (f' = df/dn , £'' = d2f/dn2)

vaB2eP 2grr o bl

" As an ODE in £(n) , this may contain only f

constants; y and t may not appear.

y = t™n/B
Then, (2.4.11) reduces to
Vathb_znf" = abtb-lf - atb—lnnf'
In order that t drop out, we must choose n such that
b-2n = b-1 or n = 1/2
With this choice, our ODE becomes
\)B2 £'' = bf——%—n £!
Let's choose B such that sz =-% , or B=1//2v .
£'"' +nf' - 2bf = 0
and our similarity variable n is
n o= y//2vt

f -

at

b-n-1

and its derivatives, n ,

So, we will replace

nByf'

y by

Then we have

The boundary conditions on (2.4.15) are, from (2.4.9),

£(0) =

2,10

1

(2.4.11)

and

(2.4.12)

(2.4.13)

(2.4.14)

(2.4.15)

(2.4.16)

(2.4:17a)



and, from (2.4.3),

f(n) - 0 as N + o« (2.4.17b)
To complete the problem, we must solve (2.4.15) subject to (2.4.17). This

will provide a good review of some ODE sb6lution methods and will introduce us

to some special functions.
In order to solve (2.4.15), one must be specific about the value of b .

Let's first take b = 1/2 , for which (2.4.15) becomes
' 4+nf' - f = 0 (2.4.18)
The general solution will be of the form

£ = lel + CZfZ (2.4.19)

where fl and f2 are two linearly-independent solutions. For this case,
fl =1 1is one obvious solution; when the first solution to a second-order

linear ODE is known, the second can always be constructed by setting

£, = £,() ¢ 5() (2.4.20)
So, we assume

£, = n g
Differentiating, and substituting in (2.4.18), we find
ng'' + 2g' + n(ng'+g) - ng = 0 (2.4.21)

The éero—derivative terms cancel, which is why this methods works. So, we have

ng'' + (24n7)g' = 0 (2.4.22)

which is really a first-order ODE for g' ; separating the variables,
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/‘

' _
% - _<% + n> dn (2.4.23)

*
Integrating, and taking the exponential,

2 )
g' = exp <-2 £n n - %—) = 1—2 SN2 ' (2.4.24) -
n
Integrating again, -
n 2,
g(n) = /%e"" /2 4o (2.4.25)
o O

The lower limit choice is arbitrary, except that zero will cause problems;
infinity is an "artistic" choice. So, we now have the general solution to
(2.4.18) as
n 2,
f = cn+cenf 2972 4 (2.4.26) ( )
1 2 02 N
(o]

Note that again we were careful not to confuse the limit of integration (n)
with the variable of integration (o)

We now apply the boundary condition (2.4.17b), which will require C1 =0

if we can show that the second solution f is bounded as n > © , We have

2
n 2 - n 2 N 2
£.(n) = n l—-e-g /2 do < n -l-~e_'0 /2 dog = e"0 /2 do
2 2 n
o O 00
(for m > 1) (2.4.27)
| So, clearly fz(n) +0 as 1n + o ., Therefore, Cl is indeed =zero,

%
We choose the constant of integration to be 0. Any g(n) will
do since we can use any second solution.
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The behavior of f2 at N =0 can be clarified through use of one of

*
the most powerful tools of analysis-integration by parts. With it, f2 can

be rewritten as

1 02/2 " i 1 02/2
f2 LR —/(—E>(—0)e do
00 00
2 n 2
L fe"’ /2 4 (2.4.28)
, %
Now it is clear that fz(O) = -1 . Since (2.4.17a) requires that f£(0) = 1 ,
C2 = -1 . Therefore, the final solution is
2 N 2
£y = N /%4 n/ e /2 45 (2.4.29)
o0
Using the charge of variables, z = g/v¥2 , this can be written as
—n?/2 )
f(n) = e - nV/; erfc(n/v2) (2.4.30)
(for b =1/2)
Next, let's consider the case b = n/2 , where n is an integer.
Eqn. (2.4.15) is then
f'''4+nf' = nf = 0 (2.4.31)
If We-let z = n/v2 , then (2.4.31) becomes
dzf df
+ 2z —— - 2nf = 0 (2.4.32)
dz2 dz

% .
Recall that fudv = uv -fvdu ; this is called integration by parts:

become adept at doing it, because it is tremendously useful and important.
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The two linearly independent solutions of this equation are repeated integrals

of the error function,*

f = C inerfc(z) + C inerfc(—z)

1 2

. .n . k%
where the function i erfc(x) is

-

n 2 (-0 -t
ierfe(x) = / },{ e dt
1/-1? n.
X

Hence, our solution is

f = C inerfc(n//i) + C inerfc(—n/VE)

1 2

The boundary condition £f(®) = 0 requires 02 = (0 , since

constant. The boundary condition £(0) =1 fixes Cl ‘as

¢, = —=—— = 2° T ()

inerfc(O)

where I'(x) 1is the Gamma function,

I'(x) = ftx_l et at
0

Hence, the solution is

£m) = 2° P(§+1) i"erfe(n/v2)

(for b =1n/2)

&
"HMF Section 7.2.2.

k%
The student should verify (2.4.33) by substitution in (2.4.32).

Integration by parts will be required.

fodkk
See HMF Section 7.2.7.
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(2.4.33)

(2.4.34)

(2.4.35)

(2.4.36)

(2.4.37)

(2.4.38)

P

(

g
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) 2.5 Example with Integral Constraint

Consider the problem of diffusion of a contaminant deposited at time zero
at the surface of a semi-infinite slab (Fig. 2.5.1). The diffusion process is

described by.

12
a ——% = Z£ (2.5.1)
9%

where c(x,t) is the concentration per unit volume, and o is the diffusion

coefficient for the contaminant. The initial condition is
c(x,0) = 0 x>0 (2.5.2)
The boundary condition for large. x is
c(x,t) > 0 as x > o« (2.5.3)

The total amount of contaminant contained in the slab is fixed. This gives an

. ) integral comstraint,

(o0]

fcdx = Q (2.5.4)
0

This problem has no natural characteristic length or time scales and, hence, we
expect a self-similar solution.

Let's try to construct the solution in the form™

c = At" £(n) n = Bx/t™ (2.5.5)

where A, n, B, and m are constants to be chosen. The integral constraint

(2.5.4) immediately tells us something about n

N :
, ) Again, the similar boundary condition (2.5.3) and initial condition
N (2.5.2) suggest the form of n .

S
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. | &

(o] m \
Q = fAt“f(n)dx = f APE() ¢ £ dn
0 0
o0
- %tn*‘“‘/ £(n) dn = constant (2.5.6)
A ;
The integral will be some number. Therefore, for Q to be constant n = -m .

We will later use (2.5.6) to help determine other comstraints.

Next, we substitute (2.5.5), with n =-m , in (2.5.1), and obtain

t-mrl -m~1

OLAth-Sm f'' = -m Af - mnAt f' (2.5.7)

Note we have already eliminated x in favor of mn . For this to be an ODE,
t must drop out, hence -3m = -m-1 , or m = 1/2 . We pick uBz =1/2 ,
B = 1/V/20 , and then our ODE becomes
f'*' 4+ nf'+£f = 0 (2.5.8)
The boundary condition (2.5.3) requires

f(m) = 0 as N > © (2.5.9)

We have the freedom to match this integral constraint with the choice of A .

Hence, let's choose
£(0) = 1 : ' (2.5.10)

Eqs. (2.5.8)-(2.5.10) define the ODE problem to be solved.

Our task becomes easy when we recognize that (2.5.8) is expressible as
(£)'+ (nf)' = 0 (2.5.11)
Integrating,

9
f' +nf = C (2.5.12) N



Since the boundary condition (2.5.9) requires £f(n) - 0 as n =+ o ,
f'(n) -0 as 1n = « , and hence Cl will have to be zero unless

nf - constant as n > ® ., Let's assume (subject to later verification) that
nf -0 as n * ® , and hence that Cl = 0 . Separating the variables and
integrating again,

2
£ = cye /2 (2.5.13)

Note that indeed nf - 0 as n =+ « , as assumed. Our choice £f(0) =1

requires C2 = 1 . Hence,

gm) = e N /2 (2.5.14)

To complete the solution we need®

S o 9 © 9 | ‘
/f(n)dn - [e'” /2 40 = /e'c’ Zdo = [4 (2.5.15)
0 : 0

Using this in (2.5.6), we find

2
A= e (2.5.16)
Hence, the final solution is
2
c ® Q exp |- __Z - (2.5.17)
ot o
Note that the concentration at x = 0 is infinite at t = 0 . This reflects

a modest deficiency in the model, namely we assumed that we could place a
finite amount of contaminant in a zero thickness layer at time zero. Thus, the
solution is not useful for very small times. Fig. 2.5.1 shows the form of this

solution.

%
See HMF Section 7.1.
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2.6 A Non-Linear Problem \,ﬁ)

The laminar boundary layer over a flat plate is described by

Yy Yy ~ ¥ Vyy =V Vo (2.6.1)

where Vv is the kinematic viscosity and Y(x,y) 1is the stream function,

which must satisfy the boundary conditions

wx = 0 at y =20 (2.6.23)
v, = 0 at y=0 (2.6.2b)
wy - Uo as x~+0 (2.6.3a)
Wy - Uo as y > o (2.6.3b)

Students of fluid mechanics should look up the derivation of this problem; others
may treat it simply as a mathematical example.
P
Since there are no characteristic scales in the problem, we look for a (\;)

self-similar solution of the form

V(x,y) = Ax" £(M) , n = By/x" (2.6.4)

Note that we will need three vy derivatives, and only one x derivative, so
we chose a form that keeps the y dependence simple.
Substituting (2.6.4) in (2.6.3),

g BT () U as (n + «) (2.6.5)

v

Now, £'(») will be a number; hence, for this to be constant, m=n . We
will make the arbitrary choice £'(®) = 1 . Then, we will have to choose A
and B such that AB = U0 . With these choices, (2.6.5) will be satisfied
for all x .

Next, we substitute (2.6.4) in (2.6.1), using m = n . This produces

{/\
Ne—
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3

-AB f' -« ABx_lmn £ - me_lm(f--nf')BAzx—m f'' = VB Ax_zm

f"'
(2.6.6)

Note that we have already replaced y by nxm/B . For x to drop out,

3
-2m = -1, or m=1/2 ., Then, if we pick A2B2 = VB A , the equation reduces

to

T +-% ££'' = 0 (2.6.7)

We have already chosen f£'(®) = 1 , which led us to AB = U0 . Hence,
A = AN B = /UV (2.6.8)
The boundary conditions are, from (2.6.2a)
£(0) = 0 (2.6.9a)
and from (2.6.2b)
£'0) = 0 (2.6.9b)
Eqs. (2.6.3) will be safisfied by our choice of constants if
f'm) ~» 1 as N > o (2.6.9¢)

Eqn. (2.6.7) must now be solved, subject to the boundary conditions (2.6.9).

The solution will introduce you to two useful ideas; rescaling, and numerical

© solution as an initial value problem.

In problems of this sort, it is often possible to use a "rescaling tech-
nique' to convert the two-point boundary value problem to a one-point initial
value problem. The advantage of this is that the initial value problem can be

solved numerically with a single~pass technique. To rescale, we let
z = Cn £M) = cPglz) (2.6.10)
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O)
The idea is to pick an n such that we can solve the g equation without \
knowing the value of the constant C , which will be determined after the g
equation has been solved. Substituting (2.6.10) in (2.6.7), one finds
(g' = dg/dz, etc)

n+3 1 C2n+2g g

. C »g|’|+7

Now, if we pick n+3 = 2n+2 , i,e. n =1, the g equation is

gt +_% gg'' = 0 (2.6.11)

The boundary conditions on g are, from (2.6.9a and b),

(2.6.12a)
(2.6.12b)

g(0)
g'(0)

We replace the outer boundary condition by a third condition at z =0 . Let's 7
' \

use
g'' () = 1 (2.6.12¢)

If we can solve (2.6.11), subject to (2.6.12), we can choose C to produce an
f satisfying (2.6.9c), and the solution will be complete.
So now we go to the local computer center, and use a program that solves

systems of first order ODE's by a marching method. These methods deal with

systems of the form

= = Ay ‘ (2.6.13)

with the "initial" (x = xo) values of the solution vector Vi prescribed.

' We define the three variables as
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v = 8 (2.6.14a)
v, = &' (2.6.14b)

y3 = g" (2.6-14(:)
Then, (2.6.11) is the first order equation
R (2.6 15 )
I3 2 Y173 -0. 108

The other two equations are, from the definitions,

' =
y1 Yy (2.6.15b)
- (2.6.15¢)
) Y3
The initial conditions are
v (0) = 0 (2.6.16a)
7,00 = 0 (2.6.16b)
v4€0) = 1 (2.6.16c)

It takes only a few lines of program to tell the general purpose program that we
want it to solve (2.6.15), subject to (2.6.16), over a range from x = 0 to
some large x (perhaps 20). We execute, and print RN and yy at
different values of x. If all has gone well, at large x v will be growing
linearly, Yy = g' will be constant, and vy = g" will be very small.

Knowing the value of g'(z) as z > o, we go back to the rescaling

transformation (2.6.10) and the outer boundary condition (2.6.9c)
1 2 1
Hence, C =1/v g'(®) . We can now calculate and plot f(ns for 0<n <o,

and the problem is finished.
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2.7 An Example in More Dimensions

The transient heat conduction in a quarter-infinite block (Fig. 2.7.1) is (ﬁﬁ}

described by

2 2

a°T , 9°T _ 1 aT
S+t - 28 (2.7.1)
ox . dy

where the quantities are as defined in §2.3. Suppose that the initial condi-
tion is

T(x,y,0) = T ~ for x>0, (2.7.2)
y >0

the boundary conditions are

T(x,0,t)

I
=]

il
=

T(0,y,t)

Let's seek a self-similar solution in terms of two similarity variables,”

£ = Ax/t" n o= Ay/t" (2.7.4)
Following the example in §2.3, we assume
TS - Ti = F(&,n) (2.7.5)
Substituting in (2.7.1) ,
A2 p aF ) = - at - (EF +NF.) (2.7.6)
g€ "mn o g

We choose n = 1/2 to reduce (2.7.6) to a PDE in just & and n .
Then, with A = 1//0 ,

*Because the problem is symmetric in x and y , we have no reason to use /

)

different powers or coefficients in the two similarity variables.
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F + F + EF,. + nF = 0 2.7.7

gg ¥ B *EFg ¥ OE, (2.7.D

Note that the self-similar transformation has reduced the number of independent
variables by one.

The boundary and initial conditions produce

F(O,n)

F(E,0)

Now, as & + », the solution should approach that of the semi-infinite
solid (see § 2.3), so

1 (2.7.8a)

1]

1 (2.7.8b)

F > g erfc(n) as £ + o (2.7.8¢)

Similarly,

F > £(&)

erfc(§) as n >+ (2.7.84d)
The PDE for F can be solved by the method of separation of variables,

discussed in the next three chapters. Following the approach to be presented

there, we assume

F(E,n) = £(&) + g&(M) + H(E,n) (2.7.9)

Since f" + Ef' = 0 and §" +'n§' 0 (see 2.3.8), H also satisfies

(2.7.7). Now, we assume a separable solution for H

H(E,n) = £(&) = g(m) (2.7.10)
Substituting (2.7.9) in (2.7.7), and dividing by H , one finds

f" _;:-_ Ef' - _ <g|' + ngv> (2.7.11)
g

Since the left-hand side is independent of n , and the right-hand side is

independent of £ , both must be constant, and

1 )
£ ; EEY

1 1
-g-—-;g.g_ = -C
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or,

N

Ct (2.7.12a\ }

£ + gf'

g'' +ng' -Cg (2.7.12b)
The boundary conditions on H are, from (2.7.8),

H=>0 as E + o (2.7.13a)

H~->O0 as n > _ (2.7.13b)
H(O,n) = =-g(n) ' (2.7.13¢)
H(E,0) = -E(E) | (2.7.13d)

By symmetry, f and g must be the same function, hence C = 0. So if we take

cC =0 £(g) = 1iE(E) g(m = 1igM) (2.7.14)

(2.7.12) will be satisfied, and the boundary conditions (2.7.13) are all satisfied.
N

+ erfc(E//7) + erfc(n/v2) (2.7.15)

Hence, the solution is

F(E,n) = -erfc(E/v2) erfc(n/v2)

2.8 Summary

We have seen that self-similar solutions arise when thereuare no natural
characteristic scales for the independent variables in the problem formulation.
The self-similar transformation will always reduce the number of independent
variables by one, so that in a problem with two independent variables the PDE
will become an ODE. The steps used to systeﬁatically develop the self-similar
solution are as follows: '

(1) Assume a general form for the transformation, guided by the initial

and boundary conditions. Use a form in which the variable that

appears in the most complex way in the equations appears as simply
as possible in the transformation.

(2) Express the boundary and initial conditions in terms of the simi-

larity transformation, and verify that they can be satisfied by the 7/ /)
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assumed transformation. If they can not, add additional degrees
of freedom.

(3) Remove one (or more)vof the independent variables using the
similarity variable. Then, determine the parameters of the trans-
fbrmation necessary to reduce the PDE order by one.

(4) Express the boundary and initial conditions for the reduced problem,
and solve by appropriate methods.

In all of the examples worked here, the similarity variable involved forms

like y//g . The square~root behavior occurs'frequently, but not exclusively.

Some of the problems at the end of this chapter will require other powers in

the similarity variable.

For Further Reading on Similarity Solutions

* Kline, 8. J., Similitude and Approximation Theory, McGraw-Hill Book Co.,
New York, 1965.

* Hansen, A. G., Similarity Analysis of Boundary Value Problems in
Engineering, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964,

* Sedov, L. I., Similarity and Dimensional Methods in Mechanics, Academic
Press, New York, 1959.
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Exercises:

_ 2.1 The temperature field T(x,t) in a semi-infinite slab with a constant

heat flux is described by

2
7T _ °T -
OL—Z' Y H T(x,0) = T

9% i

9T
X

]
o

T(x,t) - T, as x > 3 -k

1 = q at x

Solve for the temperature field for x>0, t >0 .

2.2 The temperature field in the thermal boundary layer that grows within a

hydrodynamic boundary layer at a step in wall temperature is described by

2
e I )
o ayz = By 5; ’ T(O,Y) = Tw y > 0

T(x,y) = T  as y>* 3 T(x0 = T ; /)

I
o]
-

Solve for the temperature field for x>0, y >0 .

2.3 A device for measuring the velocity gradient in flows is shown in the
figure. It.consists of a heated plate at the wall, over which a thermal
boundary layer grows. As long as the thermal boundary layer is confined
to the region where the flow velocity u is linear (u = By) , the
problem is described by

2
T _ oT -
a 2 = BY 9x ’ T(OQY) - Tm y > 0
oy :
oT
T(x,y) - T, as y>> ; -k 3y q at y=20

Derive an expression relating the local wall temperature, Tw(x) , to the
flow parameters and x . Evaluate any constants in this expression.

Hint: T .
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2.4 The diffusion of a contaminant deposited along a line within an infinite

medium is described by

o %; (r %%) = r %%’ 3 c(r,t) > 0 as r >

(o)
e(r,0) = 0 >0 21T/crdr= Q
. 0
Solve this problem, and”give an expression for c(0,t).

2.5 The diffusion of a contaminant deposited at a point in an infinite

medium is described by

0 2 0cy, _ 23 .
o oF (r . = r St : c(r,t) - 0 as r -

oo

0 r>o0 ; 4’!T/cr2dr=Q
0

Solve this problem, and give an expression for c(0,t) .

c(r,0)

2.6 Consider a non-linear diffusion problem deséribed by

¢

9 de|_ 0dc
% o (1+8c) x| = T

c(x,0) = 0 x>0

c(0,t) = 1 c(x,t) + 0 as x »> o

Derive the similarity transform and associated ODE. Solve the problem
numerically for B8 =-0.5, 0, and 0.5 . Use the B =0 case to check
the numerical solution against the exact solution, and to guide the

starting and direction of numerical marching.
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(a) The System

Fig. 2.5.1.

Fig. 2.7.1. Geometry for Analysis of

Heating of a Cormner
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